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Abstract: A spurious regression occurs when a pair of
independent series, but with strong temporal properties, are found apparently to be related
according to standard inference in an OLS regression. Although this is well known to occur with
pairs of independent unit root processes, this paper finds evidence that similar results are found
with positively autocorrelated autoregressive series on long moving averages. This occurs
regardless of the sample size and for various distributions of the error terms.
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1. Introduction

Suppose that  Xt, Yt are a pair of time series independent of each other and that the regres-

sion

Xt=α +βYt+ut (1.1)

is run using a standard least squares program which will also provide at-statistic for the estimate

of β . A "spurious relationship" can be said to have been found if the modulus of thist-statistic is

greater than 1.96. If  Xt, Yt are a pair of independent white noise series, so that

 corr (Xt, Xt −k) = 0 for all  k≠0, and similarly for  Yt, then basic statistical theory states that

 | t̂ | ≥ 1.96 will occur approximately 5% of the time. Thus, with the definition being used, in this

white noise case, an apparent, and thus spurious, relationship will be found on 5% of occasions.

Using a simulation, Granger and Newbold (1974) showed that if  Xt and  Yt are each drift-free

random walks, then the number of spurious relationships "found" using least-squares estimation

and standard inference, greatly increases to 76% of occasions with small sample sizes. A size of

N = 50 was used in the original simulation. Later, Philips (1986) produced an elegant asymptotic

theory that explained the simulation results. These developments generated a lot of interest

amongst both theoretical and applied econometricians, although there was little emphasis on the

ability of the asymptotic theory to explain results from simulations based on such small samples.

This paper explores the possible existence of spurious relationships between a pair of

independent stationary series. It will be shown, using simulations, that spurious regressions can

still occur and that the strength of the relationship varies very little with sample size. A theoreti-

cal justification for these results is also presented.

It has been known for some time that the spurious regression results do not hold only for

independent random walks but also for other persistent processes, such as I(2) (Haldrup (1994)),

fractional I(d) (Marmol (1996)), and stochastic unit root processes, defined by Granger and

Swanson (1997), as found in unpublished simulations. The results presented here suggest that
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spurious relationships can be found in cases which do not involve persistent processes. This is in

agreement with the original paper by Yule (1926) on nonsense correlations which observed their

existence without considering links to persistence.

2. Spurious Regression Between Autoregressive Processes

Suppose that  Xt and  Yt are generated by independent AR processes as follows:

Xt=θ xXt −1+ε xt (2.1)

Yt=θ yYt −1+ε yt (2.2)

where  |θ x |<1,  |θ y |<1, and  ε xt,  ε yt are each iid and zero mean. In the following simulation

 ε xt,  ε yt are drawn from independent  N(0, 1) populations, but normality is not a particularly

relevant feature.

From equation (1.1) the ordinary least squares estimate of  β  is defined by:

β̂=

t =1
Σ
T

(Xt−X
__

) 2

t =1
Σ
T

(Xt−X
__

) (Yt−Y
_
)

_______________ (2.3)

where  X
__

=T −1Σ t =1
T Xt and  Y

_
=T −1Σ t =1

T Yt. Then

t̃β̂ =
σ̃β̂

β̂___=

σ̂ u / √M M M M
t =1
Σ
T

(Xt−X
__

) 2

β̂_________________ (2.4)

where  σ̃ β̂
2
=σ̂ u

2
/Σ t =1

T (Xt−X
__

) 2,  ût=Yt−α̂ −β̂Xt, α̂ , β̂ are the least squares estimators and

 σ̂ u
2
=

T
1__Σ t =1

T ût
2

→
p

σ u
2, as  T → ∞ and  σ u

2= lim T→∞ T
1__Σ t =1

T E(ut
2). Table 1 summarized the

results of a simulation using 1,000 iterations in all cases, for which  θ x=θ y=θ . Thus here  Xt,  Yt 

are generated by the same autoregressive model. Sample sizes from 100 to 10,000 are shown

plus an asymptotic value derived in the theory presented below. Values are for the percentage of

 |tβ |  values using both ordinary least squares (OLS) and with the Bartlett correction described
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below. Table 2 shows similar results with a variety of values of  θ x,  θ y that need not be the

same.

Table 1. Regressing between two independent AR series(θ =θ x=θ y). Percentage of| t |>1.96.________________________________________________________________________________________________________________________________________________
Method NOBS θ =0 θ =0.25 θ =0.5 θ =0.75 θ =0.9 θ =1.0______________________________________________________________________________

OLS 100 5.3 7.6 13.3 29.1 51.5 77.0
500 5.8 7.5 16.3 31.5 51.6 90.0

2,000 5.8 7.1 13.5 29.4 52.5 94.5
10,000 4.3 6.6 12.2 30.6 52.3 97.6

∞ 5.0 7.0 13.0 30.0 53.0 100.0

BART 100 7.6 7.7 9.9 16.5 30.6 62.0
500 6.4 6.8 9.0 14.1 23.9 79.6

2,000 6.0 5.9 6.1 10.3 16.3 86.4
10,000 4.6 5.2 5.5 7.7 12.8 92.5

∞ 5.0 5.0 5.0 5.0 5.0 100.0______________________________________________________________________________
Notes:

1. The number of iteration = 1,000
2. % of rejection, i.e., absolute value oft-value > 1.96
3. ∞ means asymptotic case
4. To avoid the problem of fixing  X0 and  Y0, 100 pre-samples are generated and let  X−100=Y−100=0
5. The number of rejections (BART) depend on the number of lags (l) used to calculatev̂. We set l = integer

[4(T/100)⁄1
4].

Table 2. Regressing Between Two Independent AR Series(θ x≠≠θ y), percentage| t |>1.96.___________________________________________________________________________
θ x=0 NOBS θ y=0 θ y=0.25 θ y=0.5 θ y=0.75 θ y=0.9 θ y=1.0___________________________________________________________________________

OLS 100 5.3 5.1 5.8 6.0 4.4 5.3
500 5.8 5.8 5.8 6.8 6.6 5.3

2000 5.8 5.6 5.7 6.2 6.6 4.4
∞ 5.0 5.0 5.0 5.0 5.0 5.0

BART 100 7.6 7.3 7.2 7.5 6.8 6.5
500 6.4 6.8 7.4 7.1 6.1 5.5

2000 6.0 5.6 5.7 6.4 6.3 4.1

θ y=0 θ x=0 θ x=0.25 θ x=0.5 θ x=0.75 θ x=0.9 θ x=1.0
OLS 100 5.3 5.6 5.1 4.6 5.5 5.4

500 5.8 6.1 7.1 4.6 5.0 5.2
2000 5.8 5.6 5.6 5.7 6.0 4.6

∞ 5.0 5.0 5.0 5.0 5.0 5.0

BART 100 7.6 7.3 7.6 7.4 9.1 9.4
500 6.4 6.6 7.1 6.1 5.8 5.7

2000 6.0 6.0 5.5 5.6 6.0 5.0___________________________________________________________________________
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Table 2 Continued__________________________________________________________________
θ x=0.5 NOBS θ y=0 θ y=0.25 θ y=0.5 θ y=0.75 θ y=0.9 θ y=1.0__________________________________________________________________
OLS 100 5.1 8.8 13.3 19.6 21.9 24.8

500 7.1 9.9 16.3 21.2 23.8 26.2
2000 5.6 8.4 13.5 20.3 22.5 22.8

∞ 5.0 8.0 13.0 19.0 23.0 26.0

BART 100 7.6 8.7 9.9 12.8 13.9 14.7
500 7.1 8.1 9.0 10.0 9.8 9.3

2000 5.5 5.8 6.1 7.3 7.8 6.3

θ y=0.5 θ x=0 θ x=0.25 θ x=0.5 θ x=0.75 θ x=0.9 θ x=1.0
OLS 100 5.8 9.0 13.3 18.1 21.8 26.4

500 5.8 10.2 16.3 19.8 22.1 26.4
2000 5.7 10.2 13.5 20.0 23.3 24.3

∞ 5.0 8.0 13.0 19.0 23.0 26.0

BART 100 7.2 7.7 9.9 12.2 13.4 16.0
500 7.4 8.2 9.0 9.3 9.7 10.2

2000 5.7 6.3 6.1 8.3 7.9 6.9__________________________________________________________________

The obvious feature of the simulations in Table 1 are:

(a) Spurious relationships occur quite frequently for  θ x=θ y<1. For example, if  θ = 0.75

about 30% of regressions would lead to spurious relationships being found if standard

OLS inference is used.

(b) The percentage of spurious relationships does not depend on the sample size.

(c) The Bartlett correction reduces the problem, and is thus clearly helpful, except for  θ

= 0.9 or larger.

The results in Table 2 illustrate the situation further. An interesting symmetry is seen to occur

(d) The percentages of  |t | > 1.96 are similar for (θ x=a, θ y=b ) and (θ x=b, θ y=a ) with

 a≠b, although only the cases where eithera or b equals either zero or 0.5 are shown.

Because of the use of an incorrect standard error estimator of  β̂ , the t-statistic in (2.4) will

not converge to a standard normal distribution asT increases. Serial correlation in disturbances

requires a different form of consistent estimator for the standard errorβ̂  as follows:
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σ β̂
2
=M −1 VM−1

where  M ≡ E I (Xt−X
__

)2K , V ≡ var H
I T− ⁄1

2Σ t =1
T (Xt−X

__
t) ut

J
K .

Its consistent estimator is

σ̂ β̂
2

= M̂
−1

V̂M̂
−1

→
p

σ β̂
2
,  as T → ∞

where V̂=
T
1__Σ t =1

T (Xt−X
__

)2 ût
2

+
T
2__Σ s =1

l w(s, l )Σ t =s +1
T (Xt−X

__
) ût ût −s (X t −s−X

__
) →

p
V, M̂=T −1

Σ t =1
T (Xt−X

__
) →

p
M, asT → ∞. Herew(s, l) is an optimal weighting function that corresponds to

the choice of a spectral window. In this case

tβ̂ =
σ̂β̂

β̂___→
d

N(0, 1) . (2.5)

In the simulations shown in Table 1 and 2 the Bartlett window

w(s, l ) = 1−
(l+ 1)

s_____

is used, as discussed by Newey and West (1987), which guarantees the non-negativity of  σ̂ β̂
2
.

As stated before, one will get a different limiting distribution if use is made of misspecified

variance estimator in (2.4) instead of a consistent estimator.

Theorem 1: Lets assume disturbances  ε xt and  ε yt are each zero mean iid processes, with vari-

ances  σ x
2 and  σ y

2 respectively. furthermore,  E |ε xt | 2+λ < + ∞ for some  λ>0. With regression

(1.1) and  Xt and  Yt generated by (2.1) and (2.2) then the limiting distribution of (2.4) is

t̃β̂ =
σ̃β̂

β̂___=
σ̂β̂

β̂___.
σ̃β̂

σ̂ β̂___→
d

N
B
A
D
0 ,

(1−θ xθ y)
2

1−θ x
2θ y

2
_________EA

G
,  as T → ∞ .

Proof of Theorem 1: Given model (2.1) and (2.2) with assumption of theorem,  ût = Yt−α̂ −β̂Xt,

where  α̂  and  β̂  be OLS estimators, we have the following properties:
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σ̂ u
2
=

B
A
D T

1__

t =1
Σ
T

ût
2 E

A
G

→
p

var (Yt) .

From  Xt=Σ i =0
∞ θ x

i ε xt−i and  Yt=Σ i =0
∞ θ y

iε yt−i we can drive  
T
1__Σ t =1

T (Xt−X
__

)2 →
p

1−θ x
2

1_____σ x
2 and

T
1__Σ t =1

T (Yt−Y
_
)2 →

p

1−θ y
2

1_____σ y
2.

We can derive the following results by the central limit theorem:

√MMT
1____

t =1
Σ
T

(Xt−X
__

) (Yt−Y
_
) →

d
N

B
A
D

0 ,
(1−θ x

2) (1−θ y
2) (1−θ xθ y)

2

1−θ x
2θ y

2
_____________________σ x

2σ y
2

E
A
G
 .

Some tedious algebra is required to get this.

This result, together with the fact that the limiting distribution is quickly reached as the

sample size increases explains all of the features (a) to (d) observed in the simulation.

Two extensions to the simulations were considered but will just be discussed here rather

than showing the complete results. The effectiveness of using at-statistic based on White’s

heteroskedastic robust procedure found that misleading inferences would not have been reduced

if the procedure was used. It is not designed to be robust against autocorrelated errors.

The simulations were reproduced using different distributions for the shocks than normal.

Each pair of shocks remains iid and independent of each other, but the distribution used was

exponential. Cauchy, Laplace, uniform andt-distribution with 5 degrees of freedom. All gave

very similar results for table 1, with the exception of the Cauchy, where theN = 100 results were

similar but now the extent of the problem declines with sample size. Table 3 shows OLS results

for the exponential (with mean = 1) and Laplace (or double exponential) distribution with mean =

0 and variance = 2.

3. Spurious Regressions Using Independent MA(k) Processes
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In this section it will be shown that spurious relationships may be found between other

pairs of independent stationary series that are somewhat persistent. If  Xt and  Yt are generated

by independent MA(k) processes

Xt=
j =0
Σ
k

e x, t −j  ,  Yt=
j =0
Σ
k

e y, t −j (3.1)

where  ext,  eyt are each zero mean iid processes. Table 4 shows the percentage of times

 |tβ | ≥ 1.96 from OLS regressions (3.1) fork taking the values 0, 1, 2, 5, 10, 20, or 50. Sample

sizes vary from 100 to 10,000 and corresponding results are shown when the Bartlett correction

is used. The results agree with those of the previous section. Apparent or spurious regressions

occur frequently, roughly one third of the time whenk is only 5; the values in the table increase

steadily withk but do not vary with sample size, and the Bartlett correction is generally useful.

Table 3. Spurious Regression With Non-normal Distributions_________________________________________________________________
OLS NOB θ =0 θ =0.25 θ =0.5 θ =0.75 θ =0.9 θ =1.0_________________________________________________________________

Case I 100 6.0 8.3 15.7 32.7 55.8 78.5
Laplace 500 3.7 5.9 11.9 29.6 53.0 90.4

2,000 5.5 6.7 13.9 30.2 52.0 94.9
10,000 4.8 5.6 11.8 29.1 50.5 97.3

Case II 100 5.1 6.6 11.2 23.1 49.3 79.4
Cauchy 500 2.9 3.4 6.3 12.5 36.0 92.6

2,000 2.2 3.1 5.5 10.7 26.9 94.2
10,000 0.5 0.9 2.3 5.5 15.1 98.0

Case III 100 6.9 8.2 14.7 29.9 51.2 100.0
Exponential 500 4.8 6.9 14.2 30.8 52.9 100.0

2,000 4.4 5.8 13.2 29.0 53.3 100.0
10,000 4.3 5.9 11.5 32.0 53.7 100.0_________________________________________________________________
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Table 4. Regressing Between Two Indpendent MA Series______________________________________________________________________________
Method Number White MA(1) MA(2) MA(5) MA(10) MA(20) MA(50)

of data Noise______________________________________________________________________________
OLS 100 6.4 9.3 17.1 30.6 45.3 60.2 76.0

500 5.8 12.8 20.7 35.4 48.0 59.4 71.9
2,000 6.3 12.1 20.2 33.8 46.1 59.4 75.7

10,000 4.4 9.9 17.4 33.5 46.3 59.4 74.1

BART 100 7.1 8.1 10.6 13.8 22.5 34.4 58.2
500 6.1 8.2 10.6 11.7 11.5 12.1 19.7

2,000 6.3 8.3 9.0 10.1 11.4 10.3 14.3
10,000 4.6 6.8 8.2 9.2 9.9 10.1 10.4______________________________________________________________________________

1. The number of iteration = 1,000

2. % of rejection, i.e., absolute value oft-value > 1.96

Theorem 2: The disturbance  ext,  eyt are each zero mean iid processes, and variances  σ x
2,  σ y

2 

respectively. Furthermore,  E |ext | 2+λ < +∞ for some  λ<0. With regression (1.1) and  Xt,  Yt 

generated by (3.1) then as  T → ∞:

(a) if  k = O (T),  β̂ = Op(1)

(b) if  k = O (1),  β̂ = Op(T− ⁄1
2)

(c) if  k = O(Tl ) with  0< l < 1,  β̂ = Op(T− ⁄1
2k ⁄1

2) = Op(T ⁄1
2(l −1)) and

furthermore,  ût=Yt−α̂ −β̂Xt, where  α̂ ,  β̂  be OLS estimators, and if  k=O(Tl ) with  0< l < 1,

(d) t̃β̂ =
σ̃β

β̂___=Op( k ⁄1
2 )

(e) tβ̂ =
σ̂β̂

β̂___= Op(1)

Lemma 1: Given model (3.1) with assumption of Theorem 2, we have the following properties:

(a) E
B
A
D Tk

1___Σ t =1
T (Xt−X

__
)2

E
A
G
=O(1) and  var

B
A
D Tk

1___Σ t =1
T (Xt−X

__
)2

E
A
G
=O(1)
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(b) E
B
A
D T1/2k3/2

1________Σ t =1
T (Xt−X

__
) (Yt−Y

_
)
E
A
G
=0 and  Var

B
A
D T 1/2k3/2

1________Σ t =1
T (Xt−X

__
) (Yt−Y

_
)
E
A
G
=O(1).

Let  ξ xx=Σ t =1
T (Xt−X

__
)2 and  ξ xy=Σ t =1

T (Xt−X
__

) (Yt−Y
_
).

Proof of Theorem (a): If  k=O(T) and  ext = eyt=0 for all  t ≤ 0, by assumption of Theorem 2

and Lemma 1 (a), then  T−2ξ xy = Op(1) and  T−2ξ xx = Op(1). Then formula (a) of theorem fol-

lows directly. The result shows a spurious regression which was mentioned by Granger and

Newbold (1974).

Proof of Theorem (b): If  k=O(1) then  T− ⁄1
2ξ xy=Op(1) and  T−1ξ xx → M<∞ in probability for

some positive numberM. Then  β̂  =  T− ⁄1
2 T− ⁄1

2ξ xy / (T−1ξ xx) = Op(T− ⁄1
2).

Proof of Theorem (c): If  k=O(Tl ) with  0< l < 1 and  ext = eyt = 0 for all  t ≤ 0, then

 T− ⁄1
2 k−3/2ξ xy=Op(1) and  T−1k−1ξ xx → M´<∞ in probability for some positive number  M´.

Then  β̂=T − ⁄1
2k ⁄1

2T− ⁄1
2k3/2ξ xy / T−1k−1ξ xx = Op(T− ⁄1

2k ⁄1
2).

Lemma 2: Given model (3.1) with Assumption 1,  ût=Yt−α̂ −β̂Xt, where  α̂ ,  β̂  be OLS estima-

tors, and if  k=O(Tl ) with  0< l < 1 and  ext = eyt = 0 for all  t ≤ 0, we have the following proper-

ties:

(a) σ̃ β̂
2
=

B
A
D T

1__

t =1
Σ
T

ût
2E

A
G

B
A
D t =1
Σ
T

(Xt−X
__

)2
E
A
G

− 1

=Op(T−1).

(b) σ̂ β̂
2
=M̂

−1
V̂M̂

−1
=Op(T−1k).

Proof of Theorem (d): By formula (c), lemma 2 (a)

k− ⁄1
2t̃β̂ =

T1/2σ̃β̂

T1/2k− 1/2β̂__________= Op(1) .

Proof of Theorem (e): Similarly, by formula (c), lemma 2 ( b)

tβ̂ =
T1/2k− 1/2σ̂β̂

T1/2k− 1/2β̂___________= Op(1) .
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The theorem shows that the conventionalt-ratio does not have limiting distributions if

 l > 0. In fact, the distribution of  tβ̂  diverges ask increases, not decreases asT increases if a

misspecified variance estimator is used.

4. Conclusions

This is a paper that could have been written 25 years ago, but it still tries to issue a warning.

Concerns about spurious regressions have been widely discussed for some time, but largely in the

context of a pair of unit root or persistent processes. It is here shown that the problem arises in a

wider context; although less seriously. Spurious relationships occur from a misspecified model,

under the null. If  Xt is serially correlated in (1.1) and the true  β  is zero, this implies that the

residuals cannot be white noise. The problem is thus that (1.1) is a misspecified model. It is

resolved by improving the specification; that is by adding more lagged dependent, and possibly

lagged independent, variables. Patch-work procedures, such as the Cochrane-Orcutt correction,

will be inefficient compared to using a wider specification. Strategies that have been suggested,

such as testing for I(1) versus I(0) and then possibly building (1.1) with differenced data, are

irrelevant when stationary variables are involved.

There are a number of consequences of these results. Clearly care has to be taken when

interpreting regressions, however estimated, if insufficient care is taken with serial correlations in

the residuals. This can occur if an overly simple specification is chosen, or possibly one based on

a model selection criterion, such as BIC. Some estimated error-correction model equations could

provide examples. The results also provide a simple explanation of why interpretation of impor-

tant coefficients change when alternative specifications are considered of a dynamic model.



- 11 -

References

Granger, C.W.J. and P. Newbold (1974): "Spurious Regressions in Economics."Journal of
Econometrics2, 111-120.

Granger, C.W.J. and N. Swanson (1997): "An Introduction to Stochastic Unit-Root Processes."
Journal of Econometrics80, 35-62.

Haldrup, N. (1994): "The Asymptotics of Single-Equation cointegration Regressions with I(1)
and I(2) Variables."Journal of Econometrics63, 153-181.

Marmol, F. (1996): "Nonsense Regressions Between Integrated Processes of Different Orders."
Oxford Bulletin of Econometics and Statistics58, 525-536.

Newey, W.K. and K.D. West (1987): "A Simple, Positive Semi-Definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix."Econometrica55, 703-708.

Phillips, P.C.B. (1986): "Understanding Spurious Regressions in Econometrics."Journal of
Econometrics33, 311-340.

Yule, G.U. (1926): "Why Do We Sometimes Get Nonsense Correlations Between Time Series?
A Study in Sampling and the Nature of Time Series."Journal of the Royal Statistical
Society89, 1-64.




