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In recent years there has been an explosion in the availability and use of mobile, wearable,

and Internet-of-Things (IoT) devices which generate vast volumes of sensory data. Moreover,

deep learning techniques have shown excellent performance on a wide range of tasks such as

visual understanding, natural language processing, and speech recognition. Inspired by the

success of deep neural networks and the abundance of sensory data, researchers got increasing

opportunities to adopt the successful deep learning techniques to various sensing applications.

However, real-life sensing tasks usually involve complex spatiotemporal dependencies, which

can hardly be captured using only a data-driven approach. The dynamic nature of the

sensing environments exacerbates this problem, especially when labeled data are scarce.

Unlike visual and natural language data, raw sensor data are opaque to humans, and cannot

be labeled retrospectively in a crowdsourced manner. Therefore, training and deploying deep

learning models for complex sensing tasks in dynamic scenarios remains a challenge.

In this dissertation, we first focus on the problem of complex event detection over het-

erogeneous sensory data. To address this problem, the designed system requires not only

the perception ability for extracting informative and useful features from raw data, but also

the reasoning ability for mining and analyzing the dependencies between the higher-level

concepts. We propose DeepCEP, a neural-symbolic framework that combines the power of

deep learning models and Complex Event Processing (CEP) engines. DeepCEP encodes
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prior knowledge provided by the users to help make effective inferences over the long-term,

state-based complex events. To enable the training of this neural-symbolic system, we intro-

duce Neuroplex, which learns from scratch efficiently in complex event settings, under the

guidance of high-level prior knowledge. Compared with mainstream deep learning models,

Neuroplex reduces the data annotation requirement by 100 times and speeds up the learning

process by four times.

Furthermore, we propose the generalized framework DeepSQA for flexible inferencing

over heterogeneous sensory data. Given a sensory data context and a task defined on the

runtime as natural language questions about the data, DeepSQA can provide an accurate

natural language answer. In addition to the DeepSQA, we create SQA-Gen, a software

framework for generating SQA datasets using labeled source sensory data, and also generate

OppQA with SQA-Gen for benchmarking different SQA models.

Lastly, we investigate the transferability and adaptability of deep learning models under

dynamic environments. We propose RecycleML, the first unified framework that transfers

knowledge among deep learning models of IoT devices with different input modalities, de-

ployments, or tasks. Using human activity recognition as a case study, over our collected

CMActivity dataset, we observe that RecycleML reduces the amount of required labeled

data by at least 90% and speeds up the training process by up to 50 times.
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CHAPTER 1

Introduction

Smart devices are becoming quite ubiquitous in our lives. Smartphones and tablets are

essential devices used for work and pleasure; wearables like smartwatches and bands are

broadly used to collect user health data; smart speakers and cameras serve as bridges between

users and the ambient environment. Equipped with multimodality sensors and connected

with the network, these edge devices are designed to perform intelligent sensing tasks and

help make human lives much more convenient.

In recent years, with the explosion in the availability and use of mobile, wearable, and

IoT devices, huge volumes of heterogeneous sensory data have been generated. Moreover,

advancements in deep learning have led to neural network models that can process raw sen-

sory data with a fantastic performance on various tasks, such as object detection, human

activity classification, speech recognition, and audio event detection, beyond the capabili-

ties of even human experts. Most of these tasks aim to seek high-level knowledge about

environment status or user behaviors from the multitude of low-level sensor readings. The

neural networks are trained explicitly for a task, and integrate both feature extraction and

classification processes into a single end-to-end pipeline.

1.1 Challenges and motivations

Albeit showing excellent performance on well-defined and simple tasks, the existing deep

learning methods are insufficient to address complex tasks in real scenarios, which usually

involve longer temporal and more extensive spatial dependencies. This requires the deep

learning models to have both the ability to process unstructured raw data, and the ca-

1



pability to reason about high-level relationships. For instance, it is crucial to detect the

unsanitary operations in the hospitals, where a nurse may forget the disinfection process

between processing different patients; and law enforcement needs to detect suspicious activ-

ities like someone leaving an unattended bag in sensitive areas, such as the airport. One

common feature of these complex tasks is that they are state-based events, which span over

large spaces and long periods. The useful information of raw data is usually sparse, which

needs to be extracted and then analyzed by complex reasoning logics. Nowadays, a tremen-

dous amount of time and human effort has been spent on doing these complex tasks. The

current deep-learning-based systems are having a hard difficulty addressing these problems

automatically in an end-to-end manner.

Moreover, training deep learning models for complex event detection is also challenging.

Deep neural networks are known for their data-intensive nature. As the problem complexity

increases, the size of the required training datasets grows significantly. However, it is impos-

sible to capture and collect real complex event datasets of significant scale as these complex

events rarely happen in nature.

Additionally, most of the existing neural networks processing sensory data from IoT

devices are specifically trained for a limited number of predefined tasks. Consequently,

because of the black-box nature of neural network models, the users cannot obtain any

information about the data other than the predefined high-level labels. If new tasks are

introduced, users need to collect and annotate the new datasets and repeatedly perform the

resource-consuming training process. This problem is exacerbated in complex task scenarios,

where the training effort is significantly greater because of the complicated model structure

and immense dataset size. Furthermore, except for data such as images and audio, which

can be presented and naturally perceived by the highly evolved human brain, IoT devices

also collect a broad spectrum of informative sensory data that humans cannot understand

easily. For instance, the sensory data from devices like inertial sensors are nothing more

than a series of numbers forming waveforms. Due to the lack of appropriate vocabulary,

humans usually have difficulty associating these low-level readings to a high-level symbolic

2



concept. Because of these reasons above, it is necessary to find a way to enable flexible

inferencing on the sensory data collected by a network of IoT devices. On the one hand, this

would allow the users to define tasks during the runtime, without training new models; on

the other hand, users could understand and interpret the opaque sensory data by making

various inferences from different dimensions.

On deploying deep learning systems in dynamic and evolving environments, adaptability

is of great importance. Recent research has shown that, when the deployment environment’s

data distribution is different from the training environment, deep learning models suffer

colossal performance degradation. For example, change of point of view for cameras and

change of body position for wearable devices could introduce the domain shift. This perfor-

mance drop caused by domain shift needs to be addressed by domain adaptation, where a

critical challenge is making the model detect the covariate shift automatically and perform

adaptation without human intervention. One extreme case of domain shift is the change of

input modalities. For instance, a visual model is first trained on a video dataset for human

activity classification, and then deployed in an environment where the audio data is the only

input source. This example is a pretty common scenario in our real-life since IoT sensors

can get occluded by obstacles or get disabled for privacy concerns.

The capabilities and adaptabilities of deep learning systems in complex and dynamic

sensing environments raise a big concern against the continuing adoption of deep learning in

the context of ubiquitous IoT devices.

1.2 Contribution and organization

Motivated by the problems above, this dissertation investigates how to efficiently and ef-

fectively deploy deep learning systems for IoT devices, especially in complex and dynamic

scenarios, while maximizing their performance and cutting down the resource consumption.

In this section, we summarize the contributions of the following chapters in this dissertation.

• Chapter 2: In this chapter, we focus on building an inference framework for complex
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event detection in real-time. With this goal, we propose DEEPCEP, a neural-symbolic

framework that integrates the concepts of deep learning models with complex event pro-

cessing engines to make inferences across distributed, multimodal information streams

with complex spatial and temporal dependencies. DEEPCEP utilizes deep learning to

detect primitive events. A user can define a complex event to be detected as a par-

ticular sequence or pattern of primitive events as well as any other logical predicates

that constrain the definition of such an event. The integration of human logic with

deep learning models not only increases robustness and interpretability, but also dra-

matically reduces the amount of training data required. Further, we demonstrate how

the uncertainty of a model can be propagated throughout the complex event detection

pipeline. Finally, we enumerate the future directions of research enabled by DEEP-

CEP. We also detail how an end-to-end training model for complex event processing

with deep learning may be realized.

• Chapter 3: In this chapter, we extend the inference framework DeepCEP to enable

training. We present Neuroplex, a neural-symbolic framework that learns to perform

complex reasoning on raw sensory data with the help of high-level, injected human

knowledge. Neuroplex decomposes the entire complex learning space into explicit per-

ception and reasoning layers, i.e., by maintaining neural networks to perform low-level

perception tasks and neurally reconstructed reasoning models to perform high-level,

explainable reasoning. After training the neurally reconstructed reasoning model using

human knowledge, Neuroplex allows effective end-to-end training of perception models

with an additional semantic loss using only sparse, high-level annotations. Our ex-

periments and evaluation show that Neuroplex is capable of learning to efficiently and

effectively detect complex events–which cannot be handled by state-of-the-art neural

network models. During the training, Neuroplex not only reduces data annotation

requirements by 100 times, but also significantly speeds up the learning process for

complex event detection by four times.

• Chapter 4: To enable flexible inference, we introduce DeepSQA, a generalized Sensory
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Question Answering (SQA) framework that aims to enable natural language questions

about raw sensory data in distributed and heterogeneous IoT networks. Given a sensory

data context and a natural language question about the data, the task is to provide an

accurate natural language answer. In addition to the DeepSQA, we create SQA-Gen,

a software framework for generating SQA datasets using labeled source sensory data,

and also generate OppQA with SQA-Gen for benchmarking different SQA models. We

evaluate DeepSQA across several state-of-the-art QA models and lay the foundation

and challenges for future SQA research. We further provide open-source implemen-

tations of the framework, the dataset generation tool, and access to the generated

dataset, to help facilitate research on the SQA problem.

• Chapter 5: In this chapter, we focus on the deployment of deep learning models in

dynamic environments, where either the input modality or the task is changing. Our

approach, called RecycleML, uses cross-modal transfer to accelerate the learning and

adaptation of deep learning models across different sensing modalities. Using human

activity recognition as a case study, over our collected CMActivity dataset, we observe

that RecycleML reduces the amount of required labeled data by at least 90% and

speeds up the training process by up to 50 times in comparison to training the edge

device from scratch.
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CHAPTER 2

DeepCEP: Deep Complex Event Processing Using

Distributed Multimodal Information

2.1 Introduction

Big data is useless without a proper framework of analysis [78]. At the sensor level, advance-

ments in deep learning architectures have made incredible progress for inferencing in the

context of both unimodal and multimodal data streams [82, 62, 99, 41]. While deep learning

models have already proven to perform remarkably in their respective domains, they typ-

ically only reason about almost instantaneous temporal features, e.g., the occurrence of a

particular object in a given image. The detection of such occurrences–which we refer to as

simple events–may compose more interesting events that may evolve over long periods of

time in different spatial contexts, e.g., a nurse who does not follow a sanitary protocol in

one room may lead to endangerment of a patient’s health in another room. We refer to such

composed events with complex temporal and spatial dependencies as complex events.

The definition of a complex event is amorphous as complex event processing (CEP) is

a mature field of research [33] and has been applied across a variety of domains. Recently,

complex activity recognition has emerged as its own field of research as well. CEP systems

target the problem of processing streams of data to detect complex patterns over long periods

of time or across relatively contemporaneous events across multiple streams, while complex

activity recognition is generally associated with the classification of events composed of

almost instantaneous features, e.g., different forms of human activities, using stateful learning

architectures, e.g., recurrent neural networks. And although the current state-of-the-art
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CEP systems can detect such composed events over long periods of time, they are typically

designed to handle structured data [127]–not the raw data that can be handled by deep

learning models.

In this paper, we propose DeepCEP (Sections 3.3 and 2.4), a framework that leverages

the power of deep learning models to fuse and process raw data from a distributed set of

sensors. The instantaneous inferences made by the deep learning framework are then fed

into a state-based complex event detector. This event detector allows for the definition of

finite state machines that represent a candidate complex event. When a particular pattern

of simple events is detected, DeepCEP will then feed this candidate complex event into

a final logical layer–which we refer to as a selector–to determine if all associated logical

predicates for a type of complex event are satisfied. Because of the probabilistic and un-

certain nature of deep learning inferencing, the transitions of the finite state machines as

well as the associated logical predicates of the complex event’s selector engine are specified

as ProbLog [17] expressions. This allows the framework to support end-to-end propagation

of the uncertainty [95] from the detected simple event to the generated complex event. We

evaluate the DeepCEP framework on an exemplary use case study (Section 4.6) to high-

light the capabilities of DeepCEP and to establish a precedent for future research directions

(Section 4.7).

2.2 Related Work

This section provides the preliminaries necessary to understand the fundamental concepts of

DeepCEP. We first provide an overview prior works and concepts related to the detection of

complex events, then discuss state-of-the-art approaches to complex event processing (CEP).

Finally, we discuss relevant probabilistic logic programming techniques that may facilitate a

logical layer for deep learning methods for CEP.
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2.2.1 Deep Learning for Complex Events

There has been a body of work on deep learning methods that focus on reasoning about

complex events. In particular, several works in video classification have proposed solutions

for detecting complex activities over short periods of time. Wu et.al [117] fuse spatial infor-

mation, motion information and temporal clues to classify videos of activities that have a

general label. Jiang et.al [54] jointly exploit the feature relationships and class relationships

for improving categorization performance. Zhang et.al [129] recognize complex events in

video data by fusing multiple semantic cues, including human actions, objects, and scenes.

Gan et.al [34] focus on complex event detection in videos while also providing the key evi-

dences of the detection result, which makes the black-box deep learning model intrepretable.

They generate a spatial-temporal saliency map and find the key frames in the video which

are most indicative to the event. Images are also considered to contain complex events.

Xiong et.al [121] developed a method for recognizing events involving interactions among

people and objects using static images. Beyond visual classification, some works [28] focus

on detecting acoustic events, while several studies [116, 51] use multimodal information to

perform classification. Similarly, anomalous event detection [122, 92] utilizes motion features

to extract temporal-spatial localization features for complex event detection. Another work

[124] has shown how complex events can be detected from unconstrained videos in offline

mode.

Although the aforementioned works have shown promising results in their respective

domains, they do not have a clear definition for complex events. Generally, they use the

term to describe events that contains interactions between different elements. Furthermore,

these works typically only consider processing information from a single input instead of a

distributed set of heterogeneous sensors. Although multimodal data fusion has been explored,

they fail to fuse the information at a semantic level so as to provide a clear explanation of

the result. Additionally, learning-based models alone cannot learn extremely long temporal

dependencies well even with the help of the LSTM [44] structure. They typically reason

about events on the order of seconds. Finally, in order to have good performance without
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the integration of human logic, learning-based methods necessitate the consumption of large

amounts of data with an expensive annotation process. For the purpose of clarity, we provide

a formal defintion of complex events.

Definition 2.2.1 (Complex event). In this paper, the term complex event is strictly defined

as a particular pattern or sequence of two or more instances of simple events that have

spatial and/or temporal dependencies.

2.2.2 Complex Event Processing

Complex Event Processing (CEP) [33, 31, 90] is a mature technique used for processing and

analyzing streams of data from multiple sources to detect complex event patterns that suggest

complicated situations. CEP systems can be regarded as processes of abstraction: they

receive and match low-level events and generate high level complex events. SASE [37, 115] is

a CEP system that uses an SQL-like language for filtering, correlation, and transformation of

streams of data. Similarly, Cayuga [22] and Siddhi [103] are open-sourced, high performance

complex event processing systems with well-defined query languages for event abstractions

and pattern detection. Lam et.al [64] extend the CPS modeling language ThingML to

support complex event processing. Bizarro et.al [12] propose BiCEP for benchmarking CEP

systems.

However, most of the CEP systems are designed for structured data [127], i.e., tempera-

ture readings, business transactions, and RFID data. One of the primary reasons is that users

cannot define rules or initiate queries on unstructured data which have no particular mean-

ing. Aslam et.al [5] propose a system that handles Internet of Multimedia Things(IoMT)

events as native event types in an event processing engine by extending processing languages

with the introduction of multimedia analysis operators. They optimized their system to

reduce time complexity while maintaining acceptable accuracy. However, this work only

focuses on processing simple event streams and queries without considering complex events

that involve complex temporal and spatial dependencies. We now provide an overview of

our DeepCEP framework that combines deep learning and complex event processing with
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end-to-end propagation of uncertainty.

2.2.3 Using Logic for CEP

ProbLog [18, 30]1 belongs to a family of probabilistic logic programming (PLP) languages [16]

following Sato’s distribution semantics [94]. It extends logic programming by annotating

some ground facts with their probability of being true, which generalizes a single program

into a distribution over programs that share their rules, but differ in their databases. More

specifically, a ProbLog program consists of two parts, a set F of ground probabilistic facts

p::f where p is a probability and f a ground atom, and a set R of rules h :- b1,...,bn

where h is a logical atom and the bi are literals.2 While the semantics is defined for count-

ably infinite sets of probabilistic facts, see [94] for details, we restrict the discussion to the

finite case in the following. ProbLog considers the ground probabilistic facts as independent

random variables, i.e., we obtain the following probability distribution PF over truth value

assignments to sets of ground facts F ′ ⊆ F : PF (F ′) =
∏

fi∈F ′ pi ·
∏

fi∈F\F ′(1− pi)

As each logic program obtained by choosing a truth value for every probabilistic fact has

a unique least Herbrand model, PF can be used to define the success probability P (q) of a

query q, that is, the probability that q is true in a randomly chosen such program, as the

sum over all programs that entail q:

P (q) :=
∑
F ′⊆F

∃θF ′∪R|=qθ

PF (F ′) =
∑
F ′⊆F

∃θF ′∪R|=qθ

∏
fi∈F ′ pi ·

∏
fi∈F\F ′(1− pi).

Inference in ProbLog is concerned with computing marginal probabilities of queries, i.e.,

ground atoms, under this distribution, potentially conditioned on a conjunction of evidence

atoms. While this is a #P-hard problem in general, ProbLog relies on state-of-the-art

knowledge compilation techniques to achieve scalable inference across a wide range of models.

1More information on ProbLog, including an open source implementation and an interactive online tuto-
rial, can be found at https://dtai.cs.kuleuven.be/problog/.

2For the semantics of ProbLog to be well-defined, the set of rules has to have a two-valued well-founded
model for each subset of the probabilistic facts: a sufficient condition for this is for programs to be stratified,
i.e., have no loops through negation. See [16, 30] for further details.
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In [100], Skarlatidis and his team propose using Event Calculus in ProbLog in order to

more accurately detect complex events. In order to do so, they assign certain probabilities to

the input event. These probabilities can then be used in conjunction with rules in ProbLog

that define the start and end of an event. They make use of the fact that, in Event Calculus,

multiple initializations and terminations of the same event can happen by increasing or

decreasing the probability of the event accordingly to the probabilities of the input events.

2.3 System Overview

The DeepCEP framework is composed of two components: deep event abstractors and an

uncertainty-robust CEP engine. Unlike prior CEP engines, we consider the sources that

are generating the primitive events as a component of the framework. Figure 2.1 shows the

system overview of the DeepCEP framework. The deep data abstractors may consist of

one or more edge nodes that are processing raw data from a possibly heterogeneous set of

sensors. Each edge node feeds the raw data into an associated deep learning inferencing

model that generates a primitive event. The inference results are typically “simple” events,

e.g., object categories, human actions, or a person’s identity. A primitive event is defined

as the generated abstraction of a simple event and its attributes. The generated primitive

events are then sent to the uncertainty-robust CEP engine.

Prior to runtime, the uncertainty-robust CEP engine processes the complex event (CE)

definitions–which are composed of primitive event patterns and logical predicates provided

by a user. In this paper, we introduce a CE language that allows for the explicit defini-

tions of both temporal and spatial relationships amongst primitive events. Given these CE

definitions, the uncertainty-robust CEP engine creates finite state machine models (FSM)

to detect candidate complex event patterns at runtime. These candidate complex event

patterns are fed into a selector model that checks the candidate patterns against the pro-

vided spatiotemporal logical predicates. If these properties are satisfied, a complex event is

generated.
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Figure 2.1: System Overview of DeepCEP.

Motivating case study. For the purpose of clarity, we provide a simple yet significant case

study that underscores the utility of DeepCEP. The detection of suspicious activities is a

complex task of great importance in the physical security domain, e.g., detecting unattended

items in a public space, unusual loitering in a sensitive area, house intrusion and theft, or

illegal transactions. Such activities are composed of a series of primitive events. For our

example, we will focus on the case of detecting an unattended item in a public space. For

instance, suppose a subject enters a train station with a luggage bag. After wandering for a

period of time, the subject places the luggage inside the passenger lounge. The person then

leaves the train station without the luggage bag. The unattended bag is now considered as

possibly dangerous and immediate action is required. DeepCEP would need to detect such a

pattern of events while minimizing the false positive rate, i.e., DeepCEP should distinguish

between suspicious activity and normal subjects who may be momentarily separated from
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their bag. The objective of this paper is to design a system that can automatically detect

and reason about different complex events, e.g., a person entering a train station, putting

down the luggage, and exiting without the luggage. In the next section, we will detail the

design of the DeepCEP framework.

2.4 System Design

2.4.1 Deep Data Abstractor

The formulation of the deep data abstractor nodes is application-specific as DeepCEP is

intended to work with a heterogeneous set of sensors. However, the primitive events that are

sent to the uncertainty-robust CEP should conform to the data structure that defines the

event type attributes. The abstract base class for an event type has the following two at-

tributes: sid that corresponds to a sensor’s identification and time stamp that corresponds

to the time stamp of a generated primitive event. The user can provide application-specific

implementations of the base class to include other attributes of an event, e.g., a person id

for person identification.

In order to generate primitive events, the distributed deep data abstractor nodes collect

multimodal data at a constant sampling rate. The data are fed into associated deep learning

models to provide semantic meaning. The deep learning model will have a probabilistic

output that may model the uncertainty of a detected primitive event. Further, the inference

results are generated at the same constant rate and are used to describe the observed situation

with a finite result set using the associated event type data structures. As such, the system

is a synchronous, state-based system.

However, sending detection results directly to the uncertainty-robust CEP engine would

incur a large communication overhead and increase the complexity of detecting complex

events due to redundant information. Instead, we use a primitive event generator to produce

primitive events given a sequence of states. Every time a new state is processed, the event

generator compares it with the previous states to see if there is a “Change of State”. For
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every state change, a primitive event describing the change is generated and sent to the

uncertainty robust CEP engine.

2.4.2 Uncertainty-Robust CEP Engine

The definition of a complex event (CE) is the logical conjunction of an instance of a pattern

of primitive events as well as a series of logical predicates associated with the spatiotemporal

properties of the primitive events. Each primitive event is assigned an event type and contains

a set of event attributes. Primitive events of different event types are composed in various

formats to form complex events. The event attributes describe the event metadata such as

the event time, the event location, as well as any problem-dependent attributes, e.g., the

identity of a detected person. We denote a primitive event as Ai(t), indicating that such an

event is true if and only if the type of event Ai happens at time t. Given this notation, we

can now formalize our CEP language.

CEP grammar. The BNF grammar for DeepCEP’s CEP engine is defined in Fig-

ure 2.2. The <input-title> clause determines the source of a primitive event stream, and the

<complex-event-title> clause names the new complex event. The core of a complex event

definition resides in the <format-pattern> and <constraint> clauses: the former describes

what are the types of primitive events and how are they combined, while the latter gives the

constraints of the attributes. The <constraint> clause is optional as the user may only care

about detecting a particular pattern. We first detail the semantics of each format pattern

option.

Semantics of primitive event pattern detection. Our primitive pattern detection for

CE generation is a derivative of the CEP language for SASE [115]. The formats supported

in our CEP language are:

SEQ(A1, A2, ..., An)(t) ≡ {A1A2...An}

PATTERN(A1, Ak, ..., An)(t) ≡ {A1(.∗)Ak(.∗)...An}

Where the right-hand side of the equations are the associated regular expressions. The
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〈complex-event〉 ::= 〈input-title〉 〈complex-event-title〉 〈format-pattern〉 〈constraint〉? EOF;

〈input-title〉 ::= INPUT : 〈event-stream-source-id〉;
〈complex-event-title〉 ::= CE : 〈complex-event-stream-id〉;
〈format-pattern〉 ::= 〈combo-format〉 : { 〈event-list〉+ };

〈combo-format〉 ::= FORMAT-SEQ | FORMAT-PATTERN | FORMAT-PATTERN-WITHOUT;

〈event-list〉 ::= 〈event〉 (, 〈event〉)*;

〈event〉 ::= 〈event-id〉 : 〈event-type-id〉;
〈constraint〉 ::= CONSTRAINT : { 〈logical-predicate-list〉 };

〈logical-predicate-list〉 ::= logic-expression (, logic-expression)*;

Figure 2.2: Simplified CEP Grammar.

SEQ format represents a sequence of consecutive primitive events that occur in a strict

order, the PATTERN format represents a sequence of nonconsecutive primitive events. We

also support a PATTERN WITHOUT format–which is just a PATTERN that excludes a

particular set of primitive events–as well as an ANY format–which expresses a CE that could

be any type of event within a set. The latter is useful for cases where a CE’s composition

relies solely on the spatiotemporal properties of any detected events in a space.

Because this is a real-time system, DeepCEP utilizes FSMs to represent and maintain

each regular expression. In an ideal scenario, all complex events would be associated with

deterministic models. However, because the event attributes are checked after the generation

of primitive events, the pattern detector may have non-deterministic behavior. This is due

to the fact that patterns with repeated event types may stem from different sensors. As such,

we must ensure that the associated FSM takes care of all possible transitions for a given

state. The non-deterministic finite state machines that define the semantics of SEQ and

PATTERN are given in Figures 2.3 and 2.4, respectively. Let us assume Σ = {A1, . . . , An}

a finite, non-empty, alphabet.

To handle overlapping events and simultaneous states, the CEP engine needs to have

memory storing latest events so as not to be myopic. As such, we adopt the method of

keeping a runtime stack. This stack records and maintains the active states at each time

point for the latest k events, updating the current state when a new event arrives. A running

buffer provides details about each relevant event when the complex event is detected.

15



q0 q1 q2 qn−1 qn

Σ \ {A1}

A1

A1

Σ \ {A2}

A2

Σ \ {An−1}

An−1

A2

Σ \ {An}

An

An−1

A1

Σ \ {A1}

Figure 2.3: Automaton that represents semantics for SEQ detection
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Figure 2.4: Automaton that represents semantics for PATTERN detection

At initialization, the CEP engine first reads a CE definition and creates an FSM model.

It then creates and initializes both the event buffer and the event state stack with a size k.

Currently, the size number k is a fixed number, where the memory only stores the latest k

events with a sliding window for each subsequent event3. When a new event arrives, the

CEP engine first updates the event buffer by pushing in the new event information and

popping out the oldest event. It then updates the event state stack by removing the active

states associated with the popped event and updating all the dependencies. If the final state

is activated, it means a complex pattern is detected and the CEP engine will output the

sequence of events that triggered the final state. This sequence of events will be then fed

into the selector model to be checked against the associated logical predicates.

Semantics of logical predicates. As discussed, logical predicates can be defined to filter

or select candidate complex events. Events attribute constraints are used to describe the

temporal and spatial dependencies of complex events, and it is expressed as a set of logical

3It is possible to have a memory with a variable size for a fixed time length.
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predicates in CEP language. The DeepCEP is intended to support any logic language that

can express spatiotemporal properties and has an associated theorem prover. Currently,

DeepCEP utilizes ProbLog [17] to express the <logic-expression> clause. This choice is

due to the fact that deep learning typically outputs a probabilistic result for a primitive

event. The goal of this framework is to propagate the associated uncertainties of a detected

primitive event to the uncertainty of a composed complex event. The overall constraint is a

Boolean combination (using logical connectives ∨ and ∧) of the associated predicates. The

complex event is valid only when both the combination format and attribute constraints are

satisfied.

At the initialization stage, the Uncertainty-Robust CEP Engine creates the selector model

in ProbLog based on the complex event definition created by the user. The associated parser

identifies which events it has to take into account as well as the constraints that it has to

apply to those events. No code transformation is needed as the user defines the logical

constraints in ProbLog. At run time, when a complex pattern is detected, the list of events

that can form that event is passed to ProbLog to check if all of the constraints are satisfied

and to calculate the probability of the event happening.

Every time a group of events that can potentially create a complex event is detected,

the ProbLog Selector first checks if all the constraints are satisfied. If that is not the case,

then the probability of the complex event happening is 0. Otherwise, the probability of the

complex event happening will be equivalent to the probability of all the events that form

it happening at the same time. In order to calculate this, it is necessary to multiply the

probabilities of all the individual events happening, using the following formula:

P (ComplexEvent) =
n∏
i=1

PEvent i ×
k∏
j=1

1(Constraint j)

Therefore, if some of the events are unlikely to have happened, the probability of the complex

event happening will be proportionally reduced.

However, ProbLog run comes with a caveat of inefficiency as it needs to consider all

the possible ways to calculate the output probability, which requires calculating all possible
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combinations. As such, the run time increases exponentially with the number of events that

ProbLog has to consider. By providing only the relevant events that are filtered by event

generator, computation time is significantly reduced.

2.5 Preliminary Implementation and Evaluation

In this section we present our preliminary implementation and evaluation of DeepCEP4

based on the motivating case study in Section 3.3. We implemented a compiler in Python

for the CEP language using the ANTLR parser generator [1]. Prior to runtime, a com-

plex event definition will be compiled into a pattern detector–which is also implemented

and maintained in Python. The associated state machine transitions are implemented in

ProbLog as the primitive events are typically associated with a probability. The compiler

also generates the associated selector in Python using the ProbLog plugin to enforce the

defined ProbLog constraints. The pattern detector is automatically interfaced with the se-

lector while propagating the associated confidence. The implementation for the deep data

abstractors as well as the interface between the deep data abstractor and CEP engine is

application-specific. We illustrate such an implementation for the unattended bag scenario.

2.5.1 Detecting a Complex Event: Unattended Bag

We simulated the aforementioned motivating case study by setting up three cameras (1080p

at 240 fps each) in a hallway that are monitoring a “sensitive” area in front of a laboratory

door. One camera is monitoring one doorway, another is monitoring the area in front of the

laboratory door, and another is monitoring another door. For simplicity of this simulation,

one door has been designated as the “Entrance” of the building and the other door has been

designated as the “Exit”–with an implication that a person can only enter a hallway through

one door and exit through the other.

4The preliminary implementation of DeepCEP can be found here https://github.com/nesl/DeepCEP -
DAIS
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INPUT: camera-feed

CE: unattended-bag

PATTERN: {e1:person bag, e2:person bag, e3:bag e4:person}

Constraints:{

e1.sid = ’Entrance’,

e2.sid = e3.sid = ’Laboratory’,

e4.sid = ’Exit’,

e1.person id = e2.person id = e4.person id}
Figure 2.5: Complex Event definition for unattended bag scenario

In this scenario, we define an unattended bag event as: 1) a person enters a building

with a bag; 2) the same person is detected in front of the laboratory with a bag; 3) a bag

(without a person) is detected in front of the laboratory; and 4) the same person is detected

exiting the building. Furthermore, a primitive event for this scenario is the concatenation of

all relevant detected objects in a frame. For instance, the detection of a person and a bag

would include both detected objects and have an associated label such as person&bag.

Given these assumptions, we define the complex event for an unattended bag as shown in

Figure 2.5. The PATTERN clause defines the order of the four primitive events that compose

our complex event, and the CONSTRAINT clause specifies the ProbLog expressions that act as

logical constraints for the primitive event attributes.

For this simulation, we implemented the uncertainty-robust CEP engine as a server in

Python that can receive the primitive events from various sources. Each camera monitors

the three different locations and feeds a sampled frame into an inference mechanism to

generate primitive events. In this scenario, we sampled frames at a rate of 2 Hz5. We used

the YOLOv3 [89] object detection model to give us the label of detected objects6. It is

important to note that the generated primitive events can be structured data that support

5We chose a sampling rate of 2 Hz for the frames based on empirical analysis of the execution time of the
inference mechanism on various edge devices

6This model can also provide the location of an object in a frame, but was not used by our complex event
definition.
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the specification of arbitrary event attributes. For instance, although it is not necessary for

our scenario, the inference model and associated event attributes may support the assignment

of unique person identification.

Figure 2.6: DeepCEP evaluated on unattended bag simulation

As discussed, the server maintains an FSM in Python whose transitions are probabilistic

based on the detected objects. As such, the states of the FSM are maintained in Python

while the probabilistic transitions are maintained in ProbLog. For the pattern detector, the

FSM has 5 states, and the event stack stores the latest 10 events 7. Figure 2.6 summarizes

the types of events considered in our scenario as well as sample frames for each case.

The selector model is implemented in ProbLog to filter patterns while propagating the

confidence of a detected complex event. The ProbLog code for the selector in this example

is automatically generated from the CE definition into what we see in Listing 1. The code

first defines the events that compose the complex event (lines 2 to 5). It then checks that

the order of the events is correct (line 6). Finally, it checks that all the conditions defined

by the user are fulfilled (lines 7 to 12).

This implementation allows us to propagate the confidence of a detected event from

the object detection all the way to the fully composed complex event. It does so by using

the confidence scores of the input events to calculate the confidence of the complex event

7We chose an event buffer size of 10 that was sufficient based on empirical analysis.
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1 ce event :−

2 event (T1 , person bag , Sid1 , Person id1 ) ,

3 event (T2 , person bag , Sid2 , Person id2 ) ,

4 event (T3 , bag , Sid3 , Person id3 ) ,

5 event (T4 , person , Sid4 , Person id4 ) ,

6 T1 < T2 , T2 < T3 , T3 < T4 ,

7 Sid1 == 1 , % Where id 1 i s ” Entrance ”

8 Sid2 == Sid3 ,

9 Sid3 == 2 , % Where id 2 i s ” Laboratory ”

10 Sid4 == 3 , % Where id 3 i s ” Exit ”

11 Person id1 == Person id2 ,

12 Person id2 == Person id4 .

13 query ( ce event ) .

Listing 1: Example of ProbLog Selector

happening. Uncertainty can also be measured in the same way using uncertainty-aware deep

learning models.

2.5.2 Discussion and Future Work

The DeepCEP framework is a work in progress, and although the example above works

well in theory, there are several limitations and future research directions.

Timing window of complex events. For the previous CE definition, if a bag is left at

the laboratory, and a person is detected leaving without a bag, it is an ”unattended item”

CE. However, there are scenarios where innocent people may forget to take their bag with

them for a brief period of time and consequently trigger the detection of an unattended bag.

One way to avoid such false alarms is to add a clock function in our CE language. In the

CE definition, we could add the constraint that a bag is unattended if it is left for longer

than 10 minutes after the person leaves.

Uncertainty of a primitive event. In the current system, the confidence scores of prim-

itive events are determined only by the detection result of a single frame, which could be
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unreliable at times due to environmental factors such as occlusion. We plan to update the

confidence of primitive events using the information from consecutive frames to implement

more robust detection. In addition, we would apply uncertainty-aware models[95] to provide

a better uncertainty measure.

Uncertainty of time. In real systems, multiple devices are not perfectly time synchronized.

A tiny time difference could cause tremendous changes in time-sensitive applications. So

the uncertainty of events should not only come from inference results, but also from the

timestamps of events. We will combine these uncertainties together and propagate them to

the CEP engine in order to calculate the final confidence of complex event.

End-to-end training. Another critical direction is the training of the current Deep-

CEP pipeline. Right now, the deep learning models used on devices are pre-trained models

provided by users. However, these generalized models sometimes do not perform well in

personalized environments. As such, it is necessary to update the model parameters during

runtime. Further, in order to reduce the tedious overhead and human effort of providing de-

tailed annotations of simple events, we want to train the models with only high-level complex

event annotations. This would require the models to learn new labels that have never been

seen before. Finally, to maintain the interpretability of our results, the associated logical

constraints should also be learned using DeepCEP.

2.6 Conclusion

In this paper, we proposed our DeepCEP framework, which combines the logical reasoning

ability of CEP and the inference power of Deep learning models to detect complex events

for unstructured, distributed multimodal data. We illustrated how DeepCEP can be in-

strumented for an application scenario of detecting an unattended bag in a sensitive area.

In particular, we highlighted how DeepCEP provides a framework to propagate the uncer-

tainty from a detected simple event to a composed complex event using ProbLog. Finally,

we enumerated future research directions for DeepCEP.
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CHAPTER 3

Neuroplex: Learning to Detect Complex Events in

Sensor Networks through Knowledge Injection

3.1 Introduction

Temporal and spatial relationships are natural elements that occur in human learning tasks

such as language, motion, and vision [65]. During the past decade, deep learning researchers

have achieved great success simulating human cognitive processes using sensors for associ-

ated tasks such as object detection, activity classification, and autonomous driving. While

demonstrating excellent performance on different sensing tasks, deep neural networks rely

on large volumes of training data. Complex spatial-temporal classification tasks suffer from

data scarcity, thus making it challenging to design robust learning frameworks. Further,

state-of-the-art frameworks are currently limited to a few thousand-time steps while sacrific-

ing interpretability[29]. For instance, deep learning models can currently be trained to detect

whether a nurse is sitting or standing in a video stream. However, it would be intractable

to train a model that can detect a nurse who does not follow a sanitary protocol before

moving between patients—a task that spans arbitrarily long periods, an arbitrary combina-

tion of spaces, and time-dependent constraints, and for which a large dataset would not be

available. Intuitively, if a set of deep learning classifiers are utilized to detect the simpler

activities that happen on the order of seconds, e.g., the nurse entering a room or washing

his hands, a human would be able to identify a logical sequence of events that correspond

to a violation.

In this paper, we introduce Neuroplex, a neural-symbolic framework that splits the
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entire learning space into a perception space and a reasoning space. For the perception task, it

trains deep neural networks to get low-level symbolic concepts; while accepting the injection

of symbolic human knowledge for high-level reasoning. The entire model can be trained end-

to-end with only high-level annotations, which also alleviates the burden of data annotation.

In comparison to prior work that combines symbolic and neural reasoning [73, 109, 112], we

focus on injecting symbolic knowledge expressed as finite state machines and logical rules,

which capture the complex temporal and spatial dependencies for these complex tasks. Given

the hierarchical reasoning approach, we formulate the problem as a complex event processing

(CEP) problem as was done in previous works [120]. In this work, we provide end-to-end

training as opposed to just the forward path.

To summarize, Neuroplex makes these important contributions:

• Neuroplex adapts neural-symbolic approaches that combine deep learning percep-

tion with semantic logical models to enable end-to-end learning for detecting complex

events from raw sensor data streams. To enable learning, Neuroplex leverages a dif-

ferentiable Neurally Reconstructed Logic (NRLogic) model, which is a neural network

trained by a logical machine through a knowledge distillation[43].

• Neuroplex is able to train itself using only data with sparse, high-level, complex event

labels. By propagating gradients through the differentiable NRLogic model, perception

modules receive feedback from complex events labels and are trained accordingly. The

training could happen both at the initialization stage, where a perception module is

untrained, as well as during the fine-tuning stage, where a perception module is a

pre-trained off-the-shelf model and needs to be fine-tuned to a specific environment.

Neuroplex also applies a semantic loss on the intermediate symbolic layer, forcing the

perception module to generate a reasonable symbolic output to improve the learning

performance.

• We evaluate the Neuroplex framework on three complex event datasets, and com-

pare its performance with state-of-the-art neural network models and neural-symbolic
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methods. Results show that guided by injected human knowledge, Neuroplex can

effectively and efficiently learn to detect complex events that other approaches cannot

handle. It not only improves the training speed by 4X times, but can also achieve

superb performance while using only 2 orders of magnitude less training data.

This paper is organized as follow: In section 3.2 we formally define what complex event

detection is, and discuss the challenge of learning in complex event detection; Section 3.3

formulates the problem we are solving and gives an overview of Neuroplex system; Section

3.4 details the inference and training pipeline of Neuroplex, and describes how models

are trained in both perception and reasoning module1; In section 4.6, we perform a set of

experiments on three different complex event dataset, and demonstrate the effectiveness and

efficiency of Neuroplex, and discuss the current limitations and future directions in section

4.6.6; Section 3.7 lists a set of related works, and section 4.7 concludes the paper.

3.2 Background and Motivation

Neuroplex aims to detect complex events with intricate spatial and temporal dependencies

across multiple sensors. In this section, we formally define what complex events are and

discuss the motivation of Neuroplex.

3.2.1 Simple and Complex Events

A simple event is an event that happens over a short period of time, which usually can be

succinctly described by a single word label or a short phrase [73], and can be captured by a

single sensor. Modern deep learning models have shown remarkable performance in detecting

simple events. For example, a simple event can be the occurrence of a particular object in

a given image (e.g., a truck or a suitcase), an audio segment in a waveform (e.g., a siren

or a gunshot), or a specific action/activity performed by the subject in the camera feed or

1The data and codes of Neuroplex are available at https://github.com/NESL/Neuroplex
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IMU sensor trace (e.g., walking or opening a door). Simple events are the atoms composing

complex events.

Definition 3.2.1 (Complex event). In this paper, a complex event is strictly defined as

a particular pattern or sequence of ≥ 2 instances of simple events that have spatial and/or

temporal dependencies.

Under this definition, a complex event must be composed of multiple simple events that

may evolve over long periods of time in different spatial contexts with various participants.

One important distinction between a complex event and a complex activity is that, although

both of them can be decomposed to a set of atomic events, the composing events of a complex

event may or may NOT be consecutive in time and space. For example, the ”long-jump”

sporting event is considered a complex activity that consists of five sub-activities: ”standing

still”, ”running”, ”jumping”, ”landing”, and ”standing up”. These activities are consecutive

and can be captured from a single sensor. An example of complex event is a sanitary protocol

violation event in a hospital scenario: a nurse could violate the sanitary protocol if she or

he processes one patient, and then processes another patient without proper sanitation. In

this case, the related events (processing patients and hand-washing) need to be detected and

analyzed over a broad temporal and spatial range.

Figure 3.1: Complex Event: Violation of sanitary protocol.

As illustrated in Figure 3.1, these essential events are separated by intermediate, unre-

lated events such as medication preparation and inventory checking. Although deep learning
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models can excel at identifying each composing event, developing a robust inferencing mech-

anism for the associated complex event is challenging.

Complex Event Detection Systems Although the complex event detection task is chal-

lenging, it is of great importance and spans numerous applications in distributed sensor

networks, e.g., detecting suspicious activities for security surveillance or the aforementioned

protocol violations in hospitals. Recent works have proposed to use neural-symbolic sys-

tems [120, 73, 109] to detect complex events. With a hybrid approach, pre-trained neural

network models are applied to recognize simple events from multimodal sensory data, and

rule-based logic models are used to perform high-level reasoning over a sequence of simple

events extracted by deep learning models. The logic models are defined via a set of logic

rules, specifying the temporal and spatial relationship between simple events. The logic rules

are given by users based on human knowledge.

3.2.2 Learning for Complex Event Detection

Although hybrid neural-symbolic systems have shown to work well on complex event detec-

tion tasks, the existing works only focus on the inference stage, where it is assumed that

pre-trained deep learning models for detecting simple events are available.

However, this assumption is not practical in real scenarios. First, off-the-shelf deep

learning models are trained on standard population-scale datasets and may not perform well

when deployed without fine-tuning in a personalized environment. Second, the definition of

complex events involves a set of simple events, which may not be included in the output

directory of pre-trained deep learning models. For example, when detecting an unsanitary

nursing event, if the pre-trained activity classification model can only have a label set of

[”washing hands”, ”walking”, ”running”] without a ”processing patient” label, then the

complex event detection system would not work unless a new activity classification model

supporting ”processing patient” is trained. Third, the performance of neural-symbolic sys-

tems relies primarily on the performance of deep learning models for simple events. Since

the complex event definition fixes the logic, the final detection result can be totally different
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if the deep learning model outputs change. Also, the system’s performance degrades when

the accuracy of the detection models decreases[73].

Thus, enabling training in complex event detection systems is of great importance. A

training pipeline allows the system to fine-tune itself during runtime when deployed in a new

environment. Further, the system can train newly added, untrained deep learning models

from scratch using only high-level annotations, i.e., it is possible to train an activity classifi-

cation model supporting a ”processing patient” activity only with the high-level ”unsanitary

nursing event” annotations. High-level annotation significantly reduces the simple event

labeling effort for users.

3.3 Problem Formulation and Overview

In this section, we first formalize the complex event detection problem, and then describe

Neuroplex’s design overview.

3.3.1 Complex Event Problem Formulation

Without loss of generality, we consider a sensor streaming data continuously.2 At every time

step i, the sensor generates a triple of raw data information, di = {xi, ti, ci}, where: xi is

raw data of a certain modality captured by the sensor; ti is the timestamp of the raw data

sample; and ci corresponds to any domain-specific metadata or attributes of the data sample.

The attributes can represent any physical features or context related to the piece of data,

e.g. the location of the sensor. Depending on the usage scenario, a machine learning model

fθ maps raw information xi to a set of symbolic classes or values fθ(xi), which we refer to

as a simple event, wi, and where θ is the parameter of model f. A primitive event denoted

as ei = {wi, ti, ci}, is the abstraction of the raw data sample di.

The problem that Neuroplex addresses is learning and reasoning about a data stream

2Although we are discussing learning of Neuroplex in a single sensor scenario, it can be generalized to
cases where there exist multiple sensors with different modalities.
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of length K. We assume that the length is either user-defined or determined by the limitations

of the implemented system. At any given sample point i ≥ K, Neuroplex should be able

to determine if a complex event exists for the previous K samples, i.e., {ei−K+1,...,ei−1, ei}.

Further, we assume that a set of logical rules, φ, can be utilized from prior knowledge, e.g.,

human knowledge, to describe the logical dependencies between primitive events to compose

complex events. The logical rules, φ, are comprised of both a pattern definition, ω, as well as

any additional logical constraints, ψ, for the primitive events, i.e., φ = {ω,ψ}. Formally, we

define a complex event as a sequence or pattern of primitive events ω = eCE1 , eCE2 , ...eCEk that

may have an additional set of logical constraints, ψ. The primitive events eCEi , (i = 1, 2, ..., k)

correspond to the composite primitive events for a complex event, and k is the number of

primitive events in this complex event. Each rule in ψ specifies a logical relationship between

primitive events composing the complex event. For a complex event to be detected, all of

the logical constraints in ψ must be satisfied. Based on this definition, it is possible to have

different complex events happening at the same time when they have the same terminal

primitive event, i.e., eCE1
k1

= eCE2
k2

. It is also possible to have multiple complex events of the

same type happening at the same time if more than one set of satisfying primitive events

are detected within the time window K.

At training time, the goal of Neuroplex is to train a perception model f for each raw

sensor data stream, i.e., to learn the optimal set of parameters θ using only streams of raw

sensory data di = {xi, ti, ci} and a complex event label.

3.3.2 Neuroplex Overview

Neuroplex uses a hybrid neural-symbolic framework to detect complex events. The deep

learning models for detecting simple events compose the perception module, and a high-level,

human-input logical reasoning machine is referred to as the reasoning module, as illustrated in

figure 3.2. Given human knowledge injected into the system in the form of logic rules defining

complex events, Neuroplex enables both a forward inference path and a backward training

path. In order to support training, Neuroplex tackles the challenge of how to make the
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Figure 3.2: Neuroplex system with Perception module and dual form Reasoning module.

reasoning module differentiable while maintaining its function, and how to perform effective

training over perception module with only high-level complex event annotations. The details

of our methodology are described in the next section.

3.4 Neuroplex Design

In this section we detail the design of the Neuroplex framework. We first discuss how

Neuroplex is initialized before describing how the framework is trained.

3.4.1 Neural-Symbolic Initialization of Neuroplex

Before Neuroplex can be trained, we first need to provide a mechanism to initialize the

learning framework. The initialized structure without training would be semantically equiva-

lent to an inference-only, hybrid neural-symbolic framework such as DeepCEP [120]–depicted

in Figure 3.3.

3.4.1.1 Reasoning Module Initialization

The reasoning module is initialized by a logical machine in the form of a complex event

processing (CEP) engine, which takes user-defined complex event patterns and generates

the corresponding machinery for detection. We previously formulated a complex event as a
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pattern or sequence, ω, of primitive events, together with some logical constraints, ψ, that

impose fine-grained limits on temporal and event attributes. Thus, we decompose the set

of logical rules φ = {ω, ψ} to a finite-state-machine (FSM) model ω and additional logical

constraints ψ. The FSM model ω describes the temporal ordering of primitive events of a

complex event, and the logical constraints ψ describe the arithmetic logical relations that are

not covered by ω. For example, for the complex event of a nurse violating a sanitary protocol

(Figure 3.1), the FSM pattern detector, ω, would model the pattern of the nurse’s activities to

detect two instances of a nurse processing a patient that was not separated by a disinfection

process activity. The logical constraints, ψ, would correspond to checking whether the

pattern happened within a particular time frame as well as to ensure the primitive events

correspond to the appropriate sensors (e.g., the two instances of a patient being processed

happened at different locations).

To formalize these definitions, we present a complex event grammar in Backus-Naur Form

(BNF) that enables the injection of human knowledge into Neuroplex.

Figure 3.3: Neuroplex neural-symbolic initialization. The reasoning module is initialized

with human-defined pattern detectors and logical constraints, while the perception module

is initialized with a set of deep learning models that may or may not be pre-trained for each

raw data source.

CEP reasoning module grammar. The Backus-Naur Form grammar for Neuroplex’s
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〈complex-event〉 ::= 〈input-title〉 〈complex-event-title〉 〈format-pattern〉 〈constraint〉? EOF;

〈input-title〉 ::= INPUT : 〈event-stream-source-id〉;
〈complex-event-title〉 ::= CE : 〈complex-event-stream-id〉;
〈format-pattern〉 ::= 〈combo-format〉 : { 〈event-list〉+ };

〈combo-format〉 ::= FORMAT-SEQ | FORMAT-PATTERN | FORMAT-PATTERN-WITHOUT;

〈event-list〉 ::= 〈event〉 (, 〈event〉)*;

〈event〉 ::= 〈event-id〉 : 〈event-type-id〉;
〈constraint〉 ::= CONSTRAINT : { 〈logical-predicate-list〉 };

〈logical-predicate-list〉 ::= logic-expression (, logic-expression)*;

Figure 3.4: Simplified CEP Grammar, whose syntax semantics are significantly adapted

from [120]. In this context, the grammar is used to initialize the training framework as

opposed to define an explicit CEP engine.

CEP engine is defined in Figure 3.4 and builds upon the grammar of a previous work [120].

We utilize the <input-title> and <complex-event-title> clauses to label the source of a prim-

itive event stream and the associated complex event, respectively. The <format-pattern>

clause defines the aforementioned FSM by describing what the candidate primitive event

patterns are. The <constraint> clause defines the logical constraints ψ.

Unlike the prior work [120], our grammar’s semantics carry a significantly different mean-

ing at training time. The goal of the Neuroplex design is to utilize these definitions to

bootstrap the training for the reasoning layer of a CEP engine. Without training enabled,

the framework would be semantically equivalent to the previous hybrid neural-symbolic in-

ferencing frameworks [120, 77]–as shown in Figure 3.3. In this context, the human-defined

logical machine will be utilized as a ground truth at training time. Thus, we define the se-

mantics for how a defined pattern detector processes primitive events as well as how logical

constraints are enforced.

Semantics of primitive event pattern detection. The primitive event pattern specified

by the <format-pattern> clause is a derivative of the CEP language for SASE [115]. The
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formats supported by our CEP grammar are:

SEQ(A1, A2, ..., An)(t) ≡ {A1A2...An}

PATTERN(A1, Ak, ..., An)(t) ≡ {A1(.∗)Ak(.∗)...An}

Where the right-hand side of the equations are the associated regular expressions. The

SEQ format represents a sequence of consecutive primitive events that occur in a strict order,

while the PATTERN format represents a sequence of nonconsecutive primitive events. At

runtime, the defined logical machine will utilize finite state machines (FSMs) to represent

each regular expression and maintain the current state of the pattern detector.

When Neuroplex initializes the logical machine, the CEP engine first reads a CE

definition and creates an FSM model. It then creates and initializes both the event buffer

and the event state stack with a size K. Currently, the size number K is a fixed number, where

the memory only stores the latest K events with a sliding window for each subsequent event.3

When a new event arrives, the CEP engine first updates the event buffer by pushing in the

new event information and popping out the oldest event. It then updates the event state

stack by removing the active states associated with the popped event and updating all the

dependencies. If the final state is activated, it means a complex pattern is detected and the

CEP engine will output the sequence of events that triggered the final state. This sequence

of events will then be fed into the selector model to be checked against the associated logical

constraints.

Semantics of logical constraints. As discussed, logical predicates can be defined to fil-

ter or select candidate complex events as shown in Figure 3.3. Event attribute constraints

are used to describe the spatial dependencies as well as additional temporal constraints of

complex events. They are expressed as a set of logical predicates in the CEP language. Neu-

roplex is intended to support any logic language that can express spatial-temporal prop-

erties and has an associated theorem prover. Currently, Neuroplex utilizes ProbLog [17]

to express the <logic-expression> clause. This choice is due to the fact that deep learning

3It is possible to have a memory with a variable size for a fixed time length.
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typically outputs a probabilistic result for a primitive event. The reasoning framework aims

to propagate the associated probability of a detected primitive event to the probability of

a composed complex event. The overall constraint is a Boolean combination (using logical

connectives ∨ and ∧) of the associated predicates. The complex event is valid only when

both the combination format and attribute constraints are satisfied.

When the logical machine is initialized, the CEP Engine creates the selector model in

ProbLog based on the user’s complex event definition. The associated parser identifies which

events to be taken into account as well as the constraints to be applied to those events. No

code transformation is needed as the user defines the logical constraints in ProbLog. At

run time, when a complex pattern is detected, the list of events that can form the complex

event is passed to ProbLog to check if all of the constraints are satisfied and to calculate the

probability of the event happening.

3.4.1.2 Perception Module Initialization

As previously discussed, the perception module should have a set of deep learning models

that can abstract the raw data for each sensor in the network. The event symbols that are

used by the human to define complex event patterns and constraints should be a subset of

the label set for the associated perception module, i.e., users can only define reasoning rules

based on event labels generated by the deep learning models. We assume that each provided

model is initialized either with random weights or with pre-trained weights, i.e., Neuroplex

can be initialized with off-the-shelf models trained on population-scale data–as depicted in

Figure 3.3. However, the pre-trained weights are not necessary for Neuroplex’s training

process.

3.4.2 Neuroplex Training Framework Design

The training pipeline for Neuroplex decomposes the original end-to-end learning prob-

lem into two sub-problems of perception and reasoning. Neuroplex can learn each part

separately with the aid of injected semantic knowledge to significantly reduce the learning
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space.

When the logic rules of complex events are known, we need to train the perception module

to connect the path between raw data and complex events. However, because logic is not

differentiable, we first propose a deep learning model called NRLogic, which approximates

the function of the original logical machine in the reasoning module. Depending on the

application, this NRLogic model can be trained using knowledge distillation [43] with only

synthetic data labeled by the logical machine. During this process, only the reasoning model

is updated. Once trained, the reasoning module has a dual form of representation: a logical

representation and a neural representation. This enables the training of the perception

module to be performed in a supervised manner. With the annotation of complex events, we

freeze the parameters of the NRLogic model and calculate the gradient of the loss with respect

to the deep learning models in the perception module. Additionally, logical constraints can

be added to the intermediate symbolic layer between perception and reasoning module,

imposing another regularization term for training. In this phase, the reasoning module is

only used to propagate the gradients, and its parameters are kept intact to preserve its

functionality. Figure 3.5 shows the training pipeline of Neuroplex’s perception module.

Figure 3.5: Training on Neuroplex’s perception module.

Training of the NRLogic network. In Neuroplex, the intermediate layer between the
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perception module and the reasoning module is symbolic. For example, if we want to detect a

set of composed complex activities, then the perception module could be an activity classifier,

and the reasoning module is the logical machine expressing the pattern and constraints

between atomic activities. The corresponding primitive event in the intermediate layer is a

classified activity result with the associated timestamp and attributes, et = {fθ(xi), ti, ci}.

The reasoning module here has both structured input space and structured output space, so

we can easily generate data sequence samples, and use logical machine φ to get the ground

truth annotations y.

Because the logical machine φ used in complex event detection contains arithmetic logical

constraints ψ and finite state machine ω, we use a recurrent neural network structure p(E)

to mimic the reasoning module. The input Ei = {ei−K+1, .., ei−1, ei} denotes all the primitive

events happening in the past time window K. The training procedure of the NRLogic model

can be regarded as a knowledge distillation process [43]. The logical machine is the teacher—

which provides ground truth values to the generated primitive events, and the primitive event

sequence and label pairs {Ei, yi} are then used to train the student NRLogic network.

Since the ground truth annotation yi describes instances of multiple complex events, it is

possible to have different complex events occurring multiple times in a given time window.

Therefore, we formulate this problem as a multi-label regression problem. The annotation yi

and prediction p(Ei) would be an m-dimensional vector, where m is the number of complex

events we are detecting. Each entry yji represents the number of complex events j happening

at the current time sample i.

The NRLogic model is trained using a number of synthetic data as a preparation step for

the perception module training. Since the dimension of the input primitive event data is not

large, the RNN model employed here can be relatively simple, and thus, the training process

would not introduce significant overhead. We keep training the NRLogic until it converges.

Training of the perception module. Once the NRLogic model p is well-trained, we

can integrate it as a layer in the training pipeline,i.e., we concatenate it with the perception

module we need to train. The new integrated model still complies with the structure of
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Neuroplex, where the reasoning module follows the perception module, but the reason-

ing module is expressed in its neural network form. In this way, we successfully build a

differentiable path between raw data and complex event labels.

Since the NRLogic network is pre-trained to mimic the logical machine, we freeze its

weights to preserve its functionality. We then calculate the gradient of the complex event

prediction loss with respect to the perception model only, ∂L(yt, p(Et))/∂θ, and use this

gradient to update the model. The loss L for the regression task is the mean squared error:

LMSE =
1

N

N∑
t=1

(p(Et)− yt)2 (3.1)

Because of the frozen NRLogic, the perception model is forced to learn to predict the

corresponding event types. After the training finishes, the perception model ideally performs

as if trained with fully-annotated event-level data.

Semantic Loss on an Intermediate Layer. One of the most significant features of

Neuroplex is that it has a symbolic intermediate layer. Since the primitive event ei in the

intermediate layer contains the event type information wi, which is usually expressed in the

form of a softmax score, we can impose an additional semantic loss on it to further facilitate

training.

We use the idea from [123]: in a multi-class classification task, a well-trained model

should give output with exactly one of the classes being true, and the others being false.

With this idea, a semantic loss function is introduced to force the mass of the softmax vector

to accumulate for a single class, i.e.,

LSemantic = − log
m∑
i=1

pi
∏
j 6=i

(1− pj) (3.2)

where m refers to the number of classes in a softmax vector. The intuition here is to minimize

the negative log probability of generating a state that satisfies the logical constraints with

sampling probabilities equal to the softmax values. When the probabilities of classes are

evenly distributed, the loss value would be a large value close to 1, and if only one of the

classes has a probability of 1 and the rest being 0, the loss value is equal to 0.
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Therefore, training the perception network entails optimizing a combined loss:

L = λ× LSemantic + (1− λ)× LMSE (3.3)

and the gradient used to update the network becomes:

(1− λ) · ∂LMSE(yt, p(Et)) + λ · ∂Lsemantic(fθ(Xt))

∂θ

The λ is the hyper-parameter that controls the strength of semantic regularization.

3.5 Evaluation

In this section, we empirically evaluate the proposed training method for Neuroplex on

three complex event datasets. The goal is to evaluate whether Neuroplex is capable of

learning and detecting complex events, and how it performs compared with state-of-the-art

deep learning methods and neuro-symbolic methods. We further perform an ablation study

to evaluate how it improves training by adding a semantic loss on the intermediate symbolic

layer.

Neuroplex is implemented using Tensorflow and Keras frameworks, and evaluated on

a desktop machine with an Nvidia RTX Titan GPU. We first conduct an evaluation on a

synthesized MNIST sequence data to thoroughly analyze the performance of Neuroplex’s

method, while comparing it with a set of strong baselines. Then we test Neuroplex on

a complex audio event dataset and a complex nursing event dataset, both of which are

constructed using real sensory data.

3.5.1 MNIST Sequence Complex Events

To explicitly control the complexity of the logic in complex events, we synthesize our dataset

using MNIST [68] digit images which we refer to as the MNIST Sequence Complex Event

dataset. This dataset is generated by randomly creating sequences of MNIST images. Each

image in an MNIST sequence is assigned with an increasing timestamp t and an attribute
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ID c. To get the ground-truth label of every MNIST sequence, we randomly generate a set

of logical rules φ = {ω, ψ}, and then apply these rules to the sequence to see if the complex

events exist. For instance, a complex event in this context, CE1, can be a pattern of {eCE1
1 :

”1” ⇒ eCE1
2 : ”3” ⇒ eCE1

3 : ”9”}. The primitive events eCE1
1 , eCE1

2 , and eCE1
3 , must happen in

a sequential order with the corresponding digits 1, 3, and 9 as the event types. Additionally,

temporal and spatial constraints can be added to the complex event definition, e.g., the set of

temporal constraints ψ ≡ eCE1
2 .time()− eCE1

1 .time() < 10s and eCE1
3 .time()− eCE1

1 .time() >

3s and spatial constraints dist(eCE1
1 .location(), eCE1

2 .location(), eCE1
3 .location()) < 100 limit

the complex events to those that satisfy the generated rules.

We say that a complex event CE1 is happening if a sequence contains the pattern of

primitive events [eCE1
1 , eCE1

2 , eCE1
3 ]—with primitive event eCE1

3 being the last event in the

sequence—and if all the logical constraints ψ are satisfied. Each sequence of primitive events

is one sample fed to the complex event detection system. The goal of this dataset is to detect

the occurrence of different complex events for each raw image sequence.

The complex event detection system has a maximum time window of length K, which

means that at most K recent primitive events are considered when making a detection.

Thus, we generate the MNIST sequence data with length equals to K. Apparently, as

window length K increases, the difficulty of complex event detection increases as well. It is

because that not only the system requires a larger memory to store and process the latest

events, but also the input space and complex events arrangement increase exponentially. In

our experiment, we change the size of window length K in different simulations, to test the

robustness of Neuroplex as the complex event detection task becomes more difficult.

Experimental setup. In our experiment, we used a LeNet convolution network [68] as

the perception model for digit classification, and an LSTM network as the NRLogic model.

Specifically, the LeNet is a CNN architecture with two convolution modules (convolution

layer + Relu activation + maxpooling) with a 5-by-5 kernel, followed by two fully-connected

layers. It achieves about 99.2% testing accuracy when trained on MNIST training data

directly and tested on MNIST testing set.
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In the NRLogic model, we use a simple network with one LSTM layer with 64 hidden units

plus one fully-connected layer to capture the logic of complex events. Since it is a regression

model, the output layer has m nodes and linear activations, where m is the number of

complex events types. The optimal λ value in function (3) is set to 1e− 4, and we use a grid

search to find reasonable parameters. The experiments here use an Adam regularizer with

a 0.001 learning rate for training both the NRLogic model and the perception model, and

the batch size is set to 256. The NRLogic model is pre-trained on randomly generated data

until convergence within 200 epochs.

Performance measure. We evaluated the learning performance by looking at the Mean

Absolute Error (MAE) of the complex event prediction. However, this term sometimes

cannot reflect the model performance directly. We therefore compare the predicted scores

with the ground truth values and calculate the prediction accuracy (Acc) by rounding the

prediction numbers:

Acc =

∑N
i=1

∑m
j=1 1(round(p(Ei)

j) == yji )

m×N

The superscript j refers to the j-th entry of the prediction, and m represents the types of

complex events. The accuracy is calculated as the average correct prediction rate for all

types of complex events on a testing dataset with N samples.

Additionally, for models with a similar structure as Neuroplex, we also evaluate the

performance of the LeNet on the MNIST testing dataset after training to measure the actual

learning performance on the perception model.

Learning comparison with strong baseline methods. We first test the learning per-

formance of Neuroplex on an MNIST sequence dataset, as shown in Table 3.2, simulation

1. Here we are considering 4 different complex events happening in a window of 10 primitive

events. The logic rules of complex events are randomly generated, while each complex event

is composed of two to three primitive events, and the average length of the complex events is

2.8. The number of unique primitive event types is 10, which means that these four complex

events cover all the 10 digits in MNIST.
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We compared Neuroplex with mainstream deep learning baselines:

• (1) CRNN network: It has exactly the same structure as the model we are using

in Neuroplex: CNN+LSTM structure, inspired by [97]. The only difference is that

in the CRNN model, human knowledge is not injected, so the LSTM layer is not

pre-trained.

• (2) C3D model: The C3D network has a similar 3D convolutional structure as [72] to

capture temporal dependencies between image frames. The total number of parameters

is around 4.1 million, which is much more complex compared with our model with 1.3

million parameters.

• (3) Neuroplex w/o semantic loss: We also perform an ablation study by removing

the semantic loss imposed on the intermediate layer of Neuroplex to see the extent

to which it helps training.

• (4) Oracle: The oracle method uses a neural-symbolic approach with perfectly pre-

trained perception models and 100% correct human-defined logical rules. This method

only represents the theoretically best performance we can get, since pre-trained net-

works tuned to specific environments are usually not available because of the hetero-

geneity of different domains and different task requirements.

Although Neuroplex has human knowledge injected and distilled to NRLogic model, the

pre-training overhead is pretty small. This is because the NRLogic model is not complex,

and it has symbolic input and output space. The model converges to optimum within a few

minutes during the pre-training process.

As shown in Figure 3.6, we train different models on a training dataset of 10K sequences

for 200 epochs, and plot the learning curves on 2K validation dataset in terms of MAE.

Clearly, Neuroplex learns faster than other baselines, and it trains the best final model

with a performance close to the oracle approach. The C3D model learns slowly, and it fails to

converge to the optimum in 200 epochs. Though having the same structure as Neuroplex,
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Figure 3.6: Prediction MAE (on the validation set) changes as training progressed in

simulation-1

Oracle Neuroplex Neuroplex (w/o) CRNN C3D

Perception Acc 99.19% 98.87% 70.55% 10.09% NA

Validation MAE 0.002 0.013 0.065 0.523 0.176

Converted Acc 99.85 99.39% 96.02% 69.98% 88.47%

Table 3.1: Performance comparison on MNIST Sequence

the CRNN model struggles to capture the dependencies between raw data and complex

events due to the high task complexity. In the ablation study, the model without semantic

loss has an inferior performance compared with the original Neuroplex, proving that the

semantic loss indeed helps training and regularizing the model.

We also measure the performance of different methods in Table 3.1. Clearly, Neuroplex

could achieve the lowest MAE on the complex event prediction, and the converted accuracy is

higher than 99%. The LeNet in the perception module is also well-trained to get an accuracy

of 98.87%, which is pretty close to the model trained on the original MNIST training data

(99.2%). The CRNN model which has the same network architecture but without human

knowledge injected does not capture the complex events well, and the LeNet on the CRNN
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could not perform image recognition effectively.

Figure 3.7 shows that, as training progresses, the performance of LeNet is improving with

the entire model. Also, since the NRLogic model is frozen and not trainable, it perfectly

maintains the functionality of the original logic models. As we expected, the overall complex

detection performance is totally dependent on the ability of the perception module.

Figure 3.7: The performance of perception model increases as training processed in Neuro-

plex

Comparison with neural-symbolic methods. We performed a preliminary investiga-

tion using the state-of-the-art complex event detection method described in [110], which is

a neuro-symbolic architecture that combines a neural network—which processes raw data—

and logic programming—to express the patterns that define a complex event. The system

allows for end-to-end learning using DeepProbLog[77]. However, the probabilistic logic pro-

gramming aspect of this system makes it quite inefficient in terms of training time. In a

preliminary investigation in this direction, while Neuroplex takes 5.4 milliseconds in train-

ing over a CPU—and even less on GPUs—a DeepProbLog instance is around four orders

of magnitude slower. We believe that the flexibility of having a human-understandable and

easily manipulable logical regularisation will be valuable for articulated complex event de-

tection rules, but that first requires a coordinated effort of the neuro-symbolic community
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to improve the engineering of DeepProbLog.

Learning with a limited amount of training data. To evaluate how Neuroplex

performs in the scarce data scenario, we synthesize a new complex event setting, as per Table

3.2, simulation 4. In this dataset, the complexity of a complex event is greatly reduced to

ensure that all the baseline models can learn. The length of the event window is 3, and three

unique events are considered in 5 different complex events which have an average length of

2. We adjust the number of available training data, from only 10 samples to 21K samples,

and train all models for 200 epochs.

As shown in Figure 3.8, regardless of the training dataset size, the proposed Neuroplex

method steadily shows the best performance, especially in the case when training data is very

limited. Removing the semantic loss on Neuroplex would incur a small performance drop

and it again proves the benefits of a symbolic layer and the corresponding logical constraints

for training. The CRNN trained from scratch cannot learn and reason about complex events

effectively even with 21K data, and the complex C3D model begins to show acceptable

performance (greater than 85%) only when the amount of training data is greater than 10K.

Neuroplex is shown to be robust to the data scarcity problem as it can achieve over 90%

accuracy with only 20 data samples.

Figure 3.8: The performance changes with size of training data
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Performance on different tasks. To further test whether Neuroplex scales well for

complex event detection, we conduct a set of different experiments with datasets of various

complexity. As shown in Table 3.2, simulations 1, 2, and 3 are tasks with increasing com-

plexity, and simulations 4 and 5 are two simple tasks that all the testing models are able to

learn.

From our formulation, the complexity of complex event detection would increase when

the window length increases. A longer time window with more primitive events implies that

the input space increases exponentially. The number of unique events and the length of a

complex event, on the other hand, control the complexity of the complex event itself.

In simulation 3, the task is detecting 7 complex events composed of 3 or 4 primitive events

in a window of 30 primitive events. Even though the CRNN shows poor performance in this

setting, Neuroplex could still train the perception model well and achieve high accuracy

for the complex event detection task. The fifth row of learning performance in Table 3.2

shows both the converted validation accuracy of Neuroplex on the complex detection task

as well as the testing accuracy of the perception module. The performance of the C3D model

in simulation 3 is better than simulation 2, even though the complexity of the task increases.

One possible reason is that in simulation 3, the number of complex events we detect grows

to 7, meaning that more feedback information is provided for a single event sequence sample

since the annotation increases from 4 to 7.

In the simple task simulation 5, we notice that the CRNN model’s performance is unno-

ticeably better than the proposed Neuroplex. This is because both the CRNN baseline

and Neuroplex use the same network structure, and Neuroplex keeps part of its param-

eters frozen so that Neuroplex could be less flexible when finding the optimal solution.

Besides, in Neuroplex, we decompose the entire learning space into the perception space

and the reasoning space and learn them separately. This leads to a simplified problem and

a improved learning speed, but the summation of optimalities in two sub-spaces is not nec-

essarily the optimality of the entire space. However, this does not affect the efficacy of the

proposed method since Neuroplex can get near-optimal performance with great compute,
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data efficiency, and speed.

3.5.2 Synthetic Complex Audio Events

In this experiment, we show how Neuroplex can be applied to real audio event data.

We construct a complex audio event dataset by sampling a subset from the DCASE 2018

challenge task 5 [19] and synthesizing complex events. The audio event data has 9 differ-

ent classes: absence, cooking, dish-washing, eating, other, social activity, vacuum cleaning,

watching TV and working. Each data sample is an audio recording of 10 seconds.

When creating the complex audio event data, we define the rules of complex audio events

and build our logical machine based on it to provide annotations. The pattern is defined

arbitrarily, as specified in Table 3.3. Some of them are defined based on regular human

activities. For example, the complex event No.1 (CE 1) defines a regular dinner activity

with a pattern of [”cooking” ⇒ ”eating” ⇒ ”dish-washing”].

For generating raw complex audio event waveforms, we first create an empty long audio

data sample with a length of 100 seconds and then overlay random audio samples selected

from the audio dataset. Since the labels of the audio samples are known, we use the logical

machine to get the ground-truth complex event annotation for each generated long audio

waveform. Table 3.3 gives a summary of the complex audio event dataset we generate.

With a given large audio file, the system is expected to extract the audio features from

raw waveforms and make predictions about the occurrence of complex audio events inside

this long period of time. In this experiment, we used the CNN model from DCASE 2018

[20] as our perception module. This CNN model contains two convolution blocks followed

by two fully-connected layers with Relu activation. It has 17.8K parameters in total. Batch

normalization and dropout are used to add robustness to the model.

The input to the model is the log mel-band energies for audio in a 10-second window.

Therefore, to analyze the 100-second-long audio waveform, our system first used a sliding

window to extract the mel-band features for every 10 seconds in a non-overlapping manner.
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Event types Length Num

CE 1 cooking ⇒ eating ⇒ dishwashing 3 1213

CE 2 social activity ⇒ cooking ⇒ eating 3 1198

CE 3 working ⇒ other 2 2898

CE 4 watching tv ⇒ vacuum cleaner 2 2904

CE 5 absence ⇒ eating 2 2844

CE 6 dishwashing ⇒ cooking 2 2888

CE 7 absence ⇒ social activity 2 2919

Event types: 9 . Avg length: 2.29. Dataset size: 16162

Table 3.3: Summary of Complex Audio Event Dataset

The features are extracted from the raw data and then processed by the perception module

to generate primitive events. The NRLogic model is also an LSTM network with one hidden

layer analyzing the logic between audio events.

Similar to the MNIST sequence simulation, our first baseline model is also a CRNN

network using the exact same structure as Neuroplex but without semantic knowledge

injected. The second baseline model has a similar structure as the baseline CNN, but with

twice the dimensions and a total of 55.8K parameters. We use this model to test if the

deep learning model that works well on short time-series data would scale well on a much

longer time series. These strong baseline models represent the performance of modern deep

learning approaches well.

We train all the models for 200 epochs using the Adam optimizer with a learning rate

equal to 0.001 and a batch size of 256. In Figure 3.9 we can see the learning curves of

different methods in terms of validation MAE. Both the CRNN and Neuroplex models

can capture the complex audio event, but the baseline CNN model does not converge to

optimal. The CNN baseline model fails to learn in this task with a longer time series, which

shows the limitation of mainstream deep learning models on complex event tasks.

In Table 3.4, we can see that the Neuroplex method could learn complex audio events
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Figure 3.9: Learning Curves on Complex Audio Events

Neuroplex Neuroplex (w/o) CRNN ConvNet

Perception Acc 89.44% 84.93% 0.22% NA

Validation MAE 0.1015 0.1032 0.1671 0.3884

Converted Acc 92.53% 92.39% 89.50% 85.09%

Table 3.4: Model performance on complex audio event data

with the lowest validation MAE and the highest accuracy of 92.53%. Additionally, the

perception module performs well (with an accuracy of 89.44%) on the testing audio dataset—

given that the same network trained using fully-annotated audio event data can only get an

accuracy of 91.14%. The ablation study shows that Neuroplex without semantic loss also

shows good performance but a little bit inferior to Neuroplex, which further proves that

the semantic loss helps training.

3.5.3 Complex Nursing Events Detection

The third experiment is conducted on a complex nursing event dataset based on a public

dataset from Nursing Activity Recognition Challenge[63]. The dataset contains nurse activity

data collected from three sources: Motion Capture, Meditag, and Accelerometer sensors, and
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it includes six different activities performed by eight subjects (nurses). These are C1: Vital

signs measurements, C2: Blood collection, C3: Blood glucose measurement, C4: Indwelling

drip retention and connection, C5: Oral care, and C6: Diaper exchange and cleaning of

area. Each of these activities is performed 5 times by each nurse. The data is divided into

1-minute segments.

Because of the noisy and missing data problem in Motion capture and Meditag data,

we only use the accelerometer data in our experiment. The data segments with less than

50 seconds are removed from the dataset. To extract features from the variable-length, un-

uniformly sampled accelerometer data, we first divide the segment into 30 non-overlapping

windows where the duration of each window is 2 seconds. For the data segments with a

length smaller than 60 seconds, we perform imputation by filling the missing features with

feature values of the last time window. We split the original dataset into a training set and a

validation set. The data in the training set is used to generate complex nursing events data,

and the validation set is used for evaluating the performance of the perception module.

To construct complex nursing events, we follow a similar approach as previous experi-

ments. In the first simulation(Sim 1 in table 3.7), we randomly sample 10 data segments

from the Nursing Activity dataset and concatenate them together representing a nursing

activity sequence that takes over 10 minutes. The logic of our complex nursing events can

be categorized into two groups as shown in table 3.5: complex nursing events, and violations

of sanitary protocol. The constructed complex nursing events dataset has 2319 samples in

total, each of which is an accelerometer sequence of ten minutes.

In this experiment, we use a convolutional LSTM structure [119] that is usually used to

analyze IMU data. The model contains two 2-D convolution blocks with one LSTM layer

and one fully-connected layer. A 0.5 dropout is applied to every layer. As the high-level

reasoning logic have the same level of complexity, we keep using the one-layer LSTM network

as the NRLogic model. We compare Neuroplex with three different baseline models:

• ConvLSTM: Like the previous experiments, this baseline has exactly the same net-

work architecture as Neuroplex, but without human knowledge injected.
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Complex Nursing

Event Name

Complex Nursing

Event logic

Complex

Event

Physiological

Measurement

Vital sign ⇒

blood glucose measure ⇒

blood collection

Indwelling Drip
Vital sign ⇒

Indwelling drip

Patient Cleaning
Oral care ⇒

Diaper exchange

Protocol

Violation

Unsanitary Operation

No.1

Diaper exchange ⇒

blood collection

Unsanitary Operation

No.2

Area cleaning ⇒

blood glucose measure

Unsanitary Operation

No.3

Diaper exchange ⇒

indwelling drip

Table 3.5: Logic of Complex Nursing Events
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Neuroplex ConvLSTM ConvLSTM-2 LSTM-Attention

Perception Acc 77.59% 1.72% NA NA

Validation MAE 0.0027 0.1430 0.1860 0.6245

R-Square 1.000 0.882 0.807 0.002

Converted Acc 100% 93.67% 89.28% 78.81%

Table 3.6: Model performance on complex nursing event data

• ConvLSTM-2: This model has a similar structure to ConvLSTM. Instead of adding

another LSTM network after the Conv-LSTM network, it learns to output the label of

the complex event directly.

• LSTM-Attention: This model is inspired by [39], which demonstrates good perfor-

mance in the Nursing Activity Challenge. Instead of using the GRU layer, this model

uses two layers of LSTM, and the sequence of hidden states are aggregated using the

attention mechanism to get a score vector. Two score vectors from two LSTM layers

are concatenated, and a fully-connected layer is added to get the softmax result.

All the models above are trained for 400 epochs with Adam optimizer and 0.001 learning

rate. The batch size is set to 256. In addition to the converted accuracy, we use the metric

R-square to evaluate the performance of the regression task. R-Square measures how well

the model fits the dependent variables. The value is usually between 0 to 1, and a bigger

value indicates a better fit between the predicted and actual value. R-Square is calculated

as follows:

R2 = 1− (
∑
i

(yi − fi)2)/(
∑
i

(yi − y)2)

Table 3.6 shows that the proposed Neuroplex performs well on complex nursing event

detection with raw accelerometer data, and the perception model also gets near-native accu-

racy. (80% accuracy when perception network trained directly on Nursing activity dataset).

The other deep learning baselines fail to show comparable performance, and the Neuroplex

shows the best performance in all different metrics.
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Detection over long period of time. To further test whether Neuroplex scales well on

complex nursing event detection, we conduct a set of experiments with increasing length of

the time window, and keep the definition of the complex nursing event the same as that in the

simulation 1. We test the Neuroplex with the other three baseline models, and measure

their performance based on R-square and converted accuracy. As shown in table3.7, as

the length of time window increases, the complex event detection becomes harder, and the

model performance degrades. We notice that when the time window length is less than 30

minutes, Neuroplex can successfully learn to detect complex event at high accuracy. As

the time window length grows, it takes more time for the model to converge, and 400 epochs

are not sufficient to get the optimum, although it already performs pretty well and beats

other baselines by a large margin. In simulation 6, we can see that the Neuroplex model

can still get about 80% detection accuracy in a one-hour-long time window, proving that

Neuroplex is robust to long-term reasoning.

Methods Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6

Time window

(minutes)
10 20 30 40 50 60

R-square

Neuroplex 1.00 0.99 1.00 0.90 0.88 0.85

ConvLSTM 0.88 0.90 0.66 0.32 0.33 0.35

ConvLSTM-2 0.81 0.76 0.80 0.76 0.75 0.70

AttentionNet 0.02 0 0 0 -0.01 -0.02

Converted Accuracy

Neuroplex 100% 98.90% 100% 83.59% 79.00% 79.63%

ConvLSTM 93.67% 83.29% 67.75% 40.79% 39.03% 37.47%

ConvLSTM-2 89.28% 80.08% 75.70% 60.30% 45.83% 39.48%

AttentionNet 78.81% 2.60% 0.62% 0.50% 0.11% 0.02%

Table 3.7: Experiment result of complex nursing activity detection as the length of time

window increases.
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The other neural-network-based models all suffer from the long temporal range. As we can

see, in simulation 1, the ConvLSTM models is able to detect complex events with acceptable

performance. However, as the length of time window increases, their performance drops

quickly. The ConvLSTM-2 model performs better than ConvLSTM, suggesting that the

added LSTM network in ConvLSTM does not help capture temporal dependencies without

human knowledge injected. Although it demonstrates good performance on other tasks,

the AttentionNet can not learn complex event on accelerometer data. It basically gets an

approximate zero R-square value in all the simulations (the R-square is negative in some

cases because the model performs worse than the null hypothesis). The converted accuracy

in sim 1 is 78.81% because it outputs small fraction numbers which are rounded to zeros.

3.6 Discussion

The design of Neuroplex framework is inspired by the human learning process: the per-

ception ability is trained in a data-driven approach, and the mid- to high-level reasoning

ability can be taught in an efficient manner—the knowledge is passed in a condensed form

of logic rules. Human can know what complex event is even without seeing any examples

before. On the other hand, human store knowledge in neurons inside the brain, so high-level

logic should be expressed as a neural network as well.

In Neuroplex, we create a dual form of the reasoning module so that the system learns

by back-propagation in a standard supervised manner. During the inference stage, even

though the NRLogic is also available for the forward propagation, we use the logical ma-

chine instead. This is because the logical machine is more reliable and explainable than the

NRLogic model. Additionally, the logical rules are often more compact than deep neural

networks, so they can usually be executed quickly over sensor networks with minimal compu-

tation overhead. We enumerate the limitations of the current approach and future research

directions as follows:

Distribution of complex sensor reasoning. The hybrid architecture of Neuroplex
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is designed to thrive in emerging distributed computation architectures that push sensor

inferencing towards edge devices. However, primitive events that stem from edge device

inferences are currently fused at a single CEP node. Future work can focus on distribut-

ing the reasoning module across heterogeneous sensor networks with dynamic computation

placement.

Prior knowledge of complex event reasoning logic. We have assumed that the higher-

level logic of a complex event is provided by the user. This is a reasonable assumption, and it

is broadly used not only in neural-symbolic systems [73, 120, 109], but also in earlier works on

rule-based activity recognition [85, 105], activity decomposition using sensory grammar[75],

and complex event processing [33, 31, 90]. During training, the use of prior knowledge

reduces the burden of data annotation and accelerates the learning process significantly.

Additionally, we use the CEP language with a BNF grammar like DeepCEP[120] to formally

define the logic rules, which standardizes and simplifies the coding of human knowledge.

However, the system may be deployed in a new or evolving sensor network environment–

where the definition of complex events provided by the user may not present robust detection.

Future efforts can focus on learning or fine-tuning the reasoning module by freezing the

trained perception module and updating the NRLogic module. After learning, the FSM can

be extracted from the trained RNN network to provide human-understandable logic.

Complexity of logical reasoning. In the context of complex event detection, the NRLogic

model is trained to capture the logic of a complex event, which could be arbitrarily complex.

The Neuroplex framework can be generalized to a wide range of scenarios, and NRLogic is

able to capture not only temporal logic, but also spatial logic over sensory networks. For all

experiments in this paper, the complex event logic can be captured effectively by an LSTM

network with one hidden layer. However, as the complexity of logic increases, deeper and

more sophisticated networks need to be used to approximate the logical function. Future

research will investigate what the most efficient structure is to capture the reasoning logic

of different complexity in different settings.

Annotation of complex event sensor data. In the problem of complex event detection,
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we only care about the occurrence of complex events at the current time. Thus, the user

would only make annotations when complex events are actually happening and do not need

to care about simple events. This greatly reduces the labeling burden for numerous appli-

cations. In this work, we formulate the complex event detection as a regression problem,

which requires annotations of complex events happening times. This is sometimes not a

trivial task because sensors with events happening over long periods could generate multiple

primitive events of the same type, leading to an increase in complex event instances. Also, in

real-world scenarios, the complex event labels may not have accurate spatial-temporal meta-

data, e.g., inaccurate timestamps. Future research will investigate how robust the proposed

Neuroplex is when the annotation is noisy, and how to aggregate and learn from events

of the same type.

Generalization to real multimodal scenarios. Although Neuroplex is evaluated on

complex events from a single modality in this paper, we believe that it can be extended

to multimodal complex event learning tasks as well. We envision a framework similar to

[87, 82], with multimodal data streams input as different channels. While the performance of

Neuroplex in multimodal scenarios is not presented in this paper as the on-going pandemic

conditions prevent us from conducting the requisite experimental study, we plan to address

it in future work.

3.7 Related Work

A body of earlier work studied complex events in sensor networks [75, 133, 132]; however,

we focus on detecting complex events over unstructured data using deep learning models.

We first provide an overview of the state-of-the-art deep learning methods related to com-

plex activity detection. After highlighting the scalability and data efficiency issues of these

approaches, we describe how prior works have attempted to integrate human logic directly

into the deep learning models. Although these approaches help to regularize and boot-

strap the associated learning processes, they fail to address the notions of scalability in the

spatial-temporal domains. We then highlight a recent class of neuro-symbolic approaches
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that combine deep learning with explicit symbolic reasoning, and discuss modern approaches

to complex event detection using hybrid systems.

Deep learning for complex activities.

Prior work on deep learning methods has explored learning and analyzing time-series data

such as human activities. In particular, several works in video classification have proposed

solutions for detecting complex activities over short periods [117, 54]. Images [121] and

audio [28] are also considered to contain complex events, and several studies [116, 51] use

multimodal information to perform classification. Similarly, anomalous event detection [122]

utilizes motion features to extract temporal-spatial localization features for complex event

detection.

Although the aforementioned works have shown promising results in their respective

domains, they do not have a clear definition of complex events. Generally, they use the

term to describe events that contain interactions between different elements. Furthermore,

these works typically only consider processing information from a single input instead of a

distributed set of heterogeneous sensors. Although multimodal data fusion has been explored,

they fail to fuse the information at a semantic level so as to provide a clear explanation

of the result. Additionally, these learning-based models alone cannot learn extremely long

temporal dependencies well, even with the help of the LSTM [44] structure and the Attention

mechanism[9]. They typically reason about events on the order of seconds. Finally, in

order to have effective models that generalize well, learning-based methods necessitate the

consumption of large amounts of data with an expensive annotation process [29].

Intuitively, integration of human logic would address these issues in an interpretable way.

We next review how prior works have integrated logic reasoning with machine learning (ML).

Combining logic reasoning with ML. Combining reasoning with learning is a popular

topic in the AI field, and one interesting direction is integrating symbolic human knowledge

with ML models. One approach to integration is to instrument logical formulae into an

embedding space while preserving the logical meaning and the relationship between formulae.

ConvNet Encoder [60] and TreeLSTM [104, 67, 131] embed formulae using different network
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structures. LENSR [118] first converts logical formulae into d-DNNF DAGs and use a Graph

Convolutional Network to perform an embedding. Another approach uses knowledge to

impose additional logic loss to help augment the original training objective [123, 102, 21, 91].

In [46], a distillation method is used to transfer knowledge from a rule-regularized teacher

network to a standard student network. [123] imposes a semantic loss on predicted probability

by quantifying the probability of generating a satisfying assignment by randomly sampling

from the predictive distribution. Other methods include Logistic circuits [25] and Logic

Tensor Network [70] design specific structural to incorporate logic rules. [76] attempts to

enforce machine learning models to follow STL logic rules, by training the networks with

both ground truth labels and logically-corrected labels.

However, the preceding methods are not designed for reasoning about spatial and tem-

poral events at scale. Therefore, we next discuss neural-symbolic frameworks that allow a

hierarchy of reasoning between deep learning and human logic.

Hybrid Neural-symbolic frameworks for complex tasks. Building hybrid systems

that utilize the power of both human logic and deep learning is becoming a hot trend.

Caesar [73] proposes a system that uses both deep learning models and rule-defined complex

activity graphs to recognize complex activities in a multi-camera video surveillance setting.

[109] shows that it is possible to fuse proxy deep learning models and use ProbLog [17]

defined rules to perform crime detection. In [120], simple events are first captured by deep

data abstractors and then reasoned about by a complex event processing (CEP) engine that

takes human definitions as logic rules. All of these works use either existing or newly defined

languages to inject human knowledge into the system to perform reasoning to detect complex

events. They utilize pre-trained neural network models and only focus on the inference path

of the problem as learning is beyond their scope.

The ability to learn is of great importance, especially when the system is deployed in

a new environment. SATNet [112] sits at the boundary between end-to-end deep learning

models and neural-symbolic hybrid approaches. It introduced a differentiable SAT solver

that can be integrated into deep learning models as a MAXSAT layer. This logical structure
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can be learned using a supervised end-to-end approach. However, the SATNet does not have

symbolic representation, nor is the MAXSAT layer explainable.

DeepProbLog [77] provides a generalized probabilistic logic programming language that

incorporates deep learning into ProbLog. The parameters of both neural networks and log-

ical rules are learned in an end-to-end manner using αProbLog while supporting symbolic

representation. An important feature for DeepProbLog is that it supports symbolic repre-

sentation inside the system. Therefore, unlike black-box deep learning models, the results

of DeepProbLog are explainable. While DeepProbLog is designed to handle complex prob-

lems where the logic can be expressed as combinational logic, it struggles to represent the

sequential logic in ProbLog as the number of nodes grows exponentially.

Unlike prior works, in our approach, logical knowledge is not used to augment training

objectives, but rather perform individual reasoning tasks. Trained to mimic the logic rules,

the NRLogic is plugged into the system as a layer to perform learning tasks.

3.8 Conclusion

In this work, we presented Neuroplex, a neural-symbolic framework for detecting complex

events. Using semantic knowledge to guide the learning, Neuroplex can learn to detect

complex events with much fewer and sparse annotations. Results on different datasets proved

the effectiveness, reliability, and robustness of Neuroplex. Future work will focus on the

deployment of Neuroplex in real-world scenarios with multimodal sensory data.
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CHAPTER 4

DeepSQA: Understanding Sensor Data via Question

Answering

4.1 Introduction

Sensors in various embedded, wearable, and mobile IoT devices produce enormous amounts

of data, which algorithms help transform into actionable insights and predictions that guide

decisions and interventions at various scales. While recent years have seen the emergence of

powerful deep-learning-based neural network models, capable of making rich and complex

inferences from large amounts of sensory data, current data-to-decision pipelines are highly

constrained as they employ specialized models for specific tasks such as detecting a set of

events and activities.

Imagine instead a future where a human decision-maker is not limited to a fixed set

of inferences computed from sensory data, and could instead ask flexible natural language

questions about events and activities present in the data and get answers. For example,

instead of a processing pipeline extracting fixed information about various activities of daily

living from a user’s wearable and ambient sensors, imagine the user being able to ask “How

long did I exercise between lunch and dinner yesterday?” and “How many times did I drink

water yesterday?” Or, imagine that instead of being presented with a fixed set of traffic

events and statistics derived from time-series data from traffic sensors, a city manager could

ask questions such as “How long did the congestion on Highway 99 last?” and “Was there

an accident during the hour preceding the congestion?”

Our research is inspired by a vision of providing users with the ability to extract a
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variety of inferences from sensory data, by asking flexible natural language questions instead

of being limited to the rigid outputs of a fixed set of classification and regression models. To

achieve such a capability, one needs a framework that can formulate answers to novel and

arbitrary questions about an underlying sensor dataset without requiring a new model to be

trained for each question, and also be able to incorporate new knowledge efficiently. Recent

advances in deep-learning-based natural language processing and its use for tasks such as

asking questions about images[4], texts[88], and databases[42] suggest that restricted forms

of such a capability are certainly possible for spatiotemporal sensor data as well. This paper

presents the results of our exploration of this problem.

In this work, we propose the DeepSQA, a generalized framework to address the Sensor

Question Answering (SQA) problem of answering natural language questions about raw

sensory data in distributed and heterogeneous IoT networks. Figure 4.1 illustrates some

exemplar questions that DeepSQA can solve. Suppose a user interfaces with a set of IoT

devices, e.g., a smartphone and a smart band to keep track of their daily activities. With

multimodal data collected by wearable devices, they may want to query their behaviors

from different perspectives. For example, the user could ask ”How many times did I send an

MSM while driving?” or ”How long did I exercise between lunch and dinner?” Based on the

collected sensory data, the SQA system should answer each of these questions accordingly

with the correct natural language answer, e.g., “three times” or “1.5 hours”.

In addition to DeepSQA, we also introduce SQA-Gen, a software framework for gen-

erating SQA datasets from underlying labeled sensory data. To evaluate DeepSQA, Op-

pQA dataset is created with SQA-Gen for complex human activity question answering.

This dataset focuses on spatial-temporal relationships across different sensors, and it con-

tains over 1K sensory contexts and 91K questions. A detailed analysis is performed on this

dataset with various modern baseline models, providing insights into the SQA task. We pro-

vide open-source implementations of the DeepSQA framework, SQA-Gen data generation

tool, and the access to the OppQA dataset1. We believe this will benefit the community of

1The dataset and codes for DeepSQA are available at https://github.com/NESL/DeepSQA.
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Figure 4.1: Examples of open-ended natural language questions supported by our proposed

Sensor Question Answering model.

sensory question answering research.

Contributions. Our contributions are enumerated as follows.

• Firstly, we introduce the DeepSQA framework, the generalized QA framework to

address the SQA problem by enabling natural language questions about raw sensory

data in distributed and heterogeneous IoT networks.

• Secondly, we propose SQA-Gen, a software framework to generate SQA data using

labeled source sensory datasets. Based on SQA-Gen, we create the first SQA dataset

on complex human activity question answering, to benchmark SQA models’ perfor-

mance on natural language QA about spatial and temporal properties of raw sensory

data streams.

• Thirdly, we evaluate DeepSQA across several state-of-the-art QA models on OppQA,
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and enumerate the challenges at the frontier of SQA.

• Lastly, We provide an open-source implementation of DeepSQA, SQA-Gen, as well

as the access to the OppQA dataset.

4.2 Related work

In this section, we review the related works on sensory data processing and question answer-

ing in different domains.

Machine Learning for Sensory Data. Sensory data processing is not only a critical

problem in the signal processing field, but also a hot topic for machine learning applications.

Vibrant research has been performed in the field like visual and acoustic domains. However,

in this research, we are interested in sensory data that humans cannot easily understand, i.e.,

sensory data from devices like inertial sensors that are nothing more than a series of scalar

physical phenomena. Due to the lack of senses or a standard vocabulary, humans would have

a hard time associating these time-series values with the high-level symbolic concepts.

With the advancement of machine learning techniques and compute power, it is possible

to make inferences on raw sensory data using a data-driven approach. [66] presents a sur-

vey on using wearable sensory data to perform Human Activity Recognition(HAR). Recent

research [38, 98, 111] shows that deep learning techniques can better infer human activities.

[113] uses the WiFi signal to achieve device-free activity recognition. Besides, time-series

sensory data like EEG [10, 114] or GPS [130, 14], are used to make high-level inferences

about different activities and events.

However, all the existing works focus on using sensory data to perform fixed predefined

tasks, e.g., classifying subject behavior or predicting user sentiment. If the tasks are changed,

the data need to be re-labeled, and the models have to be retrained. Despite the inefficiency

of data labeling and the cost of model training, there’s still no framework that can provide

solutions for arbitrary tasks within a specific range.

Question Answering. On the other hand, research in the visual and natural language
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processing domains propose a framework that allows task-aware inferencing, in the form of

question-answering (QA). In QA, a model is trained to take both a question and its context

as input, and answer the given question based on the context data. This QA task requires

models to be capable of not only processing raw context data, but understanding natural

language questions as well. The questions asked to the model determine the tasks that the

model performs. Different tasks, based on either the same or different context data, can

be handled by a single QA model. There has been a body of work on question answering

applications in different domains, which can be broadly categorized into two groups based

on context data.

The first group of QA tasks deals with static data, such as texts, images, charts, and

structured data like tables and knowledge bases. As the main focus of this paper is on the

question answering with multimodal data, we do not discuss the related work of natural

language QA [88] here.

In the Visual Question Answering(VQA) domain, large datasets [4, 55, 49] have be pro-

posed to give fair benchmarks. [55] creates a large VQA reasoning dataset using generated

images and questions, which helps reduce data biases and test model generalization ability.

In [49], questions are synthesized on real-images to extend the domains further. Different

methods are proposed to handle the VQA problem. A major trend is to fuse the image and

question features in different ways, such as combining CNN features of images and LSTM

features of questions together[4]. Models based on attention mechanism [126, 59] use con-

catenated feature to first calculate attention weights of the image, and then predict the

answer based on the attended area. FiLM[84] proposes a model that interleaves standard

CNN layers with linear layers, tilting the layers’ activations to reflect the specifics of given

questions. More recent work shows that recurrent approaches like [48] with multiple-step

reasoning can achieve good performance on datasets where complex reasoning is required.

With additional supervision, neural-symbolic methods show better performance on the VQA

task. [56, 45] use modular approaches to synthesize models that have the same structure as

the questions. [128] uses deep learning model to parse both the image scenes and questions,
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and then answers different queries in the semantic space. Instead of using latent feature

representations only, a body of work[3] solves VQA problems using additional object-level

features and achieves excellent performance. However, this method could not be adapted to

the SQA problem, since obtaining the semantic feature is hard for the opaque sensory data.

There are also emerging domains that ask questions on the context of other modalities,

like graphs and tables. [57, 58] propose the task of question-answering on graphs and dia-

grams, where the answer categories are context-dependent, and the answers to questions are

sensitive to small variations in the diagrams. [42] uses a BERT[24]-like structure to answer

questions based on tabular data.

In summary, all of the work discussed above focus on answering questions with static

data, where complex temporal reasoning is not required to get the correct answer.

The second group of QA tasks relies on time series data. [50, 69, 106, 53] solve the problem

of video QA with video clips as context data. [2] introduces the task of audio question

answering, and uses vision-based models to process the spectrogram features extracted from

audio contexts. Although spatio-temporal reasoning is performed in these models, they can

only handle context data collected from a single source. Question answering with distributed

sensory data from multiple sources with heterogeneous modalities requires the ability to

perform sensory fusion and inter-sensor spatial reasoning. Also, it is unclear whether these

approaches discussed above are still effective on sensory data that are opaque to humans,

such as the IMU data that humans cannot understand.

Semantic Parsing. An alternative approach to handle flexible natural language queries

is semantic parsing[11]. Semantic parsing is the process of mapping a natural-language

sentence into a logical form, which is a machine-understandable, formal representation of its

meaning. After this process, the questions in logic form can be used to query structured or

semi-structured knowledge bases. In our SQA problem, to enable a semantic-parsing-based

system, effort must be first taken to train a model that processes and maps raw sensory

data into a logical semantic space interfacing with logic queries. However, it is impossible

to define such an informative semantic space for opaque and unstructured sensory data,
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especially when tasks are not provided yet. Also, preparing the annotated data for training

the sensory model is a huge burden. Therefore, in this paper, we choose to use an end-to-end

approach, which implicitly parses the natural-language questions using neural networks, to

tackle the SQA problem. Related work in the semantic parsing field is not discussed here

since it is beyond our scope.

4.3 Formalizing SQA problem and Design of DeepSQA

In this section, we formally define the problem of Sensory Question Answering (SQA), and

describe the design requirement of SQA systems. Finally, we propose the generalized Deep-

SQA framework.

4.3.1 Sensory Question Answering (SQA)

Unlike visual, acoustic, or textual data, sensory data collected from sensors, e.g., IMUs and

barometers, naturally cannot be understood by humans. All humans are ”sensory impaired”

to the sensory data due to the non-capability of proper sensory abstraction and the deficiency

of a standard vocabulary describing different phenomena and their characteristics. Sensing

using state-of-the-art deep learning models proves to be an effective way to comprehend

the opaque sensory data. However, outputs of deep learning models are restricted to a

pre-defined set of labels, limiting the inferencing flexibility significantly. Also, in order to

make various inferences, users need to train different models, which requires large amounts

of labeled data and compute power. Based on these limitations, it is essential to have an

intelligent system to help humans understand sensory data in the form of question answering.

We envision a system that gathers all sensory data from distributed heterogeneous sources.

When the user asks arbitrary natural language questions, the system processes the received

data, reasons about the spatial-temporal relationships between events, and provides correct

answers in the form of natural language to humans.

Here we formally define the Sensory Question Answering (SQA) problem as follows.
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Consider a sensor network where data di of different modalities are continuously collected

by a set of n distributed sensors. At some time point t, the user asks a question q in

natural language format to the system, which is expected to output the correct answer a

based on the context data D. D = {d1, d2, ..., dn}, where di = {dt−k+1
i , ..., dt−1i , dti} is a

sequence of data collected by the i-th sensor. The number k represents the maximum length

of history considered when answering the question, and it is usually determined based on

different applications and system memory limitation. So this SQA system learns to model

the conditional probability of p(a|q,D).

Based on the formulation above, the SQA system needs to satisfy a set of requirements.

Firstly, it should have the ability to process and fuse raw, multimodal sensory data collected

directly from heterogeneous sensors. Secondly, the SQA system should be capable of analyz-

ing natural language questions to understand what the various tasks are during the inference

time. Thirdly, complex temporal and spatial dependencies between different sensory modal-

ities, and more importantly, the correlation between questions and sensory contexts, need to

be explored and captured by the SQA system so as to answer the question correctly.

4.3.2 SQA Architecture Design

As shown in Figure 4.2, we propose a generalized framework called DeepSQA. Here, we

adopt the idea of question answering in other domains like VQA to our SQA problem.

Basically, questions and images are first processed by two different paths to get compact

representations, and then an SQA module is applied to analyze these representations and

predict answers.

Sensory and Question Representations The question q with M words in natural lan-

guage form is first embedded into a sequence of M embedding vectors using an embed-

ding matrix, which is either pre-trained on a large text corpus, or learned together with

other parameters during the training time. The embedding sequence is then processed by

a recurrent-based structure, such as a multi-layer LSTM or bidirectional-LSTM network, to

get the question representation.
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Figure 4.2: The Generalized DeepSQA Framework

In order to calculate the sensory representation, sensory processing modules are required

to extract informative features from multimodal raw sensory data.

In the visual domain, a variety of pre-trained models are off-the-shelf. These models

are trained on population-scale data of immense size, like the ImageNe[23] and Microsoft

COCO[71] datasets. They are capable of processing and extracting informative visual fea-

tures that can be used to perform a bunch of different downstream tasks, e.g., image classi-

fication, object detection, semantic segmentation, etc. As a result, in the task of visual Q &

A, these pre-trained models can be used to obtain visual representations at both image-level

and object-level directly.

However, for sensory question answering, such a general-purpose model pre-trained on

population-scale data is not available, given the absence of a enough large-scale sensory

dataset in both the sensing and machine learning communities. Because of the heterogeneity,

data from different sensors have different modalities and sampling rates, and data collected

in different locations, on different users, might vary significantly. As well-studied in prior

work [15], a machine learning model trained on one sensory dataset would not perform well

with other sensory data. This makes it impossible for us to use pre-trained models to get

sensory representations.
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Consequently, in DeepSQA, we use data-specific sensory processing modules instead.

The sensory processing modules are designed based on the size and modality of raw sensor

data. A popular structure is the Convolutional LSTM network (ConvLSTM), which can be

used for extracting relevant sensory features and reasoning about their long-term temporal

dependencies. An effective sensory processing module is crucial in the DeepSQA framework,

as the downstream question answering task requires accurate context information to make

correct predictions.

We also investigate using an auto-encoder-based approach to extract sensory features.

The auto-encoders can be trained in a self-supervised manner with no annotation required.

The intermediate bottleneck layer, which squeezes the original high-dimensional time-series

sensory data into low-dimensional vectors, can be used as the sensory representations. How-

ever, because of the lack of training guidance, the sensory representations generated by

the auto-encoders are not informative enough and can lead to huge performance sacrifice.

Therefore, in this paper, we omit this method, and focus on the ConvLSTM based sensory

processing module.

Reasoning with SQA Module In the DeepSQA, an SQA module is designed to find

the inter-correlation between sensory and question data, perform reasoning, and predict

final answers to complex compositional questions. Instead of explicitly decomposing the

reasoning into multiple semantic sub-tasks as humans do, we adapt a neural-network-based

approach to perform complex reasoning implicitly. Different techniques can be used in this

SQA module, such as the simple convolutional RNN with multimodal data fusion, bi-linear

pooling, and the attention mechanism. We will detail different models based on DeepSQA

framework in Section 4.5.

Although there are some other techniques [3] that show superior performance than the

purely neural approach in the VQA domain, they either require object-level or semantic

features as input, or need additional supervision to decompose questions into semantic sub-

tasks. These methods are not suitable in our case of SQA, simply because sensory data are

not human-understandable, and the usage of semantic knowledge is not an option.
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All the different modules in DeepSQA are stacked and connected together, and the

entire system can be trained in an end-to-end fashion.

To train and evaluate different SQA systems along with a set of baselines, a large and

diverse SQA dataset is required. However, because of the opacity of sensory data, humans

cannot provide answers to question based on sensory contexts directly, and hence it is impos-

sible to create an SQA dataset using the crowd-sourcing method as the VQA does. In this

work, we propose a method SQA-Gen, which can generate SQA data based on a labeled

source sensory dataset. Using this tool, we generate the OppQA dataset, that questions

human activities and their temporal relationships. In the next section, we detail our tool for

transforming a sensory dataset into an SQA dataset.

4.4 SQA-Gen: SQA Dataset Generation Tool

In this work, we introduce a tool SQA-Gen for creating SQA data from a source sensory

dataset. Using SQA-Gen, we generate the OppQA, a human activity sensory question

answering dataset, based on the OPPORTUNITY [93] data. In this section, we first describe

the data generation method we use in SQA-Gen, and then show the statistics about our

generated OppQA dataset. We also need to mention that this generalized tool SQA-Gen

can also be used to create new SQA datasets with other labeled source sensor data. We make

the OppQA dataset and SQA data generation tool SQA-Gen available online to facilitate

future research in the SQA field.

The context of the SQA dataset needs to have the characteristics of regular sensory

data, showing the necessity of being multimodal, and involving multiple users with multiple

devices. Besides, the sensory context needs to be real time-series data collected by sensors.

Synthesized context data are unrealistic [55, 2], and the SQA models trained on that would

not have satisfactory performance when deployed in real scenarios. Because of sensory data’s

opacity to humans, it is difficult to ask a human generator to create questions and answers

based on sensory context manually. Therefore, in this work, we are using an automatic
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approach to generate sensory questions and answers.

Although the automatic generation may not provide many linguistic variations on natu-

ral language questions and answers, it has several other benefits. Firstly, it always provides

objective and correct answers to even complex and compositional questions. In comparison,

humans sometimes fail to give right answers [55], especially to complicated questions. Sec-

ondly, automatic generation is a scalable approach that can be applied to different source

datasets at a minimal cost. In Section 4.6, we use SQA-Gen to generate multiple variants

of OppQA with different parameter configurations, and also apply SQA-Gen to a new

sensory dataset, ExtraSensory [108], to obtain new SQA data in a different domain. The

scalability of SQA-Gen helps evaluate and train SQA models efficiently. It allows us to

investigate SQA models’ performance under different settings and also provides abundant

amounts of data for model training. Thirdly, it is evident that the automatic QA generation

shows higher efficiency with lower costs than human creation.

4.4.1 Source Data Selection

In this work, we choose the domain of human activity analysis to evaluate the SQA systems,

and select the OPPORTUNITY Dataset[93] as our source sensory dataset. The OPPORTU-

NITY is a dataset used for benchmarking human activity recognition (HAR) tasks. The data

are collected with wearable, object, and ambient sensors. Here we are only using the seven

body-worn inertial measurement units (IMU) sensors to make inference on user activities.

These sensors are located at different parts of the body: Left lower arm (LLA), Left upper

arm (LUA), Right lower arm (RLA), Right Upper arm (RUA), Back of the torso(BACK),

and Left/Right shoes(L-SHOE/R-SHOE). These inertial measurement units provide read-

ings of: 3D acceleration, 3D rate of turn, 3D magnetic field, and orientation of the sensor

with respect to a world coordinate system in quaternions. The IMU data are collected at a

fixed sampling rate of 30Hz.

OPPORTUNITY also provides a rich set of annotations, including three different hierar-

chies: high-level activities, modes of locomotion, and low-level activities. Here we are using
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the two hierarchy of labels: locomotion activities(sit, stand, walk, lie, other) and low-level

activities, including 17 different micro activities such as opening and closing doors, shelves,

drawers, drinking tea, etc. This enables us to ask questions that reason about the interac-

tions between different levels of activities, for example, ”Did the user drink tea while he is

standing?”. OPPORTUNITY collects data on four distinct subjects. For each subject, six

separate runs were recorded. The total length of the data is about 8 hours.

4.4.2 SQA Data Generation

With the labeled source sensory data, we are able to generate an SQA dataset. Inside SQA-

Gen, the sensory context, the question, and the answer are all accompanied with a semantic

representation to enable automatic machine generation. The entire data generation pipeline

is illustrated in Figure 4.3, which we describe in detail below.

Figure 4.3: Data generation Pipeline

Sensory Context Generation. The untrimmed source OPPORTUNITY data are first

split into data sequences with appropriate length, which are then used as the sensory scene

(context) for the SQA task. The context length is an adjustable parameter of SQA-Gen,
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which determines the maximum length of history considered when answering the question

in real-time. In OppQA, we choose the context length to be one minute, which means that

the past 1800 data samples are used to answer the question. The data splitting is performed

using a sliding window approach on the original time-series data. The length of the sliding

window is one minute (1800 timesteps), and we use a stride of 20 seconds (600 timesteps)

to avoid having two consecutive sensory contexts with too much information in common.

Scene Representation. For each sensory scene, we have its associate label sequence ob-

tained from OPPORTUNITY’s two hierarchies of annotations. The label sequence provides

information about what the user is doing at every timestep. Corresponding to the two-

hierarchy annotations, we create two scene lists using the label sequences as the semantic

representation for each sensory context. A scene list A = {A1, A2, ..., An} contains n activi-

ties happening in a sequential order. For each activity Ai = {yi, di, si}, the activity type yi,

duration di and starting time si is stored.

To create the scene lists, we traverse the label sequences and aggregate the consecutive

data samples with the same label to a single activity. The ”other” activity is omitted

here. With the semantic representation of the sensory scene, we can easily reason about the

relationships between different activities in an automatic manner.

We formally define the temporal relationships between different activities. We say activity

Ai is after/before Aj if i > j or i < j, and Ai is right after/before Aj if i = j+ 1 or i = j−1.

And for the ”While” relationship: suppose A and B are two scene list of different hierarchies,

then the user did Ai while doing Bj only when the starting and ending point of Ai is within

the range of [Bj.s, Bj.s+Bj.d].

Question Generation. Inspired by [55, 49], SQA questions are generated automatically

using a template-based method. In the SQA-Gen tool, we create a set of 16 different

question families, covering different question types: Action Query, Time Query, Existence,

Counting, Action Comparison, Value Operation, etc. For each question family, a functional

program template is used for constructing functional programs. With this program, several

text templates exist for creating questions in different natural language forms. We need to
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mention that new question families and text templates can be easily added to SQA-Gen to

generate new questions based on diverse requirements.

A functional program is composed of a set of functional building blocks. Similar to [55],

we have a function catalog that deals with different operations for SQA reasoning. These

functions can be combined in different ways with different input parameters to create an

infinite number of questions with arbitrary complexity.

For example, the question ”What did the user do before opening the fridge and after

closing the drawer?” is generated using the text template ”What did the user do [Relation]

[Activity] [Combinator] [Relation] [Activity]”, while filling in ”before”, ”after” as relations,

”and” as the Combinator, ”open the fridge”, ”close the drawer” as activities. The functional

program ”query action type( AND( relate( before, open the fridge ), relate( after, close

the drawer)))” is instantiated using program template ”query action type( Combination(

relate( Relation, Activity ), relate( Relation, Activity)))”.

To generate questions using text templates, we need to take care of the tense, person, and

plurality to avoid grammar mistakes. We take these three elements as additional parameters

of the activity in the text templates. After generating a valid question, we also apply a

synonym change in order to increase language diversity.

The functional program can be directly applied to the scene lists of the sensory scene to

get the correct answer, which is then translated into natural language. At this stage, the

sensory context, the question, and the answer are all generated.

Question Type and Answer Balancing. We slide the time window across the untrimmed

time-series sensory data to get various sensory scenes. For each sensory scene, we construct

its semantic representation scene lists, and based on the activities involved in this scene,

we apply all possible functional programs to the scene lists to get the correct answers.

Sometimes the questions are ill-posed, and the answers could not be obtained. For example,

the question ”What did the user do after closing the door?” would be ill-posed if the user

closed the door more than once in the time window, and we could not identify which ”close

the door” activity the question is referring to. These ill-posed questions are rejected.
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After traversing all the time-series data and iterating all the possible functional programs,

we generate an initial SQA dataset, which includes around 35 million question & answer pairs

and 1362 sensory contexts. However, the current SQA dataset has an unbalanced question

type distribution and biased answer distributions. This would lead to inefficient training and

possibly performance degradation. Therefore, we downsample the questions based on their

types to control the question data type composition.2

More importantly, we balance the global answer distribution of the dataset, to avoid

question-conditional biases, which allow learners to make educated guesses without under-

standing the sensory contexts. To do this, we first calculate the global answer distribution

for each question type, and then downsample the questions with the most frequent answer

to a pre-defined ratio of 80%. We repeat this operation iteratively, until the stopping criteria

are met: the question numbers, or the ratio of the most frequent answer is below certain

pre-set thresholds.

After question resampling and answer balancing, the SQA dataset has more balanced

answer distributions and question type composition. Details are illustrated in Figure 4.4.

4.4.3 Summary of Generated OppQA Dataset.

To create the OppQA dataset, we use a total of 16 question families and more than 110

text templates. Table 4.1 shows examples of generated questions for different types, and also

their possible answers.

Table 4.2 shows the statistics of OppQA dataset. It includes 1362 unique sensory scenes,

and a total of 91 thousand questions, 72 thousand of which are unique. Among them, 39

thousand unique queries are used. The question query represents the functional program

used to generate the question. Diverse questions with the same semantic meaning share

the same query. As shown in Figure 4.4 (B), OppQA has an average question length of 18

words, and is complicated enough compared with other popular VQA datasets. It can be

2We exclude the questions of ”Time Query” type in OppQA dataset, since these questions have non-
categorical answers. SQA models with regression tasks are left to future work.
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Q Type Question Example Possible Answer

Existence
Is it true that the user closed

the door after opening the door?
Yes, No

Counting
How many times did

the user close the door?
<integer >

Action

Query

What did the subject do

after cleaning the table?

open the door,

wash dishes,

drink water, ...

Time

Query

How long did

the user wash dishes?
<float >

Action

Compare

Confirm if the user performed

the same action proceeding

and following opening the fridge?

Yes, No

Number

Compare

The user toggled the switch

for the same times before

and after drinking water?

Yes, No

Table 4.1: Question Examples and Possible Answers in OppQA.

76



Figure 4.4: Statistics of OppQA dataset. (A):Global answer distribution of different ques-

tion types. (B): Question length distribution compared with other VQA datasets. (C):

Question type composition. Question type ”Time Query” with non-categorical answers is

excluded in this figure.

used as a benchmark for evaluating SQA models.

The OppQA data is split into a training set and a testing set. The training set contains

SQA data generated on the first two ADL runs and a drill run of users 1-4, and the rest of

the runs are used to generate testing data. The training data and testing data do not share

sensory context, but they have overlapping question queries. Table 4.2 lists the details of

OppQA.
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Split
Sensory

Contexts
Questions

Unique

Questions

Unique

Queries

Total 1,362 91,412 72,936 38,922

Training 730 74,470 62,789 35,262

Testing 632 16,942 14,643 6,275

Table 4.2: Statistics for the OppQA dataset.

4.5 DeepSQA Models and Implementations

In this section, we describe the structures and implementation details of the proposed SQA

models, along with a set of baselines.

All of the models that process context sensory data first use a convolutional-LSTM net-

work to get the sensory representations. The ConvLSTM network is composed of two con-

volutional modules(which contain a convolution layer with 1 × 3 kernel, ReLU activation

and a maxpooling layer), followed by an LSTM layer and a fully-connected layer to generate

a 128-dimension dense embedding vector. Both the LSTM layer and fully-connected layer

have 128 hidden units. Instead of processing sensory data from different sources using differ-

ent neural networks, we perform an early fusion on 77 channels of sensory reading from all

the seven distributed sensors, which leads to better performance on this dataset. Therefore,

the size of input sensory data is 77 × 1800, with 1800 specifying the window length of a

one-minute window. This parameter is also changed in later simulations when we evaluate

the SQA performance with respect to the task complexity.

All the models, that process questions, use LSTM-based models to get question represen-

tations. Every word in the question is first embedded into a 300-dimensional representation

using a pre-trained GloVe[83] word embedding matrix, unless otherwise noted. The GloVe

word vectors are pre-trained with six billion tokens with a vocabulary of 400K words. We

use in total two different LSTM-based structures to extract question representations. Details

will be discussed below.
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In the evaluation, we exclude the questions asking about the duration of activities, which

give various non-integer numbers as answers. We then formulate the SQA task as a multi-

class classification problem[4], using the top 27 answers as the classification labels. Therefore,

the output of every model should be a distribution of predicted scores of these candidate

answers.

4.5.1 Baseline Models

We adopt a representative subset of methods from VQA: baselines that predict answers

based on statistics of training data (Prior and Prior-Q), baselines using only question data

(LSTM), or using only sensory data as input (ConvLSTM). Since sensory data are opaque

to humans, we cannot use the crowd-sourced method to collect human answers and evaluate

human performance on this task. As an alternative, we use a Neural-Symbolic approach

with pre-trained native sensory classifiers, and perfect question logic knowledge to mimic

human performance. These methods are described in details as follow:

• Prior: As [4], this baseline answers the most frequent answer in the training dataset

for all questions, which is ’No’ in OppQA dataset.

• Prior-Q: Similar to the Prior method, this model predicts answers based on training

data statistics. For each question type, it predicts the most frequent training-set

answer.

• LSTM: Similar to the ”LSTM Q” in [4], questions are first processed with learned

word embeddings, and analyzed by a word-level two-layer LSTM model, where each

layer contains 128 hidden units. The output question representation, which is the final

state of LSTM, is then fed into an MLP network using two hidden layers with 128 units

to predict the distribution over answers. This method uses no context information as

it is ”sensory-blind,” so it can only model question-conditional bias.

• ConvLSTM: Inspired by [55] and [4], this ”question-blind” model only uses sensory

context. Sensory data are first processed using the ConvLSTM network, and then the
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answer is predicted by an MLP with one hidden layer that has 128 units and a softmax

output layer.

• Neural-Symbolic: In this method, we employ two activity classification models rec-

ognizing user activities and locomotion using sensory data at every time step. We then

use 100% correct, hard-coded logic rules to analyze the classification result and answer

the question. These rules are functional modules in Python, hosting all logic opera-

tions, and are selected based on different questions. The activity classification models

are ConvLSTM structures that contain two convolutional layers, followed by an LSTM

layer and a fully-connected layer to map the sensory data to the predicted activity. The

convolutional kernel size is 1 × 3, and two convolutional layers are followed by batch

normalization layers. Sixty-four feature maps are used in each convolutional layer, and

32 hidden nodes in the LSTM layer. The activity classification models are trained

natively on the original OPPORTUNITY dataset, with an accuracy of 80.13% and

74.13% on the activity classification and locomotion classification tasks, respectively.

These numbers could represent the performance of state-of-the-art sensory models on

this dataset.

4.5.2 DeepSQA-based models

Based on the DeepSQA framework, we propose and evaluate three different models that

process both sensory contexts and questions together, analyze and reason about the spatial-

temporal relationships, and draw the final answers. These models are chosen as represen-

tatives, as they employ the state-of-the-art mechanisms and structures in the multimodal

deep learning and the question answering domains. The model DeepSQA-ConvLSTM, uses

a simple but effective elementwise multiplication to fuse the question and sensory represen-

tations together and predict answer based on it. The model DeepSQA-SA, learns how

to search for the features in sensory contexts that are related to the answer using attention

weights calculated based on the questions. The model DeepSQA-CA, decomposes the ques-

tions into multiple explicit reasoning steps, customizes the weighting of the context feature
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vector for each step, and performs iterative reasoning processes to get the answer. Details

of these models are discussed as follows.

DeepSQA-ConvLSTM: This model combines the ability of both sensory processing and

question reasoning in the LSTM and ConvLSTM baselines. Since the representations of both

modalities have the same dimension of 128, the model first fuses the sensory and question

representations using an element-wise multiplication, and then feeds the combined feature

to a two-layer MLP (with 128 hidden nodes) to get the prediction of the answer distribution.

DeepSQA-SA: In this model, we use the Stack Attention(SA) [126, 59] mechanism to fuse

the sensory and question information, and then predict answers based on new attended

features.

Specifically, the questions and sensory contexts are first processed using an LSTM and

a ConvLSTM models to get compact representations in the latent space. These two rep-

resentations are then concatenated together as a combined feature. In the Stack Attention

network, we use a two-layer CNN with 1×1 kernels to calculate the spatial attention weights.

The first and second convolutional layers’ activation functions are ReLU and Softmax, to

calculate the normalized probabilities over all the spatial locations.

The calculated attention weights are then multiplied with the sensory representation to

get the attended sensory feature, where the information relevant to the question is high-

lighted.

We use a glimpse number of two to get two sets of different attended sensory features.

These features are concatenated with the question representation again and fed to a 2-layer

MLP network with 1024 hidden nodes. The final answer is predicted by the last softmax

layer.

DeepSQA-CA: This method uses the Compositional Attention (CA) [48] mechanism to

perform multi-step reasoning over the sensory and question data, by employing a recurrent

structure which strings together p MAC cells, each responsible for performing one reasoning

step. A MAC cell is the basic module in this recurrent architecture.
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In this model, the sensory contexts are processed using the same ConvLSTM network,

while the question data are processed differently. The original question with word tokens

is first converted into a sequence of word embeddings. Instead of using pre-trained GloVe

word embeddings, we learn the embedding matrix with other network parameters during the

training time. The embedding sequence is then processed by a bidirectional LSTM network,

which trains two instead of one LSTMs on the input sequence in two opposite directions.

The question representation is then the final hidden states’ concatenation from the forward

and backward LSTM passes. In addition to the question representation, we also generate

a contextual word sequence, by storing the sequence of output states for each word in the

biLSTM network.

After getting the sensory and question representations, we feed them to the recurrent

MAC structure to perform multi-step reasoning. Each MAC cell is composed of a control,

read, and write unit, which operate over control and memory hidden states. The control

unit attends to different parts of the question, to update the control state that represents the

reasoning operation at each time step. The read unit extracts relevant information out of the

sensory context with the guidance of the control state. The write unit integrates extracted

information into a memory state, which becomes the input of the next MAC cell.

The input of a MAC cell are the previous control and memory states, together with the

sensory context representation, question representation, and contextual words. The initial

control and memory states are initialized learned parameters.

At last, the final memory and question representation are concatenated and fed to a

2-layer MLP with a softmax classifier to predict the distribution over candidate answers. An

overview of this model is demonstrated in Figure 4.5.

In our implementation, we set the reasoning step value p as 12, which means that the

recurrent structure has 12 MAC cells. The dimension of hidden states (control and memory)

is 512, and the final MLP network has two layers with 1536 and 512 hidden nodes.
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4.6 Evaluation

In this section, we empirically evaluate the proposed DeepSQA framework by comparing

the model performance with baseline methods. We use the created OppQA dataset and

its variants to test the effectiveness and robustness of SQA models on reasoning about the

spatial-temporal dependencies of human activities.

4.6.1 Implementation Details

In our experiment, the DeepSQA-CA model is implemented in Pytorch, and the other models

are implemented with TensorFlow and Keras frameworks. All the models are trained and

tested on a desktop machine with two Nvidia RTX Titan GPUs. During the training, a

0.15 dropout rate is applied to the convolutional, dense, and LSTM-based layers for the

ConvLSTM and MLP models, and a 1e − 4 weight decay is applied to the DeepSQA-CA

model to avoid overfitting. We train all the models for 40 epochs using Adam optimizer with

a learning rate equal to 1e− 4 and a batch size of 64.

4.6.2 General Observations

We first evaluate the DeepSQA models and baselines on the standard OppQA dataset,

which covers questions of 15 types, and reasons about human activities over a time window

of one minute (1800 samples). The maximum question length is 31 words, and the number of

unique candidate answer is 27, with non-integer answers excluded. The overall performance

of each method is shown in Table 4.3. We break down the performance based on different

question types: existence, counting, action query, number comparison, and action compari-

son. Among them, counting and query are further classified into open-ended questions and

the remaining into binary questions.

The Prior method in the first column predicts ”No” for all the questions, and gets a 0%

accuracy on open-ended questions and 53.27% on binary questions, which is a little bit higher

than 50% of a random guess. This indicates that the answer distribution in the OppQA
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dataset is balanced with minimum global bias. Taking question types into consideration, the

PriorQ method gets better performance, but it still could not predict answers to open-ended

questions well. On the ”Action Query” question type, PriorQ can only get an accuracy of

4.29%, proving that it is indeed a challenging task to predict the correct answer out of 27

candidate answers.

Albeit using pre-trained activity classification networks and perfect reasoning logic, the

Neural Symbolic method show bad performance on OppQA. The primary reason is that

the deep learning models cannot make accurate inferences on the Opportunity dataset (with

an accuracy around 70-80% ). The errors in the noisy inferences accumulate and then dra-

matically reduce the answer correctness. On the other hand, the end-to-end neural network

approaches do not suffer from this problem. One possible explanation is that the neural

network could learn to use reliable features, and compensate for the possible error to make

the right prediction.

Generally, the models with DeepSQA framework show better performance than the

baselines, especially the DeepSQA-CA model, which uses the compositional attention mech-

anism, gets the best performance on all of the question types, with an overall accuracy of

72.38%. The DeepSQA-SA model based on stacked attention shows inferior performance

than some of the baselines. This proves that, although demonstrating good performance

on visual QA tasks, the stacked attention does not work well on reasoning about temporal

dependencies between human activities.

Need to mention, the LSTM model could get an over 60% overall accuracy without

using any sensory context data, and it could even get good performance closer to some of

the DeepSQA models. It is because that for some particular questions, the local bias still

exists. For example, when the question is ”What did the user do after opening the door?”

the answer would be ”Close the door” with a 90% probability. Since we are using real data,

it is inevitable to contain bias induced by natural human behavior patterns.

Performance on Prime Dataset. Because of the unavoidable local bias in the dataset,

we construct a ”Prime Testing Set” based on the original testing data. In this prime dataset,
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we abandon the questions with only a single answer, and all the questions have more than

one answer. This makes it impossible for the models to predict answers using only question

data and without sensory context. This prime set is actually more challenging than the

original testing set. In Table 4.4, we list the performance comparison of all the deep-learning-

based models on the testing dataset and prime dataset. Generally, the accuracies on the

prime dataset are lower than those on the testing set. DeepSQA-CA has the minimum

performance degradation while maintaining good accuracy. Its accuracy loss is less than 2%.

The baseline ConvLSTM model observes a performance improvement on the prime dataset.

It is because that the non-prime questions with a single answer are answered incorrectly by

this model, and removing those questions could passively increase the accuracy.

Baselines DeepSQA

ConLSTM LSTM SA ConvLSTM CA

Testing 44.92% 65.04% 59.74% 67.63% 72.38%

Prime 56.56% 60.39% 53.46% 64.90% 70.48%

Table 4.4: Overall performance on prime testing set

Robustness Against Linguistic Variations. The key motivation of proposing the

sensory question answering task is to improve the inferencing flexibility of sensing systems,

in a way that users can make arbitrary inferences during the run time in the form of natural

language. However, for questions with the same semantic meanings, the natural language

representations might be dramatically different. In order to test the robustness against

linguistic variations of SQA systems, we create a ”Rephrasing Testing set.” This dataset

contains different rephrasings for all the questions in the original testing set, generated using

our question generation tool. We evaluate the four DL-based models which take natural

language question as input on the rephrasing dataset, and list the corresponding accuracies in

Table 4.5. Basically, the performance on the rephrasing set is similar to the testing accuracy,

indicating that DL-based SQA models are robust to question rephrasing. In addition, we
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define a consistency score to further measure the model robustness on every query:

Consistency =

∑m
i=1 1(ai = amajor)

m

The m represents the number of rephrasings for each question query, and amajor is the

majority answer predicted by the SQA model. Table 4.5 shows that the consistency scores

for all the models are greater than 95%, which proves their robustness to linguistic variations.

LSTM
DeepSQA

SA

DeepSQA

ConvLSTM

DeepSQA

CA

Testing Acc 65.03% 59.73% 67.63% 72.38%

Rephrasing Acc 65.86% 60.51% 68.56% 72.86%

Consistency 99.13% 98.97% 99.06% 96.28%

Table 4.5: SQA robustness to linguistic variations

4.6.3 Analysis by Question Complexity

To access the SQA model performance with respect to question complexity, we analyze the

evaluation result of deep learning models by the question length, as shown in Figure 4.6.

The models that do not take the question as input are omitted here. Intuitively, longer

questions should contain more query information, and would be more challenging to answer

than shorter ones. Surprisingly, we do not see a clear correlation between question length

and SQA performance. One possible reason is that the number of words in questions cannot

effectively reflect the questions’ complexity. Some questions are more verbose than the others,

and contain redundant or even useless information, while representing simple queries. This

would lead to the result that SQA models have better accuracies on some longer questions

than those on shorter questions.

Instead of using the number of words as a question complexity measure, we use the num-

ber of required query operations to answer the questions to better capture the complexity.

For example, questions like ”What did the user do after washing dishes?” can be answered
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Figure 4.6: Models performance w.r.t. question length.

using three operations: 1. detect and localize the ”washing dishes” activity; 2.Filter the

activities after the ”washing dishes”; 3. Query the type of filtered activity.

Since the binary and open-ended questions have different complexity, we first categorize

the questions into two groups, and analyze them separately. As shown in Figure 4.7 (A), for

binary questions, there is a linear decrease in SQA model performance with the number of

operations increasing from one to three. However, the accuracies of questions requiring seven

query operations are pretty high. It is probably because the number of this type of question

is larger than others in the training dataset. Models trained on this training dataset learn

to perform well on this type of questions.

Figure 4.7 (B) shows the SQA model performance changes on open-ended questions.

Specifically, the accuracy of the DeepSQA-CA model decreases with the required query op-

erations increasing. However, the other models show poor performance on questions requiring

two operations. We notice that the SQA models are sensitive to the amount of training data.

A larger training dataset would generally lead to a better performance. Apart from these, we

can find that the DeepSQA-CA model shows the best performance consistently regardless

of the complexity of input questions.
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Figure 4.7: Models performance w.r.t. question complexity: (A) Binary and (B) Open-

ended.

4.6.4 Analysis by Context Complexity

We also perform a set of experiments using new datasets generated in the same way as the

original OppQA, but with different context window lengths. Here, we generate four variant

datasets, using a window length of 500, 750, 1000, and 1500 time steps.

Apparently, the SQA task with shorter context length would be simpler, since fewer

activities are involved in the scene, and reasoning about them is easier. In Figure 4.8, we

plot the bar chart of performance for all SQA models that take the sensory context as input.

When the sensor context window is only 500-time-step long, the models like DeepSQA-

CA and DeepSQA-ConvLSTM could get excellent performance with over 90% accuracies.

The performance of DeepSQA-ConvLSTM is even slightly better than DeepSQA-CA.

It is because within a short period, the complex SQA reasoning module is not necessary.
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With the length of sensory context window increasing, the accuracy of SQA models keeps

decreasing, which means that the length of sensory context is a crucial factor affecting the

SQA task’s complexity. Generally, the DeepSQA-CA model shows the best performance

consistently, especially when the sensory context is long and the task is challenging. This

illustrates the effectiveness of the compositional attention mechanism in processing complex

spatial-temporal dependencies on human activity reasoning.

Figure 4.8: Model performance w.r.t. SQA task complexity.

4.6.5 Generalization to new questions

Another interesting characteristic of sensory question answering is its data-efficient training

and generalization ability to new data. During the training, instead of learning to answer

each specific question, SQA models learn to perform basic logical operations and predict

answers based on operation results. At the inference time, SQA models are able to answer

novel questions that they have never seen in the training dataset, but are composed of

familiar activities and logic operations.

In this evaluation, we construct a new dataset OppQA-generalize to test the generaliza-

tion ability of different SQA models. Specifically, this dataset adapts the same configuration

as the original OppQA: with 77-channel data from 7 distributed sensors. We set the context
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window length to 1800, and the stride to 600 during generation. We split the data based on

sensory context and question query to construct the training and testing set. The training

set covers 80% of the sensory contexts, and 50% of all the unique question queries. The test-

ing set contains the rest 20% of the sensory contexts, and all the unique question queries.

The testing set is further divided into Test-familiar and Test-novel sets. The Test-familiar

has question queries overlapping with the training set, and Test-novel has queries different

from the training set. The details of this dataset are described in Table 4.6.

Split
Sensory

Contexts
Questions

Unique

Queries

Train 726 38,121 17,587

Test-Familiar 625 8,715 3,420

Test-Novel 627 8,227 3,305

Table 4.6: Statistics for the OppQA-generalize dataset.

We train different SQA models on the training set, and then test the model performance

on Test-familiar and Test-novel sets separately. The accuracies are listed in Table 4.7.

Test-Familiar Test-Novel

Binary Open Overall Binary Open Overall

Prior 46.90% 0.00% 36.64% 46.55% 0.00% 36.28%

PriorQ 70.11% 18.51% 58.82% 68.86% 19.02% 57.87%

Neural Symbolic 51.12% 12.69% 42.71% 51.08% 13.51% 42.80%

CNN 58.09% 0.00% 45.38% 58.01% 0.00% 45.22%

LSTM 67.80% 53.54% 64.68% 66.91% 46.86% 62.49%

DeepSQA(san) 69.89% 53.38% 66.28% 67.72% 49.01% 63.60%

DeepSQA(convlstm) 71.96% 53.49% 67.92% 71.71% 48.90% 66.68%

DeepSQA(mac) 73.03% 58.42% 69.83% 72.70% 54.30% 68.64%

Table 4.7: Model performance generalization to novel questions

As shown in the table, most models have a performance degradation when facing the
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unseen question queries in the Test-novel dataset. The degradation is more evident for open-

ended questions, where the accuracies drop by around 4 − 7%, compared with 0 − 2% for

binary questions. The DeepSQA-CA model continues to show the best performance on both

Test-familiar and Test-novel testing sets, and it has the lowest performance degradation.

This result demonstrates that the DeepSQA model has better generalization ability to new

question queries.

4.6.6 Discussion

Generation of Natural Language Answer. In this work, we formulate the SQA problem

as a classification problem, where the output classes are the top K answers appearing in

the training dataset. The DL-based SQA models predict the answer distribution on the

K classes, and the class with the highest probability is selected as the predicted answer.

Several limitations exist in this approach. Firstly, the regression-type questions, such as

Query-Time, are not enabled by the SQA models. Secondly, although the SQA models

support answering diverse questions of different types by enumerating the possible answers

in the training set, the output is still constrained to a limited set. In future work, we will

augment the DeepSQA with an answer generator, which takes processed information from

the proceeding reasoning module and creates natural language answers.

Neural-Symbolic DeepSQA framework. At the current stage, we use an end-to-end

neural network structure for modeling the SQA task. So the prediction made by the model is

not explainable. A significant drawback of this purely data-driven approach is that it’s data-

intensive during training, and also memory-consuming for storing the learned dependencies.

Based on the evaluation result, we can observe that model performance degrades when facing

longer sequences (e.g., longer sensory time windows, complex question queries). In future

work, we would like to introduce the idea of neural-symbolic system to the SQA task, to get

a more compact symbolic representation, and robustness on complex scenarios.

Evaluation on Different Sensory Datasets. In addition to OppQA, we also generated

another SQA dataset using ExtraSensory[108] as source data. However, most of the SQA
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models show less satisfied performance on it. The poor performance is due to the challenge

of deep learning models extracting useful information from ExtraSensory data. The model

trained on ExtraSensory natively could only get around < 60% accuracy on the activity

classification task. Consequently, the sensory representation could not provide much infor-

mation to the DeepSQA. Admittedly, the vibrancy of visual question answering research

largely depends on the mature visual information processing ability. We believe that the

proposed DeepSQA framework and SQA-Gen tool in this paper could help facilitate the

SQA research.

Generalization to Complex & Distributed Scenarios. Thus far we have only discussed

an evaluation on OppQA, where multimodal data from different sensors are fused together

such that a single sensory processing module is used in DeepSQA models. We believe that

it can be extended to SQA scenarios with multimodal data dispersed far apart. The complex

spatial-temporal relationship between sensory data needs to be explored and reasoned to get

the correct answer. In future work, we will deploy DeepSQA system in complex real sensor

network scenarios, with more rising challenges like time synchronization and sensory fusion.

4.7 Conclusion

In this work, we present DeepSQA, a generalized framework for sensory question answering.

By taking both sensory data and natural language questions simultaneously, DeepSQA is

able to identify the tasks specified by questions and perform reasoning on sensory data

accordingly. It reduces the laborious work of training new deep learning models when new

tasks are introduced, and improves the inferencing flexibility. To evaluate SQA models,

we introduce SQA-Gen, which automatically generates SQA datasets using labeled source

sensory data. Based on this tool, we propose the OppQA dataset for benchmarking SQA

model performance. Results on OppQA prove the effectiveness, reliability, and robustness

of DeepSQA. Future work will focus on evaluating DeepSQA in real-world scenarios with

distributed and multimodal sensory data.
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CHAPTER 5

Enabling Edge Devices that Learn from Each Other:

Cross Modal Training for Activity Recognition

5.1 Introduction

Edge devices are typically equipped with a wide variety of sensing modalities for tracking

environmental markers. To provide insights and enable context-aware applications (e.g. user

activity recognition [125], workout tracking [96], speech recognition [35]) the data collected

on these devices are used to train deep neural network models. However, to fully realize the

learning-at-the-edge paradigm, several challenges still needs to be addressed. In particular,

the model training process needs to handle insufficient labeled data, and the heterogeneity

in inter-device sensing modalities.

As a step towards addressing the above concerns, we propose RecycleML– a mechanism

to transfer knowledge between edge devices. Our approach is guided by the observation that

application-specific semantic concepts can be better associated with features in the higher

layers (close to the output side) of a network model [26]. This observation allows us to

conceptualize the layers of the different networks as an hourglass model, as shown in Figure

5.1. The lower half of the hourglass correspond to the lower layers (close to the input side)

of the individual models (trained on specific sensing modalities). The narrow waist is the

common layer (latent space) into which the lower layers project their data for knowledge

transfer. The upper half of the hourglass comprises of the task-specific higher layer features

which are trained in a targeted fashion for task-specific transfer.

To evaluate RecycleML, we emulate edge devices with three sensing modalities - vision,
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Figure 5.1: Shared representation between edge devices.

audio and inertial (IMU) sensing as shown in Figure 5.2. We perform zero-shot learning [101],

i.e. use zero training labels, across different sensing modalities when they are performing

the same classification task. We achieve this by training the target edge device model to

have the same latent space as the source model. RecycleML can also learn to expand the

classification tasks of the transferred model with very few training examples.

Our results across a mix of sensory substitutions and task transfers show that, over our

collected CMActivity dataset, RecycleML reduces the amount of labeled data required to

train edge devices by at least 90% and speeds up the training process by up to 50 times after

doing knowledge transfer using unlabeled data.

Our contributions are as follows:

1. We combine the idea of transfer learning (lower layers transfer) with sensory substi-

tution (higher layers transfer) together and propose a unified framework, where the

knowledge in every part of a network could be transferred.
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2. We introduce a new dataset CMActivity that have synchronized data of three modal-

ities: vision, audio, and inertial.

3. For activity recognition task, we verify that the shared representation exists for time

series sensory data, and it can help transfer knowledge from ambience edge devices

to wearable edge devices and vice versa. The code for our experiment is available

on-line.1.

5.2 Method Overview

5.2.1 Conceptual Scenario

Suppose Alice has an edge device DV 1 with camera in her living room, and it is trained

to do activity recognition. Alice wants to replicate the inferencing ability of DV 1 on other

devices: a smart watch DW which she wears regularly, an acoustic device DA1 in her living

room to turn off DV 1 whenever needed due to privacy reasons, and a camera DV 2 and a

voice assistant DA2 in her office, Our objective is to transfer activity recognition knowledge

of DV 1 to DA1 and DW (Video→Audio and IMU), and later, transfer activity recognition

knowledge of DW to DA2 and DV 2 (IMU→Audio and Video).

5.2.2 RecycleML Description

RecycleML uses the same latent feature representation across edge devices of different modal-

ities to do knowledge transfer. Knowledge transfer uses synchronous unlabeled data to map

the input of untrained model to the shared latent feature representation of the pre-trained

model (details in Section 5.2.2.1). Later edge devices can either reuse the upper layer across

models or do task transfer on the upper layers if needed (details in Section 5.2.2.2).

1https://github.com/nesl/RecycleML
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Figure 5.2: Knowledge transfer across edge devices with different sensing modalities.

5.2.2.1 Knowledge Transfer

For simplicity, let us consider two edge devices DX and DY , each with different sensing

modality capturing data X and Y respectively. Suppose DX has a pre-trained model MX

and performs task TX . Our goal is to train a new model MY for DY to perform task TY .

To transfer knowledge from DX to DY , we collect data X and Y from both devices while

observing the same event. X and Y need not be labeled. An important requirement is the

time synchronization in devices DX and DY so as to capture the same event in their data X

and Y . Synchronization is natural in different sensing modalities. For example, vision, audio

and inertial sensors observing the same event of human motion can capture it in different

signals (see Section 5.3.1 for details).

We input data X to the pre-trained model MX , and instead of getting the final output

value, we calculate the activation values f(X) of an intermediate layer that acts as our shared

latent feature representation. f is the transformation of all the early layers before the specific

activation. We use f(X) as the training value for the model MY of device DY . Specifically,

we choose a new network g, specialized for input modality Y , and train the network g(Y ) so

that it maps Y to the same shared latent feature representation by minimizing |g(Y )−f(X)|2

as our loss function. We generate the model MY for device DY by adding the task specific

output layers to g. In this way, model MX teaches the new model MY in a teacher-student
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data distillation manner [43].

5.2.2.2 Task Transfer

Transferring knowledge from device DX to DY does not need any ground-truth labels. How-

ever, the new model MY for device DY may need additional information before performing

any classification or regression task. Therefore, three different scenarios arise when devices

DX and DY performing tasks TX and TY in classification settings respectively: (i) Devices

DX and DY are performing same tasks TX , (ii) Devices DX and DY are performing related

tasks TX and TY , e.g. where TX and TY are both human activity inferencing but with differ-

ent numbers of categories, and (iii) Devices DX and DY are performing completely different

tasks TX and TY . In this paper, we study how to transfer knowledge between devices in the

first two scenarios.

We explore two different methods of task transfer:

• PureTransfer directly uses the higher layers of model MX for new model MY . In this

case no further training is needed and no labeled data is required.

• Transfer+LimitedTrain freezes the network g and adds higher layers toMY and retrains

only the higher layers using limited labeled data.

In the first scenario, since the tasks are same we can use both methods. In the second and

the third scenarios, direct transfer of higher layers from model MX to model MY does not

work as MX does not give the same desired output. Hence, we use the second method. In our

experiments, we evaluate scenario (i) of task transfer using both methods of PureTransfer

and Transfer+LimitedTrain and scenario (ii) using Transfer+LimitedTrain.

In our experiments, we used the output of last hidden layer after removing the final

output layer from model MX as the f transformation. Here f and g serve as shared latent

representations across modalities. We add a single task specific layer to g to generate model

MY . In future, we will explore the different choices of f and addition of multiple task specific

output layers to g.
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5.3 Evaluation

5.3.1 Dataset

For our experiments, we collected a new dataset, called CMActivities, composed of videos

for vision and audio modality, and corresponding IMU data (accelerometer and gyroscope)

from sensors on left and right wrist. We collected 767 videos of roughly 10 second each from

2 users2 doing 7 different activities at 6 locations. Every video contains a single activity and

is used to label the vision, audio and IMU data. The total duration of collected data for

each modality is 125 minutes.

Table 5.1: Description of CMActivities dataset

Activity Number of Videos Duration (sec)

Go Upstairs 162 1338

Go Downstairs 161 1113

Walk 119 1143

Run 115 891

Jump 73 995

Wash Hand 73 1070

Jumping Jack 90 958

We collected the videos of the user using an observer smartphone. The wrist sensors

communicate the data to the smartphone of the user doing the activities. The IMU data

was timestamped by user’s smartphone and the video by the observer smartphone. Time

synchronization between vision and audio is naturally present because both are extracted

from the same videos. However, time synchronization between the user smartphone and

the observer smartphone is needed so as to synchronize video and IMU data. In our data

collection, we used the default smartphone timestamps synchronized through the Network

2The data is collected from the authors and thus does not require approval from IRB.
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Time Protocol (NTP) [80] service, and observed a maximum time difference of 0.5 seconds

between the observer smartphone and the user smartphone. We leave it for future to explore

the effect of poor time synchronization across devices in observing the same event. We expect

the knowledge transfer capabilities of RecycleML to degrade as the time difference between

devices increases.

The details of CMActivities are shown in Table 5.1. The data collection was done at

different locations with two users wearing separate set of clothes at each location so as to

make sure that the trained classifier learns the activity features and is least affected by

the environmental factors. We split 767 videos and IMU sessions into three parts: training

dataset (624), testing dataset (71) and personalization dataset (72). Training and testing

datasets contain 7 activities at 5 different locations and personalization dataset contains 5

activities at 6th location. We don’t have Go Upstairs and Go Downstairs activities in the

personalization dataset.

The training dataset is further split into 3 parts: Pre-Training set, Transfer set and

LimitTrain set. The personalization dataset is split into PersonalTrain and PersonalTest

sets. The testing dataset is used only for evaluation. The frame rate of video is 29 and

the sampling frequency of audio and IMU is 22050 Hz and 25 Hz respectively. We use a

window of 2 seconds to extract vision, audio and IMU features from dataset with sliding

window of 0.4 seconds between consecutive windows. In case of vision and IMU, we use raw

features directly as input to the models. We extracted features from the raw audio data

using Librosa [79] and use it as the input features. Specifically, we extract mel-frequency

cepstral coefficients (MFCC) [74], power spectrogram [27], mel-scaled spectrogram, spectral

contrast [52] and tonal centroid features (tonnetz) [40].

In total, we have 11976 samples in training (5000 samples for Pre-Training set, 6000

samples for Transfer set, and 976 samples for LimitedTrain set), 1377 samples in test and

1592 samples in personalization (475 samples for PersonalTrain set and 1117 samples for

PersonalTest set) for each modality.
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Table 5.2: Testing accuracy of baseline models

Input Modality Video Audio IMU

Accuracy 90.92% 92.81% 90.99%

Number of parameters 4.6M 0.8M 57K

5.3.2 Baselines

To compare the results of RecycleML, we trained Video, Sound and IMU models using

Pre-Training dataset individually to do activity recognition. The models we use are the

state-of-the-art deep learning architectures that are generally adapted in a wide range of

applications:

(a) Video Network is a reduced version of C3D [107] network. It includes four 3D-

convolutional modules combined with 3D-maxpooling layers, followed by 3 fully-connected

layers and one output layer. The total number of parameters are about 4.6 million.

(b) Audio Network is a multi-layer perceptron model. It has 10 fully-connected layers

and a total of 810 K parameters. We add drop-out to avoid overfitting.

(c) IMU Network is a CNN network. It has 2 convolutional modules (convolution layer +

maxpooling layer), 3 fully-connected layers and a output layer. 57K parameters are trainable

in this network.

Table 2 shows the summary of the individual models. The models are trained using

the training dataset and tested on testing dataset. These baseline models are trained using

SGD [13] and Adam [61] optimizers with a learning rate of 0.001. We save the models with

best test accuracy after training for 500 epochs.

5.3.3 Knowledge Transfer Results

Knowledge transfer results are presented in Table 5.3. In the first and second experiment,

vision device DV 1 is trained while acoustic device DA1 and wearable device DW are untrained

respectively. In the third and fourth experiment wearable device DW is trained while vision
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device DV 2 and acoustic device DA2 are untrained. For each of these four transfers, we

follow the same procedure. Taking vision device DV 1 to acoustic device DA1 as an exam-

ple, we first train the vision model of DV 1 from scratch using the Pre-Training set (5000

samples) of training dataset. We use the standard SGD optimizer with a learning rate of

0.001. The training is finished in 500 epochs. We then use DV 1 as a pre-trained device to

transfer knowledge to a DA1 following the procedure described in Section 5.2.2.1. In the

knowledge transferring process, we use Adam optimizer with a learning rate of 0.001, and

run it for 500 epochs. The data used in transfer process are the synchronized unlabeled

vision and sound data from Transfer set (6000 samples) of training dataset. After transfer,

the higher layers of audio model can be created using two methods Pure-Transfer and Trans-

fer+LimitedTrain discussed in Section 5.2.2.2 when both DV 1 and DA1 are doing the same

task. In Pure-Transfer method audio model uses the output layer of vision model directly.

In Transfer+LimitedTrain, we train the new output layer for audio model. We select a small

labeled set of 500 samples randomly out of 976 samples from LimitedTrain set of training

dataset and name it LimitTrainSet. We use the LimitTrainSet to train the output layer of

audio model for 100 epochs using Adam optimizer. As a comparison, we also trained an

audio model from scratch using the same LimitTrainSet for 500 epochs. We use more epochs

for training from scratch as it takes more time to converge. The other three transfers are

tested in the same way. The Audio and IMU models which are trained from scratch use

Adam optimizer.

Note: In Video to IMU transfer, it takes more time to transfer the knowledge, so we

perform the knowledge transfer for 1000 epochs. In real implementations, the knowledge

transfer process for edge devices can either be done in background or at the server using

unlabeled data, so as to avoid the overhead.

Table 5.3 shows the knowledge transfer results between devices doing the same task of

activity recognition. Model performance is measured by test accuracy. Considering row

1, Trained-Device is the accuracy of pre-trained device DV 1. Pure-Transfer and Trans-

fer+LimitedTrain are the accuracy of device DA1 using both methods respectively. The last
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cell shows the accuracy of audio model trained from scratch using LimitTrainSet. As we

can see both methods Pure-Transfer and Transfer+LimitedTrain achieve better accuracy

than training from scratch. This shows that shared latent feature representation is success-

ful in doing knowledge transfer across devices of different modalities. We also observe that

Transfer+LimitedTrain usually gives the best performance.

Figure 5.3: Transfer+LimitedTrain converges in 10 epochs whereas Training from scratch

requires training for around 500 epochs.

In our experiment, we train every model for 10 times to preclude the effect of randomness.

Based on the results, significance tests (compared to training from scratch) are carried out

using t-test. We find that the Transfer+LimitedTrain can outperform training from scratch

(p < 0.005) in three cases (Video to Audio, Video to IMU, IMU to Audio); and p < 0.4 for

the case of IMU to Video transfer. This is because video model is complicated and sensitive,

and the performance of video model trained from scratch fluctuates.
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5.3.4 RecycleML Reduces Training Time

We further compare the effect of number of epochs between Transfer+LimitedTrain method

and training from scratch using LimitedTrainSet (500 samples). Figure 5.3 shows our results

in all the 4 transfers. Clearly, Transfer+LimitedTrain method trains model with accuracy

greater than 80% in most of the cases with less than 10 epochs, while training from scratch

can not achieve comparable accuracy after 500 epochs. This makes RecycleML even more

suitable to be deployed on edge devices: it reduces the training time by 50x. The reason for

this huge gain is the knowledge transfer using unlabeled data and Transfer+LimitedTrain

trains only the output layer so it requires very less number of epochs.

5.3.5 RecycleML Reduces Required Labeled Data

To study the effect of number of labeled data samples on model accuracies, we change

the size of training data for Transfer+LimitedTrain and training from scratch. All the

training samples were selected randomly from LimitedTrain set (976 samples) of training

dataset. Although methods converge at different speeds (Transfer+LimitedTrain converges

in 10 epochs, while Training from scratch takes about 500 epochs), in this experiment, we

only compare the converged performance of all the models. Figure 5.4 shows our results

for four device transfers. Consider Video (DV 1) to Audio (DA1), Transfer+LimitedTrain

is compared with training Audio (DA1) from scratch. Using Transfer+LimitedTrain, the

model achieve best achievable accuracy using only 50 data samples. While training model

from scratch cannot get comparable results even if we increase the size of available data to

976 samples as shown in upper left figure. The testing was performed on entire test dataset.

So RecycleML reduces labeled data requirement by at least 90%. However, in ideal scenario,

when abundant labeled data samples are available, training from scratch slowly converges

and can outperform Transfer+LimitedTrain. For IMU (DIMU) to Video (DV 2), when more

than 750 labeled data are available, training from scratch can outperform the method of

Transfer+LimitedTrain.
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Figure 5.4: With different sizes of labeled data, Transfer+LimitedTrain converges better

than Training from scratch.

5.3.6 Related Task Transfer Using RecycleML

We tested knowledge transfer from video device to IMU device with video model doing activ-

ity recognition task with 7 categories while goal of IMU model is to do activity recognition

task with 5 categories in a totally different location.

We did knowledge transfer as described in Section 5.2.2.1 and finally used Transfer+LimitedTrain

method to train the output layer of IMU model using PersonalTrain set (475 samples). The

trained models are tested on PersonalTest set (1117 samples). In Figure 5.5, we plot the

learning curve on Transfer+LimitedTrain and training from scratch trained using Person-

alTrain . When transferring knowledge to a relevant task, RecycleML still learns faster: it

converges in 10 epochs and gets a testing accuracy of 91.58%, while training from scratch

takes 500 epochs and only gets an accuracy of 61.86%.
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Figure 5.5: Transferring knowledge to a new task: Transfer+LimitedTrain learns faster and

better than Training from Scratch.

5.4 Related Work

RecycleML is inspired from prior works in machine learning for multimodal data. Previous

works [47, 87, 81, 86] combine lower layers from multiple modalities to develop a unified

model that outperforms the individual modalities. Radu et al. [87, 86] study combining

modalities for human activity recognition on mobile devices. We use the idea of representing

multiple modalities in the same latent space in intermediate layers of a deep network, but our

focus is on knowledge transfer for machine learning models across multi-modal edge devices.

Ba et al. [8], Hinton et al. [43] present knowledge transfer between the same modality.

Ngian et al. [82] use shared representations to improve visual speech classification. Aytar

et al. [6] learn shared representations that connect multiple forms of image and text data.

Frome et al. [32] show knowledge transfer from text to vision for object classification. Gupta

et al. [36] present knowledge transfer between labeled RBG images and unlabeled depth and

optical flow images. Aytar et al. [7] show that visual knowledge can be transfer from vision
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to sound.

The prior works either focus on image and text data, or take two modalities (vision and

audio) from the same source into consideration. In RecycleML, we consider three commonly

available sensing modalities on edge devices from multiple sources, and create a unified rep-

resentation that bridge them. This allows edge devices to use multimodal knowledge transfer

across different sensing modalities of ambient sensors (vision and audio) and wearables sen-

sors (IMU) for the first time.

5.5 Discussion

While RecycleML shows promise in terms of handling both paucity of labeled data and also

speeds up model training across multiple modalities, the ability of the approach to gener-

alize to different applications for larger datasets needs further investigation. Furthermore,

our experiments indicate that while the trained models can be personalized to a specific

environment, they need regularization to generalize to new settings.

For cross modal knowledge transfer using RecycleML, we need unlabeled but synchronized

data. In our experiments, since audio and video data are captured by the same device,

they are naturally synchronized. In addition, we used the default smartphone timestamps,

synchronized through the Network Time Protocol (NTP) [80] service, to synchronize IMU

device with video and sound device. In real settings, however, edge devices have to be time

synchronized in order to observe the same event at the same time.

In our experiments, we chose the fully connected layer (immediately prior to the out-

put layer) as the common latent space. In future, we plan to explore different choices for

the shared representation layer, for efficient sensory substitution and task transfer on edge

devices.
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5.6 Conclusion

Heterogeneity in sensing modality of the edge devices, together with lack of labeled training

data, represent two of the most significant barriers to enabling the learning-on-the-edge

paradigm. Towards this end, we presented RecycleML, a system that enables multi-modality

edge devices to perform knowledge transfer between their models by mapping their lower

layers to a shared latent space representation. RecycleML further allows task-specific transfer

between models by targeted retraining of the higher layers beyond the shared latent space

– reducing the amount of labeled data needed for model training. Our initial experiments,

performed using multi-modality data (vision, audio, IMU) for activity recognition, show

that transfer model trained using RecycleML leads to reduced training time and results in

increased accuracy compared to an edge model trained from scratch using limited labeled

data.
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CHAPTER 6

Concluding Remarks

6.1 Conclusion

In this dissertation, we investigate the deployment of deep learning systems for IoT devices

in complex and dynamic environments. More specifically, we focus on addressing complex

tasks using a neural-symbolic framework with the help of prior knowledge, achieving flexible

inferencing at the run-time while reducing retraining effort, and adapting deep learning

models to dynamic IoT settings by cross-modal knowledge transfer.

For the complex event detection, we design and implement the DEEPCEP framework,

which combines the logical reasoning ability of CEP and the inference power of Deep learning

models to detect complex events for unstructured, distributed multimodal data. We use the

scenario of detecting an unattended bag in a sensitive area to illustrate how DEEPCEP can

be instrumented for an application. In particular, we highlighted how DEEPCEP provides a

framework to propagate the uncertainty from a detected simple event to a composed complex

event using ProbLog. In addition, we presented Neuroplex, a neural-symbolic framework for

detecting complex events. Using semantic knowledge to guide the learning, Neuroplex can

learn to detect complex events with much fewer and sparse annotations. Results on different

datasets prove the effectiveness, reliability, and robustness of Neuroplex.

To enable flexible inferencing and understand opaque data better, we introduce Deep-

SQA, a generalized framework for sensory question answering. By taking both sensory data

and natural language questions simultaneously, DeepSQA can identify the tasks specified by

questions and perform reasoning on sensory data accordingly. It reduces the laborious work

of training new deep learning models when new tasks are introduced, and improves the in-
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ferencing flexibility. To evaluate SQA models, we introduce SQA-Gen, which automatically

generates SQA datasets using labeled source sensory data. Based on this tool, we propose

the OppQA dataset for benchmarking SQA model performance. Results on OppQA confirm

that DeepSQA is effective and robust in sensory QA tasks.

By proposing RecycleML, we provide a unified framework for knowledge transfer of deep

learning models. The introduced sensory substitution learning allows knowledge transfer

even when the input modality is changing. RecycleML also allows task-specific transfer

between models by retraining the higher layers beyond the shared latent space, which ef-

fectively reduces the amount of labeled data needed for model training. This framework

increases the adaptability of deep learning models of IoT devices in dynamic environments.

The evaluation result on the cross-modal activity dataset demonstrates the performance of

RecycleML in both learning speed and data efficiency.

We release our datasets and codes on public GitHub repositories for all the work above

to help facilitate future research in this area.
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