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Animate Agent World Modeling Benchmark
Logan Cross1, Violet Xiang2, Nick Haber3, Daniel L.K. Yamins1,2

1Department of Computer Science, 2Department of Psychology, 3Graduate School of Education, Stanford University

Abstract

To advance the capacity of intuitive psychology in machines,
we introduce the Animate Agent World Modeling Benchmark.
This benchmark features agents engaged in a diverse repertoire
of behaviors, such as goal-directed interactions with objects
and multi-agent interactions, all governed by realistic physics.
Humans tend to predict the future based on expected events
rather than simulating step-by-step. Thus, our benchmark in-
cludes a cognitively-inspired evaluation pipeline designed to
assess whether the simulated trajectories of world models cap-
ture the correct sequences of events. To perform well, models
need to leverage predictive cues from the observations to accu-
rately simulate the goals of animate agents over long horizons.
We demonstrate that current state-of-the-art models perform
poorly in our evaluations. A hierarchical oracle model sets
an upper bound for performance, suggesting that to excel, a
model should scaffold their predictions with abstractions like
goals that guide the simulation process towards relevant future
events.
Keywords: social cognition; cogsci-ai; world modeling; ai
benchmark; intuitive psychology; abstraction; goals

Introduction
In a simple black and white film by Heider and Simmel, ge-
ometric shapes become intentional beings to observers, high-
lighting our tendency to attribute animacy to autonomous
forms (Heider & Simmel, 1944). From infancy, we intuit that
others have mental states influencing their actions (Gergely
et al., 1995; Woodward, 1998). While central to our social
lives, instilling this intuitive psychology into artificial agents
has been challenging. Advancing this effort, we introduce
the Animate Agent World Modeling (AAWM) Benchmark,
which consists of a dataset of agent trajectories engaging in
complex behaviors, including but not limited to goal-directed
interactions with objects and dyadic multi-agent interactions.
Our benchmark differs from the conventional trajectory pre-
diction paradigm and introduces a cognitively-inspired eval-
uation pipeline specifically tailored to assess the extent to
which the simulated trajectories of predictive world models
encapsulate the correct sequence of events.

This event-based framework is motivated by a wealth of
psychological evidence that humans segment the continuous
perceptual stream into events (Zacks & Tversky, 2001; Kurby
& Zacks, 2008). In addition, models of theory of mind pro-
pose that humans infer the intentions of other agents by in-
ferring what goal is likely given the actions observed so far
with Bayesian inference (C. Baker et al., 2011). In contrast,
state of the art world models in machine learning simulate

future states step by step, whereas humans simulate future
states conditioned on anticipated events and goals. Similarly,
traditional human trajectory prediction metrics, such as aver-
age displacement error (ADE) (Rudenko et al., 2020), do not
inform why a prediction was wrong as models could suffer
from distinct failure modes that lead to the same ADE per-
formance. In social contexts in particular, understanding the
structural relationships between entities and anticipating an
agent’s next subgoal is often more critical than precise pre-
dictions of immediate body articulations.

Therefore, a strong test of social understanding consists
of assessing whether a model can simulate these goals and
events effectively, even if the exact time course may be mis-
aligned from the true data. Consequently, our benchmark in-
corporates a suite of evaluations with these criteria to com-
plement conventional trajectory prediction metrics. Baseline
models failed to reliably pass these validations and showed
various failure modes that we analyze. For example, mod-
els often hallucinated movements of stable objects and strug-
gled to pick up on predictive cues for goal-directed behavior.
Given that capacities to detect animacy and attribute goals to
others is learned early in life (Heider & Simmel, 1944; Király
et al., 2003; Gergely et al., 1995; Woodward, 1998), it is our
belief that incorporating this common sense knowledge into
social world models is an essential foundation.

Our benchmark complements and extends a exciting line
of cognitively-inspired social prediction benchmarks. The
PHASE benchmark constructed a dataset of behaviors ex-
pressing social concepts such as helping and hindering, and
consists of a behavior recognition task and a trajectory pre-
diction task (Netanyahu et al., 2021). We extend the latter
approach with a distinct set of behaviors, longer prediction
horizons up to 50s, and a dataset two orders of magnitude
larger. AGENT and the Baby Intuitions Benchmark (BIB)
utilized a developmentally-inspired violation of expectation
paradigm to probe key concepts of intuitive psychology, such
as action efficiency and goal preferences (Shu et al., 2021;
Gandhi et al., 2021). While BIB used a grid world environ-
ment, AGENT constructed an environment in ThreeDWorld
(TDW) (Gan et al., 2020) with realistic 3D physics, similar
to our benchmark. The AAWM Benchmark combines the
strengths of these approaches with a diverse set of behav-
iors and adds an event-based evaluation pipeline and analy-
sis tools that provide a distinct test for common-sense social
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reasoning, complementing the trajectory prediction error in
PHASE and the violation of expectation paradigm in AGENT
and BIB.

Animate Agent World Modeling Benchmark
The Animate Agent World Modeling Benchmark (AAWM)
Benchmark 1 consists of 45,000+ trials of agents perform-
ing behaviors in the 3D simulation environment ThreeD-
World(Gan et al., 2020)(Figure 1A). The task is for world
models to predict the trajectories of the agents in object-
centric coordinate space, with an evaluation pipeline designed
to examine how well the models simulate the correct events
(Figure 2). The behaviors include:

• Single-step gathering - one agent picks up one of the 3 ob-
jects and delivers it to an observer agent.

• Multi-step gathering - one agent will move 3 objects.
• Collaborative gathering - two agents (a leader and a fol-

lower) collaborate to gather all 3 objects.
• Adversarial gathering - one agent does single-step gather-

ing, while the other returns object to its starting position.
Sequence repeats until the trial ends.

• Chasing - one agent chases the other agent.
• Random agent - one agent randomly moves.
• Mimicry - one agent is random agent, and mimic agent re-

peats their movements with a small temporal delay.
• Static agent - one agent does not move at all.

Each trial consists of two agents rendered in the 3D sim-
ulation environment. Thus, the behaviors of the agents are
randomly selected from a list of compatible pairs, including
examples of dyadic multi-agent interactions such as chasing
or collaborative gathering, and agents acting independently
(ie. gathering + random). The agents are embodied by ”Mag-
nebot” avatars: sophisticated robot-like agents that can per-
form tasks such as navigation and object manipulation with
inverse kinematics. In addition to the two active Magnebot
agents, there is an additional observer agent avatar that agents
deliver objects to. This green cylindrical observer agent is al-
ways static and located in the same location in the room as a
marker for the goal location. Each trial additionally includes
three objects randomly selected from a set of six (jug, purse,
bread, jar, backpack, and vase). Each trial is generated for
1,500 timepoints (50s at 30 FPS) in simulation and downsam-
pled to 300 timepoints for ease of computation when training
world models. Note that on many evaluation trials, models
must compute forward rollouts of over 250 timesteps, a rela-
tively long horizon prediction.

The input space for world models is object-centric, such
that events can be described as a function of the input space
and annotated by the event labeler (Figure 1B, Figure 2A).
For example, a goal consists of moving a particular object
close to the goal location. Input states at timepoint t are rep-
resented as a vector xt ∈R35, consisting of 7 features for each
of the 5 moveable entities, the x,y,z positions (with y being

1Videos of these behaviors can be found here

the height) and 4 features for rotation. Since agents and ob-
jects share the same set of features, in order to predict their
future trajectories, world models need to learn to distinguish
animate agents from inanimate objects, just as human infants
do early in life (Heider & Simmel, 1944; Király et al., 2003).

Baseline world models perform a trajectory prediction
task, where they take in a subset of a trajectory sequence as
contextual observations and generate a forward rollout to pre-
dict multiple future states of that trajectory. In evaluations,
models receive a varied length of observations as context in
order to observe enough predictive information about the be-
havior and upcoming events. Then, forward rollouts for the
rest of the trajectory are generated, and the labeled events
were compared to the events from the true data that was fed
into the event labeler. Our evaluations examine both whether
the simulated events are correct (the correct goal(s) were
achieved), and precise (only the goal objects were moved)2.

Metrics
We’ve designed evaluations to assess if world models simu-
late accurate events. We believe that social prediction should
be guided by inferring the goals and intentions of others from
sparse observations, just as humans do (C. L. Baker et al.,
2009; C. Baker et al., 2011). Therefore we probe whether
world models can recapitulate expected events governed by
predictive cues in the data distribution. Event definitions are
based on two criteria: 1. Accurate labeling of the ground
truth data. We have ground truth labels about events from the
data generation process, and subsequently create a rule-based
event labeler that can label the data with concise symbolic
rules based on only seeing the the trajectory of object-centric
input. 2. Exclusion of trajectories that exhibit certain failure
modes, such as objects violating the laws of gravity or mov-
ing without being acted upon. This event labeling procedure
affords the ability to compare the simulated data to the ground
truth. Our code also includes traditional trajectory prediction
metrics, average displacement error and final displacement
error.

Single Goal Events Evaluation For evaluating single goal
events, all single-step gathering trials in the validation set
were selected. For each trial, models were burned-in obser-
vations up until the timepoint tpickup where the agent picked
up the goal object, and the rest of the trajectory was simu-
lated with a forward rollout (Figure 2). Then we ask whether
the object that was picked up was properly delivered to the
goal location in the simulated/imagined trajectory. The event
labeler would label this as ‘True’ if that specific object was
moved to a location with a Euclidean distance less than 2.0
from the observer/goal location at any point, a threshold that
correctly labels every true goal event in the ground truth data
without false positives. Our evaluation code additionally of-
fers users the ability to toggle the difficulty of this evaluation
with a positive or negative offset parameter that includes more
or less contextual frames for the model to see. We evaluate

2Videos of example forward rollouts can be found [here]
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Figure 1: A. Depiction of AAWM environment. Right: Two agents are visualized as triangles, three objects as circles, and
observer as a square in an abstract 2D representation of the input to world models. Solid traces reflect the future positions of
the entities over the course of the next 25 steps. B. Object-centric dataset is fed to an event labeler to annotate events.

an easier version where models see 5 steps past the pick up
point in Figure 3B.

Pick Up Events Evaluation: For evaluating pick up
events, trials were selected where an agent gathers an ob-
ject(s) to deliver to the goal location. For each trial, models
were fed contextual observations until 10 steps before a true
pick up event, allowing the models to perceive the agent mov-
ing towards a particular object. The models were then tasked
with simulating a physically plausible pick-up event in their
forward rollouts. We observed that world models frequently
hallucinated irregular movements for picked-up objects, such
as simulating highly fluctuating movements or moving an ob-
ject without it being in close proximity to an agent.

We designed four criteria that correctly labels ground truth
pick up events from the object-centric data, while punishing
models that suffered from these pitfalls: 1. Height Threshold:
The object must be within a realistic height range, ensuring
it’s neither too low nor too high; 2. Object movement: The
object must be moving; 3. Close proximity to an agent. 4.
Stability in height: The object’s height should remain rela-
tively stable during carrying.

Multi Goal Events Evaluation. We adapted the single
goal evaluation for multi-step goals, which occurred with the
multi-step gathering agent and with the collaborative gather-
ing agents. All three objects in the environment were deliv-

ered to the observer in these trials. Models were burned-in to
the time point where the 2nd object was picked up. Thus, at
this point in the trajectory it is evident that all three objects
will be delivered to the goal location. The models then sim-
ulated the result of the trajectory, and these simulated input
states were assessed by the event labeler. Similarly to single
goal event evaluation, we ask whether the 2nd and 3rd objects
were properly delivered to the goal location in the forward
rollouts.

Move Events Evaluation. The move events evaluation
tests for physical plausibility in the simulated trajectories.
The models would often hallucinate movement for stable ob-
jects, even though objects should only move when acted upon
by agents. This evaluation performs rollouts on all trial types,
and models were input contextual observations until a point in
the trajectory where the behavior is unambiguous. Thus, for
the non goal-oriented behaviors such as chasing and mimicry,
no objects should be moved in the entire trajectory. The event
labeler takes in the simulated rollouts and detects which of
the three objects were moved on every trial, and compares
these event labels to the ground truth data. An object is la-
beled moved if the sum of its step by step displacements is
greater than a tunable threshold controlling the difficulty of
the evaluation. The default threshold of 4.0 was selected to
tolerate the inevitable fluctuations in floating points a model
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Figure 2: A. Illustration of event-based evaluation pipeline. B. Depiction of example evaluations - Goal Events Evaluation.
Models are burned-in observations up until a goal object is picked up, and the remaining steps are simulated with a forward
rollout. Model predictions are depicted by the more transparent shapes. Left - the red agent picks up the green object and
delivers it to a goal location, which is simulated successfully by the model with a delay. Right - the red agent picks up the blue
object and delivers it to the goal, and the model fails to simulate this event.

will produce step by step, while also rejecting any moderate
displacements that would be visible to a human. The goal is
to minimize the false positive rate, while also appropriately
detecting when objects should be moved. To pass this evalua-
tion, models need to differentiate animate agents from inani-
mate objects and learn that objects will not move unless acted
upon by an agent.

Experiments
Baseline Models
• Dreamer/RSSM: (Hafner et al., 2019, 2020, 2023). RSSM

has deterministic and stochastic components with the RNN
hidden state and variational stochastic latent state respec-
tively. We tested both continuous (DreamerV1) and dis-
crete (DreamverV2) versions.

• Multistep Predictor: This model processes the input with
and LSTM and MLP to compute predicted states for the
next 30 steps, supervised with L2 loss.

• Multistep Delta: Identical in architecture to the Multistep
Predictor but computes the predicted difference between
the current state and the next state, as in (Doyle et al.,
2023).

• Transformer: World model trained autoregressively as in
IRIS (Micheli et al., 2022).

Figure 3: A. Results for the Single Goal Events Evaluation.
B. Easier modified version of Single Goal Events Evaluation.
Models were fed in an additional 10 steps of context for the
single-step gathering trials, meaning they observe past the
pickup point and see the agent carrying the object and moving
towards the goal location.
C. Results for the Multistep Goal Events Evaluation. Bars
reflect average across 3 seeds ± SE.
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• SGNet: This model’s objective is to predict future tra-
jectories while simultaneously estimating step-wise goals
at various time scales given the contextual observations
(Wang et al., 2022). We set the step-wise goal target to
the state 10 steps ahead.

• Hierarchical Oracle Model: Model with hierarchical
structure to demonstrate the value of using future event-
based representations and multiple timescales. This model
is the Multistep Predictor model that takes in the ground
truth future end-state of the trajectory as input, in addition
to the normal sequences of states. Since this model uses
privileged information it cannot be directly compared to
the other models.

Results
Baseline Models Fail to Leverage Predictive Information
to Simulate Goal Events. The performance on Single Goal
Events Evaluation can be visualized in Figure 3A. No base-
line models performed with better than 50% accuracy on the
evaluation, even though goal events are completely determin-
istic from the context observed by the models (burn-in un-
til the pick up point). The RSSM Discrete model performed
the best on this evaluation, followed by the Transformer and
SGNet. The Multistep Delta and RSSM Continuous models
struggled to correctly simulate events less than 10% of the
validation trials. With privileged information about the end
state, the Hierarchical Oracle model sets an upper bound for
performance on this benchmark if world models could cor-
rectly infer the goal of the agent. This result highlights a
substantial gap in performance between this model and the
other baseline models while concurrently pinpointing event
prediction as the key bottleneck and challenge for world mod-
els. With the oracle model we assume a perfect end-state pre-
dictor in order to separate the event prediction/end-state pre-
diction problem from the computational problem of guiding
short, moderate, and long horizon predictions with an antici-
pated future state. The notable performance of SGNet in the
goal events evaluations also indicates the value of predicting
a future goal state and conditioning forward rollouts on this
prediction.

To further identify exactly what the models struggle with
on the Single Goal Events Evaluation, we modified the evalu-
ation such that they perceived 5 more frames of context/burn-
in, meaning that models observe past the pickup point and
see the agent start to bring the object towards to goal loca-
tion. The time between the pickup event and the goal event
was on average 16.3± 9.7 std steps, thus 5 additional steps
gives models observations of the agent and object traversing
towards the goal. Performance dramatically improved for all
baseline models, demonstrating that the models struggle at
the pick up point (Figure 3B). Since the vector of velocity
in the trajectory can dramatically change directions at this
change point, models often simulated movement in the same
direction as previously observed or predicted that the agent
would continue to stay still after picking the object up. There-

Figure 4: A. Results for the Pick Up Events Evaluation. Bars
reflect average across 3 seeds ± SE. B. Models were tested
with 30 step forward rollouts on various timepoints in single-
step and multi-step gathering trials to evaluate how world
model loss evolves over time around these events. Three rep-
resentative models are shown for ease of visualization.

fore, these models struggled to make the correct inference
that a pick up event precedes an agent moving that object to
the goal, even though this inference would be common sense
to a human. This result additionally illustrates that the world
models are able to extrapolate movement along the same vec-
tor of motion and correctly simulate the goal when the goal
event is imminent.

Figure 3C depicts results for the Multi Goal Event Eval-
uation. Some models such as the Multistep Predictor and
Transformer tended to better simulate the delivery of the 2nd
object with more context, while the RSSM models did not.
Thus, feeding in more observational steps had differential ef-
fects on each model with some performing better and oth-
ers worse. As expected, most models performed significantly
worse on the 3rd object with the longer horizon. The Mul-
tistep Predictor model performed the best on the 2nd goal in
this evaluation, and the Transformer performed the best on
the 3rd goal.

Event segments are structured around high world
model loss during pick up events. Baseline models per-
formed less than 40% accuracy on the Pick Up Event Evalu-
ation (Figure 4A). Models would regularly hallucinate irreg-
ular movements in the y-dimension, or simulate objects tele-
porting without being near an agent to carry it. These results
suggest the models were not able to learn the physical prin-
ciples of the environment effectively. Even the Hierarchical
Oracle model struggles on this evaluation, as it has no addi-
tional information to guide the simulation of pick up events.
The RSSM Discrete and Multistep Predictor performed the
best on the evaluation.

In order to evaluate how world model loss varied by across
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Figure 5: A. Move Events Results. Bars reflect average
across 3 seeds ± SE. B. Example of hallucinated movement
- mimicry trial for RSSM Continuous. Circles are initial po-
sitions of the objects, traces reflect displacement throughout
the trial. C. ADE averaged by rollout timestep. D. ADE by
timestep only for stable objects. E. Total displacement of sta-
ble objects by timestep.

a trial and by event, we computed forward rollouts on single-
step gathering and multi-step gathering validation trials at
various timepoints in a trial, with timepoints normalized by
their distance to pick up and goal events (Figure 4B, see Sup-
plementary Material for more information). For visualiza-
tion clarity, we depict the MSE curves of three representative
models, and all baseline models show similar patterns.

These plots demonstrate that prediction error dynamics
of models are structured around these events. Both the
peaks/troughs of these curves indicate useful information that
can be summarized in three important takeaways from these
plots. 1. There are high peaks in the world model loss of
30 step rollouts around pick up events, likely due to models
struggling during and shortly after the pick up event. Predic-
tion error spikes are caused both by the inherent increase in
complexity of producing physically plausible pick up events
and the inability to leverage predictive information to cor-
rectly simulate the goal after the pick up event. 2. There
are troughs in the curves before the goal delivery events. This
illustrates that predicting the rest of the event segment be-
comes trivial if a goal is correctly identified (Figure 3B). 3.
There is a rise in model prediction error near and after the
goal events. This further demonstrates that models struggle
at change points and directional changes as previously dis-
cussed. The patterns here are analogous to the research in
human psychology that suggests humans segment time into
events based on the predictable nature of the states within the
event segment and prediction errors signaling event bound-
aries. (Reynolds et al., 2007; Zacks et al., 2007).

Models hallucinate movement and suffer from error ac-
cumulation. In the move events evaluation, models are test
on moving only the correct objects in simulated trajectories.
Given unambiguous context, models should be able to sim-
ulate rollouts where the appropriate objects will be picked
up by agents and the rest will remain stationary. The event

labeler annotates the rollouts, comparing object movements
to ground truth. Precision, recall, and f1-score metrics are
plotted on Figure 5A. The RSSM Discrete has the highest
f1-score, striking the best balance between minimizing false
positives and false negatives or all the models. The Multistep
Delta model also shows high precision, likely due to its objec-
tive to predict the difference between the current state and the
next state. This stability bias results in lower recall scores, a
pattern also seen in RSSM Discrete and SGNet. Transformer
and RSSM Continuous models, conversely, display high re-
call but suffer from poor precision and rampant false positives
by predicting constant motion as demonstrated by an example
of hallucinated movement in Figure 5B.

We completed additional analyses to identify how simu-
lated rollouts unfold over time. Figure 5C plots the aver-
age displacement error (ADE) per timestep. Baseline models
show error accumulation, particularly in the first 50 steps of
the rollout. Interestingly, the oracle model has minimal er-
ror accumulation and shows a decrease in ADE post-timestep
100, hinting that hierarchical structure can tether rollouts to
anticipated states and reduce errors. Figure 5D illustrates
ADE by timestep while isolating the features that represent
the positions of static objects in a trial. RSSM Discrete and
Multistep models do well in keeping them stable, while sta-
ble objects tend to drift for the Transformer and RSSM Con-
tinuous. Keeping an object near its initial position doesn’t
guarantee stability in move event evaluations; an object can
still accumulate large total displacements by jittering around
its initial position. Total displacement by time is shown in
Figure 5E. The Multistep Predictor exhibits such jittering,
while Transformer and RSSM Continuous tend to drift, in-
creasing both ADE and total displacement. Multistep Delta
is less prone to jitter due to its state difference output. SGNet
and RSSM Discrete perform impressively, near oracle levels,
indicating that a hierarchical inductive bias or temporal prior
can reduce movement issues.

Discussion
Here, we introduced the Animate Agent World Modeling
Benchmark, which includes a comprehensive set behaviors
built in a realistic physical simulation environment, and a
event-based evaluation pipeline. We tested commonly used
world models on the pipeline and demonstrate that they fall
short on reliably passing our evaluations. Although Dreamer
has exhibited impressive performance in various domains
such as Atari and Minecraft (Hafner et al., 2020, 2023), our
results suggest that its world model may fall short in acquiring
common-sense social understanding. Additionally, the ex-
ceptional performance of the Hierarchical Oracle Model on
the goal events evaluations suggest that directly building an
event-based or goal-based inductive bias into world models
should be useful.
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