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August 8, 1974 

ABSTRACT 

We formulate and sol ve an integral equation approach to 

spontaneous breakdown in a certain dual model. The model is not yet 

physical, but Goldstone and Higgs phenomena are visible in the 

explicit spectrum shift which removes the (tachyonic) vacuum 

instability • 
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I. INTRODUCTION 

This paper is concerned with the problem of exhibiting sponta-

neous symmetry breakdown in dual models. In a series of earlier 

papers,1,2,3 it was shown that in any dual model with at least one zero 

mass scalar, the vacuum may be unstable against the emission of these 
.. 

scalars (the spurion emission). A nontrivial minimum of the effecti ve ~ 

spurion potential, if it exists, corresponds to the spontaneous 

breakdown of some symmetry. Unfortunately, the computation of the 

effective potential in general turns out to be a very difficult task, 

except in the relatively uninteresting case of the zero-intercept dual 

2 
model. One of the things that makes the zero-intercept model 

uninteresting is the absence of a tachyonic state, which, if present, 

guarantees the instability of the vacuum. In contrast, the model we 

are going to discuss has a tachyon in its spectrum and is therefore 

expected to undergo spontaneous symmetry breaking. Our starting point 

is a particular type of "dual M-model", introduced in Ref. 3. We are 

unable to handle this model in its original form, so we consider the 

limit of the dimensions of the space going to infinity; the so-called 
4 

large N limit. This limiting procedure, in addition to some further 

simplifications, enables us to construct a manageable model. In this 

model, the problem of spurion summation turns out to be mathematically 

equivalent to a one-dimensional linear chain with only nearest and 

next-to-nearest neighbor correlations. This gives rise to a set of 

single variable linear integral equations for the spurion S· matrix, 

which is the S matrix in the presence of a uniform (zero-momentum) 

external field [usually called the W function. 5]. A similar set of 

integral equations are also derived for the propagator of the theory. 
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The rest of the paper is devoted to the examination of various 

solutions to these integral equation. One solution that is always 

present is the trivial perturbation solution, for which the propagator 

returns to its original value when the external field vanishes: or 

equivalently, when the spurion to vacuum coupling goes to zero. We 

are able to show that the equations also possess solutions different 

from the perturbation solution, and we explicitly exhibit the prop­

agator and the W function for some of the solutions in the limit of 

vanishing external field. The existence of several solutions is 

equivalent to a many-sheeted analytic structure as a function of the 

external field, and the perturbation solution changes into the new 

solutions smoothly as one goes around the relevant Riemann sheet. In 

terms of the effective potential, the new solutions correspond to 

nontrivial local minima (or stationary points) of the potential. Their 

existence is no accident; it is made possible by the fact that the 

kernel of the integral equation is singular. This singularity in turn 

is caused by the existence of a tachyon in the spectrum; the chain of 

reasoning that relates vacuum instability to the existence of a tachyon 

is complete, and a satisfactory picture of spontaneous symmetry 

breaking emerges. Having the propagator, we show that, in one of the 

solutions, which we call the leading solution, both the tachyon and 

and the (zero mass) vector meson masses are raised by one unit. The 

old tachyon is therefore promoted into a zero mass particle and the 

final spectrum is tachyon free! 

The emphasis throughout the paper is on the techniques used 

to derive the fundamental set of integral eiuations and on their 

solutions. The model is admittedly not physical; we expect, however, 
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that similar methods will continue to work in the case of more physical 

(and more complicated) models. We also expect our results to hold in 

more physical models: There will in general be a number of vacua lower 

in energy than the intrinsically unstable tachyonic vacuum of present 

dual models. As we find here, we expect in general to seethe entire 

spectrum shift up until the tachyon is no longer present. 

The organization of the paper is as follows. In Section II, 

we briefly review the general approach to spontaneous symmetry breaking 

in dual models. In Section III, the model of interest is defined and 

its properties are discussed. The integral equations for the W 

function (spurion summation) and their solutions are discussed in 

Section IV. Section V deals with the propagator and the mass spectrum. 

Finally, Section VI summarizes our conclusions. There are also two 

appendices. Appendix A is the derivation of our model as a large N 

limit of a ghost-free dual M-model. 3 Appendix B presents another 

spontaneous breakdown solution, this time in which the M fields 

themselves pick up an explicit vacuum expectation value. 

II. DUAL MODELS AND SroNTANEOUS SYMMEI'RY -BREAKING 

We begin with a brief review of the standard generating 

function(al) approach to spontaneous breakdown. 5 As we are interested 

only in spurion emission at zero-four-momentum, we need take the 

standard source function J(k~) ~ J 54(k~). In this case, we work 

only with functions, not functionals. Our interest is then focused on 

W(J), the generating function for connected S-matrix elements at zero 

four .. momentum, 

W(J) L (2.1 ) 

n 
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where 

(2.2 ) G = n i
n

-
l 

(oIT(¢l"'¢n) 10) 
connected, 

k J.l = 0 
i 

In the case of a single species of particle of mass 2 
J.l (and no vacuum 

expectation value), we have 

00 

W(J) L 
n=3 

where S are connected S-matrix elements suitably extrapolated to all 
n 

k.J.l = O. In terms of S e i T (the T-matrix elements), all its 
1 n n 

disappear, and we expect the T 's 
n 

to be simple coefficients times the 

beta-functions of dual theory. The effective potential V is defined 

as follows 

¢(J) 
dW 

- dJ' V(¢) e J¢ - W, J 
dV 

= df; (2.4 ) 

Also, the vacuum expectation value of ¢, (¢) = ¢(O). In this paper 

we will never construct V(¢) exPliCitly,6 staying directly with the 

more physical W(J), but we will from time to time refer to properties 

of V and (¢) easily deducible from W. 

It is well known for example that W(J) being multisheeted 

corresponds to spontaneous breakdown: We define the first sheet as in 

(2.1), being the power series of S-matrix elements before spontaneous 

breakdown. If indeed there is a branch point at some finite J, we 

can go around it and come back to J = 0 on the second sheet. Suppose 

on the second sheet, near J = 0, W(J) looks like W(J) '" CDO + Jcol + .••. 
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Then it is easy to see that we have found a new stationary point of the 

potential (oV/o¢ = J = 0) at (¢) = 001 • (1)0 is the value of the 

potential at the new stationary point. The foregoing is quite 

standard; there are however a number of novel features introduced 'here 

because we are working in a dual model, with no known ghost-free 

off-mass-she11 extrapolation. 

In the Lagrangian field theory with many species of scalar 

fields, both Wand V are functions of many variables, and one is 

free to work with them all. In dual models however, we cannot do this. 

As explained in Refs. (1, 2, 3), we have only a few zero mass scalars, 

(here zero mass M-partic1es) for which we can reach I-l k = 0, because 

we really have no valid off-mass-she11 extrapolation at all. We are 

forced then to work with only the zero mass scalars externally, while 

all other scalars appear internally. Nevertheless, this procedure is 

entirely adequate for spontaneous breakdown. 

We use a simple argument to illustrate what is going on in this 

approach. Suppose V(¢,a) is a function of two scalar fields ¢ and 

a • Let J be the corresponding external fields. 
a 

Using 

only J¢ as an external probe is equivalent to setting J a = O. This 

is equivalent to eliminating a from the definition of V through 

the equation of motion oV/oa = 0 , and one arrives at a reduced 

potential Vr as follows 

V (¢) 
r 

where a(¢) is the solution of oV/oa = 0 • 'Since oV/oa = 0 is a 

condition for a stationary pOint, all stationary points of V are 

also stationary ppoints of Vr • Therefore no information (about 

.. 
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stationary points of V) is lost if only ¢ is coupled to its external 

field. In principle, any massive scalars in the theory can be 

eliminated in this way, in favor of the others, until one is left with 

only massless fields. This process of elimination fails for the 

massless fields however, since the e~uations of motion to be solved 

become singular in that case. This ~uestion will be treated at length 

in a separate publication7--here we need only the result that 

stationary points of the potential are ade~uately probed by the zero-

mass scalars of the theory. 

Once we begin using these reduced potentials, however, yet 

another novel feature needs discussion. Although V is usually a 

single valued field (at least in tree approximation), Vr is in 

general multi-valued, and sometimes spontaneous breakdown may show up 

by changing sheets of Vr (rather than a new minimum on the same 

sheet). 

At this point, a simple example may prove illuminating. 

Consider the following effective potential of two fields ¢ and cr 

V(¢, cr) (2.6) 

where the ~'s are coupling constants. The condition dV/dcr o can 

be solved fora to yield the following, 

(±) m2 
cr =--

2~ 

x ~Jl + 2~ 
3 
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The reduced potential Vr is a many-valued function of ¢. 
Of the two solutions for (J, the one corresponding to thenegati ve 

sign of the radical, 
(-) . 

(J , is the normal or the perturbation solution. 

(-) ¢ This definition follows from the fact that (J ~ 0 as ~ 0, and 

therefore the trajectory of (J 
(- ) in the ¢ -0 plane passes through 

the normal stationary point ¢::: 0, (J::: 0 of the potential V. The 

other stationary points of V are also the stationary points of either 

V (+) 
r 

. (-) or V • Of particular interest is the stationary point 
r 

¢ ::: 0, (J ::: m2 /~, which corresponds to the stationary point ¢::: 0 

nonperturbative branch V (+). Here we have an example of 
r 

on the 

spontaneous breakdown occurring by slipping into a different branch of 

the reduced effective potential, where the field ¢ does not acquire 

a vacuum expectation value at all! There is, however, no paradox, 

since the field (J that has been eliminated from V" is the one that 
r 

acquired a vacuum expectation value. This is a common phenomenon when 

the potential is even in one of the fields (in this case in ¢). 

One can also easily construct the Wred ::: J~ -. Vr , being the 

W with only ¢ external. The upshot of these examples (the reader 

should continue such exercises to see far himself) is that: in our 

dual models both Wr and Vr are multisheeted. Ever;y: sheet of Wr 

corresponds to a spontaneous breakdown. Thus, even if on the second 

sheet Wr ~ 0 like J2, we interpret this as ~ spontaneous breakdown 

in the hidden scalar degrees of freedom (while <¢)::: 0), by shifting 

to another sheet of V. r 
In Section IV, we shall in fact find such a 

case, spontaneous breakdown in our dual model in which the probing 

field itself acquires no vacuum expectation value. 
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So far, we have been careful to distinguish between the 

stationary points of the potential well and an absolute minimum. 

Unfortunately, our analysis is inadequate to decide whether a given 

stationary point is an absolute minimum. We know one thing for sure, 

however, since the normal dual model has a tachyon in its spectr_~ 

and our solution does not, our stationary point has lower energy than 

the normal one. When there are several stationary points, all of 

which are free of tachyons, we are presently unable to decide between 

them. 

The last and most technical point of the dual model application 

is the off-mass-shell extrapolation, for the series W(J) obviously 

has a branch point at J = 0 when 2 
IJ. = O. Our use of l 1= 0 must 

be thought of as a regulator procedure, with 1J.2 ~ 0 at the end of 

the calculation. Because 1J.2 = 0 is the canonical (conformal) mass, 

we can in principle watch to make sure that all ghost-structure is 

vanishing as 2 
IJ. ~ O. We will return to this in Sections III, IV and 

our conclusions. 

III. THE ABELIAN MODEL 

Our starting point is a dual model with internal symmetry 

introduced in Ref. 3. This model has the internal symmetry group 

U(N), where N is taken to be arbitrary; and it is an "axiomatic II 

model, in the sense that, as far as we know, it is free of ghosts and 

possesses all the desirable features a dual model should possess. Its 

only drawback is that it has tachyonic states at 2 
m =-1 and vector 

mesons at zero mass. The latter feature is common to all dual models 
. 8 

before spontaneous breakdown. We are unable to treat this model as 

it stands; so we use it as a stepping stone to a simpler model we are 
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able to handle. The transition to the si~ nodel is achieved by 

starting with singlet external states in the U(N) Sp3.ce, and then by 

4 taking the limit N ~ 00. Since we shall not need the original model 

in what follows, the details of this limiting operation and of the 

original model are given in Appendix A. The rest of the section is 

devoted to the definition and a brief description of the limiting 

model, which we call the Abelian model. 

The low lying spectrum of the Abelian model consists of a 

tachyon at 
2 

m = -1, a zero mass vector meson (photon), and a zero 

mass scalar which we call M. Taking the external particles to be 

MIs, we have the following operator formula for the planar n point 

amplitude B , 
n 

Here n has to be even, the kls are the external momenta, and 

Sij = (ki + ki +l + •.• + kj )2. The multiperlpheral configuration 

described by E~. (3.1) is depicted in Fig. 1. The definition of the 

vertices V and the mass operator R is similar to those of the 

standard models, 9 with, however, some important differences. In 

addition to the standard9 orbital operators a~, we need another 
p 

(i) set of Bose operators n with the following properties: 
p 

['p (1), ('p' (1))t] ~ p 5pp ' , (n, at) = 0 , (3.2 ) 

where p runs from 1 to 00, and 
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(2 ) rc (3) rc (4) :; rc (5) (n) (1) rc - , rc - rc p p , p p' p p 

In general, (i) 
and (rc (j)? commute unless i = j rc or p p 

unless they are identified pairwise as in Eq. (3.2). We then have the 

following equations for V and R, 

R 

00 

L 
p=l 

f(a ~/ (a ) L p p~ 
+ L 

i 

(rc (i»t rc (i) \ 
p p PI' 

-
00 a ~ + (a ~)t I ' V(i)(k ) 5i .(1) exp {v'2 k. [ 12 12 (3.3) 1 i ~fL (p)"2 

p=l 

(i) ~ {'p(i) + (,p (1)/ } rc -

From these definitions, it is clear that in evaluating Eq. (3.1), 

as far as the rc operators are concerned, only pairwise contractions 

between neighboring vertices are allowed; and hence the name "nearest 

neighbor model." These contractions are indicated by arrows in Fig. 1. 

It is, of course, possible to define a different amplitude by choosing 

the contractions 1 ~ 2, 3 ~ 4, etc., instead of 2 ~ 3, 4 ~ 5, 

etc. as we have done. This alternate possibility for the pattern of 

contractions is indicated in Fig. 2. 

At first sight, it may appear that we have a spectrum that 

increases with the number of external legs, since we have to introduce 

a new operator for each extra pair of legs. This is not true, however, 

since an equivalence can be established between different pairs of 
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~IS. These matters are discussed at length in an article by Neveu and 

10 Thorn, where operators similar to our ~IS were first introduced in 

order to shift the intercept of certain dual models. The price paid 

for the introduction of the new set of operators is an enlarged 

spectrum which in general contains ghosts. Therefore, the model 

defined by Eq. (3.1) has ghosts, although its parent model (Appendix A) 

does not. 

This price has to be paid in order to arrive at a nearest-

neighbor type model in the operator space, which, as we shall see, 

enables us to write a simple linear integral e~uation for the 

amplitude. 

For the purposes of computation, it is convenient to convert 

E~. (3.1) into an integral representation in the standard way.9 The 

answer is particularly simple and useful when written in the multi-

peripheral form. Assigning variables ul . to the channels 
,1. 

(1, i), 

with 2 ~ i ~ n-2, we have the following: 

B (k , ••• , k ) 
n 1 n 

· fI<l 
i,j=2 
i < j 

... 1 

.. JI d"1,2 d"1,3° 0 odul ,n_2 
o 

-2k ·k i . 
11.. 11.. ••• 11.. ) J 
.l,i .l,i+l .l,j-l 

-l-s 1,3 
u l ,3 

-s 4 1, 
u l ,4 

-s -1 1,5 
u l ,5 

- u 1,n-2 

-s 
1,n-2 

'\,n-2 

(3.4) 

) -2 
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An alternative representation, completely equivalent to Eq. 

(3.4), results from the choice of u.... as independent variables: c,i 

[ [ ···f d~,3 
000 

du 2,n-l 

-2-s 
)( 2,3 
~,3 

x 1~IQ 
i, j=3 
i < j 

-l-s 4 2, 
~,4 

- ~,i ••• 

-2-s 2,5 
~,5 

-2k. ·k. 

) 
~ J 

~,j-l 

-2-s 2,n-l 
~,n-l 

The lowest lying spectrum can easily be read off either from 

(3.4) and (3.5), or directly from (3.1), and for the purpose of 

studying the spectrum, it is convenient to classify the channels into 

three distinct groups, called the M-type channels, Abelian channels 

and heavy channels. Any channel containing an odd number of external 

lines is an M-type channel, and its lowest lying state is the zero mass 

scalar M discussed earlier. The Abelian channels are the channels 

of the type (2,3), (2,5), (2,7), (4,5), (4,7),(6,7) etc. The 

lowest lying states are a tachyon at 
2 

m = -1 and a vector meson at 

zero mass. The heavy channels are channels like (1,2), (1,4), (3,4) 

etc. The lowest lying state in these channels has m2 = 1. Due to the 

presence of the tachyon, the vacuum is unstable and the model is a 

quite satisfactory laboratory for the investigation of spontaneous 

symmetry breakdown. 
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As mentioned earlier, we need an off-mass shell extrapolation 

of the model in order to be able to define W. This we do in the 

following way: All intercepts may be shifted by +c
2 

(via say the 

method of Thorn and NeveulO __ an additional nearest neighbor interactio~. 

Then, the external (M) masses may be continued to zero
ll 

(via an 

additional next-nearest neighbor interaction, roughly analogous to 

Thorn and Neveu). The integral representations (3.4) and (3.5) are 

then modified to the forms given below 

. 2 
B (L ••• k c ) 

n -~' 'n' 11 (1 11 
= j ... dUl ,2 

000 

2 2 

du 
1,n-2 

x (1 - ~ ~ )-c (1 _ ~ u 4)-c "'(1 
~,2 ~,3 ~J3 1, 

- u U )
-c 

1, n-3 1, n-2 

xn (1 

i, j=2 
i < j 

-2k
i
·k. 

- '\, i ... u1, j -1 ) J 

2 
c -s 1,n-2 

'\,n-2 

2 
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2 
B (k...,···,k,c ) n --l n = 

[

1 1 1 1 d~,3·.·· 
° ° ° 

2 

dU2,n_l (1 - ~,3)C 

222 
)( (1 - ~,3 ~,4)-C (1 - ~,4 ~,5fc ••• (1 - ~,n-2 ~,n_l)-C 

222 
c -2-s c -l-s 4 c -2-s 2,3 2, 2,5 )( u.... u c,3 2, 4 ~, 5 

n-l) 
("'"------\ -2k 'k Ii· 

x ' \ (1 - u.... • •• u.....) J 
c, i c, J-l 

i, j=3 
i < j 

, 

2 
c -2-s 2,n-l 
~,n-l 

After the sum given by Eq. (2.1) is performed, 2 
c should be 

set equal to zero and thereby the original model is recovered. There 

is a complication in our case, however, which invalidates this 

conclusion. The shifted-intercept model has a larger spectrum than 

the original one. The extra states introduced by the shifting of the 

intercept couple to the rest of the states through coupling constants 

proportional to c, so that in the limit c - 0, their contribution 

to W is expected to disappear. The above argument is correct for 

states whose mass remains finite in the limit c ~ 0. However, it 

turns out that there are two extra scalar particles under the vector 

meson at mass 2 2 
m = c • Although these states also have coupling 

constants proportional to c, they do not entirely decouple as c - 0, 

since their propagators become singular in the same limit. It is 
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therefore necessary to subtract their contribution explicitly before 

taking the limit c - O. The resulting set of equations are somewhat 

complicated, and will be dealt with in a future publication.12 In the 

interests of simplicity, we shall ignore this complication in this 

paper, and use the Eqs. (,.6) and (3.7) as they stand. There is no 

2 obvious difficulty if we then keep c finite and avoid the limit 

c ~ O. This simplified version of the model then serves as a good 

training ground for the more complicated situation. Apart from thiS, 

the simplified model is a perfectly satisfactory one for the study 

2 of vacuum instability in its own right, since for c < 1, there is 

still a tachyon in the theory. 

IV. COMPUTATION OF W IN THE PRESENCE OF SPONTANEOUS BREAKDOWN 

In this section, we wish to compute 

using the expression given by (3.6) for B . 
n 

W given by Eq. (2.1), 

2 
For c > 1, we can 

directly set k = 0 
i 

in (3.6), since the integral representation is 

convergent, which, parenthetically, is another technical simplification 

gained by the shift of the intercept. The interesting interval 

2 
c • o < c

2 < 1 will be reached later by analytic continuation in 

When the external momenta vanish, all correlations between different 

vertices except the ones between nearest and next-nearest neighbors 

disappear, and it is possible to write a recursion relation for B . 
n 

It is this feature of the model that makes it manageable. In order to 

derive the promised recursion relations, we define the following pair 

of auxiliary functions: 
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( 1 11 .•• 11 

du ••. du 
. 1,2 1,2n-2 

JO 0 0 

2 
u )c -2 
1,2n-2 

''" 
2 2 2 

x (1 - ~,2 U1,3)-C (1 - ~,3 U1,4)-C ..• (1 - u1,2n-2 u)-c 

C
2 2 2 

C -1 c 
x ~,2 ~,3 ~,4 

2 c 
u1,2n_2 ' 

f 2n+1 (u) 
I 11 (1 [ - J ... dU-,2 ••• du 

.L 1,2n-l 

000 

2 2 
( )c -2 ( )c 

)( 1 - ~, 2 1 - ~, 3 
2 

( U )
c 

1 - 1,2n-l 

2 2 2 
x (1 - ~,2 U1,3)-C (1 - ~,3 U1,4)-C (1 - u u 1,2n-l )-c 

222 c c -1 c 
)( ~,2 u1,3 u1,4 

2 
c -1 

u1,2n-l' 

(4.1) 

where 

as can readily be verified by comparing it withEq. (3.6). The 

'. following set of recursion reIations immediately follow from the 

defining relations of (4.1), 



f 2n+l (u) .[ = 

o 

222 
du' (u')c -1 (1 _ u')c (1 _ uu' fC 

2 22 

(4.2 ) 

= f du' (u')c (1 _ u')c -2 (1 _ uu' )-c f":) l(u'). <-.n-

o 

We wish to use the above recursion relations to carry out the 

sum of Eq. (2.1) at zero external momentum. We have, however, first 

to establish a relation between the S-matrix elements S of Eq. (2.3) n 

and B of Eqs. (3.4) or (3.6). By definition, S is the complete n n 

S matrix; it includes all the Feynman graphs in the tree approximation. 

On the other hand, Bn is defined to include only the planar Feynman 

graPhs. 9 It then follows that we have to symmetrize B with respect 
n 

to the external lines. When all the lines carry zero momentum, this 

merely introduces a factor of n! On the other hand, since B n 
is 

already cyclically symmetric, the planar graphs are overcounted by a 

factor of n in this process. Therefore, the precise relationship 

is the following: 

It is now convenient to define the following auxiliary function 

W(J), 
co 

~ 
J 

n 
2 

W(J) ( ) Bn(ki 
0, c ) - 2 c 

J 
d 

(W(J) -
J2 

= 
dJ 2" c (4.4) 

• 
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W contains the same amount of information as W, given W 

apart from a trivial constant, one can solve for W. The advantage of 

using W is the fact that it satisfies a simple integral equation. 

To derive this equation, we further define the following, 

n=2 

3 
ro 

J \-W
2

(J,u) - ( 2" ) + I 

I c L ___ ( C

J2 )2n+l 
f 2n+l (u) , 

n=2 

where· 

W (J) = W 1 (J, u=O) • 

The recursion relations of Eq. (4.2) can then be used to arrive at the 

following set of equations: 

where 

J 
'" = 2" c 

_c2 _ 
( 1 ~ uu I ) W 1 ("" u ') , 

( 4. 6b) 

The above equations are the fundamental result of this section, 

and the rest of the section will be devoted to solving them. We 

already know one solution, namely the perturbation solution mentioned 

earlier. This solution is generated by iteration from the starting 

point W (O)(""u) = ",3, and corresponds to the original sum of .. 2 
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E<l. (4.4). In what follows, we will find other solutions to the 

fundamental set of e<luations. These solutions also admit a power 

series expansion in ~; however, their starting point is different 

from the perturbation solution. The existence of the extra solutions 

depend on the fact that the kernel of the integral e<luations is 

2. 
singular. The nature of this singularity depends on the value of c • 

2 
Initially, we haye to start with c. > 1, since the integrals of 

E<l. (4.1) only exist in this range. The kernels of E<ls. (4.6a) and 

(4.6b) are then at most marginally (integrably) singular at either 

end point u' = 0 and u' = 1. However, when 
2 

c is continued to 

the critical interval 0 < c2 < 1, E<l. (4.6a) develops a non-

integrable singularity at u' = 1. It is this singularity that makes 

the existence of nonperturbative solutions possible when 
2 

c < 1. 

Since a tachyon is introduced in the spectrum under the same condition, 

the new solutions and the instability of the vacuum are related in a 

very satisfactory manner. 

It is clear that the behavior of the kernel of E<l. (4.6a) near 

u' = 1 is of crucial importance, whereas the point u' = 0 at most 

corresponds to a mild singularity in either e<luation, so long as 

2 c > O. It is then convenient to change variables by u = 1 - x, 

u' = 1 - y, in order to arrive at the following form of the e<luations: 

1 

A ~ dy yc
2

-2(1 
2 2 

W
l 
(~,x) = y)c (x + y - xy)-c W2(~'Y) , 

(4. 7a) 
0 

A3 + A~ dy yC
2

(1 
2 2 

W2 (~, x) )c -l( )-c W
l 
(~, y) = y x + y - xy 

(4.7b ) 0 

.. 
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We make the ansatz that the solution can be written as an 

infinite superposition of different powers of x as follows: 

00 

LL 
p n=O 

= 
( ) a +n 

d 1,2 x p 
p,n ' 

(4.8 ) 

where the d's are x-independent. The a
p 

are in general expected 

to depend on 'A., as well as the drs. In fact, we argue that all 

a have to be 'A. dependent, and fixed integer values for a are not 
p p 

permissible: Any fixed power, upon iteration, is not stable; it 

eventually generates powers of log(x), which, when summed,convert 

the fixed power to a moving ('A. dependent) power. Moving powers, on 

the other hand, are stable under the iteration procedure, since, unlike 

the fixed power case, there is no mechanism for the generation of 

polynomials in log(x). The situation is simil8.r to the absence of 

fixed singularities in the complex angul8.r momentum pl8.ne in the 

solution to Schroedinger or Bethe-Salpeter type equations • 

. Notice that, for convenience, the values of a differing by 

integer units are lumped together in one "family" in Eq. (4.8), again 

in analogy to the "daughters" of Regge theory. 

We are going to break up our approach to solving these equations 

in~o two steps. (1) Consistency conditions: The homogeneous form of 

the equations rel8.te the coefficients of all daughters in a moving 

family, leaving one normalization parameter (family undetermined). 

(2) Cancell8.tion (or normalization) conditions which fix the remaining 

parameter of each family--by requiring cancell8.tion of all fixed poles 

(say in the inhomogeneous term). 
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Consistency Conditions 

If a member of the family belonging to a given power a is 
p 

substituted into the right-hand side of Eq. (4.7), a member of the same 

family is again obtained as the output. It then becomes possible to 

obtain a consistency equation involving oDly one family at a time. 

Defining 

(J) 

L ( ) a +n 
d 1,2 x p 
p,n ' 

n=O 

and also making the following change of variable for convenience, 

x = ru 
l+ru' 

rut 
y = 1 + rot ' 

we obtain' the following consistency equations for w , 
p 

(4.10) 

2 (p) 
+ rut)-c W

2 
(rut), 

(4.l1a) 

(4.l1b) 

Notice that we use here only the homogeneous form of the 

equations. This is adequate . for matching moving powers. One can now 

substitute Eq. (4.6) in Eqs. (4.11) and match powers of ru on both 

sides. The resulting equations enable one to determine both a and 
p 

all d's in terms of one arbitrary normalization parameter. We exhibit 

below the equations for two leading powers of ru, 

... 



.. 

d (2) 
:::: ° , p,~ 

d (1) 
:::: f...d(2)B(c2 + a , p,O p,l P 

d (2) 
:::: f... d(l) B(c2 +a p,l p,O P 
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-a ) , 
P 

+ 1, -a - 1) , 
P 

+ (a + 2)d (1) 
pCp, ° ' 

-2 - a ) p 

-a ) p 

-1 - a ) + (a + c2 + l)d (2) 
p p p, l' 

(4.12) 

where B is the Euler beta-function. 

Multiplying the third and the second equations, we obtain the 

following eigenvalue condition for ap ' 

2 2 
f... B(c + a , p 

2 -a ) B(c + a + 1, -1 - a) :::: 1, 
p P P 

(4.13 ) 

This is a transcendental equation for a, which is in general 
p 

difficult to solve. However, a power series solution in f... is easy to 

obtain. As f... ~ 0, one or both of the beta-functions must develop a 

pole -(s) to satisfy Eq. (4.13). This means that ap must approach 

either an integer greater than or equal to minus one, or it must tend 

to the points 
2 

-c + n. It is then convenient to classify a 
p 

according to the value it reaches at f... = ° as follows: 



... 

.. 

a ~ -1 + p, 
p 

2 
a

p 
~ -c + p + 1, 
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for p ~ 0 , 

(4.14) 

for p < -1 , 

as r.. ~ O. The function a can be evaluated to lowest order in r.. p 

by replacing B's by the relevant poles and then solving E~. (4.13) • 

The results are given below, 

a = p 

a p = 

r..2 
-1 - 2 + ••• , 

c - 1 
a_l = 

2 
-c + 2 + ••• , 

c - 1 

-1 + P + ir.. 
- r(c2 ) [ 

2 2 ]1/2 r(c - 1 + p) r(c + p) + .•• , (p > 0) , 

2 
-c + P + 1 + ir.. [ 2 2 J 1/2 r(c - 1 - p) r(c - p - 2) + ••• , 

r(c2 ) 

(p < -1) • 

(4.15 ) 

Notice that there are two trajectories of a and hence two 
p 

families starting at each point except for the points p = 0 and 

p = -1. One can now substitute a back into the e~uations (4.12), p 

and determine all the d 's in a given family in terms of one p 

arbitrarily chosen d . For example, for the p = -1 family, eve­
p 

rything can be determined in terms of d(l) and some of these 
-1,0 ' 

relations in lowest order r.. are given below: 

d(2) ~ r.. d(l) 
-1,1 2 -1,0 ' c - 1 

d (2) '" r.. d (1) 
-1,2 2 2 -1,0 

, 
(c - 1)(2 - c ) 

d(l) ~ r..2 
d(l) etc. 

-1,1 - 2 2 -1,0 ' (c - 1)(2 - c ) 
(4.16) 
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From these expressions, it is clear that in the family p = -1, 

all d's are at least one power of t.. down complred to d ~i; 0 ' the 

leading term in W1 • Since this point will be of importance in what 

follows, it is worthwhile to understand how it comes about. A glance 

at Eqs. (4.12) shows that there is always an extra factor of t.. on 

the right-hand side. However, this t.. can easily be canceled by a 

singularity of the beta-function. This is what happens in the second 

equation; the beta-function is near a pole as a -1 ~ 

a singularity of the form 1/t..2 • It then follows that 

2 --c and develops 

d (1) "" 1. d (2) 
p,O t.. p, l' 

contrary to the initial impression. In all the other equations, hcwever, 

the first argument of the beta-function is suffiCiently shifted, and 

there is no singularity as a_1 ~ _c2 • Hence, the extra power of t.. 

for all the d's except for d~i;o. 
cancellation Conditions 

The problem of solving the Eqs. (4.7) then reduces to deter-

mining a set of an infinite number of normalization plrameters, one for 

each family. These plrameters are to be determined by what we call the 

cancellation conditions: We have already postulated that there are no 

fixed integer powers in the eXplnsion of the W's; however, the right-

hand side of Eq. (4.7) can readily develop such powers. We have to 

require the coefficients of these fixed powers to vanish. This is 

achieved by eXplnding the integrals on the right-hand side of Eq. (4.7) 

directly into power series in x and setting the coefficients equal 

to zero. The result is the following set of cancellation conditions: 

= o , (4.17a) 

.. 

.. 
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[ 

2 
-n c -l+n -

+ dy Y (1 - y) WI (y) 

o 

= o , (4.17b ) 

where n ranges over all positive integers, from 0 to co. 

Needless to say, we are not going to attempt solving Eqs. (4.17) 

exactly. Instead, we will resort to an expansion in powers of ~, 

which simplifies matters considerably. It is of interest to reexamine 

the perturbation solution, obtained by the straightforward iteration 

of the inhomogeneous term, in the light of the present approach. The 

perturbation solution uses only the families p ~ 0 in the expansion 

of Eq. (4.9). This becomes clear when one observes that, in the 
2 -c +p+l iteration of the inhomogeneous term, no power of the form x , 

where p is an integer, can ever appear. Therefore, the families 

belonging to p ~ -1, as defined by (4.14), are absent. The expansion 

of (4.9) can then be substituted in Eqs. (4.17), yielding a set of 

condition which determine d's. We have checked that these equations 

yield the normal iteration solution, and we shall not pursue this topic 

any further. 

Our main interest lies in nonperturbation solutions. These 

solutions clearly have to make use of families with p ~ -1 in order 

to be different from the perturbation solution. ,The simplest 

possibility is to replace the family at p = 0 by the family at 

p = -1, which leads to the following ansatz, 

co 

= r + 

n=O p=l n=O 

ex +n 
x p 

(4.18 ) 
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In Appendix B, we shall generalize this ansatz by allowing several 

positive p families to be replaced by the negative p families. In 

what follows immediately, we shall show that the ansatz of Eq. (4.18) 

indeed produces a unique solution to the fundamental set of equations 

(4.7). The significance of this ansatz is further discussed at the 

end of the section. 

Substituting Eq. (4.18) into (4.17), we obtain the following 

set of conditions on the unknown coefficients: 

,\2 ~ 
f\. U 0 + m, 

d(2) B(a + n - 1 - m, 
p,n p 

del) B(a + n - m + 1, 
p,n p 

p n=O 

o , (4.193. ) 

o , 

(4.19b) 

where 0 ~ m ~ co, and the summation over p starts at p = -1, 

skips the value p = 0, and then runs over all positive integers 

starting with one. 

We now assert that the d(l),s are down by a factor of r.. 

compared to 

d (1)· 
p,n 

d (1) ; 
-1,0 

for 

for 

n ; 1 , (4.2Oa ) 

> p = 1 . (4.2Ob ) 

Via our previous discussion including Eq. (4.16), we have already 

proven (4.20a). To prove (4.2Ob), consider Eqs. (4.19b). Since for 

p ~ 1, a
p 

is close to an integer, certain terms in the sum in 

.. 
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Eq. (4.19b) are ne~ the poles of the, beta. function. This leads to 

singularities of the form l/~ as follows: 

B(a + n - m + 1, p . 
2 c + m) . 1 

'" -}.. (4.21 ) 

for, p ~ 1, and p + n - m = 0. This result immediately fol.lows·from 

Eq. (4.15). However, for p = -1, 

are no l/~ type singularities. 

one is not near a pole, and there 

Therefore, the coefficient of d(l) 
-1, ° 

has an extra factor of ~ cOlIlp3.red to the other d's. If, now, one 

imagines solving the Eq., (4.19b), d:i;o will clearly be the leading 

term by one power of ~. This enables us to write the following 

result, valid to the leading order, 

2 2/ 2 (1) -c + ~ (c -1) 
d_l,O x (4.22 ) 

Substituting this in Ekl. (4.19b) with m = 0, we obtain the following 

final formula, again valid to the leading order in ~, 

B(l - 2 c , 

B(l - 2 c , 

, 

2 2/ 2 -c + ~ (c -1) 
(4.23 ) 

This equation is the starting point of a power series exp=lnsion 

in ~ for the new solution. It can be substituted in Eqs. (4.19) and 

(4.11) to obtain the terms higher order in ~. For example, Eq. (4.16) 

yields the result below, 

d (2) ~ 
-1,1 2 

- c , 
2 . 

c ) 
(4.24 ) 

This approach has the merit of keeping the powers of x intact. An 
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alternative approach is to set ~ = 0 in Eq. (4.22), and use that as 

a starting point for a straightforward iteration of the original Eqs. 

(4.7). In this case, one encounters powers of log(x) arising from 

the expansion of powers of x in ~. In either approach, it is clear 

that w2 ' as well as corrections to W1 given by Eq. (4.22), are at 

least of the order of ~3 . 

Now let us examine the solution we have obtained from the point 

of view of spontaneous symmetry breaking. We set x = 1 (u = 0) in 

Eq. (4.23), as we are instructed to do by Eq. (4.5), remind ourselves 

2 
that ~ = J/c, and solve for W from Eq. (4.4). The result, to the 

lowest order in J, is the following: 

W(J) ~ 21 ~2 (2 1 2 2 
c c B(l - c, c) 

(4.25 ) 

The fact that the quadratic term in J is different from the 
2 

(
_1 J_) standard perturbation value 2 2 shows that some kind of 

c 
spontaneous breakdown must have taken place. However, the abserice 

of a linear term in J in Eq. (4.25) tells us that the probing field 

has not acquired any vacuum expectation value; this follows from the 

well-known relation 

( 4.26) 

The question is, what has happened? As discussed in Section II, ~ 

our answer is that the effective potential at hand is many-valued, and 

the spontaneous breakdown occurred by going to a different branch of 

the potential. We refer the reader to Eqs. (2.6) and (2.7) and to the 

discussion that follows these equations. It was shown there, that, in 
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a simple Lagrangian example, spontaneous breakdown takes place in 

exactly the same way as we are suggesting in the present case. 

Although the probing field acquires no vacuum expectation value, the 

hidden fields corresponding to internal scalar particles do acquire 

nonzero expectation values, and this reflects itself in the many-

valuedness of the effective potential. Notice also that the probing 

field (the M field) must possess some kind of G parity for this to 

~ppen, and in the present case, this requirement is satisfied. We 

see no plausible alternative to the above explanation. 

Are there any solutions to our integral equations where the 

probing field acquires an expectation value? As we shall show in 

Appendix B, such solutions emerge when we allow a more complicated 

reshuffling of the trajectories a • However, as far as we can tell, 
. p 

the .solution given above is a perfectly satisfactory and nontrivial 

example of spontaneous symmetry breaking. Our form of the propagator 

for this solution (next section) will fully support this conclusion. 

At this point, we have to remind the reader that all we have 

accomplished so far is find new solutions to Eqs. (4.6) and (4.7). It 

is gratifying to note that in the critical interval 2 o < c < 1 , the 

perturbation solution, where WI behaves like -1 x ,is too singular 

to satisfy Eq. (4.7b), whereas the new solution, where WI behaves 
2 

like x-c , is less singular and satisfies Eq. (4.7b). 

Sheet-Structure in J 

What remains to be shown is that starting with the perturbation 

solution and going around some branch point in the J or ~ plane, 

one ends up with the new solution. This is not a trivial point since 

one could end up with a linear combination of various solutions to the 
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integral equations! Since we are able to solve the integral equations 

only near A. = 0 as a power series in A., the Rian:1.nn sheet structure 

of the solution is lost, and it may seem that we are forced to go 

beyond the power series expansion. Luckily, things are not that 

complicated; all we need to know is the Riemann sheet structure of 

ap in Eq. (4.8) as a function of A.. Since the a are defined to 
p 

be the solutions of Eq. (4.13), the analyticity properties of this 

equation in A. is all that needs be studied. E4uation (4.13) is 

however a complicated transcendental equation, and we have not studied 

its solutions in full generality. What we have done, instead, is to 

study the hypothesis of interchange of trajectories embodied in the 

ansatz of Eq. (4.18), in a somewhat simplified version of Eq. (4.13). 

Since we are dealing only with trajectories at p= 0 and p =-1 

in this ansatz, it seems like a sensible approximation to replace the 

beta-functions in Eq. (4.13) by the poles that generate the above 

trajectories. The effect of the other poles is represented by a 

constant background term. This amounts to the following approximations: 

1 
2 

-0:) ~ 
p 

c + 0: 

B(c
2 

+ 0: + 1, 
P 

-1 - a) ~ p 

P 

+ 

1 
l+a p 

( 4.27) 

+ 

where cI and. c2 are two constants representing the background, 

whose precise values are not of interest to us. With these approx-

imations, Eq. (4.13) becomes the following quadratic equation 

C%p2( 1 - ],.2c1c2 ) + C%p[c2 + 1 - ],.2(C
1

C
2 

- c
1 

+ c
2 

+ C
1

c
2

c
2

)] 

+ c2 _ A.
2 (c2c

l 
+ 1)(c2 - 1) = o. (4.28 ) 

" 
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The solutions to this equation look messy; however, one can 

easily verify the following simple statements. Let a( ±) be the 

solutions corresponding to the positive and negative branches of the 

square root respectively. It then follows that, 

for 
2 > 1 , c 

c:/+ ) --+ -1, 
(-) 2 

A. --+ 0 • a --+ -c , as , 

for o < c 
2 < 1, 

(+) 2 a -+ -c , (-) 
a -+ -1, as A. --+ O. 

(4.29) 

In this approximation, our ansatz about the interchange of the 

trajectories with p = 0 and p = -1 (when we continue from one branch 

of the solution to another branch] is then completely justified. 

v. THE ffiOPAGATOR 

In this section, we shall examine the propagator of the non-

perturbation (sic) solution derived in the last section. Our main 

result is that the new propagator has its intercept raised by one unit, 

so that the M and the photon move to the point 2 2 
m =l+c, and the 

tachyon is lifted to 2 2 
m = c . To compute the new propagator, we 

imagine an arbitrary number of M's emitted at zero momentum from an 

internal line of the dual model, as shown in Fig. 3. The contribution 

of all such M'S is summed, and then the external field J to which 

they couple is set equal to zero. One possible final answer is the 

original propagator one started from. However, if the pt'opagator is a 

many valued function of J, in analogy to W, then a nontrivial final 

answer is possible. This approach is similar to Lee's treatment of the 

sigma model. 13 
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Thedemonstr.atian that emission of M-spurions (only) is 

adequate to obtain the propagator follows the same lines of reasoning 

as in Section II. The reader is invited to follow Lee's reasoning 

through, e.g. in the simple-model of S~ction II ... -now emitting only J¢ 

spurions. The point is that one obtains exactly the expected eq,ua tions 

for both propagators and for (a) and (¢), now as a function of 

J ¢ (and J a ::: 0). As one intends solving these' (nonlinear) relations 

at both J¢ = J a = 0, 
, 14 

we miss no solutions, at all. 

The basic idea in computing the propagator is to derive 

integral equations similar to Eq,s. (4.6). There is, however, an 

additional complication in the case of the propagator. The external 

lines can be emitted both in the "up" and the "down" direction 

symmetrically. This makes it difficult to set up a multiperipheral 

integral similar to Eq,. (3.4). Using arguments based on duality, 

however, we can move, say, the lines emitted downward to the right-hand 

side, so that there is no inte~ing between the up and the down lines, 

as shown in Fig. 4. We 'are then able to sum the up and down multi-

peripheral chains separately, and then combine them at the end as in 

Fig. 4. 

Let us now establish some notation. For the sake of being 

definite, let D denote the subpropagator where all the spurions are 

emitted in the up direction. The subpropagator where the spurions are 

emitted downward is simply related to the above and need not be 

calculated separately. By definition, the sum for D starts with the 

emission of at least one line, and after the summation is performed, 

the external field J is set eq,ual to zero. 

.. 
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It is convenient to label D as follows. First of all, D 

can depend on the channels it connects. Let the letters A, M,and 

H stand for the Abelian, M and heavy channels respectively. This 

then leads to the labeling D AA' DAM' ~ etc. Furthermore, the 

subpropagator is a function of the variables u and v, associated 

with the initial and final lines, and of the variable s, the square 

of the momentum it carries. In addition, there is some operator 

dependence that can be read off from Eq. (3.1). We imagine having 

performed the nearest-neighbor contractions between the 1{
I S, so they 

will not appear in the final integral representation. In contrast, 

the a's are capable of long-range contractions that cannot be 

carried out solely in the propagator, and so they have to remain in 

the definition of D. These arguments show that the subpropagator must 

be of the following form: 

D(u, 
.... 

- s) , (5.1) D - v, R 

where 
CX) 

.... 

L (a 1-1)+ a • R = 
P PI-1 

p:::l 

Notice that D depends on the orbital operators only through 
.... 

the combination R - s, which means that the trajectories always stay 

linear, even after the spontaneous breakdown. 2 

There is one further complication involved in the definition of 

DMM --that there are two differentpa~rns of contraction for the 

emitted spurion lines. (The term "contraction" is used in the sense 

of the section following Eq. (3.3).) One pattern of contraction leads 

to the sequence of channels M, H, M, H, etc. as we follow the 

propagator line, and the other results in the sequence M, A, M, A, etc., 
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- '" as shown in Fig. 5. We denote the second kind of D by ~, to 

distinguish it from the first possibility, which has no wiggly line. 

We are now ready to proceed with our derivation in a manner 

similar to that of Section IV. In fact, the steps leading to Eq. (4.6) 

can be taken over with only minor modifications. In parallel to Eq. 

(4.5), it is convenient to define the following series: '" 

CD 

FMM(~' u, 
"-

- s) L ~2n F(2n) v, R -
MM ' 

n=l (5.2 ) 

(X) 

FMH(~' u, 
"-

s) L ~2n+l F(2n+l) v, R - - MIl 
, 

n=O 

with similar definitions for the other combinations of channels. Here 

~ = J/c2 as before, and the connection between D and F is 

D(u, v, R - s) = F(~ = 0, 
"-

u, v, R - s) • 

The functions F(2n) and F(2n+l) can be written in form of 

integrals very similar to Eq. (4.1), i.e., 

(2n)( "- ) FMM u, v, R - s = 11 (1 II 
I ... d~ 

o Jo 0 

••• du.... 
cn-l 

2 c2 2 
x (1 _ ~)c-2 (1 _~) (1 _ ~)c -2 

2 "-
c +R-s )( u
l ~ 

2 '" c -l+R-s 
2 "-

c +R-s 
~n-l ' 

2 
( )c -2 
1 - u.... cn-l 

(E~. 5.4 continued) 
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F~n+l)(U, v, Ii - s) = [ [ ••• [ d"l .•• d"2n 

000 

2 '" c -l+R-s 2 -c -l+R-s 
~ ~n 

A similar set of equations hold for the 

-(2n) '" [(1 
FMM (u, v, R - s) = ••• J" d~ .•. d~n_l 

o 0 

2 '" c -l+R-s 2 '" c -2+R-s 
~ ~n-l ' 

1 1 

-(2n+l) - 1 ( du... ••• du 
1. 2n FMA (u, v, R - s) = ••• J 

o 0 

2 -c -2+R-s 
X~ 

2 -c -l+R-s 
~ 

2 
(1 - ~n v)-c 

2 '" c -l+R-s 
~n 
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The reader can easily supply the expressions for the other Fls, 

by factorizing, for example, Eqs. (3.6) and (3.7). 

Notice that, when the external legs of the propagator are on 

the mass shell, the difference between Eqs. (5.4) and (5.5) disappear. 

The two expressions are then related by a cyclic transformation, just 

like (3.4) and (3.5). When the legs are off the mass shell, however, 

we have to distinguish between them. 

Equations (5.5) and (5.4) lead to recursion relations of the 

type given by Eq. (4.2), from which we finally obtain the fundamental 

set of integral equations, analogous to (4.2). In terms of the 

convenient set of variables z = 1 - u, x = 1 - v, Y = 1 - VI, 

'" s - R= 'S , these equations are given below: 

FAA (A., x, z, s) 

2 - 2 
( )c -s ( )-c ( -) 1 - y x+y- xy FMH A.,y,z,s, 

~ A(' + x _ x.)-C
2 

+ All dy /2 
o 

2 -
( )c -l-s 
1 - Y . 

2 
x (x +y - xy)-c FMM(A., x, z, s) . 

),. [ dy /2 -2 (1 

o 
2 

= A.(x + z - xz)-c 

2 - 2 
)c -s-l( )-c ( -) - y x + y- xy F AM A., y, z, s , 

(1 2 

+ A.Jo dy yC (1 

2 

2 -
)c -s-2 

- Y 

)( (x + y - xy r c 
FAA (A., y, z, 'S) . 
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Once the above integral e~uations are solved, the other F's 

can be determined directly through the recursion relations. For 

"" example, FMM and FHH can be computed as follows: 

[ 

2 2-
::: A. dzt(z')c (l_z')c -2-s(z +z'-

o 

2 
)-c zz I 

" FAM(A., X, Zl, S') , 

2 -
I)C -l-s ( I 

Z Z + Z 

2 
)-c 

- ZZI 

)( FMH(A., x, z I, S') 

In addition, the following symmetry relations are useful: 

IMA (A., x, z, S') ::: F AM (A., z, x, S') , 

It is also a useful check on the results to notice that the 

diagonal F's of the form FAA' FMM, etc. have to be symmetric in 

the variables x and z • 

The method of solving Eqs. (5.6) completely parallels the 

approach we used in solving Eqs. (4.7). We again make the ansatz (4.8), 

where the d's can now be functions of z and s The analogue of 

Eqs. (4.11) in the case of FMM and FMH are the following: 



= ~ (1 +m}C
2

[ dt t
C2

-2(1 +mtfC
2

-S(1 + t +mt)-C2F~hm}, 
o 

(5.9 ) 
00 

2 "'" 2 2 -
= Nn(l + m}C 1 dt t C (1 + mt}-l-c -s(l 

o 

It is now easy to verify that the e~uations for the coefficients 

of the leading powers are again the first threee~uations in (4.12), 

with no modification. In particular, Eq. (4.13) is unchanged, so we 

have the same trajectories as before. The e~uations for nonleading 

d's are in general modified by terms proportional to s. In this 

section, however, we shall not need the nonleading terms. 

The cancellation conditions of Eqs. (4.17) still remain valid, 

with some minor modifications. For example, FMM and FMH satisfy 

the following: . 

1'1 dy y-2-n(1 _ y}c
2

+n_s FMH(y, z, s} 

o 

:::; 0, 

1'

1 
dy y-n 

·0 

)c2 _1+n_s ( -) (1 - y FMM y, z, s 

+ 
2 2 

__ r....l(.,;;;;l~-.-:c~)_ Z -c -n (1 _ z)n = 0, 
2 r(l - c - n) 

where n again ranges from 0 to 00. 
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To obtain a solution different from the perturbation solution, 

we again adopt the ansatz of Eq. (4.18), and in analogy to Eq. (4.19), 

we arrive at 

00 

L L 
P n==l 

00 

2_ ... L 
p n==O 

the following set of equations: 

d (MH) B(a 
p,n p 

d(MM) B(a 
p,n p 

+ n - 1 - m, 
2 

+ m + 1 - 'S) o , c == 

+ n - m + 1, 
2 

+ m - 'S) c 

+ 
2 2 

_r_( .... l_-~c;::-')'---_ z -c -n (1 _ z) n 
2 r(l - c - n) 

(5.11a) 

= 0, 

(5 • lIb ) 

where, again, 0 ~m ~ 00. The arguments about the order of various 

terms in ~ [which follow Eq. (4.16)] remain valid in the present 

case also. It then follows that the only d which is zeroth order in 

~ is d(MM). all other d's are proportional to at least one power 
-1,0 ' 

of ~. Solving Eq. (5.11b) with m == 0 for 

following, 

x, z, 'S) = 

FMH(~ == 0, x, z, 'S) := 0 

B(l 

2 
(xz)-c 

2 2 
- c , c 

d (MM) J we obtain the 
-1, ° 

- 'S) 

Equations (5.6b) can be treated along the same lines with only 

trivial modifications. The results are given below: 

FAA(~ = 0, x, z, 'S) = 

2 
(xz )-c 

---=~2.J--2""'----- , 
B(l - c ,c - s - 1) 

F AM(~ = 0, x, z, s) = O. 
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Further, the use of Eqs. (5.7) and (5. 8) shows that all the 

other Fls are zero: 

FMH(A. = 0, x, z, s) = o , 

FHH(A. = 0, x, z, s) = o , 

FMM(A. = 0, x, z, s) = o , etc. 
(5.14) 

Since F at A. = 0 is the sub-propagator D, we have to 

collect our results in order to construct the full propagator. Consider 

the MM propagator, given in Fig. 5. As argued earlier, if the 

spurions are emitted in the up.direction, we get the se~uence of 

channels M, H, M, H, etc.; whereas if they are emitted in the down 

direction, the sequence is M, A, M, A, etc. The contribution of the 

'" second sequence is zero, however, since DMM is zero. Hence, we obtain 

the full propagator ~ by multiplying DMM by the propagators of the 
2 2 

two external line s and the "cros s channel" factor (1 _ u) c (1 _ v) c , 

which were omitted in the definition of (5.5), and then adding it to 

the bare propagator, which again was omitted from the definition: 

'" 2 2 '" 
= 

R-s-l+c 
u 1 ( )c -l-s+R 

B(u-v)- 22 uv , 
B(l-c, c -s+R) 

Here we have also switched back to the original variables u = 1 - z, 

v = 1 - x. 

The expression analogous to Eq. (5.15) for the Abelian 

propigator is the following: 

= 
'" 2 2 

uR- s -2 +c (1- u)c B(u- v) 
2 '" 

1 ( )c -2-s+R 
2 2 uv • 

B(l- c, c - s+R-l) 

.. 
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Actually, Eq. (5.16) has to be symmetrized with respect to 

"up" and "down" emissions; however, since this does not alter any of 

our results, we shall not enter into this further complication. 

The propagator of Eq. (5.15) is to be sandwiched between 

vertices that depend on u and v, and the result should be integrated 

over these variable. One may first suspect that there are double poles 

coming from the second term on the right because of the double 

integration; however, these cancel against the poles of the beta.-

function at the same positions. 

It is also of interest to determine the location of the lowest 

pole. We imagine having expanded the vertices in powers of u and v, 

and notice that the lowest pole comes from the zeroth order terms. 

This pole located at 2 '" c + R - s = 0 cancels between the two terms in 

Eq. (5.15). We interpret this as the M trajectory having moved up a 

unit. A similar analysis of Eq. (5.16) leads to the same conclusion, 

that the photon-tachyon trajectory c
2 

+ R - s - 1 = 0 is canceled, 

and these particles move up a unit. 

In more detail, trajectories appear"at 2 '" s = c + R + (n + 1) 

'" 2 '" '" and s = R + n + 1 in the M-channels, and s = c + R + n, s = R + n 

in the Abelian channels (n = 0, 1, ••• ). For very small c2, residues 

of particles near the same mass tend to cancel, revealing a bad ghost-

structure in this spectrum. Such diseases cannot be present when the 

ghost scalars are properly subtracted at 
2 12 

c = O. 

One remaining question is, how do we know that the above 

solution for the propagator goes together with the solution for W 

obtained in Section IV? 
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The comparison of the two results rests on the fact that the 

M propagator must reduce to W when the two external legs are on the 

mass shell; i.e., when s = 0 and u= v = O. It is easy to verify 

that both the equations and the solutions of this Section go over to 

those of Section IV in this limit. 

It is instructive to put our method for evaluating the 

propagator in perspective with a more standard operator approach. As 

discussed in Ref. 1, the whole spurion summation can be put in the 

form of the geometrical sum of the zero-four momentum spurion operator 

on the bare propagator, a form which we might schematically indicate 

as (LO - 1 rl --+ (LO - 1 + ? D.) -1 where D. would be quadratic in the 

M spurion. It is quite clear that our integral equation formulation 

here is simply a way of giving meaning to this formal sum--in the limit 

as J --+ O. It may also be possible to develop other procedures (for 

diagonalizing at J = 0) that stay closer to the operators. 

Finally, how do we construct the new dual amplitude? Having 

the propagator, we lack only the vertex. Since the only coupling in 

the dual model is a three point vertex, it is unchanged under 

spontaneous breakdown. (We have put all spurion corrections on the 

propagator.) The stat.es, however, do change--the new ones constructible 

by diagonalizing the propagator. The new vertex is then the old vertex, 

sandwiched between the new states. This construction will not be 

attempted in this paper. 
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VI. CONCLUSIONS 

Starting with a ghost-free dual M-model, we have made certain 

controllable approximations (a large N-limit, etc.),to cast the problem 

of spontaneous breakdown in the form of (singular) integral e~uations. 

Our conclusions are that spontaneous breakdown does occur, and we have 

given explicit constructions for the new connected vacuum functional 

and the propagator. Goldstone phenomena and the Higgs effect are all 

observed explicitly, and the mass spectrum cures itself of vacuum 

instability by shifting uniformly up until there are no more tachyons. 

We conjecture that such features will be true in more physical models: 

For example in a dual M-model with spin (Neveu-Schwarz type), one 

expects the tachyon at m2 
= - 1/2 to dictate the magnitude of the 

shift. It would move to zero mass, carrying the entire spectrum by 

1/2 unit. The resulting spectrum would be indeed exciting. 

In our approach, we worked directly with the physical S matrix 

at zero 4-momentum W(J), eschewing the effective potential itself. 

Nevertheless, we constantly regard the dual model as a complex 

Lagrangian involving an infinite number of scalar species. Many of 

our arguments in calculating and interpreting the behavior of the 

solutions are based on the dictum that "whatever is true in any 

Lagrangian is true." In particular, our contention that "probing with 

zero mass particles is ade~uate" is true in any Lagrangian. Our 

expectation that no new ghosts will be introduced in the spectrum by 

going from one sheet of the theory to another is also based on 

Lagrangians: Spontaneous breakdown of ghost-free Lagrangians lead to 

ghost-free broken theories. 
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As a laboratory in its own right, we find our model highly 

interesting. For contact with physics, it has probably one most 

outstanding problem--that we have not yet gone back to 2 
c o. This 

involves subtracting certain "regulator" scalars (s) lmder the p 

explicitly, and will proceed by emitting these along with M's and 

solving with the constraint the oW/oJ = 0 , which is equivalent to 
s 

eliminating, these fields from the theory. Work is proceeding along 

this line, with the optimism that, after all, the whole problem of 

spontaneous breakdown in dual models now appears conceptually clear and 

essentially tractable. 

.. 
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APPENDIX A 

The Model as Large N-Limit of Ghost-Free Model 

In our paper "Dual M-Models,,3 we sketched a large class of dual 

models containing the correct M_scalars15 for hadronic spontaneous 

breakdown. In that study, we concentrated on models "with spin, " 

indicating the analogous procedures for similar orbital models. Here, 

for simplicity, we have use for the very simplest orbital model of this 

class. 

From that reference, we recall that M's are the spin-zero 

mesons which, before spontaneous breakdown, transform as fundamental 

representations under both the hadronic (gauge) group (Chan-futon 

factors), and the weak (exotic) group. Thus the simplest orbital M-

vertex can be taken as 

V. ia _ 
M 

Here, as in Ref. 3, 

SU(N)" "spinors" 

ai 
V t M 

VO(l) na(l) xit . 

(A.l) 

Vo is the usual orbital vertex, the numerical 

jt 
X generate the usual Chan-futon factors, and 

the complex projective vectors n, nt carry the "weak" SU(N). For 

our purposes here, we are taking the M'S as forming an N x N 

square matrix, that is with weak and strong groups the same size. 

Following Ref. 3, we construct the desired sectors by 

alternating MIS and Mt,s in forming n-point functions. We are 

concerned with spontaneous breakdown via the emission of an arbitrary 

number of M-spurions. Drawing on our Lagrangian experience, the 

appropriate spurions are the trace of M (or Mt), because a vacuum 

expectation value of these will leave the product group SU(N) intact: 
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SU(N)Final = SU(N)strong + SU(N)Weak . (A.2 ) 

Thus we concern ourselves with vertices for the trace 

N N 

L V OO 1 
VO(l) \ fX 1/(1) = . 

M 

N' /',---
a=l a=l 

An amplitude for the scattering of n of these particles appears to 
1. -n 

have a multiplicative factor (N2
) • This is illusory, however, 

because the contractions among the a 1! , 

powers of N. For example, using the identity 

tend to give positive 

xta xf3 = Bat' 

N 

1!a(z) X -ta L~ xf3 1!
f3 t (1) I 0 > 

f3=1 

N 
1 ) = 
N 

z 
(A.3 ) 

I, ... , 
a=l 

This positive power of N depends on having the 1!'S contract in 

sympathy with the XIS; other 1! contractions, failing this, will 

indeed be down in size by one or more factors of N. This is 

illustrated graphically in Figs. 6a and 6b. - In particular Fig. 6a 

shows the leading (order NO) contribution to each S-matrix element. 

Figure 6b shows a particular (neglected) configuration of lower order. 

In these figures, each external M carries both a Chan-Baton index 

(dotted line) and a IIweakll index (the solid line). In the leading 

approximation, the weak indices follow the strong indices in their 

contraction pattern. Each closed loop is a factor of N. 
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The leading (order NO) configuration is evidently a nearest­

neighbor contraction scheme (with respect to n, nt), and is precisely 

the model considered in the text. In this order, only the Abelian 

sector ("ninth") of both weak and strong groups survive to couple to 

the trace of M. This is apparent from Figs. (6a, b). 

There are a number of remarks pertinent to our application of 

the large N limit. In order of increasing interest they are: 

(1) There are also order NO contributions to the S matrix in the 

non-Abelian sector (non-trace-M's externally). In our spurion 

summation on the propagators, however, these do not matter. (2) It 

is not entirely clear that the non-Abelian vector mesons acquire a 

mass in the same order. They do however appear to acquire an N-

independent mass, along with the non-Abelian 

analogous set of propagator graphs of order 

memberj if we 

( !. )n/2 Jn = 
N 

sum the 
n 

Jeff 

(n-spurions, ~ closed loops). This raises the interesting question 

of just how formal is our large N-approach: To what extent precisely 

does the leading approximation to the S matrix actually dominate a 

spontaneous breakdown? (3) Our large N connotes a large number of 

(effective) degrees of space-time, and we cannot think of N 

arbitrarily large. For this orbital model, remembering that each 

is complex, we must imagine the weak and strong groups as SU(N), 

0: 
n 

N ~ll. For the corresponding models with spin, as discussed in Ref. 3, 

we would have to maintain N ~ 3, (SU(3)). As long as N is 

bounded in this way, we can expect that ghost residues (introduced in 

the leading approximation) will be of order liN, and correspondingly 

smaller as the approximation is improved. 
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APPENDIX B 

Solution with (M) =1= 0 

We wish to find a solution to Eqs. (4.7) which results in a 

W with a linear term in ~. This requires an ansatz more complicated 

than that of Eq. (4.18), and in particular, the ansatz must allow terms 

odd. in ~ to appear in the solution. There are a large number of 

possibilities, and we shall only present what we think is a particularly 

simple solution. 

Let us distinguish between the two branches of the double 

trajectories at the points p > 0 and p < -1 by labeling them as 
(±) 

ap ,where the plus label goes with the positive sign on the right-

hand side of Eq. (4.15), and similarly for the minus label. We now 

imagine that in addition to a at p = 0 moving to p = -1, one of 
p 

the trajectories at p = 1 moves over to p = -2. There are four 

that ~ (+) t 
~l goes over 0 possibilities to choose from, and we assume 

a(+). The choice a (-) ~ a(-) turns out to be 
-2 1-2 

physically equivalent, 

and the other two possibilities a
l

(-) ~ a~;) or a (+) ~ a(-) 
1 -2 

are 

incapable of satisfying the fundamental integral equation, as will be 

discussed later. Notice that by splitting a (+) from its accompmying 
p 

(- ) 
a , we are able to generate solutions odd in ~. p 

We have now to examine Eqs. (4.12) and (4.17) in order to 

segregate terms lowest order in ~. A careful analysis, which will 

not be reproduced here, indicates that, to the lowest order, 

WI and W2 are of the following form: 
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2 2/ 2 
1 C2+., ~,~ 2 -c +r.... (c -1) 3 ~'C 

- A ~l x- - ~~c (1 + ~ } + f.... ~2 x + r.... ~3 x~~ , 

2 ., -c +~~c x 3 l+iAC 
i A. c ~ x 

3 

(B.l) 

, 

where ~'s are the unknown constants. Notice that we have already 

solved the homogeneous system of Eqs. (4.12) in writing (B.l). Only 

Eqs. (4.17), or equivalently, (4.19) remain to be satisfied. To the 

lowest order in A, it can be shown that only (4.17a) with m = 0 

and (4.17b) with m = 0 and m = 1 need be considered. These lead 

to the following set of equations: 

i~l 2 2 
- B(-l c + iAC, C 

C 

A + ~l B(-c 
2 + iAC, c2 ) 

~lB(-c 
2 - 1 + iAc, 2 C 

+ 1) + ~3A = o , 

iA ~ B(l 2 c2 ) + - C , c 1 

~2A B(l -
2 c2 ) + C , 

+ 1) + iA ~ B( _c2 
C 1 ' c 

R 'B( 2 c2 + 1) + 1-'2~ -c, 

2 

o , 

+ 1) 

ir.... ~ = O. 
c 3 

(B.2 ) 

Some of the beta-functions in the above equations are of the 

order of A, for example, 
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Upon this observation, all the ~ dependence from Eq. (B.2) 

cancels. 

We therefore see that, although terms proportional to ~2 and 

~3 appear with higher powers of ~ compared to the term proportional 

to ~l in Eq. (B.l), they all appear to the same order in ~ in Eqs. 

(B.2 ). 

Upon.substitution of (B.3) in (B.2), and after some sim-

plification, we have the following results: 

~l = 
ic 1 

2 r(c2 + 1) r(_c2 _ 1) , 

1 
t32 = 

r(c2 ) r(l 
':) , 

- c-) 

t33 
ic = -"2 , 

and hence, the linear term in W is given by, 

W '" iJ 
2 

c 
22· 

r(c + 1) r(l - c ) 

(B.4) 

(B.5 ) 

It then follows that the classical field ¢ acquires a vacuum 

expectation value equal to the right-hand side of (B.5) divided by J. 

The imaginary value for this quantity is unphysical and presumably has 

to do with the existence of ghosts in the regulator procedure 

(c2 1 0). If one started with the ansatz a l (-) ~ a~;l), this 

would lead to a mere change of sign in Eq. (B.5). The choices 

a (-) ~ a(+) or ~ (+) ~ a(-), on the other hand, would lead to an 
1 -2 ~ -2 

inconsistent set of equations for the t3's. 
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The propagator for this solution is obtainable via the methods 

of Section V. It is more complicated than that of the leading 

solution, and will not be presented here. A qualitative remark is in 

order however: Since W is essentially ~2 times the M-M 

propagator at s = 0, and the propagator is O(~ 0), 'how can Iv have 

an order ~ terms? The answer, born out explicitll in the M-M 

propagator, is that there is a Goldstone pole at s = 0, which is like 

1 1 S ~ i~ as we go from propagator to W: the Goldstone theorem that 

< M) ! 0 implies Goldstone pole is, as it should be, quite 

inescapable. The actual pole is expected to decouple in the diag-

onalizatian with the Abelian channels (Higgs phenomenon). 

Finally we mention that this solution is really best defined 

in the range 
2 c < 0 (or complex) • A careful study of convergence of 

integrals used in the computation bears this out. This makes good 

physical sense, in that, by starting thus with tachyonic MIS, we 

force < M) ! O. On the other hand, this makes it even more clear 

that the solution is intimately involved with the regulator ghosts • 
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FIGURE CAPl'IONS 

Fig. 1. The standard multiperipheral configuration. 

Fig. 2. An alternative channel assignment. 

Fig. ,. Spurion emission from an internal line. 

Fig. 4. Separation of up and down spurions. 

Fig. 5. The two different M subpropagators. 

Fig. 00.. The leading terms in the large N expansion. 

Fig. 6b. An omitted contraction of order (Nr(n/2 )+1 • 
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