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Sirtuin (Sirt) 1 and Sirt 3 are nicotinamide adenine dinucleotide (+)-dependent protein
deacetylases that are important to a number of mitochondrial-related functions; thus,
identification of sirtuin activators is important. Herein, we hypothesize that pyrroloquinoline
quinone (PQQ) can act as a Sirt1/Sirt3 activator. In HepG2 cell cultures, PQQ increased the
expression of Sirt1 and Sirt3 gene, protein, and activity levels (P < .05). We also observed a
significant increase in nicotinamidephosphoribosyltransferase gene expression (as early as 18
hours) and increased NAD+ activity at 24 hours. In addition, targets of Sirt1 and Sirt3
(peroxisomeproliferator–activated receptor γ coactivator 1α, nuclear respiratory factor 1 and 2,
and mitochondrial transcription factor A) were increased at 48 hours. This is the first report
that demonstrates PQQ as an activator of Sirt1 and Sirt3 expression and activity, making it an
attractive therapeutic agent for the treatment of metabolic diseases and for healthy aging.
Based on our study and the available data in vivo, PQQ has the potential to serve as a
therapeutic nutraceutical, when enhancing mitochondrial function.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Recent evidence suggests that environmental factors (eg,
chemicals, physiologic stress, and nutrition) are important
in the epigenetic regulation of metabolically active tissues.
Indeed, the interaction between genes and the environment
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has emerged as a new frontier for the discovery of how
networks of modified genes contribute to major pathologies.
In this regard, the sirtuins have emerged as a group of
mitochondrial nicotinamide adenine dinucleotide (NAD)+-
dependent protein deacetylases that act as cellular sensors
in the regulation of a wide range of cellular processes [1].
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Among the 7 types of sirtuins, Sirt1 and Sirt3 have been most
extensively investigated.

Our focus on Sirt1 and Sirt3 is fueled in part by the finding
that Sirt3 activity is down-regulated upon exposure to a high-fat
diet [1] and that Sirt1 plays a role in whole-body energy
metabolism [2]. As specific examples, Sirt3-deficient mice
display augmented mitochondrial protein hyperacetylation
and accelerated development of the metabolic syndrome when
fed a high-fat diet [1,3]. In addition to whole-body metabolism,
Sirt1 appears important to pancreatic β-cell integrity and
function [4], reducingmyocardial hypertrophy [5] and neuropro-
tection [6]. Furthermore, both Sirt1 and Sirt3 are involved in
the regulation of mitochondrial biogenesis [7] (Supplementary
Fig. 2). Because sirtuins play beneficial roles in a number of
pathophysiologic conditions, there is an increasing interest in
identifying compounds, especially natural products that can
modulate the activity of sirtuins or increase their expression
levels [8]. To date, only few natural compounds (eg, resveratrol)
have been found to activate Sirt1 [9].

Pyrroloquinoline quinone is an aromatic heterocyclic
anionic orthoquinone found in plant foods, especially effec-
tive in neutralizing superoxide and hydroxyl radicals, two
prominent causes of mitochondrial dysfunction. Most signif-
icantly, PQQ not only protects mitochondria from oxidative
stress; it also promotesmitochondrial biogenesis [10]. Varying
PQQ in the diets of mice and rats also results in changes in
mitochondrial content and altered lipid metabolism [11].
However, many aspects of its mechanism of action remain
unclear. Here, we hypothesize that PQQ can act as a Sirt1/Sirt3
activator. Thus, in the present study, we investigated whether
PQQ has an effect on Sirt1/Sirt3 expression and activities.
Using a HepG2 cell line, we also investigated whether the
stimulation of the sirtuin pathway increased the mitochon-
drial function and biogenesis in the treated cells.
2. Methods and materials

2.1. Reagents

Pyrroloquinoline quinone disodium salt was a gift from
Mitsubishi Gas and Chemical (Tokyo, Japan). Antibodies
were purchased from Santa Cruz Biotechnology or Cell
Signaling Technology.

2.2. Cell culture

Cells were cultured in Dulbecco's Modified Eagle's Medium
media supplemented with 10% fetal bovine serum, 100 U/mL
penicillin, and 100 mg/mL streptomycin. The cells were
maintained in a humidified incubator at 37°C under 5% CO2.

2.3. Quantitative real-time reverse transcription–polymerase
chain reaction and immunoblotting

HepG2 cells (2.5 × 105 per well) were plated in 24 well plates.
Twenty-four hours later, cells were incubated in control or PQQ-
supplemented media for 48 hours, and total RNA was isolated
from cells using E.Z.N.A Total RNA kit I (Omega Bio-Tek)
according to the manufacturer's instructions. Complementary
DNA was generated from 1 μg of RNA by reverse transcription
(Applied Biosystems, Foster City, CA) Primer sequences are listed
in the Supplementary Table 1. Relative gene expression was
determined by quantitative real-time reverse transcription–
polymerase chain reaction (qRT-PCR) and expressed relative
to 18S.

For the immunoblotting, 1 × 106 cells were plated in 6 well
plates. Twenty-four hours later, cells were incubated with
either control Dulbecco's Modified Eagle's Medium or media
supplemented with PQQ for 48 hours. Cells were washed with
ice-cold phosphate-buffered saline and scraped into ice-cold
radioimmunoprecipitation assay buffer lysis buffer or high-
salt buffer [1] containing protease inhibitors (Sigma). The
protein concentration in the cell lysatewasdeterminedusing a
Bradford assay. Total cell lysate (30 μg) was separated by
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(Bio-Rad Ready Gels) under reducing conditions and transferred
to nitrocellulose membrane. Bands were visualized by chemi-
luminescence using WesternSure ECL chemiluminescent sub-
strate (LI-COR). Membranes were imaged using a LiCor C-digit
Blot scanner, and blots were analyzed by ImageStudio software
(LI-COR). Both actin and GAPDH were used as loading controls.

2.4. Sirtuin and NAD+/nicotinamide adenine dinucleotide
(NADH) activity assays

Sirt1 and Sirt3 activity assays were performed with slight
modifications [1] using kits from Cayman Chemical Company
(SIRT1 Direct Fluorescent Screening Assay Kit, catalog no.
10010401; SIRT3 Direct Fluorescent Screening Assay Kit, catalog
no. 10011566). The NAD+/NADH assay was performed according
to the manufacturer's protocol using NAD/NADH Cell Based
AssayKit (catalog no. 600480) fromCaymanChemical Company.

2.5. Statistical analyses

All data are presented as the means ± SE. Statistical
significance was determined by Student t test (α = .05) or
one-way analysis of variance using Tukey test (α = .05).
3. Results and discussion

Thepresent study is the first report to identify the effects of PQQ
on sirtuins. Pyrroloquinoline quinone exposure (10-30 μM)
significantly increased Sirt1 and Sirt3 gene and protein expres-
sion as well as activity and decreased overall protein acetyla-
tion in the human hepatocyte cell line, HepG2 (Fig. 1). The PQQ
concentrations that were used were based on our previous
observations [10]. Pyrroloquinoline quinone treatment did
not alter membrane potential or cell viability (Supplementary
Figs. 3 and 4). For comparison, to obtain similar results
using resveratrol or piceatannol (a resveratrol metabolite)
and a hepatocyte culture system, somewhat higher concentra-
tions (>50 μM) are often needed [12]. With regard to PQQ,
the need for micromolar amounts is most likely due to
the reaction of PQQ with amino acids and proteins to
form derivatives, primarily imidazolopyrroquinoline [13].
Imidazolopyrroquinoline does not influence mitochondrio-
genesis [10] but appears to be the dominant form of PQQ in



Fig. 1 – Pyrroloquinoline quinone increases Sirt1 and Sirt3 expression and activity in HepG2. HepG2 cells were exposed at 0, 10,
and 30 μM PQQ for 48 hours. A and B, Expression of Sirt1 and Sirt3 mRNA was determined by qRT-PCR. 18S served as the
reference gene. C and D, Whole-cell protein extracts were used to quantify the protein expression levels of Sirt1 and Sirt3.
Western blotting analysis was carried out using equal amounts of protein. Values represent the ratio of Sirt1 or Sirt3 to actin,
respectively (bar graph under the blot). E and F, Sirt1 and Sirt3 enzymatic activities were measured in protein extracts
using commercially available kits. G, Protein acetylation was measured using anti-acetylated lysine antibody. Quantitative
analysis of the blot is shown in a bar graph. All data in (A-G) are means ± SE. ⁎P < .05, ⁎⁎P < .01, ⁎⁎⁎P < .001 vs untreated control
(water), n = 3.
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biological fluids, such as milk [13]. Given that imidazolo-
pyrroquinoline can dissociate to PQQ with an apparent Kd

constant of approximately 10−4, that is, typical to those for other
Schiff base and azomethine ylide derivatives, to insure
nanomolar to sub micromolar concentrations of PQQ/PQQH2

in cultures, micromolar concentrations of PQQ were added.
Increased Sirt1 and Sirt3 activity was also associated with

increased nicotinamide phosphoribosyltransferase (NAMPT),
NAD+ activity levels, and mitochondrial biogenesis regulators
(Fig. 2). Overexpression of NAMPT has been shown to result in
increased Sirt2 activity [14]. We therefore carried out a time-
dependent experiment at earlier time points, as we hypoth-
esized that NAMPT needs to be up-regulated as early as
possible to activate NAD+ and subsequently increase sirtuin
activity. Pyrroloquinoline quinone did not show any signifi-
cant changes in NAMPT gene expression at 6 or 12 hours (data
not shown). However, PQQ exposure leads to a significant
NAMPT up-regulation at 18 hours (P < .05) (Fig. 2A) as well as
an increase in NAD+ activity at 24 hours (P < .05) (Fig. 2B).

Reduced levels of NAD+ or Sirt1/3 expression or activity can
lead to impaired metabolic function. In this regard, an
accumulating body of evidence has shown that caloric restric-
tion (CR) protects age-related metabolic dysfunctions and
oxidative damage by increasing Sirt3-mediated deacetylation
of several modulators. Interestingly, CR and fasting enhance
NAD+ levels in the liver mitochondria, possibly through the
induction of NAMPT [15]. In contrast, decreased NAMPT levels
have been observed in human adults with non–alcoholic fatty
liver disease and cirrhosis [16,17]. Of therapeutic potential,
sirtuins exhibit a beneficial phenotype resembling CR [18].

In our published study [10], we showed that PQQ increases
peroxisome proliferator–activated receptor γ coactivator 1α
(PGC-1α) messenger RNA (mRNA) and protein expression in
Hepa 1‐6 cell line. In HepG2 cells, PQQ also significantly
increased the PGC-1α messenger RNA (Fig. 2C), although protein
expressionwasonlymodestly increased (Supplementary Fig. 5A).
In this regard, one limitation is that PGC-1α is expressed at very
low levels in HepG2 cells [19,20]. Nevertheless, the patterns of
change in PGC-1α and the related significant findings suggest a
high degree of similarity between the observations in Hepa 1‐6
and HepG2 cells. Although described as a master regulator of
mitochondrial biogenesis and energy homeostasis, PGC-1α
activity is tightly controlled by the metabolic sensors sirtuins,
which directly affect its activity through deacetylation [21].
Both Sirt1 and Sirt3 produced a modest PGC-1α deacetylation
(Supplementary Fig. 5B) in HepG2 cells. Clearly, more studies are



Fig. 2 – Effect of PQQ on regulatory factors. HepG2 cells were exposed for 18 or 24 or 48 hours to 10 or 30 μM of PQQ. A,
Expression of NAMPT mRNA levels was determined by qRT-PCR after 18 hours treatment of PQQ. 18S served as the reference
gene, n = 3. B, NAD+/NADH ratiowasmeasured after 24 hours of treatmentwith PQQusing the commercially available kit, n = 4. C,
Messenger RNA expressions of (i) PGC-1α, (ii) NRF-1, (iii) NRF-2, and (iv) Tfam were quantified by qRT-PCR (n = 3). All data are
expressed as themeans ± SE. ⁎P < .05, ⁎⁎P < .01, ⁎⁎⁎P < .001 vs untreated control (water), n = 3. D, Schematic depiction of a novel
molecular pathway of PQQ.
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needed to identify the involvement of other mechanisms, and,
given the linkages of PGC-1α and Sirt1 and 3 to energy
metabolism, in vivo experiments will be essential.

What is appreciated is that Sirt1 influences glucose, lipid,
and cholesterol metabolism in the liver. Sirtuin 1 also activates
transcription of nuclear and mitochondrial genes, encoding
for proteins promoting mitochondria proliferation, oxidative
phosphorylation, and energy production. Sirtuin 3 directly
acts as an activator of proteins important for oxidative
phosphorylation, tricarboxylic acid cycle, and fatty-acid
oxidation; and it acts indirectly on PGC-1α andAMP-activated
protein kinase [7]. Several of these mitochondrial-related
events are also regulated by nuclear respiratory factors
(NRFs) [22]. Consistent with the previous study using mouse
Hepa 1‐6 cells [10], PQQ also up-regulates the gene expression
levels of mitochondrial regulators NRF-1, NRF-2, and mito-
chondrial transcription factor A (Tfam) in HepG2 (Fig. 2C).
Several in vivo and in vitro studies implicate Tfam as
an ideal target for regulatory pathways that control both
mitochondrial DNAmaintenance and transcriptional expres-
sion. Furthermore, NRF-1 binding sites are present in the
promoters of several nuclear genes required for mitochondrial
respiratory function. It is also important to note that NRF-1
targets are involved in the regulation of metabolic enzymes,
components of signaling pathways, and gene products neces-
sary for chromosome maintenance and nucleic acid metabo-
lism [23]. A second nuclear factor designated as NRF-2 also
plays an important regulatory function in respiratory chain
expression [24] as well as the transcription factors [25], TFB1M
and TFB2M [26]. Therefore, PQQ can improve the overall
mitochondrial function.

With regard to PQQ, we conclude that PQQ induces the
activation of both Sirt1 and Sirt3 in concert with the
expression of PGC-1α and other respiratory factors involved
in mitochondrial biogenesis. Although limited, the available
data for humans suggest that ingestion of PQQ at 0.2 to 0.3 mg
PQQ/kg body weight results in changes in urinary metabo-
lites consistent with enhanced mitochondria-related func-
tions [27]. Only 10 mg quantities or less of PQQ/kg of typical
animal diets elicit mitochondrial-related responses, com-
pared with the 20 to 30 times higher amounts needed for a
resveratrol response [28]. Using rats fed chemical-defined
diets devoid of PQQ, the addition of PQQ in amounts as low
as 2 mg PQQ/kg diet improves energy utilization and lipid
metabolism and protects against ischemia reperfusion injury
[11]. Furthermore, mice fed diets devoid of PQQ display
poor reproductive performance and compromised neonatal
growth and survival [28]. An important feature is that PQQ is
relatively soluble inwater and its chemical stabilitymaking it
attractive as a therapeutic agent.

In conclusion, we demonstrate that PQQ is an activator of
Sirt1 and Sirt3 expression and activity, making it an attractive
therapeutic agent for the treatment of metabolic diseases
or for healthy aging (Supplementary 2). Recently, PQQ has
shown to ameliorate streptozotocin-induced oxidative dam-
age in the brain as well as the streptozotocin-induced

image of Fig.�2
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diabetes [29]. In addition, oral administration of PQQ im-
proved impaired glucose tolerance in type 2 diabetic KK-A(y)
mice [30]. Based on the work reported here and available data
in vivo, PQQ has the potential to serve as a potential
therapeutic nutraceutical, when enhancing mitochondrial
function. Consequently, it should also be promising to
examine further sirutin activation in models in vivo impor-
tant to the understanding of metabolic syndrome and aging.
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