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SKILL LEARNING AND REPETITION PRIMING IN SYMMETRY DETECTION:
PARALLEL STUDIES OF HUMAN SUBJECTS AND CONNECTIONIST MODELS!
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Lisa Tabor

Department of Psychology
The Johns Hopkins University

Terrence J. Sejnowski

Department of Biophysics
The Johns Hopkins University

ABSTRACT

The present paper is a preliminary report of our work exploring
skill learning and repetition priming in parallel studies of
mirror symmetry detection in humans and network models. The
memory mechanisms supporting the acquisition of skill and
repetition priming in humans have been the subject of much
speculation. On one account, drawing on the distinction between
procedural and declarative learning, these learning phenomena grow
out of experience-based tuning and reorganization of processing
modules engaged by performance in a given domain, in a manner that
is intimately tied to the operation of those modules. Such
learning appears similar to that suggested by the incremental
learning algorithms currently being explored in massively-parallel
connectionist models (e.g., the Boltzmann machine). In the
present work, both learning phenomena were observed in the
behavioral data from human subjects and the simulation data from
the network models. The network models showed priming effects
from the start of de novo learning despite being designed to
handle generalization to new materials - the essence of skill
learning - and without additional mechanisms designed to provide a
temporary advantage for recently presented material. Priming
occurred for the human subjects despite the use of novel materials
for which pre-existing representations cannot already be present
in memory. These findings support the notion that skill learning
and repetition priming are linked to basic incremental learning
mechanisms that serve to configure and reorganize processing
modules engaged by experience.

1 Supported by a Biomedical Research Support Grant from the Division of
Research Resources, NIH and a grant from the Sloan Foundation to NJC, and by
grants from the National Science Foundation, System Development Foundation,
General Electric Corporation, Exxon Education Foundation, Allied Corporation
Foundation, Westinghouse, and Smith, Kline & French Laboratories to TJS. We
thank Caroline McKeldin for research assistance and Valerie Mehl for
manuscript preparation. Reprint requests should be sent to Neal J. Cohen,
Department of Psychology, The Johns Hopkins University, Baltimore, MD 21218.
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INTRODUCTION

The memory mechanisms supporting the ability to acquire new skills and
the additional facilitation of performance due to repetition priming effects
(i.e., superiority in task performance for repeated materials) have been the
subject of much recent work in cognitive science and cognitive
neuropsychology. Skill learning and repetition priming are both exhibited as
a consequence of experience in amnesic patients despite their impaired recall
and recognition of the specific materials used to train and test skilled
performance, poor recollection of the learning experiences during which
skilled performance was developed, and poor insight into the nature of the
knowledge underlying the increasingly skilled performance (see Cohen, 1985;
Squire & Butters, 1984 for reviews). Skill learning and repetition priming
have been dissociated from aspects of explicit remembering (recall and
recognition) in normal subjects as well (see Kolers, 1979; Schacter, 1985;
Tulving, 1985 for reviews). We have argued that these learning phenomena
reflect the operation of a procedural memory system that influences the
organization of perceptual and action systems in a way that does not depend
upon explicit representation of particular learning experiences or of rules
about the world (Cohen, 1985; Cohen, Eichenbaum, DeAcedo & Corkin, 1985;
Squire & Cohen, 1984). On this view, skilled performance in a given domain
grows out of the tuning and reorganization of processing and action modules
engaged by performance in that domain; the learning that results consequent to
experience in that domain is intimately tied to the operation of its
processing components.

The characteristics of procedural learning and its relationship to the
declarative system have been explored most extensively by John Anderson, who
has modeled the procedural system in a production-system framework in the
context of a broader conceptualization of memory and cognition (e.g.,
Anderson, 1982, 1983). Our view of the procedural system, however, and the
explanation of skill learning and repetition priming that it suggests, seems
to bear strong similarity to that of the incremental learning algorithms
currently being explored in massively-parallel network models.

One example of network architectures is the Boltzmann machine, which has

been applied successfully to such problems as figure-ground separation in
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visual perception (Sejnowski & Hinton, 1986). The processing units in this
architecture are binary and connected symmetrically with coupling strengths or
weights that can have positive or negative values. There exists a learning
algorithm for the Boltzmann machine that allows the network to automatically
find a set of weights for solving a problem given only examples of typical
inputs and the required outputs (Hinton & Sejnowski, 1983; Ackley, Hinton &
Sejnowski, 1985). The Boltzmann machine learning algorithm has recently been
used for learning to detect the axis of mirror symmetry in checkerboard-based
patterns (Sejnowski, Kienker & Hinton, 1986). This problem is a second-order
predicate in the sense of Minsky and Papert (1969) and is beyond the
capability of the perceptron learning algorithm (Rosenblatt, 1959) and
Hopfield networks (Hopfield, 1982). The crucial difference that distinguishes
Boltzmann machines from perceptrons and allows them to solve difficult
problems is the presence of additional units between the input and output
layers, called hidden units. These hidden units can be used as feature
detectors for solving the problem; the learning algorithm discovers the
optimal set of feature detectors by shaping the weights among units through
incremental changes.

In nearly all previous work with connectionist models, the focus has been
on the ability of a network to generalize from examples to new instances on
which the network was not previously trained?. The work with human subjects
suggests that skill learning, measured in terms of the improvement in
performance for novel materials in the trained domain, is closely associated
with repetition priming effects, the additional facilitation in performance
specific to the materials actually presented during training. In order to
examine whether these learning phenomena are linked in the network models as
they are in humans, we have been exploring skill learning and repetition
priming in both Boltzmann machine architectures and human subjects in studies
of mirror symmetry detection for checkerboard-based patterns. It is important
to note that this enterprise is not in any way intended to offer the Boltzmann
machine implementation of symmetry-detection learning as a detailed model of

how humans actually acquire skill in this domain. Rather it is intended to

2 Although McClelland & Rumelhart (1986) and Carpenter and Grossberg et
al. (1985) have considered repetition priming effects in models of word recognition.
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explore whether simple, incremental learning algorithms can manifest both
stimulus-generalizable skill learning and stimulus-specific repetition priming
phenomena in the same networks.

Perception of mirror symmetries is superb in humans (e.g., Kohler, 1929;
Garner, 1962; Bruce & Morgan, 1975; Barlow & Reeves, 1979), and, indeed, has
been assumed to play an important role in the early stages of visual
processing (e.g., Marr & Nishihara, 1978; Biederman, 1985). It is not
surprising, then, that studies of mirror symmetry detection in humans have
focused on its psychophysical characteristics rather than on its improvement
with practice. The acquisition of wvisual symmetry recognition has been
studied in pigeons (Delius & Nowak, 1982) and Boltzmann machines (Sejnowski,
Kienker & Hinton, 1986), but this study is, to our knowledge, the first to
examine the acquisition of mirror symmetry detection in humans. We assume
that despite their already developed skill in symmetry detection, humans will
show considerable practice effects, learning how best to apply symmetry-
detection routines to this particular class of wvisual materials, e.g.,
learning about the critical visual features that are diagnostic of mirror
symmetry for different axes in these particular checkerboard-based patterns.

An important question that has been raised in previous work on repetition
priming in humans, and especially in work with human amnesic patients, is the
extent to which priming depends upon a structured, pre-existing knowledge base
in which particular facts can be temporarily activated by recent experience,
rather than upon acquisition of new knowledge (e.g., see Fowler, Napps &
Feldman, 1985; Schacter, 1985; Gordon, 1986). The present work addresses this
issue in two ways: First, the checkerboard-based patterns used as stimuli in
the present studies are novel materials, and are not a part of subjects’ pre-
existing knowledge structures. That is, any priming effects obtained here
could not be accounted for by postulating the temporary activation of already
stored logogen- or pictogen-like representations. Second, the computer
simulation work explores the possibility of priming effects in networks
learning de novo, where no pre-existing knowledge 1is provided about
topography, symmetry, or checkerboard-based patterns. The present paper is a
preliminary report of findings from our parallel studies of human subjects and
computer simulations relevant to understanding the mechanisms of repetition
priming and its relationship to skill learning.
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METHOD
Twenty-two students at The Johns Hopkins University volunteered to be
subjects in the present studies. 0f these, 12 served in the priming

experiment and 10 served in the axis generalization experiment,

Materials

Stimuli were computer-generated, mirror-symmetric visual patterns
constructed by designating as purple approximately 40% (range = 31-49%) of 81
cells within a 9x9 blue display. Each pattern was symmetrical about one and
only one of four axes: horizontal, wvertical, left diagonal, or right
diagonal. The precise distribution of purple and blue cells within a pattern,
given a particular axis of symmetry, was determined randomly by an IBM PC.
The patterns were approximately 13 cm on each side and subtended approximately

8 deg of wvisual angle.

Apparatus
Patterns were presented on an IBM PC color display controlled by an IBM

PC. Reaction times and response axes were recorded via a Summagraphics

optical mouse.

General Procedure

Subjects were seated individually in front of an IBM PC color display
controlled by an IBM PC, and held a Summagraphics optical mouse in their
dominant hand. They were presented with a series of 400 patterns (divided
evenly among the 4 axes) organized into blocks of 60-80. Within each block
there was an equal number of patterns representing each axis, with no axis
occurring more than 3 times in succession. Subjects initiated each trial by
pressing the left button of the mouse. Each trial consisted of a wvisual
pattern presented for 83 msec followed, after a 17 msec unfilled delay, by a
visual mask. The mask consisted of a regular, alternating-color checkerboard
whose cells were identical in size and color to the test stimuli. It remained
on the screen until a response was recorded, or until 8 sec had elapsed,
ending the trial. Subjects were instructed to indicate the axis of symmetry
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by moving the mouse on the table-mounted pad in the direction analogous to the
axis perceived on the display. They were instructed to respond as quickly and
as accurately as possible, guessing whenever in doubt. After each response,
feedback was given in the form of a re-presentation of the pattern with the
addition of a line indicating the correct axis. The feedback pattern remained
on the screen for 2 sec.

Prior to the start of the test series, subjects received a practice
session consisting of 20 stimuli (divided equally among the axes presented in
the subsequent experimental condition), each presented with a feedback line

indicating the correct axis.

Exp. 1: Priming experiment

Subjects were trained on a combination of repeating (primed) and
nonrepeating patterns. Of the 400 stimuli presented to each subject, there
were 240 nonrepeating patterns (60 of each axis) common to all subjects, with
each subject receiving a different, pseudo-randomized order. The remaining
160 stimuli were the primes, consisting of a set of patterns that repeated at
one of three different rates: In the 1/10 condition, 4 patterns (1 of each
axis) repeated in every 10+2 stimuli; in the 1/20 condition, 8 patterns (2 of
each axis) repeated in every 20+6 stimuli; in the 1/40 condition, 16 patterns
(4 of each axis) repeated in every 40+10 stimuli. Note that the overall
percentage of prime stimuli in each series was maintained at 40% across the
different conditions by doubling the number of prime patterns for each halving
of the prime repetition rate. The prime patterns were yoked across the three
priming-rate conditions such that a given prime pattern appeared in each

condition. Stimuli were presented in 5 blocks of 80.

Exp. 2: Axis peneralization experiment

This experiment consisted of a training phase, in which patterns were
symmetric about one of only two axes, and a testing phase, in which patterns
were symmetric about one of four axes, as in the priming experiment. The
training phase consisted of 100 stimuli symmetric about either the left and
right diagonal axes, for one group of subjects, or the horizontal-vertical
axes, for another group. These stimuli, presented in 2 blocks of 50, were
different for each subject. The testing phase consisted of 300 stimuli (75 of
28
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each axis) common to all subjects, with each subject receiving a different,

pseudo-random order. The test stimuli were presented in 5 blocks of 60.

Computer Simulations
Networks

Two networks were studied. Both had 81 input units, representing the 81
cells of the 9x9 array, and 4 output units, representing the 4 possible axes
of mirror symmetry. They differed with respect to the number and connectivity
of the hidden units. One mnetwork had 12 hidden wunits, each fully and
symmetrically connected to all of the input units and output units (hereafter
called the global-unit network). The other network had 72 hidden units, each
connected to the 4 output units and to one of 9 3x3 sections of the 9x9
stimulus array (hereafter called the local-unit network). For both networks,

the hidden units were not interconnected.

General procedure

The learning algorithm and implementation details are the same as those
described in Sejnowski, Kienker and Hinton (1986). All networks started with
all weights set to zero except for the axis generalization experiment, in
which the training phase ran until performance reached asymptote and then
switched to the testing phase until performance again reached asymptote.

Approximately 40,000-100,000 patterns were presented in each simulation.

Materials

Patterns were randomly generated following the same constraints as those
used in the human experiments. Patterns were composed of approximately 40%
(range = 31-49%) of the 81 cells in a 9x9 array being "on" in such a way as to

be symmetric about one and only one of the four axes.

Exp. 1: Priming experiment

The networks were trained on a combination of repeating (primed) and
nonrepeating patterns. In each simulation, two priming rates were included,
with one being a multiple of 2 or 3 that of the other. In each case (with the
exception of the condition with the highest priming rate; see below), there

were at least 20 different patterns that served as prime stimuli for each
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priming rate, divided equally among the different axes. There were six
different conditions, involving priming rates of 1/50 and 1/150, 1/100 and
1,200, 1/200 and 1/400, 1/400 and 1/800, 1/800 and 1/1600, and 1/833 and
1/2500.

Five simulation conditions were run with the global-unit network with
several replications. For three of these, the overall percentage of prime
stimuli was held constant at 30% (20 different patterns each at 1/100 and
1/200; 80 different patterns each at 1/400 and 1/800; and 160 different
patterns each at 1/800 and 1/1600). For the other two simulations, the
overall percentage of prime stimuli was permitted to vary, with 9 and 20 prime
patterns respectively at 1/50 and 1/150 (31% prime stimuli), and 20 prime
patterns each at 1/833 and 1/2500 (3.2% prime stimuli).

Five simulation conditions were run with the local-unit network with
several replications. For two of these, the overall percentage of prime
stimuli was held constant at 30% (40 different patterns each at 1/200 and
1/400; and 80 different patterns each at 1/400 and 1/800). For the other
three simulations, the overall percentage of prime stimuli was permitted to
vary, with 20 different patterns each at 1/100 and 1/200 (30% prime stimuli),
at 1/200 and 1/400 (15% prime stimuli), and 1/400 and 1/800 (7.5% stimuli).

Exp. 2: Axis generalization experiment

In the training phase, the networks were presented with patterns
symmetric about one of only two axes, either the left and right diagonal axes,
for one set of simulations, or the horizontal-vertical axes, for another set
of simulations. In the testing phase, the networks were presented with
patterns symmetric about one of the four possible axes, as in the priming

experiment,

RESULTS

Human Experiments
Exp. 1: Priming experiment

Subjects began training with performance well above chance levels and
showed steady skill learning across the 5 blocks of the experiment. With

practice, responses to the nonrepeated patterns became increasingly accurate
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Figure 1. Percent correct across trials for primed and unprimed
patterns. Across priming conditions (1/10, 1/20, and 1/40), the
overall percentage of prime stimuli was held constant.

(see Figure 1) and had shorter latencies (see Figure 2). Subjects also showed
clear repetition priming effects, measured both in terms of percent correct
(Figure 1) and reaction time (Figure 2). Repetition priming was evident for
all blocks for the 1/10 repetition rate and seemed to emerge by the last two
blocks for the 1/20 repetition rate; no priming was observed for the 1/40
repetition rate.

One interesting result concerns performance for the different axes when
analyzed separately. Performance was superior for the horizontal and vertical
axes, for which subjects presumably have had a good deal more real-world
experience prior to the present studies, than for the diagonal axes, which
seem to play less of a role in our perceptual experience. The observed

difference in performance was maintained across all 5 blocks of the experiment

(see Figure 3).

Exp. 2: Axis generalization experiment

Results for the 2-axis training and 4-axis testing phases of this
experiment are presented in Figure 4 (only the first 3 of the 5 testing blocks

are shown). Data are presented separately for training on horizontal-vertical
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axes versus diagonal axes (middle and bottom panels), and are also averaged
together as trained versus untrained axes (top panel). The skill learning
exhibited by subjects for new patterns did not generalize across axes. After
two blocks of training with two axes, performance on the untrained axes at the
start of the 4-axis testing phase was no better than - indeed, on average was
poorer than - performance at the beginning of the training phase. Note,
however, that these data do not take into account differences in number of

response alternatives between the training and testing phases. To the extent

that the observed performance includes some amount of guessing distributed

[] trained untrained

90+
AN 80+ >
Z
70+ .
60 + - 4/;2 : /52 ' ;622 ;
80 160 240 320 400
# of Trials
[J diag hor-vert
90%
%CBOI Z
70 ;27
60+ : —t /44;, /242= 5€i§4
80 160 240 320 400
# of Trials
[] diag hor-vert
90+
7 Z
580t // % % % // /
70+ / / //
60 / + // | % - / ; / 4
80 160 240 320 400
# of Trials
Figure 4. Percent correct across trials when trained on either

diagonal (middle) or horizontal-vertical axes (bottom) and tested
on all four axes. Overall effect of training is shown at top.
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among the set of response alternatives, the contribution of guessing to
performance would be different for training than for testing, artificially
lowering the scores on the testing phase. Our inspection of the errors and
observations of subjects taking the test suggests that rather little
contribution is made to the observed performance by distributing guesses among
the set of response alternatives, thereby lessening its presumed impact.

The clearest finding of this experiment was the difference between
performance for the diagonal axes and performance for the horizontal-vertical
axes, amplifying the effect seen in Exp. 1. First, looking only at the
training results, subjects’ initial performance was better for the horizontal-
vertical axes (bottom panel) than for the diagonal axes (middle panel), and
there was more improvement over the two training blocks for the horizontal-
vertical axes than for the diagonal axes. Moreover, the effects of 2-axis
training on 4-axis test performance was dramatically different for the two
sets of axes: Training on the horizontal-vertical axes produced a huge
advantage in performance for these axes over the diagonal axes when tested in
the 4-axis condition (bottom panel), whereas training on the diagonal axes
served only to boost performance on these axes to the level of the horizontal-

vertical axes when tested in the 4-axis condition (middle panel).

Computer simulations

Exp. 1: Priming experiment

For each network, simulations showed both skill learning for nonrepeated
items and repetition priming for repeated items, even over very long lags (see
Figures 5-8). The finding of priming in the global-unit network for the
1/1600 condition (see Figure 6) deserves particular emphasis. The priming
effect was apparent with fewer than 12 presentations of a given prime pattern
spread out over 20,000 stimuli. In fact, in a subsequent study (Cohen,
Abrams, Harley, Tabor, Gordon, & Sejnowski, 1986), we have demonstrated
priming with as few as 6 presentations of a given prime stimulus spread out
among 20,000 patterns. In addition, the priming effect was remarkably
reproducible across replications. That is, for those sets of simulations that
included overlap among the priming rates (e.g., for the local-unit network,
the three simulations had priming rates of 1/100 and 1/200, 1/200 and 1/400,
and 1/400 and 1/800; look across panels of Figure 7), the performance of
34



100-|-

80+

%C 60+

aoi-h

0+ 7

COHEN, ABRAMS, HARLEY, TABOR, & SEJNOWSKI

100y 100+
90"‘ 90‘_
80T 80+
70+ | 70+
60+ h
%C i i AN 5
" unprimed 30+
0+ . A0+
30+ ;; 1
© Pi=y/50 0 1! pi=1/833
204 204 {
P2=1/150 P2=1/2500
10- : o ] B
0 1020304050c070d000 "6 1020 30 40 50 60 70 B0 90
# of Trials # of Trials
(x1000) (x1000)
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unprimed stimuli. Each of two simulations tested performance on
two different priming rates. The overall percentage of prime
stimuli varied across simulations.
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unprimed stimuli. Each of three simulations tested performance on
two different priming rates. The overall percentage of prime

stimuli was maintained across simulations.
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Figure 7. Percent correct for local-unit network for primed and
unprimed stimuli. Each of three simulations tested performance on
two different priming rates. The overall percentage of prime

stimuli was permitted to vary conditionms.

network for the same priming rate on different occasions was virtually
identical. The performance of both networks for the different axes was nearly
invariant, unlike the results for human subjects.

The two networks differed in a number of interesting ways. First, though
both networks started learning de novo, the local-unit network learned much
more rapidly, reaching a higher level of performance for nonrepeated stimuli
in 40,000 trials (see Figures 7 & 8) than did the global-unit network in
80,000 trials (see Figures 5 & 6). Second, despite the superior skill
learning of the local-unit network, the global-unit network was the more
sensitive one to priming, showing a priming effect even at a priming rate of
1/1600 (see Fig. 6) and at 1/3200 (Cohen et al., 1986), whereas the local-unit
network showed only marginal priming at a priming rate of 1/800 (see Figures 7
& 8). Third, the global-unit network but not the local-unit network showed a
trade-off between skill learning and repetition priming as a function of
priming rate when the overall percentage of prime stimuli was permitted to
vary. Thus, performance for the prime stimuli was better in the 1/50 and
1/150 condition than in the 1/833 and 1/2500 condition, whereas performance

for the nonrepeated stimuli was poorer in the 1/50 and 1/150 condition than in
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the 1/833 and 1/2500 condition (see Figure 5). The trade-off disappeared,

however, when the overall percentage of prime stimuli was held constant across

the different priming rate conditions (see Figure 6). For the local-unit

network, there was no trade-off regardless of whether the overall percentage

of prime stimuli varied or was constant (see Figures 7 & 8).
Inspection of the weights for the hidden units of the two networks was
hidden units in the global-unit network behaved in the

illuminating. The
(1986) . The weights were frequently

manner reported by Sejnowski et al.
one or more axes, and often were also symmetric about one

antisymmetric about
The spatial

The amount of antisymmetry was striking.

or more other axes.
weights to input units corresponding to different portions

distribution of the
of the receptive field varied considerably among hidden units and represented
a number of different types of geometric features as well as some isolated

cells in the array. Many of the geometrical features, such as linear stripes

or angles, were quite global,
such features were represented in one hidden unit along

spanning the entire width or length of the

array. Frequently,

with their complement in a different unit. Finally, the weights to some
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Figure 9. Percent correct for global-unit network when trained on
either horizontal-vertical (middle) or diagonal axes (bottom) and
tested on all four axes. Overall training effect is shown at top.

hidden units were very small, suggesting that these units played little or no
role in the solution to the problem,.

The hidden units in the local-unit network behaved in a similar fashion,
although their receptive fields were quite 1local, being restricted to
particular 3x3 sections of the 9x9 input array. Here, too, the number of
units whose weights were set up to detect antisymmetry was striking. The
presence of hidden units with weights representing geometrical features and
their complement in a unit with a matching receptive field was noted here as
well. An interesting aspect of the hidden units in this network was the

38



COHEN, ABRAMS, HARLEY, TABOR, & SEJNOWSKI

apparent reliance of the network on units with receptive fields in the center
3x3 section of the input array. This section is relevant to detection of any
of the four axes. Accordingly, the weights for such units were typically
sensitive to multiple axes and, in particular, were antisymmetric for one or

more axes while being symmetric for one or more others.

Exp. 2: Axis peneralization experiment

Both networks trained on a particular pair of axes showed a decrement in

overall performance when switched to testing with all 4 axes (see Figures 9 &

111
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Figure 10. Percent correct for local-unit network when trained on
either horizontal-vertical (middle) or diagonal axes (bottom) and
tested on all four axes. Overall training effect is shown at top.
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10). Not only did performance decline for the trained axes, especially in the
global-unit network, but performance on the previously untrained axes was
poorer at the start of the 4-axis testing than was performance for the other
pair of axes at the start of the 2-axis training. Again, this was
particularly evident for the global-unit network. Unlike the performance of
human subjects, neither of the networks showed a preference for the
horizontal-vertical axes over the diagonal axes, or vice versa. (Note that
these data, like those presented for human subjects, do not take into account
the difference between the training and testing phases in number of response
alternatives. Preliminary data from simulations in which the networks are
trained on 2 axes and then tested on only the other 2 axes suggests that the
previously untrained axes neither benefit nor suffer from prior training on
other axes.)

The weights for the hidden units in the two networks were similar to
those discussed above. One finding of interest that comes from this
particular task was the preponderance of hidden units in the local-unit
network that were responsive to both of the two axes during the 2-axis
training phase. 1Inspection of the hidden units with receptive fields in the
center 3x3 section of the input array revealed an organization of weights that
nearly always was symmetric for one axis and antisymmetric for the other. For
the other units, in most of the cases in which the unit was responsive to only
one axis, it was responsive to antisymmetry in that axis. Hidden units with
receptive fields in portions of the input array not relevant to distinguishing
between the axes being tested had small weights and were inactive. Upon
switching to 4-axis testing, these inactive units rapidly took on weights
appropriate to the new axes, making this network rather more responsive to the
change in stimulus parameters than was the global-unit network. The global-
unit network was forced to reconfigure its hidden-unit weights to conform to

the new stimulus parameters.

DISCUSSION
The present work documents skill learning and repetition priming in
symmetry detection for both human subjects and the Boltzmann machine. The
behavioral data from humans and the simulation data from the network models

share certain qualitative similarities, but are different in some significant
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quantitative and qualitative respects. The difference quantitatively between
human and model performance is striking: The number of trials required for
the networks to learn the task is some two orders of magnitude greater than
that required by humans. Moreover, the performance of the networks for
unprimed stimuli seems to plateau at approximately 70-80% correct, depending
upon the condition, whereas the performance of our human subjects continues to
improve with practice, and will approach 100% correct with enough trials.
Note, however, that humans come to this task with considerable topographic
knowledge and familiarity with symmetry detection, and their initial
performance on the task is well above chance. By contrast, the Boltzmann
machine starts its learning de novo; it must learn simultaneously about both
symmetry and the critical aspects of symmetry detection for these particular
materials. Its performance on the present task starts at chance. In addition
to this difference in what must be learned, the discrepancy between the
relatively small number of units used in the network models compared with the
presumably huge number of neurons in the human visual system sensitive to
symmetry is likely to be an important factor. Finally, note that it is
extraordinarily difficult to know how to scale the performance of the network
models vis-a-vis human performance in the absence of specific claims about the
psychological relevance of "trials" or "machine operations" for these models.
Until such claims are made, conclusions based on quantitative comparisons can
be offered only tentatively.

In terms of qualitative comparisons of the experimental data and
simulation data, it is noteworthy that humans showed a strong superiority for
detecting vertical symmetries. The superiority of performance in both
experiments for horizontal-vertical axes over diagonal axes was due
overwhelmingly to superior performance for the vertical axis. Across the 5
blocks of Exp. 1, performance for the vertical axis (84% correct) showed
nearly as much advantage over performance for the horizontal axis (77%
correct) as for the diagonal axes (74% correct). This was as true in the
initial block (% correct: v =75, h =66, d = 63) as in the final block (%
correct: v =91, h =84, d = 8l). This result is consistent with previous
psychophysical work (Barlow & Reeves, 1979), but at odds with the performance
of the networks. The superiority for vertical symmetries is thought to be due
at least in part to the sensitivity of cells near the vertical midline to
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local features around the midline. Other features relevant to processing
mirror symmetries must be processed more globally. Our modeling attempts
included both a local-unit and global-unit network, a difference in
connectivity of the hidden units that had important implications for the way
in which the model was able to internally represent mirror symmetries. The
global-unit network, with less pre-wired structure than the local-unit
network, was more influenced by the structure imposed by the stimulus array:
It remained responsive to primes over long lags and was more sensitive to the
change from 2 to 4 axes. The limited receptive fields of processing elements
in the local-unit network would seem to provide a closer model of the type of
processing used by biological visual systems, although the connectivity among
the local processing units actually established by learning in our networks
may be quite different from that attained by biological systems. Evaluation
of which of these networks provides a closer match to human performance awaits
further testing.

The most important finding of the present studies is the emergence of
priming from the network model without any additional mechanisms, such as
short-term changes to the weights. These networks were designed to handle
generalization, which is the essence of skill learning; the fact that they
prove to be sensitive to individual items even over enormous lags is a
striking finding, one that further links skill learning and repetition
priming. This is the basic qualitative similarity between the simulation and
human performance data.

Two conclusions can be drawn from the study of symmetry detection in
humans and massively-parallel network models. First, priming for humans in
this task cannot depend upon the activation of some pre-existing
representation of the primed materials, since the stimuli used in these
studies were novel. Second, priming is a latent property of incremental
learning in the parallel network model and occurs from the start of de novo
learning. Thus, both the behavioral data from humans and simulation data from
the model suggest that repetition priming is not a sepaiate mechanism and does
not depend on an already structured system. Priming may instead be an
integral feature of the basic learning process that configures and reorganizes
processing modules. Parallel work with humans and network models, such as
that reported in the present paper, can provide important insights about
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possible mechanisms of learning and memory.
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