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Abstract 

 California faces complicated water challenges and increased drought that have put 

pressure on agricultural systems to cut back on water consumption.  Responding to 

changes in water supply and improving adaptive capacity requires that knowledge and 

expertise be available to growers and water managers.  Water budgets are useful tools that 

aid in evaluating availability, change, and sustainability of water resources, however water 

budget components can be difficult to measure due to complex heterogeneity and inherent 

environmental physical properties.  Capturing changes in soil moisture (ΔS) in systems 

with high clay content soils is notoriously complicated due to interferences from shrink-

swell potential and soil-sensor contact.  Using winter-cropped, fallowed rice fields in the 

Sacramento Valley, CA as a case study, we explore water budgets as a tool to inform water 

management and ecological enhancement while simultaneously evaluating time domain 

reflectometry (TDR) soil sensors’ ability to measure ΔS in clayey soils.  We examined 

spatial and temporal patterns of water budget components for an irrigated winter crop, an 

unirrigated winter crop, and a fallow field.   During the extremely dry conditions of the 

2020-21 water year, the irrigated winter crop and fallow site had a similar seasonal ΔS, 

while the unirrigated winter crop had much greater soil water depletion.  We found the 

TDR sensor overestimated the magnitude of ΔS during precipitation and irrigation events 

when compared to recorded precipitation and underestimated ΔS during dry periods when 

compared to manually collected soil cores, but adequately captured patterns of infiltration 

and saturation in the soil profile.   
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Introduction  

Background 

Climate change, droughts, shifts in precipitation patterns, groundwater depletion, 

and population growth are some of many pressures that threaten freshwater resources and 

the agricultural systems that depend on them (Douville et al. 2021).  On a global scale, 

agriculture accounts for 70% of total water use and demand is expected to increase 

significantly over the next two decades (Boretti et al. 2019).  There is growing concern 

around food system sustainability and security as changing climate, environment, and 

anthropogenic landscapes continue to present uncertainty for water supplies where they 

are critically needed.  Conflict between food and water demand may be felt worldwide, 

however more severely at regional and local scales (Boretti et al. 2019).  To adequately face 

these challenges, growers and water managers need system-specific technical information 

and expertise to improve mitigation and adaptation strategies (Iglesias et al. 2015).  

Established scientific methodologies combined with innovative tools and technology can 

provide insight on temporal and spatial distributions of water in agricultural systems.   

Specifically, capturing field-scale hydrologic patterns in particular crops can assist 

stakeholders in developing agricultural water management plans during water shortages.   

Water budgets are valuable tools that can evaluate availability, change, and 

sustainability of water resources.  Using the principle of conservation of mass, it can be 

determined that the change in water storage of a system is equal to the difference between 

the system’s inputs and outputs in a given control volume during a set period of time 

(Healy et al. 2007).  Such a mass-based model can be informative of water supply and 

demand, ecosystem health, chemical transport and more.  In water resources planning and 
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management, water budgets are often used to understand the effects of anthropogenic and 

non-anthropogenic factors on the quantity and quality of water resources, helping to guide 

conservation projects and climate change adaption and mitigation strategies (Stanton et al. 

2011; Healy et al. 2007).  Water budget models are versatile and can be applied to a variety 

of spatial (i.e., whole basin, single field) and temporal scales (i.e., hourly, daily, multi-year).  

Here, we focus on field scale water budgets in agricultural systems (Fig 1) where an 

appropriate water budget is stated as:  

Eq 1: ΔS = P + I - ETc - RO - D 

Where ΔS (mm) is change in soil moisture, I (mm) is irrigation, P (mm) is precipitation, ETc 

(mm) is crop evapotranspiration, RO (mm) is runoff, and D (mm) is deep percolation.        

In-situ monitoring is often used to measure a majority of water budget components 

(WBCs) and unmonitored terms are calculated as the residual of Eq 1 (Healy et al. 2007).  

In these models, it is assumed that the water budget closure (or quantity of water 

unaccounted for) is equal to 0.  This assumption can be problematic in that the error of 

measured WBCs are assigned to the calculated variable.  However, it is unlikely that all 

WBCs can be measured simultaneously, effectively, and timely (Safeeq et al. 2021; Pan et al. 

2017).  Estimation of a single WBC as the residual of the water budget is a commonly used 

scientific method and is simple, accurate, and sound when other WBCs can be measured 

with confidence (Gochis et al. 2000; Verstraeten et al. 2008; Wan et al. 2015; Zeleke et al. 

2012).  

ETc has been estimated successfully at global , regional, and local scales with 

various levels of accuracy using soil water budgets obtained from in-situ soil sensors and 

remote sensing (Verstraeten et al. 2008).  In agricultural systems, ETc can be costly and 
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difficult to obtain through in-situ measurements but can be estimated from water budget 

and soil monitoring techniques (Eq. 1).  Most soil water sensors are cheaper and have less 

complicated installation and monitoring than eddy covariance towers used to directly 

measure field scale ETc.  Also, derivation of ETc from soil water budgets do not require 

additional meteorological inputs, aside from precipitation (Wan et al. 2015).  Studies have 

shown that field scale water budget estimates of ETc have yielded reasonable 

quantification of actual ETc when compared to the FAO method using established crop 

coefficients (Gochis et al. 2000; Zeleke et al. 2012). 

It is also valuable to examine each WBC independently to distinguish patterns and 

characteristics between systems, providing insight into the underlying assumptions of the 

water budget (Eq 2) (Safeeq et al. 2021; Joyce et al. 2002).  This research looks particularly 

at ΔS, an important WBC to consider in agricultural systems because of heterogeneity and 

responsiveness to different farm management practices.  Variability in soil physical 

properties, cropping patterns, and climatic conditions affect how much water is left in the 

soil after the growing season, and soil water retention/depletion can influence cropping 

and field management choices (IAEA 2008; Tsubo et al. 2015; Nocco et al. 2018; Pan et al. 

2017; Gochis et al. 2000).  For example, in semi-arid Mediterranean climates with cool, wet 

winters and hot, dry summers, water evaporates quickly from the soil surface during the 

summer growing season (Johnson et al. 2015; Baldocchi et al. 2019).  Therefore, it is 

desirable for water to be conserved, or in surplus (+ΔS), from the rainy season for future 

crop use and groundwater recharge (Douville et al. 2021).    Soils with large volumes of 

water depletion (-ΔS), need more water to refill the soil profile to become available for 

subsequent crops.  Examining ΔS at different times and depths can inform growers of 
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where water us being used in the soil profile, the extent of a crops root zone, crop stage, 

and irrigation needs.   In situ ΔS measurements can be combined with other measured 

WBCs or used with local WBC estimates from external databases to develop site specific 

water budget models.  

A variety of approaches exist to measure ΔS, the most popular being direct soil core 

sampling, neutron probe moisture meters, time domain reflectometry (TDR) sensors, and 

frequency domain reflectometry sensors (FDR).  ΔS can be easily calculated as the 

difference between volumetric water content (θ, cm3/cm3) (the ratio of volume of water to 

total volume of soil sample) at two points in time.  If measurements of are available, θ can 

be calculated using Eq 2.   

Eq 2:  θ= 
𝑉𝑊

𝑉𝑇
 = ρb w 

Where VW (cm3) is volume of water in a soil sample, VT (cm3) is the total volume of a soil 

sample, ρb is the soil bulk density (g/cm3 cm3), and w is the soil gravimetric water content 

(g/g).  

Direct measurement of θ by soil core sampling is universally accepted as the most 

accurate and precise method (IAEA 2008).  When performed correctly, this method is 

accurate to +/- 0.01 cm3cm-3 (IAEA 2008).  Soil cores are usually collected with a hand 

auger or a machine (i.e. geoprobe, giddlings probe) with a known volume.  Samples are 

immediately weighed and then oven dried to calculate the volume of water present in the 

soil at the sampling date (θ).  While effective, this method is labor intensive, does not 

capture ΔS fluctuations at small time steps (only between sampling dates), and does not 

allow for repetition of measurements in the exact same location.   
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 The neutron probe moisture meter uses radioactive material to track the emission 

of neutrons.  When neutrons collide with hydrogen, they lose energy and slow down.  By 

tracking the density of these low energy neutrons, the neutron probe can provide a proxy 

for soil moisture (Devincentis 2020; IAEA 2008; Li et al. 2003).  The advantages of the 

neutron probe are that once installed, soil moisture can be collected in the same location 

whenever needed and at desired depths.  While measurements are restricted to sampling 

dates, the frequency of sampling can be significantly higher than taking manual sampling 

cores.  It is, however, a very costly piece of equipment that comes with risk of working with 

radioactive material.  There have also been reports of clay content and soil bulk density 

skewing neutron probe measurements (Li et al. 2003). 

 TDR sensors have become increasingly popular due to their ease of use and lower 

price compared to the neutron probe (Stangl et al. 2009; IAEA 2008).  TDR sensors use the 

travel time of an electric pulse across a known length of metal transmission lines (wave 

guides) to calculate the dielectric permittivity, or degree of polarization, of a material being 

acted upon by an electric field (IAEA 2008; Ledieu et al. 1986; Kelleners et al. 2005).  The 

permittivity of water is high, around 80 Fm-1/Fm-1, while the permittivity of air (1 Fm-

1/Fm-1) and soil components (2-5 Fm-1/Fm-1) are quite low allowing for change in 

permittivity to be attributed to change in water volume (Topp et al. 1998; Ledieu et al. 

1986).  A direct empirical relationship between permittivity and θ allows the TDR sensor to 

report soil moisture to the user (Kelleners et al. 2005; Ledieu et al. 1986; Topp et al. 1998).  

TDR sensors are easy to install and can collect soil moisture measurements at a time step 

programmed by the operator, but they are limited to measuring soil moisture in smaller 

volumes of the surrounding soil compared to the neutron probe.  Accurate readings are 
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dependent on good contact between the soil and the TDR sensor; air gaps will cause an 

underestimation in dry soil and over estimation of soil moisture in saturated soil (IAEA 

2008; Stangl et al. 2009).  While there have been reports of clay content disrupting TDR 

measurements, error in most soils is estimated as 0.02  m3m-3 and calibration is usually 

only recommended in high clay content soils (IAEA 2008).  Overall, TDR sensors provide an 

accurate, safe, nondestructive, portable, and easily automated way to estimate ΔS and will 

be the measurement technique focused on in this research, specifically a new multi-depth 

downhole TDR sensor (SoilVUE-10, Campbell Scientific) that measures to a depth of 1 m.  

 FDR sensors also use the dielectric properties of a material to determine θ.  They 

consist of two metal rods inserted into the soil which together act as a capacitor.  An 

oscillating current is sent through the soil between the rods and its frequency is logged by 

the sensor.   The oscillation frequency can be related to a capacitance which is affected by 

the soil permittivity (IAEA 2008; Hardie 2020).  Thus, small changes in water content will 

change the frequency output of the sensor.  θ can be calculated from resulting permittivity 

values or through soil water and frequency count calibration curves.  The main difference 

between FDR and TDR sensors is their sensitivity to soil texture, electrical conductivity, 

and temperature making them more prone to error.  Similarly to TDR sensors, FDR sensors 

require careful installation and good contact with the soil to produce accurate readings 

(Hardie 2020; IAEA 2008).       

 Capturing ΔS in high clay content soils has proven to be difficult since clay physical 

properties may interfere with TDR measurements, however these interferences are 

reportedly less than the other technologies reviewed above (Abdullah et al. 2018; Stangl et 

al. 2009; IAEA 2008).  One major source of error stems from the combination of bound and 
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free water in soils.  Free water is able to move around soil pores, while bound water is 

attached to the soil surface by adhesive, cohesive, and osmotic bonds (Gong et al. 2003).  

Bound water is less polarized by an electric field than free water is, and thus can lower the 

permittivity of clay soils causing an underestimation of soil moisture by TDR sensors (Gong 

et al. 2003).  Clay also impacts soil electrical conductivity.  Clay colloid surfaces possess an 

electrical charge and increase the soils total electrical conductivity.  In turn, permittivity 

increases, and TDR sensors are more likely to overestimate soil moisture (Kelleners et al. 

2005; Gong et al. 2003).  Due to this limitation, TDR sensors need site specific calibration if 

clay content is above a certain threshold recommended by the sensor manufacturer.                  

 The shrink-swell capacity of clay soils can also affect TDR soil moisture 

measurements by causing soil separation from the sensor.  In these cases, data must be 

discarded or extrapolated.  Clay soils swell as soil moisture increases and shrink as soil 

moisture decreases due to the capacity of clay minerals to absorb water, therefore percent 

clay content directly influences soil shrink-swell potential (Chertkov 2012; Gomboš et al. 

2012).  Shrink-swell behaviors of clay soil as a response to natural wetting and drying 

cycles has been well documented and soil moisture as a function of shrink-swell potential is 

well known (Grossman et al. 2002; Gomboš et al. 2012; Widomski et al. 2015; Malongweni 

et al. 2019; Chertkov 2012).  The degree of shrink-swell potential is quantified by the 

coefficient of linear extensibility (COLE), or the percent volume change of a wet soil (often 

water content at 1/3 bar (field capacity)) to a dry soil (often oven dryness) (Gomboš et al. 

2012; Widomski et al. 2015).  Changes in porosity and bulk density across different soil 

moistures can also be used to assess shrink-swell potential (Chertkov 2012; Malongweni et 

al. 2019; Grossman et al. 2002).  The shrink-swell potential of soils is dependent on percent 
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clay content, more clayey soils will have a higher shrink-swell potential or greater COLE 

values (Hashim et al. 2006; Gomboš et al. 2012).  When clay shrinks, the soil may form 

macropores (or large cracks) causing soil separation and sensor exposure to the 

atmospheres.  When this occurs, TDR sensors may overestimate soil moisture in wet 

conditions as free water collects in the macropore in direct contact with the sensors.  

Likewise, exposed TDR sensors may underestimate soil moisture in dry conditions since 

the atmosphere has less soil moisture than soil.  Site-specific calibration is recommended 

for TDR sensors to account for sensitivity to clay content and improve accuracy (IAEA 

2008; Stangl et al. 2009; Gong et al. 2003; Kelleners et al. 2005).   

 The goal of this research was to develop field scale soil water budgets in agricultural 

systems with clayey soils using a new type of TDR sensor (TDR sensor-10, Campbell 

Scientific).  The TDR sensor being used is a fairly new instrument with limited to no 

publications.  We look at winter-cropped rice fields in the Sacramento Valley, CA as a case 

study.  Rice is grown in soils characterized by high clay content to reduce water loss and 

retain water level when rice is flooded.  The case study evaluates the hydrologic impacts of 

winter crops in rice systems during the non-rice growing season.  We performed 

instantaneous and continuous soil sampling and soil texture analysis to show the 

relationship between clay content and TDR sensor performance.  ETc was estimated as the 

residual of the water budget and WBCs were analyzed at daily and seasonal time steps to 

track water distributions.  We report difficulties encountered when using the TDR sensor, 

calibration methods, and compatibility with water budget modelling.  Findings from this 

research will be used to improve experimental design and methods in future years of this 

study and provide recommendations for TDR sensor users.       
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California Context  

California faces unique water management challenges that are exacerbated by 

changing climate and increasing population, propagating the uncertainty of water supply 

for the country’s leading agricultural state in farm-level sales (Johnson et al. 2015) .  Recent 

droughts and aging water resources infrastructure have highlighted the imminent danger 

to human and environmental health as the state’s water demand continues to grow 

(Douville et al. 2021).  CA agriculture consumes 40% of total water use, 80% of human 

allocated water use, and 3.2 million irrigated farm hectares (Mount et al. 2019; Johnson et 

al. 2015).  The current level of water consumption cannot be maintained if production 

levels continue, and more sustainable agricultural water management must be considered 

in grower decision making (Devincentis 2020).  Additionally, alteration of quality, quantity, 

and timing of water supply has disrupted natural ecological functions such as fish 

spawning habitat, streamflow to support flora and fauna, sediment transport, and nesting 

grounds for migratory birds (Bunn et al. 2002).  Agroecology is a holistic, interdisciplinary 

approach that focuses on optimizing interactions and outcomes for humans, flora, fauna, 

and the physical environmental in agricultural systems.  The potential of agroecosystems 

as a tool to increase agricultural water management sustainability, efficiency, and 

ecosystem resilience has been recognized and requires more system specific technical 

knowledge and water budget information (Devincentis 2020; La Hue, n.d.; Johnson et al. 

2015).   

This research aims to better understanding the intersection of agroecosystems and 

water management in Sacramento Valley rice systems.  California is the second largest 

producer of rice in the United States with 95% of production concentrated in the 
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Sacramento Valley (Linquist et al. 2015; Strum et al. 2013).  Historically, the Sacramento 

Valley was covered in seasonal wetlands which provided habitat for resident and migratory 

birds on the Pacific Flyway (Frayer et al. 1989).  Now more than 90% of wetland areas have 

been lost or transformed to agricultural fields, predominantly rice (Strum et al. 2013; 

Frayer et al. 1989).  However, winter management practices such as flooding and cropping 

during the non-rice growing season have provided alternative habitat for bird populations 

(Strum et al. 2013).   

While flooding is not a viable option during drought years, planting winter crops 

provides sufficient vegetative cover for bird habitat, yet their effects on field scale water 

budgets are understudied and may be preventative to higher adoption (Strum et al. 2013; 

Pettygrove et al. 1996).  In a normal rice cropping schedule, winter crops are planted after 

rice harvest, gown from November to early April, and rice is planted again in May (Table 1).  

However, field management for spring termination of winter crops and prep for rice 

planting occur during the critical nesting period for many resident and migratory birds 

(April-July), often destroying nests and eggs (Central Valley Bird Club 2017; LaRose et al. 

2018; Lokemoen et al. 1997).  Rice fields that will be fallowed (instead of planted with rice) 

have the unique opportunity to provide nesting habitat birds by extending the growing 

period of winter crops and shifting termination from April to mid-July.   

Some rice fallowing is related to organic production, but rice fallowing for the 

purpose of water sales and transfers has increased due to the state’s complicated water 

challenges and increased drought that have put pressure on rice growers (Hanak et al. 

2019). The USDA 2021/2022 Rice Outlook indicated 190,607 hectares of planted rice in 

California, a 9% decrease from the previous year due to water shortages (Childs 2021).  
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These water sales are based on the amount of water that would have been consumed by 

the rice crop (889-1,143 mm) during that irrigation season, equivalent to the crops ETc 

(California Department of Water Resources and Bureau of Reclamation 2019; California 

State Water Resources Control Board 1999; Wong et al. 2021; Lal et al. 2012).  Developing a 

better understanding water budgets during dry years when rice growers are asked to 

fallow their fields could aid conservation strategies in offering ecological benefits for birds 

and water for sale/transfer  (Linquist et al. 2015; Strum et al. 2013).   

This study considers extending the winter crop growing season during fallow years 

to provide critical bird nesting habitat (Table 1).  This action would most likely be adopted 

by rice growers provided winter crops consume significantly less water (have a smaller 

ETc) than rice and have an ETc closer to that of fallowed land.  Under these circumstances, 

the difference between winter crop ETc and rice ETc is still available for sale/transfer.  

Currently, there is a lack of research on hydrologic processes in winter cropped rice 

systems, specifically during nesting periods, to guide growers in these decisions.  We 

examine patterns in WBCs in winter cropped and in fallowed rice systems using field scale 

water budgets and examine the success of TDR sensors in the clayey soils characteristic of 

these systems.    
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Table 1:  Possible 2-year cropping schedules for rice systems in the Sacramento Valley.  Calendar begins at the start of the rice 
growing season.  
  

1
2
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Methods 

The overall goal of this study was to develop field scale water budgets in winter-

cropped rice systems and evaluate multi depth down-hole TDR sensors in clay soils over 

the period of winter crop growth.  We accomplished our goal by quantifying the hydrologic 

impacts of three treatments in post-harvest rice systems during the non-rice growing 

season: (1) fallow; (2) winter-cropped with non-irrigated vetch; (3) winter-cropped with 

irrigated winter wheat.  Emphasis was placed on the determination of ΔS through 

continuous soil moisture measurements and instantaneous soil core sampling, the effect of 

soil clay content on soil sensor monitoring, and water budget analysis to understand 

seasonal distribution of water inflows and outflows.  Soil moisture, water table height, ETc, 

and runoff were monitored in-situ at each site while precipitation and irrigation were 

obtained from external sources.  One central data logger (CR3000 data logger, Campbell 

Scientific) was installed at each field and powered by solar panels to collect soil moisture 

and water table height data.  Surface runoff was measured at each field’s lowest point of 

elevation where the fields drain using weirs, water level loggers, and digital cameras.  

Datasets were then analyzed to compare cumulative changes in WBCs, seasonal 

distributions of water use and loss, water budget closure, and the accuracy of TDR sensors 

at each site (Fig 1). 
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Fig 1:  Project workflow. 

Site and Soil Description 

This study was located in the Sacramento Valley, the main rice growing region of 

California.  Vetch and winter wheat sites were on farms located within 2.5 km of each other 

in Sutter County, while the fallow site was 72.4 km north in Butte County at the Rice 

Experiment Station (Fig 2).  The planned hydrologic period of study is 6 years with this 

analysis occurring in year 2, examining the first full year of data (year 2).  Monitoring took 

place Nov. 2020 – July 2021 with each site hosting one of the three treatments.  Exact dates 

of monitoring were adjusted for field specific agronomic management requirements to 

enable smooth field operations and maintain grower relationships (Table 1).  All sites were 

planted with rice during the previous growing season and winter crops were seeded just 

prior to the start of monitoring.  Sites differ in historical cropping patterns, management 

practices, precipitation patterns, and average temperature.  
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Fig 2: Site map.   

The NRCS soil survey classifies soil at the vetch site as approximately 50% poorly 

drained Clear Lake clay  (Fine, smectitic, thermic Xeric Endoaquerts) and 50% moderately 

well drained Marcum clay loam (Fine, montmorillonitic, thermic Typic Argixerolls.  The 

winter wheat site consisted of predominantly poorly drained Clear Lake silt loam (Fine, 

montmorillonitic, thermic Typic Pelloxererts) and smaller amounts (<10%) of Marcum clay 

loam.  Soils at the fallow site are classified as poorly drained Esquon-Neerdobe clay (Fine, 

smectitic, thermic Xeric Epiaquerts; Fine, smectitic, thermic Xeric Duraquerts) (NRCS 

2021).   Additional soil characteristics were collected from the NRCS Soil Web Survey 

(Table 3).  

 



16 
 

 

 Soil Cores  TDR sensor, ETc, water table, runoff  

 start 2020 mid 2021 end 2021 start 2020 end 2021 

Fallow  11/14 3/5 6/29 11/14 6/29 

Vetch  11/14 3/4 7/21 11/14 7/15 
Winter 
wheat  11/14 3/4 7/1 11/12 6/14 

Table 2:  Field monitoring calendar. 
 

Soil Type Site 

Linear 
Extensibility 

(%) 

Field 
Capacity 
(Θ at ⅓ 

bar) 

Permanent 
Wilting 

Point (Θ at 
15 bar) 

Depth 
to 

Water 
Table 
(cm) 

Bulk 
Density at 

field 
capacity 
(g/cm3) 

Depth to 
restrictive 
layer (cm) 

Clear Lake 
Silt Loam 

Winter 
wheat 

5.2 0.360 0.218 122 1.38 >200 

Marcum 
Clay Loam 

Winter 
wheat;  
Vetch 

6.5 0.364 0.257 >200 1.45 >200 

Clear Lake 
Clay 

Vetch 12.3 0.420 0.324 25 1.32 >200 

Esquon-
Neerdobe 

Fallow 9.1 0.286 0.163 76 1.39 142 

Table 3:  Soil physical properties obtained from the NRCS Soil Web Survey. 

Data Collection 

Soil Moisture 

Instantaneous data 

 Soil core samples were taken at the beginning, middle, and end of the monitoring 

season to assess changes in soil properties and calculate seasonal ΔS.  Start and end of 

season soil cores were taken within a week of planting/harvest with a Geoprobe drilling rig 

down to a depth of 2.4 m.  Because driving the Geoprobe onto fields would greatly disturb 

established winter crops, mid-season soil cores were collected manually with a 3.81 cm 
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diameter hand auger to a depth of 0.9 m.  Samples were collected at four sampling locations 

per site, 1 sample per 0.3 m of soil depth, for a total 201 samples over the course of the 

season (Fig 3).  Sampling locations were determined using a lose structured zone based 

sampling to capture different geographic areas of the field, where sample 4 was always 

taken near the data logger.  We assumed minimal to no drainage past the depth of our 

observation (2.4 m) on the fallow field since the soil is estimated to have a restrictive 

duripan layer at 0.5-1.0 m (NRCS 2021).  Drainage past the depth of our observation was 

plausible on the vetch and winter wheat fields since restrictive layers are estimated at 

more than 2.0 m (NRCS 2021). 

  

Fig 3:  Soil core sampling map 

Start of season and end of season sample wet weights were measured in the 

laboratory within 2 days of data collection.  Samples were dried at 105°C for a minimum of 

120 hours due to the high clay content of the soil.  Gravimetric water content (w, g/g), 

which describes the ratio of the mass of water to mass of solids, was calculated using the 

wet weight (Mw, g) and dry weight (Md, g) of each sample (Eq 3).   

Eq 3:  w = 
𝑀𝑤− 𝑀𝑠

𝑀𝑠
 

4 
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Bulk density (ρb, g/cm3) was calculated using Md and the total volume (VT, cm3) of each 

sample (Eq 4) and was used to check for potential compaction at sampling locations.    

Eq 4:  ρb = 
𝑀𝑠

𝑉𝑇
 

Porosity (n, g/cm3 / g/cm3) was estimated using ρb and a generally accepted particle 

density (ρs, g/cm3) for minerals of 2.65 g/cm3 (Eq 5)(Blake 2008).  The difference in ρb and 

n between mid-season (representation of wet season soil conditions) and end of season 

(representation of dry season soil conditions) soil cores were to evaluate changes in soil 

structure from shrinking/swelling.  Coefficients of linear extensibility (COLE) were 

calculated using Eq 6 to provide further support of shrink-swell potential in soils.  

Calculated COLE values were then compared to shrink-swell potential soil classification 

(Table 4).     

Eq 5:  n = 1 - 
𝜌𝑏

𝜌𝑠
 

Eq 6:  COLE =( 
𝜌𝑏𝐷𝑟𝑦

𝜌𝑏𝑊𝑒𝑡
)(1/3) - 1 

Shrink-swell potential  COLE 
Low <0.03 
Medium 0.03-0.06 
High 0.06-0.09 
Very High  >0.09 

Table 4: Shrink-swell potential by COLE for soils (Parker et al. 1977). 

Volumetric water content (θ, cm3/cm3) which describes the ratio of water volume (VW, 

cm3/cm3) to total volume of the sample (VT, cm3/cm3) was calculated for start and end of 

season soil cores using ρb and w (Eq 2).  All θ calculations used end of season bulk density 

values since both samples were collected during the dry season with minimal clay swelling. 

 The depth of water in each soil layer (S, mm) was calculated using the θ and 

thickness of the soil layer (d, mm) (Eq 7).  The total depth of water in the vertical soil 



19 
 

profile (ST, mm) was found by integrating θ values across all soil layers according to Eq 8 

(Zhao et al. 2020). 

Eq 7:  S = θd 

Eq 8:  ST = ∫ θ
𝑍𝑏

0
ⅆ𝑧 = ∑ θ𝑖 ⅆ𝑖

𝑛
𝑖=1  

Where Zb (mm) is the maximum computational soil profile depth, θi (cm3/cm3) is the θ of 

layer i, di (mm) is the thickness of layer i, and n is the number of calculation layers.  Change 

in soil water storage (ΔS, mm) over a given time period was calculated by Eq 9. 

Eq 9: ΔS = S2 – S1 

Where S2 (mm) is the depth of soil water at time 2 (i.e., end of the measurement season) 

and S1 (mm) is the depth of soil water at time 1 (start of the measurement season).   

To assess site specific soil textures, start of season soil samples were sent into the 

UC Davis analytical laboratory for particle analysis.  Average percent silt, sand, clay at each 

depth across were calculated across sampling locations for each site.   

Continuous data 

Daily changes in θ were measured to a depth of 1m using a multi depth down-hole 

TDR soil moisture and temperature profile sensor (SoilVUE-10, Campbell Scientific).  One 

sensor per site was installed at each data logger location in mid-November 2020 removed 

within one week of harvest to accommodate field management activities (Table 2).  Sensors 

were installed by first drilling an installation hole using a Geoprobe drilling rig and then 

screwing the sensor into the ground so that good contact between the sensor and soil was 

established.  The TDR sensor measures θ, permittivity, electrical conductivity, and 
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temperature at multiple depths (5, 10, 20, 30, 40, 50, 60, 75, and 100 cm) using time 

domain reflectometry (TDR) technology.   

The TDR sensor requires site specific calibrations for soils >45% clay.  Percent clay 

content from soil core particle analysis was used to determine the necessity of calibration 

with 0-0.3 m cores compared to 5, 10, 20, 30 cm, 0.3-0.6 m cores compared to 40, 50, 60 

cm, and 0.6-0.9 m cores compared to 75 and 100 cm TDR sensor depths.  The winter wheat 

TDR sensor did not need calibration since no soil samples were identified with >45% clay.  

Both the fallow and vetch TDR sensors did require site specific calibration since soil 

samples were identified with >45% clay.  Each TDR sensor was submerged in a 44-gallon 

plastic container full of site-specific soil thoroughly mixed with water.  The TDR sensor was 

programmed to collect data at 1 min intervals for 30 min. During data collection, soil 

subsamples were collected at each sensor depth using a 13.7 cm diameter round stainless-

steel cutter to determine the true θ.  Subsamples were weighed immediately, oven dried at 

105°C for a minimum of 120 hours, and θ was calculated using Eq 2.  This process was 

repeated for 4 different soil saturation levels and is the recommended site-specific 

calibration procedure outlined from the sensor manufacturer, Campbell Scientific (Baker et 

al. 2021).  This process was laborious and only partially effective for multiple reasons.  

First, site specific soil for the calibration process was collected at the end of the season in 

July.  The recent extreme temperatures and lack of precipitation resulted in dry, constricted 

soils that were impossible to penetrate past a depth of 0.6 m, hence the heterogeneity of 

the entire soil profile monitored by the TDR sensor was not obtained or represented in the 

calibration process.  The quantity of soil required to submerge the TDR sensor was large.  

Collected soil had formed large, solid aggregates when drying over spring and had to be 
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ground down by hand which was time consuming and required large amounts of physical 

labor.  When saturating the soil, it was difficult to form a homogeneous mixture.  Once 

water was applied, the dry soil immediately began to form aggregates of both dry and 

moist soil.  After multiple attempts we obtained a mixture that was acceptable to the best of 

our ability, but restricted sample size, saturation range, and soil profile representation 

likely impaired the results.  

Based on the relationship described in Ledieu et al. (1986), true θ was compared to 

TDR sensor permittivity readings to develop calibration curves for each sensor depth using 

linear regression (Appendix 1).  Calibration curves were applied to raw data, only at depths 

with >45% clay.  Calibrated data was visually inspected and compared to uncalibrated data 

to evaluate the improvement with calibration.  The fallow TDR sensor was calibrated at 

depths of 5 and 10 cm only and the vetch TDR sensor at all depths.  The 100 cm sensor 

depth of the Vetch TDR sensor was found to need maintenance by Campbell Scientific and 

was removed from data processing.  S, ST, and ΔS were calculated using calibrated data and 

Eq 7, 8, and 9. 

Beginning in mid-May 2021 the fallow TDR sensor recorded high amounts of noise; 

θ for this time period was estimated using linear and exponential regressions to find best 

fit trend lines at each sensor depth.  The 75 cm sensor depth of the Vetch TDR sensor 

recorded faulty θ values beginning in mid-May with no system inputs and was estimated 

using linear interpolation for the remainder of the season.  Additional gaps in data were 

estimated using linear interpolation for small gaps and a mix of linear, exponential, and 

logarithmic regressions to find best fit trend lines at individual sensor depths. 
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Water Table  

Pressure transducers (Acculevel by Keller America) were installed near TDR 

sensors by drilling a hole with the Geoprobe, inserting perforated PVC into the hole, and 

lowering the pressure transducer to the depth of the TDR sensor and expected rootzone.  

The pressure transducer was connected to the main datalogger for continuous data 

collection and measured changes in the height of the water table and served as a 

verification of TDR sensor readings when the height was between the surface and the 

depth of the TDR sensor (1m).  

Runoff  

 Rectangular weirs combined with water level data loggers (Global Water-WL16) 

were installed at the lowest points of elevation in each field to quantify runoff.  Discharge 

drains were fitted for custom weirs at the fallow and vetch fields; the winter wheat field 

was surveyed, and a weir was constructed at the perimeter’s lowest point.  Data loggers 

were attached to wooden stakes and placed within 0.6 m of the weir outlet and took daily 

measurements of the height of water flowing over the weir; stadia rods were placed 

directly behind the data loggers.  Daily photos were taken on wildlife cameras that were 

placed in front of the data loggers, facing the weir, to verify data logger readings with stadia 

rod readings. 

 Water height and camera data from all sites were evaluated and considered 

negligible since water never reached the height of the weir opening, and camera footage 

showed minimal to no ponding in front of the weirs.  
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Precipitation and Irrigation  

 Daily precipitation data was collected from the California Irrigation Management 

Information Systems (CIMIS) database, a widely used weather data network run by the 

California Department of Water Resources (CIMIS 2021).  CIMIS manages a large network 

of weather stations randomly distributed throughout California with the goal of assisting 

irrigators with water management.  The closest stations to our fields were selected, and 

precipitation data was downloaded for the monitoring period.  The winter wheat field was 

irrigated while the vetch was not.  Irrigation estimates were given to us by the grower and 

validated through differences in soil moisture for the identified irrigation period.  

Data Analysis 

Soil Analysis 

 All data analysis was done in Microsoft Excel Version 2110 and R 4.1.0.  Soil spatial 

heterogeneity was evaluated by analyzing soil physical characteristics and calculated ΔS 

values across sampling locations and depths.  Particle analysis results from the start of 

season soil cores were analyzed by developing linear regression models to assess percent 

clay as a function of depth.     

Changes in ΔS were evaluated at a seasonal and daily timestep.  Geoprobe soil cores 

were used to calculate seasonal ΔS since they covered a larger depth of 2.4 m, while the 

TDR sensor only covered 1 m.  The TDR sensor data was used estimate averaged, daily ΔS 

and obtain higher resolution of temporal and spatial (per depth) soil moisture dynamics.  

Continuous ΔS estimates from the TDR sensor provided insight into changes of soil 

moisture at depths of the soil profile during different phases of winter crop growth.  

Fractional soil moisture was calculated by identifying the point of maximum volumetric 
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water content over the course of the season and dividing all subsequent daily TDR sensor 

readings by this value.  Fractional soil moisture provides a method for comparing 

heterogeneous data sets by normalizing data from different sites to one scale (Devincentis 

2020).  Soil moisture data from all sites could then be compared on the same scale to see 

the percentage of peak soil moisture retained by each site at the end of the season.  This 

method was especially applicable given that precipitation patterns were similar across all 

sites. 

Another way to compare data sets from different distributions and ranges is by 

scaling data to fit within a 0-1 range using z-score standardization.  Z-scores transform 

each data set so that the mean (μ) is 0 and the standard deviation (σ) is 1 (Eq 10).    

Eq 10: z = 
𝑥 −𝜇

𝜎
 

Where z is a new, scaled datapoint.  Positive z values indicate the raw data point is above 

the temporal mean and negative when below (cite standardized time series).  Because z-

scores are centered around the same value (0), all sites can be compared to understand 

performance relative to each other.  Daily TDR sensor z-score data and new distributions 

were generated to observe temporal changes in S.       

Water Budgets 

Monitored WBCs (P and ΔS) were analyzed at a daily time step to see trends over 

time.  Cumulative plots of averaged, daily WBCs were used to compare the observed 

magnitude of TDR sensor ΔS to precipitation inputs as a means of evaluating TDR sensor 

accuracy at a daily time step.   

Water budget models were developed at a seasonal time step to understand 

distributions of water use and loss over the extended winter crop growing season.  
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Seasonal ETc was calculated as the residual of the water budget where our measurements 

showed that RO was close to zero and D as assumed negligible (Eq 11).    

Eq 11:  ETc = P+I - ΔS – RO 

Seasonal water budgets using soil core versus TDR sensor were compared to evaluate TDR 

sensor accuracy at a seasonal time step.   

Results and Discussion 

Soil Characteristics and Drivers  

Clay content was of particular interest in this study because of its prevalence in rice 

systems and difficulty in obtaining accurate soil water measurements.  By examining the 

entire 2.4 m soil profile, we found statistically significant relationships between percent 

clay and soil depth in the fallow (R2=.0.7131, p=3.077e-08) and vetch (R2=0.8581, 

p=4.248e-12) sites, while no relationship was found in the winter wheat field (R2=0.03255, 

p=0.4101) (Fig 4).  At both the fallow and vetch sites, more clay is found near the soil 

surface and clay content decreases as depth increases.  The winter wheat soil profile is 

dominated by sand below a depth of 0.3 m (44-59% sand depending on depth).  A complete 

description of soil texture (% clay, sand, and silt) by depth is shown in Fig 5  and can be 

found in Appendix 2.  
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Fig 4: Linear regression model of percent clay content and depth of soil profile for all sites. 

 

Fig 5:  USDA soil textural classification for 0.3 m soil samples taken to a 2.4 m depth at all 
sampling locations at each site.  
 

To observe the magnitude of soil shrink-swell potential, changes in average bulk 

density (ρb) and porosity (n) during the dry and wet season were estimated using mid-

season soil cores, where soil was more saturated, and end of season cores, where soil was 

dry (Table 5, Appendix 3).  Estimates were for the first 0.9 m of the soil profile where all 

heavy clay soils (>45%) exist.  At all sites we observed an increase in ρb and decrease in n 

from mid-season to end of season confirming the existence of shrink-swell potential.  

Fallow had an average change in bulk density of Δρb=0.43 and change in porosity Δn=-0.17; 
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vetch had an average Δρb=0.32 and Δn=-0.12; and winter wheat had an average Δρb=0.38 

and Δn=-0.15.  Increases in ρb and decreases in n during the course of the season suggest 

that total soil volume is significantly larger when soils are more saturated and shrinks as 

soils dry.   

These findings align with the literature and are further corroborated by the 

calculated coefficient of linear extensibility (COLE) (Table 4).  When compared to the 

accepted soil shrink-swell potential classification, calculated COLE values at all sites align 

with soils that posses “very high” shrink-swell potentials (>0.09).  COLE calculations here 

are representative of soil volume change from mid-season (wet soil) to end of season (dry 

soil) θ, as opposed to the more traditional calculation that uses field capacity (wet soil) and 

oven dry (dry soil) θ.  Calculated COLE values are an indication of a possible source of the 

difficulties of we encountered when monitoring high clay content soils at our sites such as 

underestimation of θ from soil/sensor separation. 

    mid-season θ 
(cm3/ cm3) 

end of season 
θ (cm3/ cm3) Δρb (g/cm3) Δn (cm3/ cm3) COLE 

Fallow  0.42    0.26 0.43 -0.17 0.12 
Vetch  0.42   0.21 0.32 -0.12 0.09 
Wheat  0.23 0.13 0.38 -0.15 0.10 

Table 5: Average volumetric water content (θ) during mid-season and end of season soil 
core sampling dates.  
 

There was high spatial variability of seasonal ΔS from soil cores across sampling 

locations.  ΔS in the total vertical soil profile was both positive and negative in the fallow 

and winter wheat sites, while the vetch site was consistently negative (Fig 5).  Positive ΔS 

values signify a net gain in soil water while negative values a net loss.  These results show 

high heterogeneity within field sites and suggest that a greater number of soil samples per 

field could better capture average ΔS.   



28 
 

 
Fig 5:  Seasonal change in soil moisture (ΔS) for total vertical soil profile across sampling 
locations. 
 

Average seasonal ΔS by depth (0-2.4 m) was analyzed.  The fallow site experienced a 

decrease in ΔS throughout the soil profile, except for at 8ft (Fig 6).  High clay content and 

biomass residual left over from the previous season may have reduced evaporation from 

the soil surface and lateral flow from surrounding fields could have increased ΔS at lower 

depths.  The vetch site had a seasonal loss of soil moisture (-ΔS) at all depths, with 

significant decrease in the top 0.9 m surrounding the root zone.  The winter wheat site had 

average decrease in ΔS in the top 1.5 m with most significant losses at the soil surface, 

however there were increases in ΔS at lower depths.   
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When examining θ by depth measured from the TDR sensor, inefficient irrigation 

application may have been a source of increase ΔS at lower depths of the soil profile.  

During the time of application, irrigation resulted in an increase in ΔS at all soil depths but 

more dramatically at depths closer to the soil surface (Fig 7).  The winter wheat crop used 

soil water from the top layers of the soil profile first and pulled from lower depths as 

needed after irrigation (Fig 7).  The large quantity of applied irrigation combined with 

sandier soil with higher hydraulic conductivity, resulted in infiltration of irrigation water 

past the TDR sensor measurement depth.  Irrigation water at low depths was likely not 

used by the winter wheat crop, which has a maximum observed root zone to a depth of 2 m, 

causing a seasonal increase in ΔS with depth in the soi profile (Thorup-kristensen et al. 

2009).  

Fig 6: Average ΔS per depth of vertical soil profile with error bars of one standard error. 



30 
 

Fig 7: Volumetric water content (VWC, θ) by depth for winter wheat irrigation event.  

Averaged daily TDR sensor data was analyzed to see θ trends over time.  θ by depth 

for three precipitation events occurring on 12/11 – 12/18/20, 1/22-2/4/21, and 3/18/21 

were plotted to evaluate wetting and drying patterns in the soil profile (Fig 8).  These 

events were chosen because they occurred before the wheat’s irrigation and were a good 

representation of seasonality (start, middle, and end).  Together, these events made up 

58% of seasonal precipitation that occurred at all sites (90.0 mm at fallow; 85.3 mm at 

vetch and wheat).  At the fallow site, during the first large precipitation event of the season 

(12/11 – 12/18/20) water began to fill the upper soil layers while simultaneously 

infiltrating to lower depths.  Once lower soil layers were saturated, the top 20 cm of soil 

experienced rapid, high magnitude, spikes in θ during the 1/22-2/4/21, and 3/18/21 

events.  Upper layers dried from evaporation and lower layers remained saturated once 

filled.  Lower soil layers (40, 50, 60, 75, and 100 cm) saw little change in θ (0.47-0.56 

cm3/cm3) and remained stable for most of the winter (Dec-April).  θ at saturation for the 

lowest depths were confirmed by average mid-season n calculations estimated from soil 

V
W

C
 (

θ
) 
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cores, which ranged from 0.54-0.64 (Appendix 3).  n can be roughly equivalated to θ at 

saturation since it’s the space water could occupy if all soil voids were filled.   

The vetch experienced similar patterns to the fallow with the exception that the 

lowest depth (2.1 m) had lower θ than many intermediate layers.  This may have been due 

to high clay content in the upper soil layers retaining soil moisture, preventing infiltration 

to lower depths.  Mid-season n of vetch indicated a θ at saturation ranging from 0.56-0.63 

cm3/cm3 (Appendix 3), which matches TDR sensor values in lower layers during the 

12/18/20 event (Fig 8).  θ begun to show a general decreasing trend during the 1/22-

2/4/2, possibly due to the crop consuming water in the upper and middle soil layers.   

Patterns in the winter wheat soil profile are more difficult to discern.  Mid-season n 

of winter wheat indicates potential saturation at θ ranging from 0.47-0.59 cm3/cm3 

(Appendix 3), which matches saturation ranges from the TDR sensor during all three 

events.  The largest increases in θ magnitude occurred in the first 0.1 m of the soil profile 

during all events.  However, increases in θ at the winter wheat site were significantly 

smaller than at the vetch and fallow, possibly due to lower clay and higher sand content 

promoting infiltration laterally or to lower depths, or due to the TDR sensor overestimating 

θ in high clay soils of the fallow and vetch.  Intermediate soil layers in both the fallow and 

vetch retained a θ of approximately 0.5 cm3/cm3 when saturated, while the winter wheat 

was approximately 0.25 cm3/cm3.  Again, this could be a result of clay soil’s capacity to 

retain more water than sandier soils.  

Distributions and time series were compared for TDR sensor raw, daily data and z-

scores (Fig 9, Fig 10).  Z-scores better distinguished differences in ΔS between sites.  Most 

noticeable is the magnitude of ΔS during winter wheat irrigation.  The raw data equates 
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winter wheat’s seasonal max ΔS to vetch’s seasonal max ΔS.  While this is true, the z-score 

data provides more context in conceptualizing the magnitude of ΔS in response to winter 

wheat’s irrigation event (max ΔS 3.38 standard deviations) compared to the rest of the 

season, and to the other sites (fallow max ΔS=1.79 standard deviations, vetch max ΔS =1.52 

standard deviations).  As temperatures rose without precipitation during the spring, fallow 

and vetch ΔS continue to deplete while winter wheat’s soil profile is refilled from the 

irrigation event in late March.     
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Fig 8:  Volumetric water content (VWC, θ) by depth measured by TDR sensors, and 
precipitation collected from CIMIS stations at all sites for 3 major precipitation events.  
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 Soil texture and plant water uptake may have influenced the magnitude of ΔS 

recorded by the TDR sensor in response to precipitation events.  The observed ΔS in the 

winter wheat was lower than in the fallow and vetch sites after major precipitation events 

(Dec 15 and Feb 1) and remained lower until the irrigation event.  High clay content soils 

(fallow and vetch) have a low hydraulic conductivity and sandy soils (winter wheat) have a 

higher hydraulic conductivity (Tsubo et al. 2015; IAEA 2008).  Thus, clayey soils hold on to 

more water and may inhibit infiltration to lower depths, in our case past the range of the 

TDR sensor.   Sandier soils facilitate higher rates of infiltration and drainage.  The winter 

wheat crop may have had larger water uptake than the vetch contributing to lower ΔS.    

 

Fig 9: Daily, cumulative ΔS data distributions for raw and z-score data. 
 

 
Fig 10: Cumulative raw and z-score ΔS data for entire season. 
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It is difficult to interpret ΔS from the TDR sensor for the last two months (June and 

July) of this study due to large amounts of noise detected at the fallow site and 

questionable readings at the vetch site that were most likely due to dry soil detaching from 

the sensor; the TDR sensor data from the winter wheat site had less detectable issues.  Both 

the fallow and vetch TDR sensors measured soil moisture in high clay content soils >45% 

for most of their monitoring depth.   The shrink-swell potential of clayey soils during 

drying likely interfered with TDR sensor readings contributing to these inconsistencies.  

Visible macropores in the form of large cracks in the soil surface were present in both the 

fallow and vetch sites and support this hypothesis.  These macropores may have 

partially/fully exposed TDR sensor sensors to the atmosphere resulting in abnormally low 

readings compared to the soil cores at the end of the season (Table 6).  The visual 

inspection of potential cracks in the winter wheat soil was more difficult sue to the dense, 

tall vegetation.   Table 6 comparisons between the TDR sensor and soil cores are partially 

limited by availability of only one TDR sensor per field.  Therefore, the comparisons are 

between the one point measured by the TDR sensor, and the average of 4 soil cores across 

sampling locations.   
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Field  End depth (m) 

start end 

Core (mm) TDR sensor (mm) core (mm) TDR sensor (mm) 

Fallow 

0.3 54.38 40.64 49.80 1.02 

0.6 136.73 162.56 134.93 54.10 

0.9 241.10 335.28 227.73 147.32 

Vetch  0.3 67.71 45.31 27.94 8.89 

 0.6 160.26 119.68 81.57 39.12 

 0.9 268.27 258.00 162.75 1.54 

Winter wheat  

0.3 66.81 33.71 31.59 10.13 

0.6 127.94 96.77 72.40 39.10 

0.9 190.30 188.49 117.37 96.41 

Table 6: Start and end of season cumulative depth of soil moisture (S) from soil cores (0.3 
m increments) and TDR sensor (summed sensor depth readings corresponding to soil core 
depth increments).   
 

At the end of the season vetch retained only 7% of fractional soil moisture from 

peak soil moisture from precipitation, significantly less than fallow, 36%, and winter 

wheat, 30% (Fig 11).  Because of the large irrigation input, winter wheat held on to 

approximately the same percent of fractional soil moisture from precipitation as fallow.  

The irrigation input determined by the grower sufficiently matched the winter wheat’s 

water demand, resulting in the soil water depletion equivalent to the fallow site.  These 

results should be taken with caution considering the observed problems encountered with 

the TDR sensor in over estimating soil moisture when saturated and underestimating when 

dry at the end of the season.  Fractional soil moisture may be more useful when calculated 

from a TDR sensor installed in non-clayey soils.  Spatial variability in soil moisture 

observed from the sampled soil cores requires a closer look at these systems to determine 

the significance of these trends.   
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Fig 11: End of season fractional soil moisture, or percentage of soil moisture retained from 

peak soil moisture from precipitation.   

Cumulative Water Budget Components 

Averaged, daily cumulative ΔS, P, and I seasonal time series were compared (Fig 12).  

Across all sites, the TDR sensor responded to precipitation and irrigation events by 

recording increases in ΔS.   However, both the fallow and vetch TDR sensors largely 

overestimated the magnitude of ΔS during high intensity precipitation events, recording 

magnitudes of ΔS greater than magnitudes of precipitation input for three identified events 

occurring on 12/11 – 12/18/20, 1/22-2/4/21, and 3/18/21.  ΔS measured at the fallow site was 

2.14 – 4.60 times more than recorded precipitation, and ΔS at the vetch site was 1.85 – 5.37 

times more for identified events (Table 7).  Because system outputs cannot be greater than 

inputs, the TDR sensor either inadequately measured ΔS or our measurement at one point 

in each field was an extremely insufficient representation of field scale ΔS and subsurface 

water dynamics.  TDR sensor ΔS measured in the winter wheat field during precipitation 
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and irrigation events was also overestimated but not to the same degree as the fallow and 

vetch.  ΔS measured at the winter wheat site was 0.82 – 2.10 times the amount of recorded 

precipitation (Table 7).   

 

Fig 12:  Averaged, daily cumulative change in soil moisture (ΔS), precipitation (P), and 

irrigation (I) for all sites.    
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12/11 – 12/ 
18/2020 

1/22 – 2/4/21 3/18/21 

P 
(mm) 

ΔS 
(mm) 

ΔS /P P 
(mm) 

ΔS 
(mm) 

ΔS /P P 
(mm) 

ΔS 
(mm) 

ΔS /P 

Fallow 36.1 77.21 2.14 36.58 104.14 2.85 17.02 78.23 4.60 

Vetch  23.88 128.3 5.37 50.04 92.46 1.85 11.43 39.12 3.42 

Winter 
Wheat  

23.88 19.56 0.82 50.04 54.61 1.09 11.43 23.88 2.10 

Table 7: Comparison of measured TDR sensor ΔS to P for three precipitation events.  ΔS /P 

represents the fraction of precipitation measured by TDR sensor ΔS (i.e., ΔS /P = 2 indicates 

that TDR sensor ΔS was 2 times more than recorded P for a particular event). 

 

Differences in overestimations of TDR sensor ΔS between sites could be linked to 

soil type and heterogeneity.  There was a greater overestimation of TDR sensor ΔS at the 

fallow and vetch sites than at the wheat site.  Both fallow and vetch sites contain high clay 

content soils while the wheat site has no soil with clay content > 45%, which may account 

for differences in TDR sensor interferences.  Another look at θ by depth for these events 

(Fig 7) confirms that both fallow and vetch TDR sensors measured greater increases in θ 

than wheat, with most change occurring in the top 0.3 m of the soil profile where fallow 

and vetch sites consist of high clay content soils (Fig 4).  This indicates that clay content 

may have had an effect of TDR sensor measurements.  Overestimation of ΔS in clayey soils 

has been linked to soil dielectric properties.   Clay soils usually have higher bulk electrical 

conductivity and permittivity than sandy soils due to charged surfaces of clay particles 

surfaces (Gong et al. 2003).  These soil properties tend to dampen the signal of TDR sensors 

and result in an overestimation in soil moisture (Stangl et al. 2009).  While our findings 

align with the literature, more replications of this study in varying clay content soil is 
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needed to make a definitive conclusion on the affects of clay content on TDR sensor 

readings in winter cropped rice systems.        

Seasonal Water Budgets 

 Seasonal values of WBCs are summarized in Table 8 and Fig 13.  The winter of 2020-

2021 was dry compared to an average water year in Sacramento Valley; all sites received 

comparable seasonal inputs from precipitation of an average of 149.61 mm (California 

Department of Water Resources et al. 2021).  The winter wheat field received an irrigation 

input of 224.96 mm which more than doubled its total inputs compared to the vetch and 

fallow sites.  Average ΔS across sampling locations collected from soil cores was -34.80, -

202.69, and --60.20 mm while ΔS from the single TDR sensor location was -186.96, -181.61, 

and -91.44 mm for fallow, vetch, and winter wheat respectively.  Seasonal ETc values 

calculated as the residual of the water budget were 182.46, 325.57, and 422.15 mm using 

the soil cores and 339.36, 364.34, 464.23 mm using the TDR sensor for the fallow, vetch, 

and winter wheat sites respectively.  Additional years of this study will aid in confirming 

sources of error in seasonal water budgets.    

 

 
 

P 
(mm) 

I 
(mm) 

ΔS 
TDR sensor 

(mm) 

ΔS 
Cores 
(mm) 

ETc 
TDR sensor 

(mm) 

ETc 
Cores 
(mm) 

ETo 

CIMIS 
(mm) 

Fallow 152.40  -186.96 -34.80 339.36 182.46 768 

Vetch 147.83  -181.61 -202.69 364.34 325.57 900-936 

Winter 
wheat 

147.83 224.96 -91.44 -60.20 464.23 422.15 687-806 

 

Table 8: Seasonal water budget components (WBCs) for all sites including precipitation (P), 
irrigation (I), soil water storage (ΔS) from soil cores and TDR sensor, and crop 
evapotranspiration (ETc) estimated as the residual of the water budgets using soil cores 
and TDR sensor ΔS measurements.   
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Fig 13: Seasonal water budgets for all sites where ETc is estimated as the residual of water 

budgets using ΔS measured from soil cores (A) and TDR sensor (B). 

Application and Limitations 

Specifically in dry years, many rice growers are interested in tradeoffs between 

maintaining agroecosystems, such as winter crops, and fallowing to pursue water 

sales.  Our present findings are representative of an extremely dry water year.  Growers 

interested in providing nesting habitat for migratory birds while simultaneously selling 
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water may be interested in pursuing a either an irrigated or non-irrigated winter crop.  

Winter crops harvested for profit that need to reach maturity and maintain quality, such as 

winter wheat, would likely require additional irrigation inputs to maintain growth as 

temperatures increase without precipitation.  Winter crops grown for the purpose of 

habitat creation and soil health could still provide these benefits without irrigation inputs.  

The non-irrigated winter crop in this study (vetch) had less seasonal consumptive 

use (325.57 mm) than the irrigated, harvested for profit, winter crop (winter wheat) 

(422.15 mm).  Both winter crops had significantly smaller ETc than rice (May-Sept, 889-

1,143 mm) and consequently have the potential to provide bird habitat with water left over 

to sell/transfer (Lal et al. 2012; Wong et al. 2021).  Furthermore, water sales are primarily 

offered during the summer which for an extended winter crop growing season would be 

May, June, and July.  This means that only the last months of the winter crop growing 

season would be considered in calculating the crops summer consumptive use, increasing 

water quantities available for sale/transfer and the attractiveness of this management 

practice to growers.  In-situ ETc measurements at a monthly time step are needed to 

determine exact quantities during this summertime period critical for bird nesting.  

Calculation of ETc in this research was limited by the lack of directly measured deep 

percolation, sub-lateral flow, small runoff quantities not captured by our monitoring weir, 

TDR sensor error, and precipitation measured off site.  

 As seen in this study, non-irrigated winter crops could deplete the soil profile more 

than fallowed land during drought periods by drawing water from lower depths of the soil 

profile.  An earlier termination of non-irrigated winter crops may allow for soil health 

benefits during the cool season to be better retained through the summer by reducing soil 
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moisture depletion from crop ETc as temperatures rise.  The fallow site higher rates of 

decline in ΔS after precipitation events than both vetch and winter wheat, indicating a 

higher potential to retain soil moisture in winter-cropped sites.  This trend has also been 

observed during average and wet water years where winter crops have been shown to 

improve soil health, reduce runoff and erosion, and promote infiltration and water 

retention; benefits that may be more significant than, or equal to, fallowing during non-

drought years (Devincentis 2020; Colla et al. 2000).  The tradeoff between preserving soil 

moisture by early termination of conserving bird habitat is a decision that individual 

growers should consider when thinking about what is best for their farm.  Our study results 

are aimed to inform these decisions by quantifying potential winter crop water use.  It may 

be helpful information when considering farm management options during different water 

years (wet, moderate, dry).      

The results from this study are useful for conservationists and water managers 

working in systems with high clay content soils for several reasons.  In dry years, multi-

depth downhole TDR sensors may be accurate in measuring relative changes in ΔS at depth, 

but less accurate in measuring absolute magnitude.  This is an important distinction as 

taxongrowers work towards better quantifying their water use and loss in adapting to 

droughts and climate associated water challenges.  Overestimated ΔS during precipitation 

events made determination of ΔS difficult and was more prominent in clay soils, likely from 

swelling interferences.  Additionally, the TDR sensor did not perform accurately in clayey 

soils during the particularly dry, hot conditions of our monitoring season as soil cracked 

and separated from the sensor producing noise.   
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Also, site specific soil calibration was laborious and minimally effective since soil 

from multiple depths of the soil profile were mixed for the calibration process and not 

representative of the soils at individual sensor depths during the measuring 

season.  Following years of this study may perform in-situ calibrations by manually 

collecting soil cores near TDR sensors during different times of the year and comparing 

core VWC to TDR sensor reading and each sensor depth.  This method would better capture 

the season’s soil moisture range and profile.  Monitoring TDR sensor data and reinstalling if 

soil detachment or noise is detected could improve the chances for better soil moisture 

monitoring, but risks consistency in soil physical properties surrounding the sensor.  New 

cracks can always form after reinstalment and the challenge of preserving soil sensor 

contact remains.  However, the ease of the TDR sensor makes it a useful tool when 

conditions permit.    

The diversity of our field sites are representative of inherent variability in the 

Sacramento Valley’s agricultural systems, and it’s what makes field-based applied research 

so challenging.  To best compare winter cropping treatments to a control, it would be 

optimal for the fallow site to be in the same proximity as the vetch and winter wheat.  For 

the 2021 water year, both regions received similar precipitation patterns which is not 

always the case but beneficial for treatment comparisons.  Additionally, soil variability 

between sites and at a field scale required meticulous analysis in an effort to explain and 

draw broader conclusions about the studied systems.    

The results and lessons learned from this research can help address these 

limitations during future years of this study.  Locating study sites closer to each other 

would decrease pedoclimatic differences between sites, however intrinsic variability in 
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farm management, cropping history, and type of winter crop are unavoidable.  Differences 

in soil texture and/or physical properties within a field among sampling locations are 

potential sources of variability in ΔS at each site, however soil nutrients, organic matter, 

topography, and crop uniformity/physiology also affect ΔS and were not measured in this 

study.  There are infinite combination of soil texture and bulk density, each having unique 

soil water dynamics.  Increasing sampling size of soil cores at the start and end of the 

season, and installing multiple TDR sensors, could provide a better representation of field 

scale ΔS by better representing field heterogeneity.  Additionally, multiple mid-season soil 

cores analyzed for S could provide insight to when the TDR sensor may be experiencing 

inconsistencies. 

Conclusions 

 The purpose of this study was twofold; first, to assess the application of field scale 

water budget models for informing agricultural water management decisions, and second, 

to review the application of the TDR sensor TDR sensor in measuring soil moisture in high 

clay content soils.  In our case study of winter-cropped, fallowed rice fields in the 

Sacramento Valley seasonal ETc was calculated from water budgets and soil water 

dynamics were monitored at a daily time step.  We found that winter crops use less water 

than rice crops normally planted during the summer season; therefore, the winter crop 

growing season could be extended to provide bird habitat during critical nesting periods in 

late spring/early summer with remaining water being sold/transferred during dry years.  

This research confirm findings from the literature that overestimation of soil 

moisture in saturated conditions and underestimation in dry conditions is a major 

limitation of applying measurements from the TDR sensor TDR sensor to water budget 
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models (IAEA 2008; Stangl et al. 2009).  This is especially true in clayey soils, where shrink-

swell potential is high and increases the probability of soil separating from the sensor.  The 

TDR sensor could be useful in understanding how water moves through the soil profile in 

non-clayey soils and further research should be done connecting crop water use in the root 

zone to soil water movement through different soil profile layers and textures.     
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Appendix 1: 

Calibration curves for TDR sensor installed at the vetch site (A) and fallow site (B).  The 

TDR sensor at the winter wheat site was not calibrated because there was no soil with clay 

content >45%.   

A 
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Appendix 2:  

Soil texture obtained from soil core particle analysis at the start of the season.  

 depth (m) Sand % Silt % Clay % 

Fallow 
 

0.3 22.20 28.20 49.60 

0.6 22.40 26.20 51.40 

0.9 37.60 28.70 33.70 

1.2 45.33 30.00 24.67 

1.5 49.67 28.67 21.67 

1.8 53.67 25.33 21.00 

2.1 53.67 25.67 20.67 

2.4 58.33 23.00 18.67 

Vetch 
 

0.3 18.00 28.40 53.60 

0.6 16.40 28.30 55.30 

0.9 21.70 31.00 47.30 

1.2 40.00 36.33 23.67 

1.5 40.00 44.67 15.33 

1.8 45.67 42.67 11.67 

2.1 53.00 40.00 7.00 

2.4 58.00 36.00 6.00 

Wheat 
 

0.3 37.33 38.67 24.00 

0.6 51.83 23.67 24.50 

0.9 59.33 18.33 22.33 

1.2 52.83 26.33 20.83 

1.5 47.00 28.67 24.33 

1.8 44.33 28.00 27.67 

2.1 46.00 26.67 27.33 

2.4 51.50 22.33 26.17 
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Appendix 3:  

Bulk density (ρb) and porosity (n) calculated from soil cores taken during mid-season and 

end of season.  

  mid-season end of season  change, end-mid 

 End 
depth 

(m) 

ρb 

(
𝑔

𝑐𝑚3) 
n 

 (cm3/ cm3) 

ρb 

(
𝑔

𝑐𝑚3) 
n  

(cm3/ cm3) 

Δρb  

(
𝑔

𝑐𝑚3) 
Δn  

(cm3/ cm3) 

Fallow 

0.3 0.95 0.64 1.46 0.45 0.51 -0.19 

0.6 1.21 0.54 1.64 0.38 0.42 -0.16 

0.9 1.25 0.53 1.63 0.38 0.38 -0.14 

Vetch 

0.3 0.97 0.63 1.27 0.52 0.30 -0.11 

0.6 1.42 0.57 1.49 0.44 0.35 -0.13 

0.9 1.17 0.56 1.48 0.44 0.31 -0.12 

Winter 
wheat 

0.3 1.08 0.59 1.37 0.48 0.28 -0.11 

0.6 1.21 0.55 1.67 0.37 0.47 -0.18 

0.9 1.41 0.47 1.82 0.31 0.41 -0.15 
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