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Producing circular field harmonics inside elliptic magnet apertures
with superconducting canted-cosine-theta coils

L. Brouwer *

Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory,
Berkeley, California 94720, USA

(Received 8 January 2024; accepted 12 February 2024; published 27 February 2024)

Superconducting magnets with noncircular aperture are desired for accelerators and many other
high-field applications. This paper presents new methods for the analytic design of elliptic bore
superconducting accelerator magnets. Part 1 of this work shares the derivation of current to field relations
between a sheet current density on an elliptic cylinder and the magnetic field harmonics inside the aperture.
This result is explored in the general context of elliptic bore magnet design with relevant scaling laws
compared between elliptic and circular bore magnets. In part 2, this approach is applied to the specific
geometry of canted-cosine-theta (CCT) accelerator magnets, enabling analytic winding design for single or
mixed circular harmonics within elliptic aperture CCT magnets.

DOI: 10.1103/PhysRevAccelBeams.27.022402

I. INTRODUCTION

High field magnets with noncircular apertures are
advantageous for a wide range of accelerator applications.
In fixed-field accelerators, the energy-dependent orbit
excursion typically leads to the beam sampling of a larger
region in the horizontal plane [1,2]. A similar effect of orbit
offset between circulating and extracted beams in some
rapid-cycling synchrotrons also motivates the use of
elliptic bore magnets [3]. Furthermore, noncircular aper-
tures allow for the efficient passing of multiple beams
through a single magnet in collider interaction regions. In
addition to multiorbit motivations, there are applications
like heavy ion synchrotrons, where an elliptic bore magnet
is a better match to the beam shape [4,5].
There are economic and technical motivations for

choosing an elliptic aperture when this shape matches
the beam-prescribed field region. The smaller bore area
when compared to a circular aperture leads to a reduction in
stored energy and coil volume, both of which are magnet
cost drivers. In addition, if the magnet poles reside only
on the minor axis (e.g., dipoles with a larger horizontal
aperture), the effective aperture reduction to the pole results
in shorter coil ends and magnet physical length for the
same integrated field. The corresponding reduction in
magnet size along the minor axis may also benefit designs
in space-constrained areas near collider interaction regions

or within detectors. Finally, elliptic apertures allow for the
efficient integration of in-bore radiation shielding concen-
trated at the midplane, a potential benefit for muon colliders
and other future accelerators with high radiation loads in
the horizontal plane [6,7].
Elliptic bore accelerator magnets are rare, and even more

so for fields greater than 2–3 T, where superconducting
windings rather than ferromagnetic material dominate field
production. In the 4–5 T range, there are published design
studies of elliptic aperture Nb-Ti magnets for fixed-field
accelerators [8] and for a future medical synchrotron at
National Institutes for Quantum and Radiological Science
and Technology in Japan [9]. The project team there
recently tested a prototype combined function magnet with
an elliptic aperture that successfully reached the design
field of 4.5 T at the windings [10]. For field levels beyond
the limits of Nb-Ti, there is an initial study of elliptic
aperture Nb3Sn magnets for the muon collider [6] as well as
several rectangular bore Nb3Sn magnet designs for testing
superconducting cables in background fields up to 15 T
[11–13]. While not explicitly for use in accelerators, these
15 T superconducting magnets share many features that
make them highly relevant to accelerator dipoles with
slightly noncircular aperture.
While field quality in elliptic apertures has been studied

in detail [14,15], to the best of our knowledge, an analytic
approach to the electromagnetic design of elliptic bore
superconducting accelerator magnets is missing from
published literature. We seek to address this need by
sharing an analytic design method that is generally relevant
to elliptically shaped superconducting windings and then
applying it to the specific geometry of canted-cosine-theta
(CCT) magnet design. The CCT design, which was first
published in 1970 [16], has experienced a growing interest
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over the last 20 years for potential advantages of conductor
stress management, simplified manufacturing for small
series of magnets, and natural ability to produce single
or combined function fields of accelerator quality [17,18].
The continuation of this paper is organized as follows:

Section II first introduces elliptic coordinates and field
harmonics and then derives the relation between current
density on an elliptic boundary and circular harmonicswithin
the aperture. Section III employs these relations to study the
tradeoffs between circular and elliptic windings by deriving
scaling laws for magnet cost drivers as a function of winding
ellipticity. This general framework is then applied to analytic
coil design of CCT magnets in Sec. IV. Finally, discussion
and conclusions are shared in Sec. V.

II. CURRENT TO FIELD RELATIONS
FOR AN ELLIPTIC CURRENT SHEET

A. Elliptic cylindrical coordinates

Figure 1 shows the elliptic cylindrical coordinate system
formed by constant coordinate surfaces of confocal cylinders
and planes. This system is advantageous for the analytic
design of elliptic bore superconducting magnets since
boundary conditions from elliptic aperture windings can
be applied to general solutions of Laplace’s equation on a
constant coordinate surface.
In the notation of Moon and Spencer [19], the elliptic

cylindrical coordinates are

u1 ¼ η; 0 ≤ η < ∞;

u2 ¼ ψ ; 0 ≤ ψ < 2π;

u3 ¼ z; −∞ < z < ∞; ð1Þ

which can be related to Cartesian coordinates through
x ¼ a cosh η cosψ , y ¼ a sinh η sin ψ , and z ¼ z, with
scale factors of

h1 ¼ h2 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η − cos2ψ

q
;

h3 ¼ 1: ð2Þ

Critically for elliptic bore magnets, the constant η ¼ η0
surface �

x
a cosh η0

�
2

þ
�

y
a sinh η0

�
2

¼ 1 ð3Þ

forms a confocal cylinder that can be matched to the
superconducting windings and thus also the surface on
which the magnetic boundary conditions are evaluated.

B. Magnetic vector potential and field harmonics
in elliptic coordinates

We look to find a magnetic vector potential A in elliptic
coordinates from which the corresponding elliptic field
harmonics are given by B¼∇×A. Considering Maxwell’s
equations for source free regions,∇×B¼∇× ð∇×AÞ ¼ 0,
and assuming no axial variation such thatA ¼ Azðη;ψÞẑ, the
potential equation to be solved takes the form of the vector
Laplacian∇2A ¼ 0.We apply our assumptions and the scale
factors in Eq. (2) to the general vector Laplacian for curvi-
linear coordinates in [20] to find the resulting potential
equation

∇2A ¼ 1

a2ðcosh2 η − cos2 ψÞ
�
∂
2Az

∂η2
þ ∂

2Az

∂ψ2

�
¼ 0: ð4Þ

The general solution of this equation is well known and
can be expressed as a mix of

Az ¼ An coshðnηÞ cosðnψÞ þ Bn coshðnηÞ sinðnψÞ
þ Cn sinhðnηÞ cosðnψÞ þDn sinhðnηÞ sinðnψÞ; ð5Þ

and

Az ¼ Ene−nη cosðnψÞ þ Fne−nη sinðnψÞ
þ Gnenη cosðnψÞ þHnenη sinðnψÞ; ð6Þ

with an implied summation over n. Next, we select terms
from this general solution for regions inside and outside an
elliptic boundary of η ¼ η0 considering the limiting behav-
ior at η → 0 and η → ∞. For brevity, we make an additional
selection of terms in the bore producing the midplane
symmetry Bðη ¼ 0Þ · ψ̂ ¼ 0 to maintain upright, nonskew
field harmonics (since the derivation of the skew terms
can be found with the assumption of opposite symmetry
and the same methodology to follow). With these con-
ditions, the vector potential inside and outside of the elliptic
boundary is

FIG. 1. Constant η and ψ surfaces for the elliptic coordinates
form confocal cylinders and planes.
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Aðη;ψÞ ¼
�
Ain
n coshðnηÞ cosðnψÞẑ; η < η0

Aout
n e−nη cosðnψÞẑ; η > η0

: ð7Þ

We use B ¼ ∇ × A to derive the magnetic field har-
monics B ¼ Bηη̂þ Bψ ψ̂ from this potential, resulting in

Bηðη;ψÞ ¼

8>><>>:
− nAin

n coshðnηÞ sinðnψÞ
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η−cos2ψ

p ; η < η0

− nAout
n e−nη sinðnψÞ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η−cos2ψ

p ; η > η0
; ð8Þ

and

Bψðη;ψÞ ¼

8>><>>:
− nAin

n sinhðnηÞ cosðnψÞ
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η−cos2ψ

p ; η < η0

nAout
n e−nη cosðnψÞ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η−cos2ψ

p ; η > η0
: ð9Þ

Figure 2 shows the first four elliptic harmonics in
Eqs. (8) and (9) evaluated for the example boundary η0 ¼
tanh−1ð10=25Þ using the commercial software ANSYS.
Deviation from the circular harmonics typically used for
accelerator design starts at n ¼ 3 (the sextupolelike term),
where among other differences, a clear splitting of the zero
field location begins. In Sec. II D, we will derive relations
between elliptic and circular harmonics to find the combi-
nation of elliptic field harmonics required to “correct” the
deviation of n ≥ 3 harmonics and produce single or com-
bined function circular harmonics in an elliptic aperture.

C. Elliptic harmonics related
to an elliptic current sheet density

We relate the elliptic harmonics to an axial current sheet at
the boundary, deriving an idealized current density to be
approximated by discrete coil design. The magnetic boun-
dary conditions at the η ¼ η0 surface of an elliptic cylinder
require

ðBout
η − Bin

η Þjη¼η0
¼ 0; ð10Þ

and

ðBout
ψ − Bin

ψ Þjη¼η0
¼ μ0jz; ð11Þ

where j ¼ jzẑ is the sheet current density on the surface. We
apply the condition in Eq. (11) to the field harmonics in
Eqs. (8) and (9) to define the general form of the current
density as

jzðψÞ ¼
j0nz cosðnψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η0 − cos2ψ

p ; ð12Þ

where summation over n is implied and j0nz is constant.
We then apply both boundary conditions to relate the

FIG. 2. The first four elliptic field harmonics for an example
elliptic boundary.
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vector potential and field harmonics to the current density
through

Aðη;ψÞ ¼
� μ0j0nzae−nη0 coshðnηÞ cosðnψÞ

n ẑ; η < η0
μ0j0nza coshðnη0Þe−nη cosðnψÞ

n ẑ; η > η0
; ð13Þ

Bηðη;ψÞ ¼

8>><>>:
− μ0j0nze−nη0 coshðnηÞ sinðnψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2η−cos2ψ
p ; η < η0

− μ0j0nz coshðnη0Þe−nη sinðnψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η−cos2ψ

p ; η > η0
; ð14Þ

and

Bψ ðη;ψÞ ¼

8>><>>:
− μ0j0nze−nη0 sinhðnηÞ cosðnψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2η−cos2ψ
p ; η < η0

μ0j0nz coshðnη0Þe−nη cosðnψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η−cos2ψ

p ; η > η0
; ð15Þ

which prescribes the current density required to produce
single or combined function elliptic harmonics in an elliptic
aperture.

D. Circular harmonics related
to an elliptic current sheet density

Accelerator design and beam dynamics codes typically
describe magnetic fields in terms of circular harmonics
(leading to the traditional definition of dipole, quadrupole,
sextupole, and higher order magnets). For this reason, we
take the next step beyond Sec. II C and relate an elliptically
shaped current density to circular harmonics within the
aperture. We can derive the circular harmonics using the

same vector potential method in Sec. II B with cylindrical
coordinates, but because these are so well known, we
simply restate the relevant harmonics

Bðr; θÞ ¼ −
μ0j0nz
2

�
r
r0

�
n−1

ðsin nθr̂þ cos nθθ̂Þ ð16Þ

within a circular aperture of radius r0 carrying a sheet
current density j ¼ j0nz cosðnθÞẑ. We define normalized
field coefficients Bn ¼ B=rn−1 so that B1 is the dipole field
(e.g., T), B2 is the quadrupole gradient (e.g., T=m), B3 is
the sextupole component (e.g., T=m2), and so forth. The
relationship between the current and field coefficients for
the circular harmonics is then

j0nz ¼ −
2Bn

μ0
rn−10 : ð17Þ

To relate the circular field harmonics to an elliptic current
density, we define the matrices Tmk and Ekn as

j0n ¼ ðEknÞðTmkÞ−1B0n; ð18Þ

where j0n ¼ ðj01z; j02z;…; j0nzÞ is the elliptic current
density coefficient vector for Eq. (12) and B0n ¼
ðB1; B2;…; BnÞ is a vector of desired circular field har-
monics which may be single or combined function. We
chose this form to build on the published work of Schnizer
focused on relating circular and elliptic harmonics for
magnetic measurement techniques [14]. From this refer-
ence, the Tmk matrix (which relates 2D elliptic and
cylindrical field harmonics without approximation) is

Tmk ¼
1

ð1þ δk;0Þ coshðkη0Þam

8<:
ð−1Þm=2 cosðkπ=2Þ

m!

Qm=2
μ¼1ðk2 − ½2ðμ − 1Þ�2Þ m is even

ð−1Þðm−1Þ=2 sinðkπ=2Þk
m!

Qðm−1Þ=2
μ¼1 ðk2 − ð2μ − 1Þ2Þ m is odd

; ð19Þ

wherem is the matrix row and k is the column (with indices
starting at zero). The second, new matrix Ekn relates the
elliptic harmonics to elliptic current density coefficients by
reformatting the results derived in Sec. II C. Considering
the already defined form of Tmk,

Ekn ¼ −
ekη0

2μ0

�
δk;n

coshððk − 1Þη0Þ
−

δk;n−2
coshððkþ 1Þη0Þ

�
; ð20Þ

where k is the matrix row and n is the column (with indices
starting at one). In practice, these matrices can be truncated
up to some order of the desired nth harmonic contribution.
Table I lists the evaluation of Eq. (18) for the first four

circular harmonics (due to their importance in accelerator
design). For the dipole and quadrupole, only a magnitude

scaling of the matching current density term is required to
convert elliptic to circular harmonics. Starting with the
sextupole at n ¼ 3, an additional n − 2 elliptic current
density term is needed, indicating that a combination of

TABLE I. Elliptic current density coefficients j0nz [in Eq. (12)]
for producing the circular harmonics Bn.

j01z j02z j03z j04z

B1 − B1eη0
μ0

B2 −a B2e2η0
2μ0

B3 −a2 B3eη0
4μ0 −a2 B3e3η0

4μ0
B4 −a3 B4e2η0

4μ0
−a3 B4e4η0

8μ0
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elliptic harmonics is required to produce n ≥ 3 circular
harmonics. Ultimately, this method allows us to determine
the continuous current density on an elliptic cylinder
required to produce single or combined function circular
harmonics in the aperture.
Figure 3 shows results from an ANSYS model imple-

menting the current density coefficients in Table I for an
example elliptic bore of η0 ¼ tanh−1 ð10=25Þ. We clearly
see the “correction” of the n ≥ 3 harmonics when com-
pared to the elliptic harmonics for the same geometry
in Fig. 2.

III. COMPARISON OF SCALING
LAWS BETWEEN ELLIPTIC
AND CIRCULAR APERTURES

For applications where beam dynamics prescribes an
elliptic region of the field, we must choose between a
circular bore sized to the maximum beam aperture or an
elliptic bore better matched to the space required for the
beam (illustrated in Fig. 4). To quantify this trade-off, we
derive the cost drivers [21] of stored energy and conductor
use as a function of aperture ellipticity

ϵ ¼ 1 −
by
ax

; ð21Þ

where ax and by are the major and minor axes of the
windings.

To find the magnetic stored energy, we use the integral
approach E ¼ 1

2

R ðA · JÞdV. With the assumptions we
made for the vector potential and current density in
the previous sections, this reduces to a stored energy per
length of

Eell ¼
a
2

Z
ðA · jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η0 − cos2ψ

q
dψ ; ð22Þ

for an elliptic current sheet at η ¼ η0, and

Ecyl ¼
r0
2

Z
ðA · jÞdθ; ð23Þ

FIG. 3. The current densities in Table I are applied to produce the first four circular field harmonics inside an example elliptic aperture.

FIG. 4. An example choice between a circular or elliptic
bore quadrupole magnet with matched major axis. We use
comparisons of this type to quantify the advantages of elliptic
bore magnets.
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for a circular current sheet at radius r ¼ r0. To find the
total amp-turns, which maps to the amount of conductor
required, we take the integral of the norm of the current
density. This is expressed as

Atell ¼ a
Z

2π

0

����Xnmax

n¼1

j0zn cosðnψÞ
����dψ ; ð24Þ

for the elliptic current sheet, and as

Atcyl ¼ r0

Z
2π

0

����Xnmax

n¼1

j0zn cosðnθÞ
����dθ; ð25Þ

for the circular sheet.
Table II shows these expressions evaluated for the dipole

and quadrupole harmonics (using the methods previously
developed in Sec. II to determine the elliptic current density
coefficients which produce the circular harmonics). In the
final two columns, the ratio of the stored energy and amp-
turns between the elliptic and circular case is rewritten in
terms of the ellipticity. Figures 5 and 6 illustrate these
trends. For dipole magnets, the reduction in stored energy
and amp-turns linearly approaches a factor of 2. For
quadrupole magnets, the reduction is nonlinear, with the
reduction in stored energy approaching a factor of 8 and
the reduction in amp-turns approaching a factor of 4. These
results quantify the advantages of choosing an elliptic
aperture when possible and point to the increased benefits
for higher order harmonics.

IV. APPLICATION TO CCT MAGNETS

In Sec. II, we developed an analytic approach relating
the desired circular harmonics in an elliptic aperture to the
current density on the elliptic surface. Now we focus on
methods to approximate this idealized current density with
discrete canted cosine theta (CCT) windings.

A. Averaging a CCT winding layer
into a current sheet density

We begin the definition of an elliptic CCTwinding layer
by considering a parametric path constrained to the surface
of an elliptic cylinder as illustrated in Fig. 7. We para-
metrize the position of this path in terms of the azimuthal
angle as

pðψÞ ¼ a cosh η0 cosψ x̂þ a sinh η0 sin ψ ŷþ pzðψÞẑ;
ð26Þ

where η0 is the constant coordinate surface of the elliptic
cylinder, ψ is the azimuthal angle, and pzðψÞ is a yet

TABLE II. Stored energy and amp turns for elliptic and circular sheets producing the same circular harmonics.

Eell Atell Ecyl Atcyl Eell=Ecyl Atell=Atcyl

B1
πa2B2

1

2μ0
eη0 coshðη0Þ 4ajB1j

μ0
eη0 πB2

1

μ0
r20 8

jB1j
μ0

r0 1 − ϵ
2

1 − ϵ
2

B2
πa4B2

2

16μ0
e2η0 coshð2η0Þ 2a2jB2j

μ0
e2η0 πB2

2

2μ0
r40 8

jB2j
μ0

r20 1 − 2ϵþ 7ϵ2

4
− 3ϵ3

4
þ ϵ4

8
1 − ϵþ ϵ2

4

FIG. 5. Stored energy as a function of ellipticity normalized to
the circular, ϵ ¼ 0 case (see Fig. 4).

FIG. 6. Total amp-turns as a function of ellipticity normalized
to the circular, ϵ ¼ 0 case (see Fig. 4).
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undefined function that describes the axial movement
of the path. We define a local reference frame at location
pðψÞ with t̂ tangential to the path, η̂ normal to the surface
of the ellipse, and b̂ completing the orthogonal system
(see Fig. 7). Vectors in these directions are

tðψÞ ¼ dp
dψ

¼ h2ðη0;ψÞψ̂ þ p0
zðψÞẑ; ð27Þ

and

bðψÞ ¼ t × η̂ ¼ p0
zðψÞψ̂ − h2ðη0;ψÞẑ; ð28Þ

where the scale factor h2 is previously defined in Eq. (2).
From Eqs. (26)–(28), we see the choice of the axial

position function pzðψÞ is sufficient to define both the path
and all local coordinate frame directions. As shown in
Fig. 8, we assume the axial periodicity of the path to create

a uniform region away from the start and ends of coil.
We require the axial distance between adjacent turns
of the winding to be independent of ψ , meaning
jpzðψ þ 2πÞ − pzðψÞj ¼ w, where the pitch w is the
constant axial distance between turns (Fig. 8). With these
assumptions, the approximate perpendicular distance
between adjacent paths δðψÞ (in the direction of b̂) is

δðψÞ ¼ wẑ · b̂ ¼ wh2ðη0;ψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

zðψÞÞ2 þ h2ðη0;ψÞ2
p : ð29Þ

We assume the path pðψÞ represents a continuous line
current of magnitude I0 and use the perpendicular spacing
in Eq. (29) to average the winding path into an elliptic sheet
current density of

jðψÞ ¼ I0
w

�
ψ̂ þ p0

zðψÞ
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η0 − cos2ψ

p ẑ

�
: ð30Þ

This consists of two components: a constant azimuthal
current (generating solenoidal fields) dependent on the
pitch and an axial current varying with azimuthal angle
(generating transverse fields) determined by p0

zðψÞ.

B. Relating the winding path
to magnetic field harmonics

We connect the CCTwinding path to the field harmonics
it produces through the choice of the axial path function
pzðψÞ. We look to find the form of pzðψÞ so that the
average sheet current density matches that derived from the
elliptic harmonics in Sec. II (allowing the use of previously
derived current-to-field relations for a continuous elliptic
current sheet). From Eqs. (12) and (30), we see

I0
aw

p0
zðψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2η0 − cos2ψ
p ¼ j0nz cos nψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2η0 − cos2ψ
p ; ð31Þ

which allows for finding the matching form of pzðψÞ
through the simple integration step

pzðψÞ ¼
Z �

waj0nz
I0

cos nψ

�
dψ : ð32Þ

With this, we write the axial path function in terms of the
desired elliptic sheet current density coefficients j0nz as

pzðψÞ ¼
wa
I0

j0nz
n

sin nψ þ w
2π

ψ ; ð33Þ

where the extra term w
2π ψ is added to fulfill the condition of

a continuous path with axial periodicity of pitch length w.
Equation (33) combined with the definition of the para-
metric path in Eq. (26), using the parametric variable

FIG. 7. The local unit tangent, radial, and binormal vectors (t̂, η̂,
b̂) at point p of a parametric winding path constrained to the
surface of an elliptic cylinder.

FIG. 8. We assume the winding path is axially periodic with
pitch length w.
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0 ≤ ψ ≤ 2πnt, can be used to draw a continuous CCT
winding path with nt turns generating the desired elliptic
harmonics far from the end effects of the windings.
The parameters defining a CCT layer with fixed elliptic

aperture η0 are the wire current I0, the axial pitch w, and the
set of desired sheet current density coefficients j0nz. For
magnet design, it is advantageous to replace the current
density coefficients with physical properties of the path
itself (to decouple the powering current from the winding
parameters). We do this by defining the midplane tilt angle
α of the winding path as

tanðαÞ ¼ t · ψ̂
t · ẑ

����
ψ¼0

¼ I0 sinh η0
wj0nz

; ð34Þ

assuming that the pitch w is much smaller than the ellipse
focal length a. In this case, we rewrite the axial path
function as

pzðψÞ ¼
a sinh η0
n tan α

sin nψ þ w
2π

ψ ; ð35Þ

which leads to an approximate sheet current density of

jðψÞ ¼ I0
w

 
ψ̂ þ

sinh η0
tan α cos nψ þ w

2πaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η0 − cos2ψ

p ẑ

!
; ð36Þ

that is now dependent on geometric winding parameters.
Here we see a single CCT winding layer contains three
distinct currents: a constant azimuthal current which gen-
erates a solenoidal field inside the winding, a cosðnψÞ-like
axial current which produces transverse elliptic harmonics,
and a pitch generated current axial current which maps
to a constant n ¼ 0 component (generating fields outside
the winding). The nonharmonic fields are derived in the
Appendix.

C. Circular field harmonics for elliptic CCT layers

We combine the method for relating the circular field
harmonics to an elliptic current density from Sec. II with
the derivation of the CCT path and current density in
Eqs. (35) and (36) to determine the circular harmonics
produced by a single CCT layer. For harmonics that only

require a single current density term (dipole and quadru-
pole), we simply relate the winding path and current density
coefficients through

j0nz ¼
I0
w
sinh η0
tan α

: ð37Þ

For combined function or higher order circular harmon-
ics, which require a combination of j0nz terms, the winding
path coefficients must be weighted by the ratio of the
desired current density terms. For these cases, special
attention should be given to the physical meaning of
the tilt angle α due to multiple j0nz terms contributing
in Eq. (34).
Table III shares the CCT winding path and transfer

function for the first four circular harmonics. Here we see
the extra n − 2 terms from the n ≥ 3 elliptic current sheet
solution propagating through to the axial modulation of the
winding path. Figure 9 shows an example winding layer
with ellipticity of 0.6 for each of the harmonics in the table.
In addition to a full layer with ends, this figure highlights
the periodic symmetry region of axial pitch length w over
which the winding turns are averaged into a sheet current
density.

D. Mutilayer CCT magnet design

The average current density of a CCT layer in Eq. (36)
contains two components that do not contribute to the
desired harmonics. In the Appendix, we derive the fields
produced by these components using integral methods.
Similar to circular aperture CCT magnets, the constant
azimuthal current produces a constant solenoidal field in
the aperture and the pitch-generated axial current produces
fields only in the region outside the winding.
For multilayer CCTmagnets, we focus on an approach in

which the undesirable solenoidal fields in the aperture
cancel and the desired harmonic fields sum. We write the
current density of the ith CCT layer located at the elliptic
cylindrical surface η0i as

jiðψÞ ¼
I0i
wi

 
ψ̂ þ

sinh η0i
tan αi

cos nψ þ wi
2πaiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2η0i − cos2ψ
p ẑ

!
: ð38Þ

For a total of nlay layers, the solenoidal field in the
aperture (from the Appendix) is

Bz ¼ μ0
Xnlay
i¼1

I0i
wi

; ð39Þ

and polarity of the contribution of each layer to the
transverse harmonics is given by the sign of I0i= tan αi.
With this, we see the approach of alternating the sign of

the tilt angle α and current I0 between an even number of
layers nulls the undesired solenoidal field in the aperture

TABLE III. Elliptic CCT winding path and field relation for
producing the circular harmonics.

Desired CCT axial path pzðψÞ Bn (e.g., T=mn−1)

B1
a sinh η0
tan α sinψ − μ0 I0 sinh η0

w tan αeη0

B2
a sinh η0
2 tan α sin 2ψ − 2μ0 I0 sinh η0

aw tan αe2η0

B3 a sinh η0
tan α

�
1

e2η0 sinψ þ sin 3ψ
3

�
− 4μ0I0 sinh η0

a2w tan αe3η0

B4 a sinh η0
tan α

�
2

e2η0
sin 2ψ
2

þ sin 4ψ
4

�
− 8μ0I0 sinh η0

a3w tan αe4η0
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while leaving the polarity of the transverse harmonics
unchanged (with the assumption of the same winding pitch
w). Figure 10 illustrates this approach for a pair of elliptic
dipole layers. The alternation of the current I0 between
layers has the additional benefit of bringing the current of a
layer pair back to the same axial side of the magnet,
simplifying the lead design.

E. Discussion of CCT model assumptions

While there are few limiting assumptions to the appli-
cation of the current sheet density results in Sec. II, the
analytic methods for CCT layer design include the impor-
tant assumptions of (i) sufficient discrete turn density being
averaged into a continuous current sheet and (ii) radially
thin winding layers. For a given aperture, the first consid-
eration is related to pitch of the winding w. In practice, this

is determined by w ¼ ðaw þ δÞ= sinðαÞ, where aw is the
width of the conductor channel (typically 1–2 mm for
superconducting wires and cables), δ is the midplane turn
spacing (typically a metal rib of ≈0.4 mm), and α is the
midplane tilt angle (typically 15–25 degrees). From the
author’s experience, the density resulting from these
parameters typically leads to accelerator field quality
(< 10−4 field errors) for dipole and quadrupole layers with
an aperture larger than 50 mm.
This means we can typically design single wire, low-

current CCT layers with a pure analytic approach. For high
current designs, the use of a Rutherford cable requires
further consideration of the orientation of the cable
with respect to the elliptical surface and the field quality
effects that come from no longer having a thin winding. In
this case, a final numerical optimization of the winding
parameters is likely required where the analytic case
provides a starting point for optimization. This final step
is not expected to be any more challenging than the similar
approach being used to design high current CCT layers
with circular aperture.

V. CONCLUSION

This work presented a framework for the analytic design
of elliptic bore superconducting magnets. We started
generally, by deriving the elliptic field harmonics and their
relation to current density on an elliptic cylinder. Then, we
shared the transformation between the elliptic and circular
field harmonics, allowing for determining the elliptically
shaped current density that produces the circular harmonics

FIG. 10. An elliptic CCT dipole magnet with alternation of tilt
angle and current direction between layers to cancel the solenoi-
dal field in the aperture.

FIG. 9. Single layer elliptic CCT windings producing the first four circular harmonics (from Table III).
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used in traditional accelerator design. With this, we
explored the scaling of magnet cost parameters as a
function of aperture ellipticity to quantify the advantages
of choosing an elliptic bore for applications where the
beam-prescribed field region is noncircular. Finally, we
applied this general approach to the specific winding
geometry of canted-cosine-theta (CCT) magnets, providing
an analytic path to realistic coil designs for elliptic bore
accelerator magnets.
Ultimately, the methodology we developed enables the

determination of the superconducting winding geometry to
produce a desired set of circular harmonics in an elliptic
aperture—providing a full analytic path to the electromag-
netic design of elliptic bore magnets. The next step toward
demonstrating the technology is the design, fabrication, and
test of a prototype elliptic bore CCT magnet. This effort
benefits from the recent focus on the CCT design within the
U.S. Magnet Development Program [22,23]. We plan to
leverage the modular approach to circular bore CCT layer
fabrication and magnet assembly established by this pro-
gram to build and test a prototype elliptic bore magnet over
the next several years.
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APPENDIX: FINDING THE MAGNETIC VECTOR
POTENTIAL IN ELLIPTIC COORDINATES

WITH INTEGRATION TECHNIQUES

In Sec. II, we solved Laplace’s equation in elliptic
coordinates to find the magnetic vector potential and sheet
current density producing 2D elliptic harmonics. With a
known current density, we may take an alternative approach
based on integration techniques. In this Appendix, we use
this integral method to find the vector potential and fields
from the sheet current density that approximates a CCT
winding layer. Critically, we derive the solenoidal field
produced by the azimuthal current density—a field com-
ponent key to the design of CCT magnets which is not
captured by the previous solution of Laplace’s equation.

1. Setting up the integration in elliptic coordinates

We use integration to find the magnetic vector potential
from a sheet current density by adapting the approach
shared by Caspi in Ref. [24] to elliptic cylindrical coor-
dinates. If the primed coordinate r0 represents the location
of source current J, we find the magnetic vector potential A
at location r using the integral form of Biot-Savart’s law

AðrÞ ¼ μ0
4π

Z
Jðr0Þ
jr − r0j d

3r0: ðA1Þ

If the source current is a sheet current density jðη0;ψ 0Þ
located at the fixed elliptical boundary η0 ¼ η0, the integral
in elliptic coordinates is

AðrÞ ¼ μ0
4π

Z
2π

0

Z
∞

−∞

Z
∞

0

jðη0;ψ 0Þδðη0 − η0Þ
jr − r0j hη0hψ 0hz0dη0dz0dψ 0; ðA2Þ

where the scale factors are given in Eq. (2). Evaluating the η0 integral and substituting the remaining scale factors leads to

AðrÞ ¼ aμ0
4π

Z
2π

0

jðη0;ψ 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η0 − cos2ψ 0

q Z
∞

−∞

1

jr − r0j dz
0dψ 0: ðA3Þ

To prepare for integration, we manipulate the equation for the distance between source and field points in elliptic
coordinates into the form

jr − r0j ¼

a2e2η0

4
ð1 − 2eðη−η0Þ cos ðψ − ψ 0Þ þ e2ðη−η0ÞÞð1 − 2e−ðηþη0Þ cos ðψ þ ψ 0Þ þ e−2ðηþη0ÞÞ þ ðz − z0Þ2

r
: ðA4Þ

A step-by-step process to reaching this form is in the Supplemental Material [25]. Next, we introduce the integration
variable s ¼ z − z0 and perform the axial integration step
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Z
∞

−∞

1

jr − r0j dz
0 ¼
Z

∞

−∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ s2

p ds ¼ −2 lnð
ffiffiffiffiffiffi
C1

p
Þ; ðA5Þ

where non-s dependent terms in Eq. (A4) are grouped into C1 and constants are omitted. This leads to a form of

−2 lnð
ffiffiffiffiffiffi
C1

p
Þ ¼ − ln

�
a2e2η0

4

�
− ln ð1− 2eðη−η0Þ cos ðψ − ψ 0Þ þ e2ðη−η0ÞÞ− ln ð1− 2e−ðηþη0Þ cos ðψ þψ 0Þ þ e−2ðηþη0ÞÞ: ðA6Þ

We use the general identity

ln ð1 − 2x cosϕþ x2Þ ¼ −2
X∞
k¼1

cos kϕ
k

xk jxj ≤ 1 ðA7Þ

from Ref. [26] to rewrite Eq. (A6) as

−2 lnð
ffiffiffiffiffiffi
C1

p
Þ ¼

(
− lnða2e2η0

4
Þ þ 2

P∞
k¼1

cos kðψ−ψ 0Þ
k ð eηeη0Þk þ 2

P∞
k¼1

cos kðψþψ 0Þ
k ðe−ηeη0 Þk; η < η0

− lnða2e2η
4
Þ þ 2

P∞
k¼1

cos kðψ−ψ 0Þ
k ðeη0eη Þk þ 2

P∞
k¼1

cos kðψþψ 0Þ
k ðe−ηeη0 Þk; η > η0

; ðA8Þ

where for regions outside the sheet, η ≥ η0, we factor out e2ðη−η0Þ to maintain the conditions in Eq. (A7) identity. We will use
this form of −2 lnð ffiffiffiffiffiffi

C1

p Þ in the azimuthal integral equation

AðrÞ ¼ aμ0
4π

Z
2π

0

jðη0;ψ 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η0 − cos2ψ 0

q �
−2 lnð

ffiffiffiffiffiffi
C1

p
Þ
�
dψ 0 ðA9Þ

to find the magnetic vector potential produced by each of the three current density components in a CCT layer.

2. Vector potential for the cosnψ-like current producing the elliptic harmonics

In Sec. II, we derived the elliptic harmonics by solving the vector Laplace equation. It is good practice to verify
that the integral approach reproduces this result. To prepare for integration, we rewrite the current density from
Eq. (12) as

j ¼ j0nz
cosðnψÞ cosðntÞ þ sinðnψÞ sinðntÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2η0 − cos2ψ 0p ẑ ðA10Þ

to include the integration variable t ¼ ψ − ψ 0 (for which the form also matches t ¼ ψ þ ψ 0). We combine this with
Eqs. (A8) and (A9) to set up the vector potential integral as

AðrÞ ¼ aμ0j0nz
4π

Z
2π

0

½cosðnψÞ cosðntÞ þ sinðnψÞ sinðntÞ�ẑ
(
− lnða2e2η0

4
Þ þ 2

P∞
k¼1

cos kt
k ðekηþe−kη

ekη0
Þdt; η < η0

− lnða2e2η
4
Þ þ 2

P∞
k¼1

cos kt
k ðekη0þe−kη0

ekη
Þdt; η > η0

: ðA11Þ

The inner product of the trigonometric functions results in the integral picking out only the n ¼ k terms, leading to a
potential of

AðrÞ ¼ aμ0j0nz cos nψ
n

�
e−nη0 coshðnηÞẑ; η < η0

e−nη coshðnη0Þẑ; η > η0
; ðA12Þ

where we use the identity coshðnxÞ ¼ ðenx þ e−nxÞ=2 for further simplification. As expected, this result exactly matches the
vector potential derived from Laplace’s equation in Eq. (13) for the elliptic harmonics.

3. Vector potential for the constant azimuthal current producing solenoidal fields

We see from Eq. (36) that a CCTwinding layer generates a constant azimuthal current density j ¼ I0
w ψ̂

0. To prepare for
integration, we first rewrite the direction ψ̂ 0 in terms of η̂ and ψ̂. Then we reformat this result in the integration variables
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ψ − ψ 0 and ψ þ ψ 0 to match the form of Eq. (A8). After much manipulation, shown step-by-step in the Supplemental
Material [25], this results in

j ¼ I0
w
ψ̂ 0 ¼ I0

w
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2η − cos2ψ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2η0 − cos2ψ 0p
× ðcosðψ − ψ 0Þ½coshðηÞ sinhðη0Þ sinðψÞ cosðψÞ − sinhðηÞ coshðη0Þ sinðψÞ cosðψÞ�η̂
þ cosðψ − ψ 0Þ½sinhðηÞ sinhðη0Þcos2ðψÞ þ coshðηÞ coshðη0Þsin2ðψÞ�ψ̂
þ cosðψ þ ψ 0Þ½sinhðηÞ coshðη0Þ sinðψÞ cosðψÞ þ coshðηÞ sinhðη0Þ sinðψÞ cosðψÞ�η̂
þ cosðψ þ ψ 0Þ½sinhðηÞ sinhðη0Þcos2ðψÞ − coshðηÞ coshðη0Þsin2ðψÞ�ψ̂
þ sinðψ − ψ 0Þ and sinðψ þ ψ 0Þ termsÞ ðA13Þ

where only the cos ðψ − ψ 0Þ and cos ðψ þ ψ 0Þ terms that contribute to integration are shown. This form of the current is
combined with Eqs. (A8) and (A9) and integrated to find the potential. This picks out the k ¼ 1 terms only and leads to a
potential of

AðrÞ ¼ aμ0I0
2w

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η − cos2ψ

p 	�
−
1

4
e−2ðηþη0Þ −

1

4
e4η−2ðηþη0Þ þ 1

2

�
sinð2ψÞη̂þ 1

4
ðe4η − 1Þe−2ðηþη0Þ½e2η0 − cosð2ψÞ�ψ̂



ðA14Þ

inside the windings (η ≤ η0). We find the magnetic field with

BðrÞ ¼ ∇ × A ¼ ẑ
aðcosh2η − cos2ψÞ

	
∂

∂η

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η − cos2ψ

q
Aψ

�
−

∂

∂ψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η − cos2ψ

q
Aη

�

; ðA15Þ

resulting in a constant solenoidal field inside the aperture of strength

BðrÞ ¼ μ0I0
w

ẑ: ðA16Þ

4. Vector potential for the nonharmonic axial current producing azimuthal fields outside the layer

From Eq. (36), we see the CCT winding creates a pseudoconstant axial current density

j ¼ I0
2πa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η0 − cos2ψ 0p bz0; ðA17Þ

which is combined with Eqs. (A8) and (A9) to set up the integration as

AðrÞ ¼ aμ0
4π

I0
2πa

Z
2π

0

ẑ

(
− lnða2e2η0

4
Þ þ 2

P∞
k¼1

cos kt
k ðekηþe−kη

ekη0
Þdt; η < η0

− lnða2e2η
4
Þ þ 2

P∞
k¼1

cos kt
k ðekη0þe−kη0

ekη
Þdt; η > η0

: ðA18Þ

The potential resulting from this integral is

AðrÞ ¼ μ0I0
4π

(
− lnða2e2η0

4
Þẑ; η < η0

− lnða2e2η
4
Þẑ; η > η0

; ðA19Þ

from which the fields

BðrÞ ¼ ∇ × A ¼ 1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η − cos2ψ

p �
∂Az

∂ψ
η̂ −

∂Az

∂η
ψ̂

�
ðA20Þ

evaluate to

BðrÞ ¼ μ0I0
4π

1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2η− cos2ψ

p �
0; η< η0

2ψ̂; η> η0
: ðA21Þ
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This current density component (which is generated by
the forward pitch of the windings) is not typically relevant
for CCT magnet design since it does contribute to fields in
the aperture.
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