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ARTICLE

Regulation of the ER stress response by a
mitochondrial microprotein
Qian Chu1, Thomas F. Martinez 1, Sammy Weiser Novak2, Cynthia J. Donaldson1, Dan Tan1, Joan M. Vaughan1,

Tina Chang1, Jolene K. Diedrich1, Leo Andrade 2, Andrew Kim1, Tong Zhang2, Uri Manor 2* &

Alan Saghatelian 1*

Cellular homeostasis relies on having dedicated and coordinated responses to a variety of

stresses. The accumulation of unfolded proteins in the endoplasmic reticulum (ER) is a

common stress that triggers a conserved pathway called the unfolded protein response

(UPR) that mitigates damage, and dysregulation of UPR underlies several debilitating dis-

eases. Here, we discover that a previously uncharacterized 54-amino acid microprotein

PIGBOS regulates UPR. PIGBOS localizes to the mitochondrial outer membrane where it

interacts with the ER protein CLCC1 at ER–mitochondria contact sites. Functional studies

reveal that the loss of PIGBOS leads to heightened UPR and increased cell death. The

characterization of PIGBOS reveals an undiscovered role for a mitochondrial protein, in this

case a microprotein, in the regulation of UPR originating in the ER. This study demonstrates

microproteins to be an unappreciated class of genes that are critical for inter-organelle

communication, homeostasis, and cell survival.
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The term microproteins refers to peptides and small proteins
translated from small open reading frames (smORFs)1,2.
Advances in genomics and proteomics technologies reveal

that mammalian genomes harbor hundreds to thousands of
previously unannotated microprotein-coding smORFs3–5. As a
large and completely unstudied fraction of the genome, assign-
ment of functions to smORFs and microproteins represents a
major opportunity to gain new insights into biology. Only a
handful of smORFs and microproteins have been characterized so
far1,2. For example, several muscle-specific smORFs have revealed
new pathways that control muscle performance and
development6,7, and a microprotein called CYREN regulates
DNA repair pathway choice during the cell cycle8. It is likely that
many other key cellular processes are also mediated by unchar-
acterized microproteins and the discovery and characterization of
smORFs and microproteins is an important research endeavor.

Cells routinely encounter stress that negatively impacts cell
health and function. The unfolded protein response (UPR) is a
fundamental pathway in eukaryotes that is triggered by the onset
of endoplasmic reticulum (ER) stress resulting from the presence
of unfolded proteins in the ER lumen9,10. Stress-responsive genes,
proteins, and pathways provide a cellular mechanism to cope
with this stress and return cells to homeostasis. There are three
primary branches of the UPR pathway and each pathway is
mediated by a different ER protein: IRE1, PERK, or ATF611.
Activation of these proteins during UPR initiates signals at the ER
that slow down protein expression, increase protein folding, and
upregulate degradation of unfolded proteins9,10. If these steps fail
to return the cell to homeostasis and prolong activation of UPR,
the cells will undergo apoptosis12,13. Understanding UPR reg-
ulation has implications for human health as dysregulation of
UPR signaling is thought to underlie several prevalent
diseases14,15. Here, we characterize a microprotein called PIGBOS
and reveal a role for a mitochondrial protein in UPR signaling.

Results
PIGBOS is a conserved microprotein. During proteomic sear-
ches for microproteins, we identified a tryptic peptide,
MQLVQESEEK, from the human 54-amino acid PIGB opposite
strand 1 (PIGBOS) microprotein (Fig. 1a), providing experi-
mental evidence for PIGBOS translation. PIGBOS obtained its
name because it is on the opposite strand of the phosphatidyli-
nositol glycan anchor biosynthesis class B (PIGB) gene (Fig. 1b).
The PIGBOS transcript consists of two exons and has three splice
isoforms with slight differences in the first exon, but the second
exon that contains the entire PIGBOS smORF is the same
(Supplementary Fig. 1a). RNA-Seq and Ribosome profiling
datasets provide evidence of PIGBOS expression and translation
in three different human cell lines (Supplementary Fig. 1a). To
further confirm whether the PIGBOS smORF is translated to
produce a stable microprotein, we raised antibodies against
human and rat PIGBOS. Western blot analysis of numerous
human cell lines (Supplementary Fig. 1b) and rat tissues (Fig. 1c)
readily detected PIGBOS, demonstrating PIGBOS to be a widely
expressed, stable microprotein. PIGBOS is uncharacterized, but
sequence conservation and a positive PhyloCSF score16 suggest
that this microprotein is functional (Fig. 1d). PIGBOS has no
paralogs or homologs which prevents any molecular, cellular, or
physiological function from being inferred, and requires the de
novo characterization of PIGBOS.

PIGBOS is a mitochondrial outer membrane (MOM) micro-
protein. Subcellular localization provides valuable information to
assess the function of an uncharacterized protein. PIGBOS was
found in the mitochondrial fraction by Western blot and

proteomics, but not in any other subcellular fractions tested
(Fig. 2a and Supplementary Fig. 2a). We validated PIGBOS’s
mitochondrial localization by imaging exogenously expressed
PIGBOS-FLAG in HeLa cells and immunofluorescence of endo-
genous PIGBOS in rat C6 cells (we used rat cells because of the
superior performance of the rat anti-PIGBOS antibody), which
showed puncta that overlap with the mitochondrial marker
Tom20 (Fig. 2b and Supplementary Fig. 2b). Sequence analysis
using Transmembrane Helix Prediction (TMHMM)17 revealed
that PIGBOS is a single-pass transmembrane protein with a
transmembrane region between amino acids 7–29 (Fig. 1d). To
determine whether PIGBOS is localized to the inner or outer
mitochondrial membrane, we used a protease protection
assay18,19. Proteolysis of isolated mitochondria with proteinase K
under conditions that retain MOM integrity led to the degrada-
tion of PIGBOS—an identical result to that of the MOM protein
Tom20—indicating that PIGBOS is a MOM microprotein
(Fig. 2c).

To validate this result in live cells, we turned to an optimized
split GFP approach20 whereby three repeats of the last beta-strand
of GFP (3 × GFP11) are fused to the C-terminus of PIGBOS
(PIGBOS-3 × GFP11) and the non-fluorescent remainder of the
GFP, i.e., GFP(1–10), is co-expressed. In this system, fluorescence
is only observed if GFP11 and GFP(1–10) interact to reconstitute
the intact GFP beta-barrel (i.e., GFP11+GFP(1–10))20. Co-
expression of PIGBOS-3 × GFP11 and the GFP(1–10) resulted in a
fluorescent ring around the mitochondria (Fig. 2d and Supple-
mentary Fig. 2c), consistent with the aforementioned biochemical
data showing that PIGBOS is localized to the MOM. The same
mitochondrial outline has been observed for the MOM protein
Tom2021. Because the 3 × GFP11 must interact with cytosolic GFP
(1–10) to reconstitute a fluorescent GFP, this experiment also
suggested that the C-terminus of PIGBOS is cytoplasmic.
Placement of 3 × GFP11 at the PIGBOS N-terminus (3 × GFP11-
PIGBOS-FLAG) readily localized PIGBOS in the mitochondria
but produced no fluorescence because it cannot interact with GFP
(1–10) (Supplementary Fig. 2d). PIGBOS’s topology indicates that
it belongs to a group of MOM proteins called signal-anchor
proteins that rely on their transmembrane domains to localize the
proteins to the mitochondria and anchor the proteins to the
MOM22.

The PIGBOS microprotein interacts with the ER protein
CLCC1. Protein interaction studies can accelerate the character-
ization of microproteins8,23, so we attempted to use this strategy
to characterize PIGBOS. Proteomics of immunoprecipitated
PIGBOS-FLAG followed by SAINT24 and CRAPome25 analysis
to remove false positives and contaminating proteins identified
chloride channel CLIC-like 1 (CLCC1) as a PIGBOS-interacting
protein (Fig. 3a, b and Supplementary Data 1 and Supplementary
Tables 1 and 2). We validated this interaction in live cells using a
proximity labeling assay26 with a PIGBOS-engineered ascorbate
peroxidase 2 fusion protein (PIGBOS-APEX), which showed
robust biotinylation and enrichment of CLCC1, whereas the ER
marker Sec61b showed no enrichment and was equally biotiny-
lated by PIGBOS-APEX and APEX control (Fig. 3c, d and Sup-
plementary Fig. 3a). The protein interaction data indicated that
PIGBOS and CLCC1 are in close proximity and that PIGBOS
specifically interacts with CLCC1. A reciprocal immunoprecipi-
tation assay with an HA-tagged CLCC1 (CLCC1-HA) enriched
PIGBOS-FLAG, which further indicated the interaction between
the two proteins (Supplementary Fig. 3b). CLCC1 is a putative
chloride channel localized to the ER27, though some data suggests
it might be found in the nucleus, Golgi, and plasma membrane as
well28. Due to this ambiguity, we reassessed CLCC1 localization
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by imaging CLCC1-HA and the ER marker Sec61b-mCherry,
which showed substantial overlap (Supplementary Fig. 4a). By
contrast, counterstaining of CLCC1-HA and the Golgi marker
GM130 revealed no colocalization (Supplementary Fig. 4b).
Together, these experiments indicated that CLCC1 is primarily an
ER protein.

The PIGBOS C-terminus is required for the CLCC1 interac-
tion. Based on PIGBOS’s topology, the cytosolic C-terminus of
PIGBOS should mediate the interaction with CLCC1; however,
testing this model by simply removing the entire PIGBOS C-
terminal region (amino acids 30–54) was unsuccessful because
the truncated PIGBOS(1-29)-FLAG showed no detectable
expression. Instead, we swapped the 25-amino acid PIGBOS C-
terminal region with the three GFP11 repeats (PIGBOS-ΔC-3 ×
GFP11-FLAG). This PIGBOS variant has robust mitochondrial
localization (Supplementary Fig. 5) but does not enrich CLCC1
after immunoprecipitation (Fig. 3e), demonstrating the require-
ment of the C-terminal region for an interaction with CLCC1. In
an attempt to define the specific amino acids needed for binding,
we mutated blocks of three consecutive amino acids of the C-
terminal region to alanine (Supplementary Fig. 6a). Confocal
imaging showed that all of the triple alanine PIGBOS-3 × GFP11-
FLAG mutants were expressed and localized to mitochondria
(Supplementary Fig. 6b). Immunoprecipitation experiments
identified amino acids 30–36 of PIGBOS to be critical for CLCC1
binding since mutation of these amino acids to alanine resulted in

decreased CLCC1 enrichment (Supplementary Fig. 6c). In total,
these results demonstrated that the C-terminal region of PIGBOS
is essential for the PIGBOS-CLCC1 interaction.

Measuring the interaction between PIGBOS and CLCC1 in
cells. We next used a split-GFP bimolecular complementation
strategy to image and quantify the PIGBOS-CLCC1 interaction.
Co-expression of PIGBOS-3 × GFP11 and CLCC1-GFP(1-10)
resulted in a robust green fluorescent signal, whereas the C-
terminus truncated PIGBOS-ΔC-3 × GFP11-FLAG failed to
fluoresce (Fig. 4a, b). This result indicated that the reconstituted
GFP fluorescence depends on PIGBOS-CLCC1 interaction,
making this an ideal assay to measure the PIGBOS-CLCC1
interaction in cells. Overlap of the GFP and PIGBOS fluorescence
signals indicated that not all PIGBOS is interacting with CLCC1
(Fig. 4b). In addition, spatial analysis of the fluorescence dis-
tribution revealed that the GFP signal peaks between the fluor-
escent reporter signals for the MOM (Tom20) and ER (Sec61b-
mCherry), providing further evidence that the PIGBOS-CLCC1
interaction occurs at the ER-mitochondria interface (Fig. 4a).

To assess the PIGBOS-CLCC1 interaction in bulk and in live
cells, we developed a flow cytometry experiment to measure the
amount of reconstituted GFP29. Cells expressing PIGBOS-3 ×
GFP11 and CLCC1-GFP(1–10) had a robust GFP signal with
~30% of the cellular population above the minimum threshold
and significantly higher mean GFP intensity compared to mock
transfected controls. By contrast, the C-terminus truncated

Human PIGBOS microprotein
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PIGBOS-ΔC-3 × GFP11 showed no detectable GFP signal,
supporting that the C-terminus of PIGBOS is necessary for its
interaction with CLCC1 (Fig. 4c, d and Supplementary Fig. 7).

The PIGBOS-CLCC1 interaction is not a tether. Given that
CLCC1 and PIGBOS are ER and mitochondria transmembrane
proteins, respectively, as well as the observation that PIGBOS-3 ×
GFP11 and CLCC1-GFP(1-10) generated the GFP fluorescence
right between ER and mitochondria (Fig. 4a), we considered that
they interact at ER-mitochondria contact sites. This model
requires CLCC1 to be present in the portion of the ER that
contacts the mitochondria which is referred to as the
mitochondria-associated ER membrane (MAM). The MAM is an
important inter-organelle junction in the cell that mediates cel-
lular calcium levels, lipid metabolism, mitochondrial dynamics,
and apoptosis30,31. We isolated the MAM using standard frac-
tionation protocols32,33 and detected CLCC1 by Western blot
along with the calnexin, a known MAM protein (Supplementary

Fig. 8a), which, consistent with our assumption, indicated that
CLCC1 is in the ER fraction with close proximity to
mitochondria.

There are only a handful of reported protein-protein interactions
between the ER and mitochondria in mammalian cells, and most
of these interactions are implicated in ER-mitochondria
tethering26,33,34. For example, a known ER-mitochondria tether is
comprised of the vesicle-associated membrane protein-associated
protein B/C (VAPB) in the ER and protein tyrosine phosphatase-
interacting protein 51 (PTPIP51) in the mitochondria. Over-
expression of VAPB and PTPIP51 increases the number of ER-
mitochondria contact sites35. To test a role for PIGBOS and CLCC1
in ER-mitochondria tethering, we used transmission electron
microscopy to visualize ER-mitochondria contacts in WT and
PIGBOS-KO U2OS cells (Fig. 5 and Supplementary Fig. 9). We
observed no changes to ER-mitochondria contact sites (Fig. 5a),
and quantitation of the normalized ER-mitochondria contact
coefficient (ERMICC)36 revealed no significant differences in ER-
mitochondria contacts in WT versus PIGBOS-KO cells (Fig. 5b).
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Consistent with the result that PIGBOS-CLCC1 is not a tether,
overexpression of the known ER-mitochondria tether VAPB and
PTPIP51 resulted in a change in ER-mitochondria morphology, in
which the ER was localized near to mitochondria, whereas
overexpression of PIGBOS and CLCC1 did not (Supplementary
Fig. 10). In addition, the levels of CLCC1 in the MAM fraction
from PIGBOS-KO and WT HEK293 cells are equivalent, which
indicated that the amount of CLCC1 in the MAM does not depend
on PIGBOS (Supplementary Figs. 8b and 11).

Since the PIGBOS-CLCC1 interaction does not influence the
ER-mitochondria contacts, we asked whether cells with changes
to the number of ER-mitochondria contacts can regulate the
interaction between PIGBOS and CLCC1. We tested this idea by
measuring PIGBOS-CLCC1 split GFP intensity in cells expressing
VAPB and PTPIP51. Using our quantitative flow cytometry
assay, we found that the overexpression of VAPB and
PTPIP51 significantly increased interactions between PIGBOS
and CLCC1 as indicated by greater number of GFP positive cells
and mean GFP intensity (Fig. 4e and Supplementary Fig. 12a),
while total concentrations of PIGBOS and CLCC1 were
unchanged (Supplementary Fig. 12b). This result demonstrated
that the PIGBOS-CLCC1 interaction can be regulated by
modulation of ER-mitochondria contacts, and further bolstered
the model of CLCC1 and PIGBOS interacting at ER-
mitochondria contact sites.

PIGBOS modulates UPR in the ER. A genetics study in mice
identified lower CLCC1 expression levels as the driver of a neu-
rodegenerative phenotype, with mechanistic studies supporting
increased UPR as the underlying cause27. We reproduced this
finding and observed that treatment of CLCC1 knockdown (KD)
cells with tunicamycin (TM), an inducer of ER stress, led to

increased XBP1 splicing, an established marker for UPR (Sup-
plementary Fig. 13a). Since PIGBOS interacts with CLCC1, we
hypothesized that PIGBOS may have a role in UPR signaling,
which, if true, would provide the first example of a mitochondrial
protein regulator of UPR.

We tested whether PIGBOS regulates UPR by treating PIGBOS
siRNA KD or CRISPR-Cas9 knockout (KO) cells (Supplementary
Figs 11 and 13b) with TM. In the absence of PIGBOS, we
observed an increased sensitivity of cells to TM—a stronger UPR
at lower TM concentrations—detected as elevated levels of spliced
XBP1 and an increased ratio of spliced XBP1 to unspliced XBP1
(XBP1s/XBP1u) (Fig. 6a and Supplementary Fig. 13c–e). Further-
more, expression of an siRNA resistant PIGBOS-FLAG construct
in the PIGBOS-KD cells partially reversed the phenotype by
normalizing the sensitivity of UPR to TM (Fig. 6a), verifying that
PIGBOS is responsible for the observed effects on UPR.
Overexpression of PIGBOS in WT cells resulted in the
desensitization of cells to UPR with decreased XBP1 splicing
(Supplementary Fig. 13f), providing additional evidence for a
specific role for PIGBOS in UPR. Taken together, these results
suggested that modulating PIGBOS levels can in turn modulate
cellular sensitivity towards ER stress.

To assess the generality of PIGBOS regulation of UPR, we
tested different ER stressors and measured the activity of the
ATF6 branch of the UPR pathway. Loss of PIGBOS also showed
heightened sensitivity to thapsigargin (TG) and Brefeldin A
(BFA), two mechanistically distinct UPR activators, indicating
that PIGBOS is downstream of both types of UPR induction
(Fig. 6b and Supplementary Fig. 13g). Analysis of the ATF6
branch of UPR in WT and PIGBOS-KD cells using an ATF6
luciferase reporter assay37 revealed increased ATF6-driven
luciferase activity in PIGBOS-KD cells, which was rescued by
the expression of siRNA resistant PIGBOS-FLAG (Fig. 6c). To
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obtain the most comprehensive view of PIGBOS in its regulation
of UPR, we measured mRNA levels of a panel of UPR-regulated
genes that promote degradation of misfolded proteins (ERdj4 and
EDEM1), protein folding (HYOU1, GRP78, and ERO1LB), and
apoptosis (CHOP). Upon UPR induction with TM, the loss of
PIGBOS led to dramatic increases in the levels of all UPR target
genes measured, indicating increased UPR signaling across all the
branches (IRE1, PERK, and ATF6) (Fig. 6d and Supplementary
Fig. 14a). Meanwhile, PIGBOS overexpressing cells showed the

opposite effect, in which the UPR target genes showed less UPR
activation, indicating a tunable modulation of ER stress by
PIGBOS microprotein levels (Supplementary Fig. 14b). We then
confirmed via Western blot that TM treatment of PIGBOS-KD
cells led to higher ATF4 and CHOP protein levels (Supplemen-
tary Fig. 13h). These data identified PIGBOS as a heretofore
unknown mitochondrial regulator of UPR, and the only known
microprotein linked to the regulation of cell stress or inter-
organelle signaling.
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We then assessed whether the PIGBOS-CLCC1 interaction is
regulated by ER stress. Immunoprecipitation of PIGBOS-FLAG
in TM or TG treated cells showed similar amounts of co-eluted
CLCC1, suggesting ER stress has no effect on the PIGBOS-
CLCC1 interaction (Supplementary Fig. 15a). To confirm this
result, we used flow cytometry analysis to evaluate PIGBOS-
CLCC1 split GFP intensity in TM or TG treated cells. No
significant differences with regard to either GFP positive cells or
mean GFP intensity were observed in cells with ER stress up to
7 h (Supplementary Fig. 15b–d).

UPR is a dedicated signaling network to deal with unfolded
protein stress in the ER. Recent studies revealed emerging evidence
of a cellular response to unfolded protein accumulation in the
mitochondria, referred to as MitoUPR, which is induced by
distinct stimuli and results in different response mechanisms with
some overlapping targeting genes compared to the canonical ER
UPR38,39. To test whether PIGBOS has a role in MitoUPR, we used
bardoxolone (CDDO) to chemically induce mitochondrial protein
misfolding in PIGBOS-KO and WT cells, and evaluated the
MitoUPR targeting gene expression (i.e., HSPD1 and CHOP)40,41.
Both genes increased dramatically upon CDDO treatment,
however, there was no notable difference between PIGBOS-KO
and WT cells (Supplementary Fig. 16). It is worth noting that
CHOP level was significantly increased in PIGBOS-KD cells
compared to WT cells in response to TM induced ER stress,
indicating that PIGBOS specifically regulates ER UPR.

PIGBOS regulates ER stress-induced apoptosis. Previous stu-
dies demonstrated that prolonged ER stress would lead to
apoptosis if cells fail to cope with accumulating misfolded pro-
teins9. Since cells lacking PIGBOS are more sensitive to UPR, we

predicted that these cells would undergo apoptosis more readily.
Indeed, we observed increased apoptosis in PIGBOS-KD and
PIGBOS-KO cells treated with TG or TM using a caspase-3 and
PARP-cleavage assay (Fig. 6e, f, and Supplementary Fig. 17a–c).
PIGBOS-KD cells were also less viable than control cells during
TG-induced cell stress (Fig. 6g). Interestingly, treating cells with
staurosporine (STS), a non-selective protein kinase inhibitor and
apoptosis inducer, revealed neglectable differences of cell viability
in PIGBOS-KD and WT cells, which indicated a specific con-
nection between ER stress and PIGBOS regulation (Supplemen-
tary Fig. 17d). Together, these results showed that loss of PIGBOS
increases cellular sensitivity to ER stress, which in turn increases
apoptosis and links PIGBOS levels to the ability of cells to survive
stress.

PIGBOS-CLCC1 interaction is necessary for PIGBOS function.
To confirm that the increased UPR sensitivity in PIGBOS
diminished cells is mediated by PIGBOS-CLCC1 interaction, we
performed rescue experiments with non-CLCC1 binding PIGBOS
mutants. Only full-length PIGBOS microprotein reversed the
XBP1 splicing phenotype, whereas the non-CLCC1-binding
PIGBOS mutants with the C-terminus truncation (PIGBOS-ΔC-
3 × GFP11-FLAG) or the triple alanine mutant of aa 30–32
(PIGBOS-3 × GFP11-FLAG, 30–32 AAA) showed similar activity
as in cells lacking PIGBOS (Fig. 6h and Supplementary Fig. 18a).
Furthermore, expression of PIGBOS full-length protein, but not
C-terminus truncated PIGBOS (PIGBOS-ΔC-3 × GFP11-FLAG),
in PIGBOS-KD cells is able to partially rescue the ER stress
triggered apoptosis (Supplementary Fig. 18b). In addition, we
made chimeric PIGBOS variants to anchor the PIGBOS cytosolic
region (i.e., aa 30–54) to either the ER membrane (C1-PIGBOS

Fig. 4 Validation of PIGBOS-CLCC1 interaction via split GFP bimolecular complementation. a (Top) Transfection of COS-7 cells with PIGBOS-3 × GFP11 and
CLCC1-GFP(1-10) resulted in a GFP signal, which could only occur if the two proteins are close enough to interact and reconstitute a functional GFP. Scale
bar: 2 µm. (Bottom) The region in the white box was enlarged, and a cross-sectional analysis of the normalized fluorescence distribution of the Tom20
(MOM), Sec61b (ER), and GFP signals places the GFP signal between the ER and MOM. Scale bar: 0.5 µm. b U2OS cells were co-transfected with CLCC1-
GFP(1-10)-HA and PIGBOS-3 × GFP11-FLAG (or PIGBOS-ΔC-3 × GFP11-FLAG). Forty-eight hours later, cells were fixed and stained with FLAG and HA
antibodies overnight before imaging. Scale bar: 10 µm. c Flow cytometry measurement of PIGBOS-CLCC1 interaction in HEK293T cells. HEK293T cells were
co-transfected with CLCC1-GFP(1-10)-HA and PIGBOS-3 × GFP11-FLAG (or PIGBOS-ΔC-3 × GFP11-FLAG). GFP signals were assessed by flow cytometry
72 hours after transfection. d Quantification of mean GFP intensity in (c). Error bars, s.d., ***p < 0.001 (two tailed unpaired t-test), n= 3 independent
experiments. e Flow cytometry measurement of reconstituted PIGBOS-CLCC1 split GFP intensity in HEK293T cells expressing a known ER-mitochondrial
tether, VAPB/PTPIP51. Error bars, s.d., **p < 0.01 (two tailed unpaired t-test), n= 5 independent experiments. Source data for Fig. 4a, d and e are provided
as a Source Data file
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Fig. 5 PIGBOS shows no effect on modulation of ER-mitochondria contacts. a Representative transmission electron microscopy images from WT and
PIGBOS-KO U2OS cells showed no remarkable differences in ER-mitochondria contacts. ER and mitochondria contact sites are indicated by white arrows.
b Quantitation of the normalized ER-mitochondria contact coefficient (ERMICC) did not identify a significant difference between ERMICC of WT vs.
PIGBOS-KO U2OS cells. Data are collected from two independent experiments and pooled from 43 WT mitochondria (eight cells), and 62 PIGBOS-KO
mitochondria (seven cells) and the bar graph is the ERMICC ± s.e.m. with the p-value calculated using two tailed unpaired t-test with all data points
included in the calculation. Source data for Fig. 5b are provided as a Source Data file
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Fig. 6 PIGBOS regulates the amplitude of UPR, and apoptosis. a PIGBOS-KD and control HEK293 cells were treated with indicated concentrations of
tunicamycin (TM) followed by RT-PCR analysis of XBP-1 splicing (unspliced XBP1 (XBP1u) and spliced XBP1 (XBP1s)). GAPDH was used as a loading
control. A stronger UPR correlate with higher XBP1s/XBP1u ratio in PIGBOS-KD cells, which could be rescued by expression of a siRNA-resistant PIGBOS-
FLAG. b XBP-1 mRNA splicing was measured in PIGBOS-KO and control HEK293 cells treated with indicated doses of brefeldin A (BFA) for 3 h. c ATF6-
dependent luciferase reporter measures the activation of another branch of the UPR pathway. PIGBOS-KD led to increased luciferase activity indicative of a
greater UPR, and the expression of the siRNA-resistant PIGBOS-FLAG reversed this effect. d RT-qPCR quantitation of a panel of UPR target genes in
PIGBOS-KD and control HEK293 cells after an 8-hour treatment with vehicle or 1 μg/ml of TM. e Caspase-3 activity in mock and PIGBOS-KD U2OS cells
treated with thapsigargin (TG) for 27 h. f Cleaved PARP and caspase-3 levels were measured by Western blot in PIGBOS-KD and control U2OS cells
treated with TG for 27 h. g PIGBOS-KD and control U2OS cells were treated with indicated doses of TG for 48 h followed by cell viability measurements
using MTT. h HEK293 PIGBOS-KO and WT cells were transfected with PIGBOS variants constructs as indicated. Forty-eight hours later, cells were
incubated with 1 µg/ml of tunicamycin for 3 h. XBP1 splicing activity was measured by RT-PCR. Error bars, s.e.m. The p-values were calculated using two
tailed unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001, n= 3 experiments. Source data for Fig. 6c–e and 6g are provided as a Source Data file
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(30–54)) or MOM (Tom20-PIGBOS(30–54)). Confocal images
demonstrated accurate subcellular localization (Supplementary
Fig. 18c and d), but they were unable to interact with CLCC1
efficiently (Supplementary Fig. 18e). In addition, Tom20-PIGBOS
(30–54) failed to rescue XBP1 splicing activity, while C1-PIGBOS
(30–54) showed decreased XBP1 splicing activity but this might
be due to C1 peptide having independent activity at the ER42

(Fig. 6h and Supplementary Fig. 18a).
The Tom20-PIGBOS(30–54) experiment demonstrates that

placing the PIGBOS C-terminal region at MOM is insufficient for
mediating the PIGBOS-CLCC1 interaction and regulating the ER
stress response. As a small protein, we suspect that the different
parts of PIGBOS are not easily separated from each other into
functional domains, which is why we refer to them as regions.
Unlike large, multidomain proteins the separation and swapping
of the C-terminal region may affect the secondary or tertiary
structure of PIGBOS, and in the process inhibit its ability to bind
CLCC1 or partake in UPR signaling. PIGBOS belongs to a class of
single-pass transmembrane proteins in which the transmembrane
regions (oligomerization state, tilt angle and topology) are
essential to control structure and function. TMDOCK analysis
predicts that the PIGBOS transmembrane region is a homodimer
(Supplementary Fig. 19a), providing evidence for PIGBOS having
a tertiary structure43. To test this prediction, we transfected cells
with human PIGBOS-FLAG and human PIGBOS-HA, or human
PIGBOS-FLAG and rat PIGBOS-HA and performed FLAG
immunoprecipitations. We found human PIGBOS-FLAG inter-
acts with human and rat PIGBOS-HA providing experimental
evidence for a PIGBOS oligomerization and a tertiary structure
for this microprotein (Supplementary Fig. 19b, c). PIGBOS might
make up for its diminutive size by oligomerizing into a tertiary
structure that can provide a highly specific and unique protein
structure necessary for CLCC1 binding. Future structure studies
of PIGBOS and PIGBOS-CLCC1 complex will elucidate this
structure in greater detail and define the role of PIGBOS tertiary
structure in PIGBOS function.

Discussion
Understanding how cells respond to stress is of importance.
These pathways are required for maintaining homeostasis and
cell health, and their dysregulation can lead to disease. For
example, UPR dysfunction contributes to accumulation of key
disease-related proteins, and thus plays an essential role in the
pathogenesis of many neurodegenerative disorders, including
Alzheimer’s disease, Parkinson’s disease, and Huntington’s
disease14,15. Cells with an insufficient capacity to handle protein
production begin to accumulate unfolded or misfolded proteins,
which causes ER stress and triggers UPR. Elegant genetic studies
in yeast revealed the conserved ER machinery that is activated
during UPR and mediates the signaling pathways needed to
express the genes necessary to cope with stress. The essential
proteins in the eukaryotic ER stress response machinery include
the kinases PERK and IRE1, and the proteolytically activated
transcription factor ATF6. All three of these foundational genes
are localized to the ER, identifying the ER as the hub for
regulating UPR.

The ER stress response consists of intricate signaling networks
across the entire cell with spatial and temporal regulation that
requires communications between ER and other intracellular
organelles. In particular, mitochondria play a vital role in cross-
talk with ER during UPR by providing energy for protein folding
in the ER as well as activating apoptosis if the stress remains
unmitigated. However, the communication between the ER and
mitochondria in the context of UPR is elusive. One way to solve
how ER-originating cellular signaling pathways such as UPR are

propagated in the cell is to identify regulators of inter-organelle
communication at contact sites. The list of known ER-
mitochondria contact proteins in mammals is relatively short34,
and only one of these proteins, the mitochondrial fusion protein
Mfn2, has been implicated in UPR44. The role of Mfn2 is con-
founding because it is both an ER and mitochondrial resident
protein and it is a tether that regulates ER-mitochondria contact
sites36,45, which makes it difficult to dissect whether Mfn2 directly
controls UPR or whether another protein complex at ER-
mitochondria contact sites might be responsible and is coin-
cidentally disrupted by the loss of Mfn2. The microprotein
PIGBOS is the latest member to join the short list of functional
protein complexes at the ER-mitochondria interface but is the
only mitochondria-specific protein to date to modulate UPR in
the ER.

PIGBOS has a unique genomic localization, which is on the
opposite strand of the PIGB gene. In human, the first exons of
these two genes share an overlapping region, raising the question
as to whether expression of one gene can influence the other, or
whether the two genes are co-regulated. We knocked down
PIGBOS and PIGB respectively in HEK293 cells using siRNAs,
and measured gene expression levels of the other gene. We found
that KD of one gene does not interfere with the expression of the
other one (Supplementary Fig. 20a, b). In addition, we demon-
strated that PIGBOS mRNA levels decreased in LPS treated RAW
264.7 cells. Interestingly, PIGB mRNA also decreased to a similar
extent in the same cells (Supplementary Fig. 20c). These results
implied that PIGBOS and PIGB might be co-regulated by the
same promoter and transcription factors. Future work will be
performed to fully address this question and investigate whether
it can be applied to other antisense microproteins.

The characterization of microproteins has led to unprece-
dented mechanistic insights in other pathways, such as the role of
minion in muscle fiber formation7 and CYREN in the cell-cycle
dependent inhibition of non-homologous end joining (NHEJ)
repair8. Functional microproteins, including PIGBOS, demon-
strate that they are as vital to cellular and physiological functions
as any other protein; however, unlike large multidomain proteins,
microproteins present challenges in trying to understand their
structure-function relationship. For example, due to the small
size, normal protein immunoprecipitation experiments might not
be able to enrich the binding partners because microproteins may
not have enough surface area to bind an antibody while main-
taining a microprotein-protein interaction partner46. As a result,
immunoprecipitation with overexpressed epitope-tagged micro-
proteins is the most reasonable way to characterize the inter-
actomes of microproteins and has successfully been used to find
several bona fide microprotein–protein interactions1,8,23. Fur-
thermore, microprotein regions, as opposed to classical protein
domains, cannot be swapped and retain their functions as
demonstrated by TOM20-PIGBOS(35–54) fusion which loses
PIGBOS’s binding and biological activity.

The functional assignment of PIGBOS in this study has
revealed the ability of a mitochondrial protein to regulate UPR in
the ER, which makes PIGBOS unique and demonstrates the
existence of non-ER proteins in the regulation of UPR. Our work
also reveals that inter-organelle interactions can be mediated by
microproteins and raises the possibility that other inter-organelle
or inter-cellular protein interactions at membrane contact sites
might involve microproteins. Furthermore, recent work has
demonstrated that the dysregulation of the ER stress response is
implicated in human disease including viral infections, neuro-
degeneration, cancer, and diabetes47. Given the importance of
UPR in biology and disease, future studies on PIGBOS’s role in
UPR should afford additional insights and may provide methods
for regulating this pathway for therapeutic applications.
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Materials and methods
Materials. Cell lines used in the study were purchased from ATCC, HEK293
(CRL-1573), HEK293T (CRL-11268), U2OS (HTB-96), HeLa (CCL-2), and COS-7
(CRL-1651). siRNAs used in this study were purchased from GE Healthcare
Dharmacon, Inc. and listed in Supplementary Table 3. Sequences of RT-qPCR
primers are listed in Supplementary Table 4. Sequences of gRNA protospacers and
genotyping primers for PIGBOS knockout are shown in Supplementary Table 5.
Information of antibodies used in this study are shown in Supplementary Table 6.
DNA constructs and corresponding subcloning primers are listed in Supplemen-
tary Tables 7 and 8 respectively.

Animal care. All animal procedures were approved by the Institutional Animal
Care and Use Committee of the Salk Institute and were conducted in accordance
with the PHS Policy on Humane Care and Use of Laboratory Animals (PHS Policy,
2015), the U.S. Government Principles for Utilization and Care of Vertebrate
Animals Used in Testing, Research and Training, the NRC Guide for Care and Use
of Laboratory Animals (8th edition) and the USDA Animal Welfare Act and
Regulations. All animals were housed in an AAALAC accredited facility in a
climate-controlled environment (65–72 degrees Fahrenheit, 30–70% humidity)
under 12-h light/12-h dark cycles. Upon arrival, animals were physically examined
by veterinary staff for good health and acclimated for at least two weeks prior to
initiation of antiserum production. Each animal was monitored daily by the
veterinary staff for signs of complications and weighed every two weeks. Routine
physical exams were also performed by the veterinarian quarterly on all rabbits and
guinea pigs. For the production of antiserum against human PIGBOS, three 10 to
12-week old, female New Zealand white rabbits, weighing 3.0–3.2 kg at beginning
of the study, were procured from Irish Farms (I.F.P.S. Inc., Norco, California,
USA). Rabbits were provided with ad libitum feed (5326 Lab Diet High Fiber),
micro-filtered water and weekly fruits, vegetables and alfalfa hay for enrichment.
For the production of rat PIGBOS antiserum in guinea pigs, four 10–12-week old,
female Hartley guinea pigs, weighing 700–750 g at the beginning of the study, were
procured from Charles River Laboratories. Guinea pigs were provided with ad
libitum feed (5025 Lab Diet), micro-filtered water and weekly fruits and vegetables
for enrichment.

Preparation of antigens. Peptides were synthesized by RS Synthesis (Louisville,
KY), HPLC purified to >95%, and amino acid sequence verified by mass spec-
trometry. Peptides were conjugated to maleimide activated Keyhole Limpet
Hemocyanin (KLH) per manufacturer’s instructions (ThermoFisher, Waltham
MA). Specific peptides used to generate antisera were as follows: Cys32 human
PIGBOS(32-42)-NH2, CAKDQKELKEK- NH2; Cys32 rat PIGBOS (32–54),
CSRDQKELKELVKILQESEEKRS.

Injection and bleeding of animals. The antigen was delivered to host animals
using multiple intradermal injections of the peptide-KLH conjugate in Complete
Freund’s Adjuvant (initial inoculation) or incomplete Freund’s adjuvant (booster
inoculations) every three weeks for rabbits and once every four weeks for guinea
pigs. Animals were bled, <10% total blood volume, one week (rabbits) or two weeks
(guinea pigs) following booster injections and bleeds screened for titer and spe-
cificity. Rabbits were administered 1–2 mg/kg Acepromazine IM prior to injections
of antigen or blood withdrawal. Guinea pigs were anesthetized using inhalation
isoflurane maintained at 2–2.5% prior to injections and bleedings. At the termi-
nation of the study, rabbits were exsanguinated under anesthesia (ketamine
50 mg/kg and acepromazine 1 mg/kg, IM) and euthanized with an overdose of
pentobarbital sodium and phenytoin sodium (1 ml/4.5 kg of body weight IC to
effect). Guinea pigs were exsanguinated via cardiac puncture under inhalation
anesthesia (isoflurane maintained at 2–2.5%). After blood was collected death of
animals was confirmed. All animal procedures were conducted by experienced
veterinary technicians, under the supervision of Salk Institute veterinarians.

Characterization and purification of antisera. Each bleed from each animal was
tested at multiple doses for the ability to recognize the synthetic peptide antigen;
bleeds with highest titers were further analyzed by western immunoblot for the
ability to recognize the full-length endogenous protein and to check for cross-
reactivity to other proteins. Antisera with the best characteristics of titer against the
synthetic peptide antigen, ability to recognize the endogenous protein, and speci-
ficity were antigen affinity purified and used for all studies. Rabbit PBL#7410 anti-
human PIGBOS and guinea pig PBL#114 anti-rat PIGBOS were purified using
human PIGBOS(32–54) coupled to Affi-Gel 10 (Bio-Rad Laboratories, Hercules
CA) or Cys32 rat PIGBOS (32–54) covalently attached to Sulfolink agarose
(ThermoFisher, Waltham MA), respectively. Coupling of peptides to resins was per
manufacturer’s instructions. To ensure that the same batch of purified antibodies
could be used for this and future studies, large volumes, ~20 ml sera, from bleeds
with similar profiles were purified.

MS sample preparation and instrumentation. Samples were precipitated with
trichloroacetic acid (TCA, MP Biomedicals, #196057) overnight at 4 °C. Dried
pellets were dissolved in 8M urea, reduced with 5 mM tris(2-carboxyethyl)

phosphine hydrochloride (TCEP, Thermo, #20491) and alkylated with 10 mM
iodoacetamide (Sigma, I1149). Proteins were then digested overnight at 37 °C with
trypsin (Promega, V5111). The reaction was quenched with formic acid at a final
concentration of 5% (v/v). The digested samples were analyzed on a Q Exactive
mass spectrometer (Thermo). The digest was injected directly onto a 30 cm, 75 µm
ID column packed with BEH 1.7 µm C18 resin (Waters). Samples were separated at
a flow rate of 200 nl/min on a nLC 1000 (Thermo). Buffer A and B were 0.1%
formic acid in water and acetonitrile, respectively. A gradient of 5–40% B over
110 min, an increase to 50% B over 10 min, an increase to 90% B over another
10 min and held at 90% B for a final 10 min of washing was used for 140 min total
run time. The column was re-equilibrated with 20 µl of buffer A prior to the
injection of sample. Peptides were eluted directly from the tip of the column and
nanosprayed directly into the mass spectrometer by application of 2.5 kV voltage at
the back of the column. The Q Exactive was operated in a data-dependent mode.
Full MS1 scans were collected in the Orbitrap at 70 K resolution with a mass range
of 400–1800m/z and an AGC target of 5e6. The ten most abundant ions per scan
were selected for MS/MS analysis with HCD fragmentation of 25NCE, an AGC
target of 5e6 and minimum intensity of 4e3. Maximum fill times were set to 60 ms
and 120 ms for MS and MS/MS scans respectively. Quadrupole isolation of 2.0m/z
was used, dynamic exclusion was set to 15 s and unassigned charge states were
excluded. Protein and peptide identification were done with Integrated Proteomics
Pipeline—IP2 (Integrated Proteomics Applications). Tandem mass spectra were
extracted from raw files using RawConverter48 and searched with ProLuCID49

against human UniProt database appended with microprotein sequences. The
search space included all fully-tryptic and half-tryptic peptide candidates with a
maximum of two missed cleavages. Carbamidomethylation of cysteine was counted
as a static modification. Data was searched with 50 ppm precursor ion tolerance
and 50 ppm fragment ion tolerance. Data was filtered to 10 ppm precursor ion
tolerance post search. Identified proteins were filtered using DTASelect50 and
utilizing a target-decoy database search strategy to control the false discovery rate
to 1% at the protein level.

Extraction of rat tissues for Western blot analysis. Tissues were extracted using
a mixture of hot (90 °C) 1 N acetic acid/0.1 N HCl, homogenized with a Polytron
blender, centrifuged at 30,000 × g for 30 min at 4 °C, and supernatants removed
and filtered through 5 μm syringe filters. Supernatants were enriched for micro-
proteins as described51, except that Bond Elut C18 cartridges were used.

Confocal imaging. For fixed cell imaging, cells were seeded onto coverslips (Fisher
Scientific, 12-541-B) pre-treated with 50 µg/mL poly-L-lysine (Sigma, P1399). The
next day, cells were transfected with constructs as indicated using Lipofectamine
2000. Tweny-four or forty-eight hours post-transfection, cells were fixed with 4%
paraformaldehyde (Polysciences, Inc., #18814) and permeabilized with fresh 0.1%
saponin (Alfa Aesar, A18820). After incubating with 4% BSA in PBS for 1 hour at
room temperature, cells were stained with corresponding primary antibodies
overnight at 4 °C. Then the cells were washed three times with PBS, followed by
incubating with Alexa Fluor-labeled secondary antibodies for 1 hour at room
temperature. If necessary, nuclei were counterstained with Hoechst 33258 (Sigma,
#94403, 1:2000 in PBS). After three PBS washes, the coverslip was mounted on
slides using Prolong® Gold Antifade Mountant (Life Technologies, P36930). For
live cell imaging, COS-7 cells were seeded onto 4-well chambered cover glass
(Cellvis, C4-1.5H-N), which was pre-treated with 50 µg/mL poly-L-lysine (Sigma,
P1399). The next day, cells were transfected with constructs as indicated using
Lipofectamine 2000. Twenty-four hours post-transfection, cells were treated with
MitoTracker Deep Red FM (Life Technologies, M22426) to label mitochondria.
Cell culture medium was then changed to phenol-red free DMEM+ 10% FBS and
imaged at 37 °C and 5% CO2. All samples were imaged using a Zeiss LSM 880
Airyscan confocal microscope with a 63 × 1.4NA oil immersion objective at 2 ×
Nyquist pixel and z-stack step sizes, then processed using automatic filter settings
in Zen Black (Zeiss) software. Images were then analyzed using FIJI software.

Subcellular fractionation (including MAM). Subcellular fractionation of nuclei,
mitochondria, ER, MAM and cytosol from HEK293T cells was performed fol-
lowing the previously described protocols32,33. Cells were homogenized in isolation
buffer (225 mM mannitol, 75 mM sucrose, 0.1 mM EGTA, 30 mM Tris-HCl pH
7.4) until 90% of cells were broken. Then, the homogenate was centrifuged at
600 × g for 10 min three times to clarify the supernatant. The pellet (nuclear
fraction) was washed three times with isolation buffer and resuspended in RIPA
buffer. Collected supernatant was centrifuged for 15 min at 7000 × g for obtaining
crude mitochondria. The crude mitochondria were washed with isolation buffer,
and 10% were resuspended in RIPA buffer, the other 90% were used to isolate pure
mitochondria and MAM (see below). The collected supernatant was centrifuged at
20,000 × g for 30 min to remove the plasma membrane. Then, the supernatant was
centrifuged at 100,000 × g for 1 h and the pellet was resuspended for the ER
fraction and the supernatant was kept for the cytosolic fraction. For pure mito-
chondria and MAM fraction, the crude mitochondria pellet was resuspended in
2 mL MRB buffer (250 mM mannitol, 5 mM HEPES pH 7.4, 0.5 mM EGTA), and
the fraction was added on the top of 30% percoll medium (225 mM mannitol,
25 mM HEPES pH 7.4, 1 mM EGTA, 30% percoll (v/v)) in an ultracentrifuge tube.
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Centrifugation was performed at 95,000 × g for 30 min. The bottom layer band was
diluted with 10 volumes of MRB buffer and centrifuged at 6300 × g for 15 min
twice, the pellet was then saved as pure mitochondria. The upper layer band was
diluted with 10 volumes of MRB buffer and centrifuged at 6300 × g for 15 min, the
supernatant was collected and centrifuged again at 100,000 × g for 1 h and the pellet
was collected as MAM fraction.

Proteinase K protection assay. Proteinase K protection assay was performed as
previously described18. Briefly, mitochondria were isolated from HEK293T cells
expressing PIGBOS-FLAG and then equally divided into six samples. Samples were
resuspended and incubated on ice for 30 min in isolation buffer (225 mM mannitol,
75 mM sucrose, 50 mM HEPES pH 7.5), 2 mM HEPES (pH 7.5) or 2 mM HEPES
+ 0.3 % (v/v) Triton X-100 (two samples for each condition). Then samples were
treated with 0.5 μL of proteinase K (New England Biolabs P8107S) on ice for
30 min (one sample for each condition). The reaction was inactivated by adding
PMSF to a final concentration of 1 mM. The resulting samples were precipitated
with 30% (v/v) TCA, and the pellet was washed with cold acetone and resuspended
in SDS loading buffer. Protein levels were visualized by Western blotting using
indicated antibodies.

APEX labeling in live cells. Biotin-phenol labeling in live cells was performed as
previously described52. Briefly, PIGBOS-APEX fusion proteins or APEX control
were transiently transfected into HEK293T cells using Lipofectamine 2000.
Twenty-four-hours post-transfection, cell culture medium was changed to fresh
growth medium containing 500 μM biotin-tyramide (CDX-B0270, Adipogen).
After 30 min incubation at 37 °C, H2O2 was added to each plate at a final con-
centration of 1 mM and the plates were gently agitated for 1 min. Cells were then
washed three times with quenching solution (5 mM Trolox, 10 mM sodium azide
and 10 mM sodium ascorbate in PBS) and the pellet was collected by centrifugation
at 1000 × g for 5 min.

Immunoprecipitations. Constructs as indicated and corresponding controls were
transfected into a 10-cm dish of HEK293T cells using Lipofectamine 2000
according to manufacturer’s protocol. Forty-eight-hours post-transfection, cells
were harvested and lysed in lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1%
Triton X-100) supplemented with Roche complete protease inhibitor cocktail tablet
and 1 mM PMSF. Cells were lysed on ice for 20 min followed by centrifugation at
10,000 × g for 10 min at 4 °C to remove cell debris. Cell lysates were added to pre-
washed mouse IgG agarose beads (Sigma A0919) and rotated at 4 °C for 1 h. The
supernatants were collected and added to pre-washed anti-FLAG M2 Affinity Gel
(Sigma, A2220) or anti-HA agarose beads (Sigma, A2095). The suspensions were
rotated at 4 °C overnight and washed four times with 1 × TBST. Bound proteins
were eluted with 3 × FLAG peptide (Sigma, F4799) or HA peptide (Sigma, I2149) at
4 °C for 1 h. In some experiments, bound proteins were eluted by adding SDS
loading buffer and boiled at 95 °C for 10 min. The eluents were then separated by
SDS-PAGE and analyzed by Western blotting using indicated antibodies.

Flow cytometry analysis of PIGBOS-CLCC1 interaction. HEK293T cells were co-
transfected with CLCC1-GFP(1-10)-HA and PIGBOS-3 × GFP11-FLAG (or PIG-
BOS-ΔC-3 × GFP11-FLAG). Seventy-two hours after transfection, cells were
washed once by PBS and resuspended in FACS buffer (PBS+ 0.3% BSA) before
analyzed by BD FACSCanto II system. To measure PIGBOS-CLCC1 interaction
during ER stress, 2 µg/ml of TM (Tocris Bioscience, #3516) or 400 nM of TG
(Tocris Bioscience, #1138) was added to cell culture media as indicated before flow
cytometry analysis. To assess the effect of ER and mitochondrial contacts,
HEK293T cells were transfected with VAPB/PTPIP51 or pcDNA as mock control.
Twenty-four hours after transfection, cells were transfected with CLCC1-GFP(1-
10)-HA and PIGBOS-3 × GFP11-FLAG. GFP signals were measured 48 h after
transfection. Flow cytometry data were analyzed by FlowJo V10 software.

Generation of PIGBOS-KO cells. PIGBOS-KO HEK293 and U2OS cells were
generated according to the protocol described53. Briefly, cells were co-transfected
with two CRISPR-Cas9 constructs with sgRNAs targeting at different PIGBOS gene
loci. Twenty-four hours after transfection, GFP and mCherry double positive cells
were isolated by FACS and single cells were sorted in a 96-well plate. PIGBOS-KO
efficiency of single colonies was assessed by genotyping PCR, sequencing and
Western blots. sgRNA and genotyping PCR primers are listed in Supplementary
Table 5.

Electron microscopy and analysis. Cells were cultured in 10-cm dishes and fixed
with a solution of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer with 2 mM calcium chloride at pH 7.4 for 15 minutes at room
temperature (RT) followed by overnight fixation at 4 °C. Fixative was replaced with
0.1 M sodium cacodylate buffer (pH 7.4), and fixed cells were then carefully
detached using an angled piece of Teflon held in a hemostat. Ribbons of cells were
gently transferred into Eppendorf tubes. All samples were washed three times with
0.1 M sodium cacodylate buffer and then post-fixed in a solution of 2% osmium
tetroxide reduced with 1.5% potassium ferrocyanide in 0.1 M sodium cacodylate

buffer at room temperature for 40 min. All samples were gently pelleted between all
steps. Samples were washed three times with distilled water and stained with 1%
aqueous uranyl acetate for 40 min. The pellets were dehydrated in graded steps of
ethanol before infiltration with Eponate 12 resin. Once the samples were fully
infiltrated, they were centrifuged for 25 minutes at 8000 × g and polymerized at
60 °C for 48 h. Seventy-nanometers sections were cut with a Leica UC7 ultra-
microtome using a diamond knife (Diatome). Images were acquired with a Zeiss
Libra 120 EF-TEM with a 2 K CCD camera with 1 nm pixel size. To minimize bias
in measurements, all EM images were acquired, segmented, and analyzed in a
blinded fashion. Only cells with intact plasma membrane profiles were selected for
imaging by the blinded technician.

After the images were acquired, the MOM and nearest ER membrane surfaces
were manually segmented using the TrakEM2 plugin in the Fiji/ImageJ software
environment54. For ER-MOM contact measurements, we used custom Python
software to generate dilated boundaries of the MOM up to 30 nm away from the
MOM in increments of 1 nm. The software then measured the total length of ER
(Li) within each MOM dilation boundary i= 1, …, 30. The amount of ER surface
within the region between two dilated boundaries was calculated as li= Li− Li−1.
The length L of the total ER-MOM contact was calculated as L ¼ Pi¼30

i¼1 li . The
average ER-MOM distance D was then calculated as the product of the contact
length li and the corresponding dilation distance i, divided by the total length L
(Eq. 1). The ER-MOM contact coefficient ERMICC36 was calculated as the contact
length L divided by the product of the mitochondrial perimeter P and average
distance D (Eq. 2). The p-value was calculated using the two tailed unpaired t-test.

D ¼
Pi¼30

i¼1 i ´ li
Pi¼30

i¼1 li
ð1Þ

ERMICC ¼ L
P ´D

ð2Þ

XBP-1 mRNA splicing assay. XBP-1 mRNA splicing assay was performed as
previously described55. In brief, total RNA was extracted using PureLink RNA mini
kit (Life Technologies, 12183025) and reverse transcribed to cDNA using Quan-
tiTect Reverse Transcription kit (Qiagen, 205313). PCR primers 5′-CGGAAGC
CAAGGGGAATGAAG-3′ and 5′-GGATATCAGACTCTGAATC-3′ encompass-
ing the spliced sequences in XBP-1 mRNA were used for the RT-PCR amplification
with Phusion HSII polymerase (Thermo, F565). RT-PCR products were separated
by electrophoresis on a 2.5% agarose gel and visualized by ethidium bromide
staining. GAPDH was used as the loading control with primers 5′-CATGTTCC
AATATGATTCCACC-3′ and 5′-CTCCACGACGTACTCAGCG-3′.

ATF6 luciferase assay. HEK293 cells were plated in a 6-well plate. The second
day, cells were transfected with PIGBOS siRNA or non-targeting negative siRNA as
indicated using Lipofectamine RNAi MAX. Meanwhile, cells were also transfected
with PIGBOS-FLAG or pcDNA3.1(+) empty vector using Lipofectamine 2000.
Twenty-four hours after transfection, cells were co-transfected with p5x-ATF6-GL3
and β-galactosidase. Six hours after transfection, cells were re-seeded in a 96 well
plate, which was pre-treated with 50 µg/mL poly-L-lysine (Sigma, P1399) and
incubated overnight. The next morning, cells were treated with indicated con-
centrations of TM for 24 h before measuring luciferase activities.

Caspase-3 activity assay. PIGBOS-KD, PIGBOS-KO, and control U2OS cells
were treated with indicated concentrations of TM or TG for 27 h. Caspase-3
activities were measured using EnzChekTM Caspase-3 Assay Kit (Life Technolo-
gies, E13183). Meanwhile, total cell lysate of each condition was analyzed by
Western blotting using cleaved Caspase-3 and cleaved PARP antibodies.

Cell viability (MTT) assay. U2OS cells were transfected with PIGBOS siRNA and
negative control non-targeting siRNA using Lipofectamine RNAiMAX. Forty-eight
hours after transfection, cells were treated with indicated concentration of TG for
48 h before viability measurement by the MTT assay method. Briefly, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, EMD Millipore,
475989) was dissolved in PBS at a concentration of 5 mg/mL (10×) and then 1:10
diluted in DMEM+ 10% FBS without phenol red (1x). Cell culture medium was
replaced with 1 ×MTT solution, and cells were incubated at 37 °C for 4 h. The
medium was then aspirated, and DMSO was added to dissolve the insoluble for-
mazan product. Absorbance at 570 nm was measured using a BioTek Synergy H5
microplate reader.

Structure analysis for PIGBOS microprotein. PIGBOS structure was analyzed by
inputting the PIGBOS microprotein sequence into the TMDOCK server43 (https://
membranome.org/tmdock). The predicted structure was illustrated by PyMol.

Data availability
The data supporting the findings are available within the article and Supplementary
Information. RNA-Seq and Ribosome profiling data for PIGBOS (Supplementary Fig. 1a)
are analyzed from a study that will be published separately, and the data have been
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deposited into Gene Expression Ominbus database with accession number GSE125218
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125218). The MS data for
PIGBOS-FLAG immunoprecipitation have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD014890. All
other data are available from the authors upon reasonable request. The source data
underlying Figs. 4a, d, e, 5b, 6c–e, 6g and Supplementary Figs. 13b, d, 14a, b, 15c, d, 16a,
b, 17a, c, d, 18a, b and 20a–c are provided as a Source Data file.
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