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ABSTRACT OF THE DISSERTATION

Change Point Detection for Dynamic Graphs and

Dynamic Valued Networks Modeling

by

Yik Lun Kei

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2024

Professor Oscar Hernan Madrid Padilla, Chair

Networks or graphs are often used to represent relational phenomena in numerous do-

mains, and relational phenomena by nature progress in time. Devising powerful models

and tools for dynamic graphs can provide valuable insights into real-world phenomena that

benefit decision-making. Moreover, change point detection plays an indispensable role in

identifying discrepancies in the data generating processes. Without taking the structural

changes across dynamic networks into account, learning from the time series may lead to

ambiguity. Thence, it is practical for researchers to first localize the change points, and

then analyze the dynamic networks, rather than neglecting where the network patterns have

substantially changed.

We first consider the change point detection problem for dynamic graphs using the Sepa-

rable Temporal Exponential-family Random Graph Model (STERGM). The STERGM that

utilizes network statistics to represent the network structures is a flexible model to fit dy-

namic graphs. We propose a new estimator derived from the Alternating Direction Method of

Multipliers (ADMM) and Group Fused Lasso to simultaneously detect multiple time points,
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where the parameters of a time-heterogeneous STERGM have changed.

Then we study the change point detection problem for dynamic graphs under a generative

framework. The proposed model consists of learnable prior distributions for graph-level

representations and of a decoder that can generate dynamic graphs from the low-dimensional

representations. The informative prior distributions in the latent spaces are learned from

the observed graphs as empirical Bayes, and the expressive power of a generative model is

exploited to assist change point detection.

Furthermore, we consider an exponential-family model to fit dynamic valued networks,

as relations by nature often have degree of strength. To facilitate the modeling of dyad

value increment and decrement, a Partially Separable Temporal Exponential-family Random

Graph Model is proposed. The parameter learning algorithms approximate the maximum

likelihood, by drawing Markov chain Monte Carlo (MCMC) samples conditioning on the

valued network from the previous time step.

Throughout the dissertation, we use both simulated and real-world data to evaluate the

methodology and the learning algorithms. The results demonstrate the effectiveness of the

proposed frameworks.
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CHAPTER 1

Introduction

Networks are often used to describe relational phenomena that cannot be reduced merely

to the attributes of individuals. The abundance and the complexity of network data in

the real world demand statistical models and methodologies to dissect and understand the

relational phenomena. Moreover, relational phenomena by nature can progress over time,

and a pivotal aspect of understanding the dynamics is the identification of change points

where the underlying network structure fundamentally changes. In brief, this dissertation

is structured around three self-contained articles [KCP23, KLC23, KLL24], contributing to

the fields of change point detection and dynamic network modeling.

The second chapter introduces an approach to detect change points in dynamic networks

using the Separable Temporal Exponential-family Random Graph Model (STERGM). This

model manages dyad formation and dyad dissolution separately, to capture the structural

changes in network evolution realistically. The flexibility of STERGM and the extensive

selection of network statistics also boost the power of the proposed method. Essentially, we

fit a time-heterogeneous STERGM to the dynamic networks, while penalizing the sum of

Euclidean norms of the parameter differences between consecutive time steps. The objective

function that consists of the negative log-likelihood and the Group Fused Lasso regularization

is minimized via the Alternating Direction Method of Multipliers (ADMM), and we adopt

the pseudo-likelihood of STERGM to expedite the estimation process.

The third chapter delves into the usage of generative models to detect change points

in dynamic graphs. Inherently, dynamic networks can be complex due to both dyadic and
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temporal dependencies. Learning low-dimensional graph representations can extract useful

patterns from the observed data to facilitate the change point detection task. The proposed

framework utilizes learnable prior distributions and a graph decoding mechanism to capture

the structural changes. Specifically, the informative priors for the graph representations

in the latent space are learned from the observed data as empirical Bayes, and the model

parameters are learned via maximum approximate likelihood with a Group Fused Lasso

regularization. The resulting optimization problem is solved via ADMM, and the generative

model is demonstrated to be useful for change point detection.

The fourth chapter proposes a Partially Separable Temporal Exponential-family Random

Graph Model (PST ERGM) to fit dynamic valued networks. Conventionally, a relation be-

tween two actors is indicated by the presence or absence of a tie: a binary state between two

nodes in a network. Though connected ties are seemingly identical in binary networks, rela-

tions by nature often have degrees of strength, which can be represented by generic values to

distinguish them. Transitioning from the dichotomous state of relation to the granular mag-

nitude of strength requires a class of models to comprehend the richness of valued networks.

In particular, the proposed model assumes the factors that increase relational strength are

different from those that decrease relational strength. Therefore, we can construct two inter-

mediate networks to manage dyad value increment and decrement separately. The dynamics

are specified with two sets of network statistics evaluated on the intermediate networks, and

we can use two sets of parameters to facilitate interpretation.

In summary, this dissertation contributes to the understanding of dynamic networks

through statistical models and computational techniques. By utilizing both simulated and

real-world data, the results demonstrate the effectiveness of these proposed frameworks.
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CHAPTER 2

A Separable Model for Change Point Detection in

Dynamic Graphs

This chapter studies change point detection in time series of networks, with the Separable

Temporal Exponential-family Random Graph Model (STERGM). Dynamic network pat-

terns can be inherently complex due to dyadic and temporal dependence. Detection of the

change points can identify the discrepancies in the underlying data generating processes

and facilitate downstream analysis. The STERGM that utilizes network statistics to rep-

resent the structural patterns is a flexible model to fit dynamic networks. We propose a

new estimator derived from the Alternating Direction Method of Multipliers (ADMM) and

Group Fused Lasso to simultaneously detect multiple time points, where the parameters of

a time-heterogeneous STERGM have changed. We also provide a Bayesian information cri-

terion for model selection and an R package CPDstergm to implement the proposed method.

Experiments on simulated and real data show good performance of the proposed framework.

2.1 Introduction

Networks are often used to describe relational phenomena that cannot be limited merely to

the attributes of individuals. In an investigation of the transmission of COVID-19, [FDR21]

used networks to represent human mobility and forecast disease incidents. The study of

physical connections, beyond the health status of individuals, permits policymakers to im-

plement preventive measures effectively and allocate healthcare resources efficiently. Yet
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relations can change over time, and dynamic relational phenomena are often aggregated into

a static network for analysis. To this end, a temporal model for dynamic networks is in high

demand.

In recent decades, a plethora of models has been proposed for dynamic networks analysis.

[Sni01], [Sni05], and [SBS10] developed a Stochastic Actor-Oriented Model, which is driven

by the actor’s perspective to make or withdraw ties to other actors in a network. [KSA10] fo-

cused on recovering the latent time-varying graph structures of Markov Random Fields, from

serial observations of nodal attributes. [SM05], [SC15], and [SC16] presented a Latent Space

Model, by assuming the edges between actors are more likely when they are closer in the

latent Euclidean space. [MM17], [LEN18], and [Pen19] investigated the dynamic Stochas-

tic Block Model (SBM), and [JLY20] developed an Autoregressive SBM to characterize the

communities. Furthermore, the Exponential-family Random Graph Model (ERGM) that

uses local forces to shape global structures [HHB08a] is a promising model for networks with

dependent ties. [HFX10] defined a Temporal ERGM (TERGM), by conditioning on previous

networks in the network statistics of an ERGM. [DC12b] proposed a bootstrap approach to

maximize the pseudo-likelihood of the TERGM and assess uncertainty. In general, network

evolution concerns the rate at which edges form and dissolve. Demonstrated in [KH14], these

two factors can be mutually interfering, making the dynamic models used in the literature

difficult to interpret. Posing that the underlying reasons that result in dyad formation are

different from those that result in dyad dissolution, [KH14] proposed a Separable TERGM

(STERGM) to dissect the entanglement with two conditionally independent models.

In time series analysis, change point detection plays a central role in identifying the

discrepancies in the underlying data generating processes. Without taking the structural

changes across dynamic networks into consideration, learning from the time series may not

be meaningful. As relational phenomena are studied in numerous domains, it is practical for

researcher to first localize the change points, and then analyze the dynamic networks, rather

than overlooking where the network patterns have substantially changed.
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There has also been an increasing interest in studying the change point detection prob-

lem for dynamic networks. [WTP13] focused on the Stochastic Block Model time series,

and [WYR21] studied a sequence of inhomogeneous Bernoulli networks. [LBF21], [MBF22],

and [PYP22] considered a sequence of Random Dot Product Graphs that are both dyadic

and temporal dependent. Methodologically, [CZ15] and [CC19] developed a graph-based

approach to delineate the distributional differences before and after a change point, and

[Che19] utilized the nearest neighbor information to detect the changes in an online frame-

work. [ZCL19] proposed a two-step approach that consists of an initial graphon estimation

followed by a screening algorithm, [SC22c] exploited the features in high dimensions via a

kernel-based method, and [CAA20] employed embedding methods to detect both anomalous

graphs and anomalous vertices. Moreover, [LCX18] introduced an eigenvector-based method

to reveal the change and persistence in the gene communities for a developing brain. [BA18]

focused on a Gaussian Graphical Model to detect the change points in the covariance struc-

ture of the Standard and Poor’s 500. [OOC21] proposed a factorized binary search method to

understand brain connectivity from the functional Magnetic Resonance Imaging time series

data.

Allowing for user-specified network statistics to determine the structural changes for the

detection, we make the following contributions in the proposed framework:

• To simultaneously detect multiple change points from a sequence of networks, we learn

a time-heterogeneous STERGM, while penalizing the sum of Euclidean norms of the

sequential parameter differences. We formulate the augmented Lagrangian as a Group

Fused Lasso problem, and we derive an Alternating Direction Method of Multipliers

(ADMM) to solve the optimization problem.

• We exploit the practicality of STERGM, which manages dyad formation and dissolu-

tion separately, to capture the structural changes in network evolution. The flexibility

of STERGM, which considers both dyadic and temporal dependence, and the extensive
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selection of network statistics also boost the power of the proposed method. Moreover,

we provide a Bayesian information criterion for model selection, and we develop an R

package CPDstergm to implement the proposed method.

• We simulate dynamic networks to imitate realistic social interactions, and our method

can achieve greater accuracy on the networks that are both dyadic and temporal de-

pendent. Furthermore, we punctually detect the winter and spring vacations with

the MIT cellphone data [EP06]. We also detect three major change points from the

stock market data analyzed in [JM15], and the detected change points align with three

significant events during the 2008 worldwide economic crisis.

The rest of the chapter is organized as follows. In Section 2.2, we review the STERGM

for dynamic networks. In Section 2.3, we present the likelihood-based objective function

with Group Fused Lasso regularization, and we derive an ADMM to solve the optimization

problem. In Section 2.4, we discuss change points localization after parameter learning,

along with model selection and post-processing. In Section 2.5, we implement our method

on simulated and real data. In Section 2.6, we conclude our work with a discussion and

potential future developments.

2.2 STERGM Change Point Model

2.2.1 Notation

For a matrix X ∈ Rτ×p, denote Xi,· ∈ R1×p and X·,i ∈ Rτ×1 as the respective ith row

and ith column of the matrix X. Moreover, denote X−i,· ∈ Rτ×p as the matrix obtained

by replacing the ith row of the matrix X with a zero vector, and X·,−i ∈ Rτ×p is denoted

similarly.

For a matrix θ ∈ Rτ×p, define the transformation from a matrix to a vector as
#»

θ =

vecτp(θ) ∈ Rτp×1, by sequentially concatenating each row of θ to construct the vector
#»

θ .
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Reversely, for a vector
#»

θ ∈ Rτp×1, define the transformation from a vector to a matrix as

θ = vec−1
τ,p(

#»

θ ) ∈ Rτ×p, by sequentially folding the vector
#»

θ for every p elements into a row

to construct the matrix θ.

2.2.2 ERGM

For a node set N = {1, 2, · · · , n}, we can use a network y ∈ Y to represent the potential

relations for all pairs (i, j) ∈ Y ⊆ N ×N . The network y has dyad yij ∈ {0, 1} to indicate

the absence or presence of a relation between node i and node j, and Y ⊆ 2Y. Moreover, we

prohibit a network to have self-edge, so the diagonal elements of the network y are zeros.

The relations in a network can be either directed or undirected, where an undirected network

has yij = yji for all (i, j).

The probabilistic formulation of an ERGM is

P (y;θ) = exp[θ⊤g(y)− ψ(θ)] (2.1)

where g(y), with g : Y → Rp, is a vector of network statistics; θ ∈ Rp is a vector of param-

eters; exp[ψ(θ)] =
∑

y∈Y exp[θ⊤g(y)] is the normalizing constant. The network statistics

g(y) may depend on nodal attributes x. For notational simplicity, we omit the dependence

of g(y) on x.

With a surrogate as in [Bes74, SI90, VGH09, DC12b, HHH12a], the log-likelihood of an

ERGM in (2.1) can be approximated as

l(θ) =
∑

(i,j)∈Y

yij[θ ·∆gij(y)]− log
{
1 + exp[θ ·∆gij(y)]

}
where the change statistics ∆gij(y) ∈ Rp denote the change in g(y) when yij changes from 0

to 1, while rest of the network remains the same. This formulation is called the logarithm of

the pseudo-likelihood, and it is helpful in ERGM parameter estimation. Next we introduce

the Separable Temporal ERGM (STERGM) used in our change point model.
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2.2.3 STERGM

For a sequence of networks, network evolution concerns (1) incidence: how often new ties are

formed, and (2) duration: how long old ties last since they were formed. [DH18], [GD20],

and [JLY20] pointed out that modeling snapshots of networks may give limited information

about the transitions. To address this issue, [KH14] designed two intermediate networks,

formation and dissolution networks, to reflect the incidence and duration. In particular,

the incidence can be measured by dyad formation, and the duration can be traced by dyad

dissolution.

Let yt ∈ Y t ⊆ 2Y be a network observed at a discrete time point t. The formation

network y+,t ∈ Y+,t is obtained by attaching the edges that formed at time t to yt−1, and

Y+,t ⊆ {y ∈ 2Y : y ⊇ yt−1}. The dissolution network y−,t ∈ Y−,t is obtained by deleting the

edges that dissolved at time t from yt−1, and Y−,t ⊆ {y ∈ 2Y : y ⊆ yt−1}. We also use the

notation from [KCP23] to specify the respective formation and dissolution networks between

time t− 1 and time t for a dyad (i, j) as y+,t
ij = max(yt−1

ij ,yt
ij) and y−,t

ij = min(yt−1
ij ,yt

ij). In

summary, y+,t and y−,t incorporate the dependence on yt−1 through construction, and they

can be considered as two latent networks recovered from both yt−1 and yt to emphasize the

transition from time t− 1 to time t.

Posing that the underlying factors that result in edge formation are different from those

that result in edge dissolution, [KH14] proposed the STERGM to dissect the evolution

between consecutive networks. Assuming y+,t is conditionally independent of y−,t given

yt−1, the STERGM for yt conditional on yt−1 is

P (yt|yt−1;θt) = P (y+,t|yt−1;θ+,t)× P (y−,t|yt−1;θ−,t) (2.2)

with the respective formation and dissolution models:

P (y+,t|yt−1;θ+,t) = exp[θ+,t · g+(y+,t,yt−1)− ψ(θ+,t,yt−1)],

P (y−,t|yt−1;θ−,t) = exp[θ−,t · g−(y−,t,yt−1)− ψ(θ−,t,yt−1)].
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The parameter θt = (θ+,t,θ−,t) ∈ Rp is a concatenation of θ+,t ∈ Rp1 and θ−,t ∈ Rp2 with

p1 + p2 = p.

Notably, the normalizing constant in the formation model at a time point t:

exp[ψ(θ+,t,yt−1)] =
∑

y+,t∈Y+,t

exp[θ+,t · g+(y+,t,yt−1)]

is a sum over all possible networks in Y+,t, and that in the dissolution model is similar except

for notational difference. Measuring these normalizing constants can be computationally in-

tractable when the number of nodes n is large [HH06a]. Thus, for the change point detection

problem described in Section 2.3, we adopt the pseudo-likelihood of an ERGM to estimate

the parameters. For a network modeling problem, other parameter estimation methods ex-

ploit MCMC sampling [GT92, Kri17a] or Bayesian inference [CF11, TFC16] to circumvent

the intractability of the normalizing constants.

In particular, we formulate the logarithm of the pseudo-likelihood of a time-heterogeneous

STERGM P (yT ,yT−1, . . . ,y2|y1;θ) =
∏T

t=2 P (y
t|yt−1;θt) as

l(θ) =
T∑
t=2

∑
(i,j)∈Y

{
y+,t
ij [θ+,t ·∆g+

ij(y
+,t)]− log

{
1 + exp[θ+,t ·∆g+

ij(y
+,t)]

}}
+

T∑
t=2

∑
(i,j)∈Y

{
y−,t
ij [θ−,t ·∆g−

ij(y
−,t)]− log

{
1 + exp[θ−,t ·∆g−

ij(y
−,t)]

}} (2.3)

where θ = (θ2, . . . ,θT ) ∈ Rτ×p with τ = T − 1. The change statistics ∆g+
ij(y

+,t) denote

the change in g+(y+,t) when y+,t
ij changes from 0 to 1, while rest of the y+,t remains the

same. The ∆g−
ij(y

−,t) is defined similarly. Since y+,t and y−,t inherit the dependence on

yt−1 by construction, we use the implicit dynamic terms, g+(y+,t) with g+ : Y+,t → Rp1 and

g−(y−,t) with g− : Y−,t → Rp2 , as discussed in [KH14].

The l(θ) in (2.3) is an approximation to the log-likelihood of (2.2) for t = 2, . . . , T .

We use the pseudo-likelihood for the optimization problem defined in Section 2.3 because

it is computationally feasible comparing to using MCMC sampling or Bayesian inference.

Furthermore, the number of rows in θ is τ = T − 1 instead of T due to the transition
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probability P (yt|yt−1;θt) that is conditional on the previous network. Though yt can be

conditioned on more previous networks, we only discuss STERGM under the first-order

Markov assumption in this chapter.

We now define the change points to be detected in terms of the parameters in STERGM.

Let {Bk}K+1
k=0 ⊂ {1, 2, . . . , T} be a collection of ordered change points with 1 = B0 < B1 <

· · · < BK < BK+1 = T such that

θBk = θBk+1 = · · · = θBk+1−1, k = 0, . . . , K,

θBk ̸= θBk+1 , k = 0, . . . , K − 1, and θBK+1 = θBK .

Our goal is to recover the collection {Bk}Kk=1 from a sequence of observed networks {yt}Tt=1

with the number of change points K also unknown. Note that one or more components in

θBk+1 ∈ Rp can be different from the parameter at the previous change point θBk ∈ Rp. For

this setting, we present our method in the next section.

2.3 Group Fused Lasso for STERGM

2.3.1 Optimization Problem

Inspired by [VB10] and [BV11], we propose the following estimator for our change point

detection problem:

θ̂ = argmin
θ

−l(θ) + λ
τ−1∑
i=1

∥θi+1,· − θi,·∥2
di

(2.4)

where l(θ) is formulated by (2.3). The Group Fused Lasso penalty expressed as the sum of

Euclidean norms encourages sparsity of the parameter differences, while enforcing multiple

components in θi+1,j−θi,j across j = 1, . . . , p to change at the same group i. This is an effect

that cannot be achieved with the ℓ1 penalty of the differences. Along with the user-specified

network statistics in the STERGM, the sequential parameter differences learned from the

observed networks with (2.4) can reflect the magnitude of structural changes over time.
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Furthermore, the term λ > 0 is a tuning parameter for the Group Fused Lasso penalty,

and the term d ∈ Rτ−1 is a position dependant weight [BV11] such that di =
√
τ/[i(τ − i)]

for i ∈ [1, τ − 1]. Intuitively, the inverse of di assigns a greater weight to the time point that

is far from the beginning and the end of a time span.

Figure 2.1 gives an overview of the proposed framework. The shaded circles on the top

denote the sequence of observed networks as time passes from left to right. The dashed circles

in the middle denote the sequences of formation networks y+,t and dissolution networks y−,t

recovered from the observed networks. Note that each observed network is utilized multiple

times to extract useful information that emphasizes the transition between consecutive time

steps. We learn the parameters denoted by the dotted circles at the bottom, while monitoring

the sequential parameter differences.

y1

y+,2

y−,2

y2

y+,3

y−,3

y3

y+,4

y−,4

y4 yT−1

y+,T

y−,T

yT

θ2 θ3 θ4 θT

Sequence of learned parameters

Sequence of observed networks

. . .

Figure 2.1: An illustration of change point model with STERGM.

To solve the problem in (2.4), we first introduce a slack variable z ∈ Rτ×p and rewrite
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the objective function as

θ̂ =argmin
θ
−l(θ) + λ

τ−1∑
i=1

∥zi+1,· − zi,·∥2
di

subject to θ = z.

(2.5)

We then formulate the augmented Lagrangian as

Lα(θ, z,ρ) =− l(θ) + λ

τ−1∑
i=1

∥zi+1,· − zi,·∥2
di

+ tr[ρ⊤(θ − z)] +
α

2
∥θ − z∥2F

where ρ ∈ Rτ×p is the Lagrange multipliers and α ∈ R is another penalty parameter for the

augmentation term. Let u = α−1ρ be the scaled dual variable, then

Lα(θ, z,u) = −l(θ) + λ
τ−1∑
i=1

∥zi+1,· − zi,·∥2
di

+
α

2
∥θ − z + u∥2F −

α

2
∥u∥2F . (2.6)

[LH07] formulated a one-dimensional change point detection problem as a Lasso regression

problem. Following [BV11], we make the change of variables (γ,β) ∈ R1×p × R(τ−1)×p to

formulate the augmented Lagrangian in (2.6) as a Group Lasso regression problem [YL06,

ABD13], where

γ = z1,· and βi,· =
zi+1,· − zi,·

di

∀i ∈ [1, τ − 1]. (2.7)

Reversely, the matrix z ∈ Rτ×p can also be collected by

z = 1τ,1γ +Xβ

where X ∈ Rτ×(τ−1) is a designed matrix with Xi,j = dj for i > j and 0 otherwise. Plugging

γ and β into (2.6), we have

Lα(θ,γ,β,u) = −l(θ) + λ

τ−1∑
i=1

∥βi,·∥2 +
α

2
∥θ − 1τ,1γ −Xβ + u∥2F −

α

2
∥u∥2F .

Thus we derive an Alternating Direction Method of Multipliers (ADMM) to solve (2.5). The
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resulting ADMM is given as:

θ(a+1) = argmin
θ
−l(θ) + α

2
∥θ − z(a) + u(a)∥2F , (2.8)

γ(a+1),β(a+1) = argmin
γ,β

λ

τ−1∑
i=1

∥βi,·∥2 +
α

2
∥θ(a+1) − 1τ,1γ −Xβ + u(a)∥2F , (2.9)

u(a+1) = θ(a+1) − z(a+1) + u(a), (2.10)

where a denotes the current ADMM iteration. Note that only in update (2.9) do we decom-

pose z to work with γ and β instead. Once the update (2.9) is completed within an ADMM

iteration, we collect z(a+1) = 1τ,1γ
(a+1) + Xβ(a+1) until the next decomposition of z. We

recursively implement the three updates until a convergence criterion is satisfied.

As in [BPC11], we also update the penalty parameter α to improve convergence and

to reduce reliance on its initial choice. After the completion of an ADMM iteration, we

calculate the respective primal and dual residuals:

r
(a)
primal =

√√√√ 1

τ × p

τ∑
i=1

p∑
j=1

(θ
(a)
ij − z

(a)
ij )2 and r

(a)
dual =

√√√√ 1

τ × p

τ∑
i=1

p∑
j=1

(z
(a)
ij − z

(a−1)
ij )2

at the ath ADMM iteration. We update the penalty parameter α and the scaled dual variable

u with the following schedule:

α(a+1) = 2α(a),u(a+1) =
1

2
u(a) if r

(a)
primal > 10× r(a)dual,

α(a+1) =
1

2
α(a),u(a+1) = 2u(a) if r

(a)
dual > 10× r(a)primal.

Since STERGM is a probability distribution for the dynamic networks, in this work we stop

ADMM learning until ∣∣∣∣ l(θ(a+1))− l(θ(a))

l(θ(a))

∣∣∣∣ ≤ ϵtol (2.11)

where ϵtol is a tolerance for the stopping criteria. Next, we discuss the updates (2.8) and

(2.9) in detail.
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2.3.2 Updating θ

In this section, we derive the Newton-Raphson method for learning θ in the update (2.8).

When the number of nodes n and the time steps T are large, updating θ can be computa-

tionally expensive. To update θ in a compact form, we first vectorize it as
#»

θ = vecτp(θ),

and we construct

∆t =

∆+,t

∆−,t

 and H =


∆2

. . .

∆T

 .

The matrices ∆+,t ∈ RE×p1 and ∆−,t ∈ RE×p2 abbreviate the respective change statistics

∆g+
ij(y

+,t) and ∆g−
ij(y

−,t) that are ordered by the dyads. The matrix H ∈ R2τE×τp that

consists of the change statistics for t = 2, . . . , T is calculated before the implementation of

ADMM.

We also calculate #»µ = h(H · #»

θ ) ∈ R2τE×1 where h(x) = 1/(1 + exp(−x)) is the element-

wise sigmoid function. To calculate the Hessian, we need to construct

W t =

W+,t

W−,t

 and W =


W 2

. . .

W T


where W+,t = diag(µ+,t

ij (1 − µ+,t
ij )) ∈ RE×E with µ+,t

ij = h(θ+,t · ∆g+
ij(y

+,t)). The matrix

W−,t ∈ RE×E is defined similarly except for notational difference.

Using the Newton-Raphson method, the
#»

θ can be updated iteratively by applying the

following:

#»

θ c+1 =
#»

θ c −
(
H⊤WH + αIτp

)−1 ·
(
−H⊤( #»y − #»µ) + α(

#»

θ c − #»z (a) + #»u(a))
)

(2.12)

where c denotes the current Newton-Raphson iteration. Both W and #»µ are also calculated

based on
#»

θ c. The network data {y+,t,y−,t}Tt=2 is vectorized in the form of #»y ∈ {0, 1}2τE×1

to align with the dyad order of the matrix H ∈ R2τE×τp. The derivations are provided in
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the Appendix. Once the Newton-Raphson method is concluded within an ADMM iteration,

we fold the updated vector
#»

θ back into a matrix as θ(a+1) = vec−1
τ,p(

#»

θ ) before implementing

the update in (2.9), which is discussed next.

2.3.3 Updating γ and β

In this section, we derive the update in (2.9), which is equivalent to solving a Group Lasso

problem. We decompose the matrix z to work with γ and β instead. With ADMM, the

updates on γ and β do not require the network data and the change statistics, but the

updates primarily rely on the θ learned from the update (2.8).

By adapting the derivation from [VB10] and [BV11], the matrix β ∈ R(τ−1)×p can be

updated in a block coordinate descent manner. Specifically, we iteratively apply the following

equation to update βi,· for each block i = 1, . . . , τ − 1:

βi,· ←
1

αX⊤
·,iX·,i

(
1− λ

∥si∥2

)
+
si (2.13)

where (·)+ = max(·, 0) and

si = αX⊤
·,i(θ

(a+1) + u(a) − 1τ,1γ −X·,−iβ−i,·).

The derivations are provided in the Appendix, and the convergence of the procedure is

monitored by the Karush-Kuhn-Tucker (KKT) conditions: for all βi,· ̸= 0,

λ
βi,·

∥βi,·∥2
− αX⊤

·,i(θ
(a+1) + u(a) − 1τ,1γ −Xβ) = 0,

and for all βi,· = 0,

∥−αX⊤
·,i(θ

(a+1) + u(a) − 1τ,1γ −Xβ)∥2 ≤ λ.

Subsequently, for any β ∈ R(τ−1)×p, the minimum in γ ∈ R1×p is achieved at

γ = (1/τ)11,τ · (θ(a+1) + u(a) −Xβ).
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Algorithm 1 Group Fused Lasso STERGM

1: Input: initialized parameters θ(1), γ(1), β(1), u(1), tuning parameter λ, penalty param-

eter α, number of iterations for ADMM, Newton-Raphson, and Group Lasso A,C,D,

vectorized network data #»y , network change statistics H

2: for a = 1, · · · , A do

3:
#»

θ = vecτp(θ
(a)), #»z (a) = vecτp(1τ,1γ

(a) +Xβ(a)), #»u(a) = vecτp(u
(a))

4: for c = 1, · · · , C do

5: Let
#»

θ c+1 be updated according to (2.12)

6: end for

7: θ(a+1) = vec−1
τ,p(

#»

θ c+1)

8: Set γ̃ = γ(a) and β̃ = β(a)

9: for d = 1, · · · , D do

10: for i = 1, · · · , τ − 1 do

11: Let β̃d+1
i,· be updated according to (2.13)

12: end for

13: γ̃d+1 = (1/τ)11,τ · (θ(a+1) + u(a) −Xβ̃d+1)

14: end for

15: γ(a+1) = γ̃d+1, β(a+1) = β̃d+1

16: z(a+1) = 1τ,1γ
(a+1) +Xβ(a+1)

17: u(a+1) = θ(a+1) − z(a+1) + u(a)

18: end for

19: θ̂ ← θ(a+1)

20: Output: learned parameters θ̂
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Once the update (2.9) is concluded within an ADMM iteration, we collect z = 1τ,1γ +Xβ

and proceed to (2.10) to update the scaled dual variable u ∈ Rτ×p.

The algorithm to solve (2.5) via ADMM is presented in Algorithm 1. The complexity of

an iteration for the Newton-Raphson method is O(τ 2p2) and that for the block coordinate

descent method is O(τ(τ−1)p). In general, the complexity of Algorithm 1 is at least of order

O(A[Cτ 2p2 +Dτ(τ − 1)p]), where A, C, and D are the respective numbers of iterations for

ADMM, Newton-Raphson, and Group Lasso. Next, we provide practical guidelines for our

proposed method.

2.4 Change Point Localization and Model Selection

In this section, we discuss the choices of network statistics for change point detection with

STERGM, followed by change point localization and model selection.

2.4.1 Network Statistics

As a distribution over dynamic networks, STERGM allows us to generate different networks

that share similar structural patterns with the observed networks, by using a carefully de-

signed MCMC sampling algorithm [Sni02]. Hence, in a dynamic network modeling problem

with STERGM, network statistics are often chosen to signify the underlying process produc-

ing the observed networks or to capture important network effects interpreting for a research

question.

In our change point detection problem with STERGM, network statistics are chosen to

determine the types of structural changes that are searched for by the researchers. The R

library ergm [HHB22] provides an extensive list of network statistics that boost the power

of the proposed method. Since the underlying reasons that result in edge formation are

usually different from those that result in edge dissolution, the choices of network statistics

in the formation model can be different from those in the dissolution model. For an in-depth
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discussion of network statistics in an ERGM framework, see [HRS03], [HH06a], [SPR06],

[HGH08], [MHH08], [RPW09], and [BH22].

2.4.2 Data-driven Threshold

Intuitively, the location of a change point is the time step where the parameter of STERGM

at time t differs from that at time t−1. To this end, we can calculate the parameter difference

between consecutive time points in θ̂ ∈ Rτ×p as

∆θ̂i = ∥θ̂i+1,· − θ̂i,·∥2 ∀i ∈ [1, τ − 1]

and declare a change point when a parameter difference is greater than a threshold.

Though researchers can choose an arbitrary threshold for ∆θ̂ based on the sensitivity of

the detection, in this work we provide a data-driven threshold with the following procedures.

First we standardize the parameter differences ∆θ̂ as

∆ζ̂i =
∆θ̂i −median(∆θ̂)

sd(∆θ̂)
∀i ∈ [1, τ − 1]. (2.14)

Then the threshold based on the parameters learned from the data is constructed as

ϵthr = mean(∆ζ̂) + Z1−α × sd(∆ζ̂) (2.15)

where Z1−α is the (1 − α)% quantile of the standard Normal distribution. We declare a

change point Bk when ∆ζ̂Bk
> ϵthr. The data-driven threshold in (2.15) is intuitive, as the

values ∆ζ̂ at the change points are greater than those in between the change points, derived

from the Group Fused Lasso penalty. When tracing in a plot over time, the values ∆ζ̂ can

exhibit the magnitude of structural changes, in terms of the network statistics specified in

the STERGM.

By convention, we also implement two post-processing steps to finalize the detected

change points {B̂k}Kk=1. When the spacing between consecutive change points is less than

a threshold or B̂k − B̂k−1 < δspc, we keep the detected change point with greater ∆ζ̂ value
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to avoid clusters of nearby change points. Furthermore, as the endpoints of a time span are

usually not of interest, we discard the change point B̂k less than a threshold δend and greater

than T − δend. In Section 2.5, we set δspc = 5, and we set δend = 5 and δend = 10 for the

simulated and real data experiments, respectively.

2.4.3 Model Selection

Determining the optimal set of change points over multiple STERGMs learned with different

tuning parameter λ, we can use Bayesian information criterion (BIC) to perform model

selection. Considering an STERGM with learned θ̂ and fixed λ, we have

BIC(θ̂, λ) = −2l(θ̂) + log(TNnet)× p× Seg(θ̂, λ). (2.16)

For a list of λ, we choose the set of change points obtained from the STERGM with the

lowest BIC value.

Different from the number of nodes n, the network size Nnet is
(
n
2

)
for an undirected

network and 2 ×
(
n
2

)
for a directed network. In general, for a dyadic dependent network,

the effective network size is often smaller than Nnet and it may be difficult to quantify the

effective size [HGH08]. In this work, we use Nnet =
(
n
2

)
and Nnet = 2×

(
n
2

)
for the respective

undirected and directed networks to consider the greater network size, since the procedure

is to select a model with the smallest BIC value. In a node clustering problem for a static

network, [HRT07] also used the number of observed edges as Nnet to quantify the effective

network size. Furthermore, the term Seg(θ̂, λ) gives the number of segments between change

points {B̂k}K+1
k=0 that are learned with the λ. In other words, Seg(θ̂, λ) = K + 1, where K is

the number of detected change points.
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2.5 Simulated and Real Data Experiments

In this section, we evaluate the proposed method on both simulated and real data. For sim-

ulated data, we use the following three metrics to compare the performance of the proposed

and competing methods. The first metric is the absolute error |K̂ − K| where K̂ and K

are the numbers of detected and true change points, respectively. The second metric is the

one-sided Hausdorff distance defined as

d(Ĉ|C) = max
c∈C

min
ĉ∈Ĉ
|ĉ− c|,

where Ĉ and C are the respective sets of detected and true change points. We also report

the metric d(C|Ĉ). When Ĉ = ∅, we define d(Ĉ|C) =∞ and d(C|Ĉ) = −∞. The third metric

described in [BW20] is the coverage of a partition G by another partition G ′, defined as

C(G,G ′) = 1

T

∑
A∈G

|A| · max
A′∈G′

|A ∩ A′|
|A ∪ A′|

with A,A′ ⊆ [1, T ]. The G and G ′ are collections of intervals between consecutive change

points for the respective true and detected change points. Throughout, the network statistics

are calculated directly from the R library ergm [HHB22] and the formulations are provided

in the Appendix.

2.5.1 Simulations

We simulate dynamic networks from two particular models to imitate realistic social patterns.

We use the Stochastic Block Model to attain that participants with similar attributes tend

to form communities, and we impose a time-dependent mechanism in the generation process.

Also, we simulate dynamic networks from STERGM, which separately takes into account

how relations form and dissolve over time, as their underlying social reasons are usually

different.

For each specification, we provide 10 Monte Carlo simulations of dynamic networks. We

let the time span T = 100 and the number of nodes n = 50, 100, 500. The true change
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points are located at t = 26, 51, 76, so K = 3. The K + 1 = 4 intervals in the partition G

are A1 = [1, . . . , 25], A2 = [26, . . . , 50], A3 = [51, . . . , 75], and A4 = [76, . . . , 100]. In each

specification, we report the means over 10 Monte Carlo trials for different evaluation metrics.

To detect the change points with our method, we initialize the penalty parameter α = 10.

We let the tuning parameter λ = 10b with b ∈ {−2,−1, . . . , 6, 7}. For each λ, we run

A = 200 iterations of ADMM and the stopping criterion in (2.11) uses ϵtol = 10−7. Within

each ADMM iteration, we run C = 20 iterations of the Newton-Raphson method, and

D = 20 iterations for Group Lasso. The stopping criteria for the Newton-Raphson method

is ∥ #»

θ c+1 −
#»

θ c∥2 < 10−3. To construct the data-driven threshold in (2.15), we use the 90%

quantile of the standard Normal distribution.

Two competitor methods, gSeg [CZ15] and kerSeg [SC22c] that are available in the re-

spective R libraries gSeg [CZC20] and kerSeg [SC22b], are provided for comparison. We use

networks (nets.) and network statistics (stats.) as two types of input data to the competing

methods. For gSeg, we use the minimum spanning tree to construct the similarity graph, and

we use the approximated p-value of the original edge-count scan statistic. The significance

level is set to α = 0.05. For kerSeg, we use the approximated p-value of the fGKCP1 [SC22c]

and we set the significance level α = 0.001. Throughout, we remain on these settings, since

they produce good performance on average for the competitors. Changing the above set-

tings can improve their performance on some specifications, while severely jeopardizing their

performance on other specifications.

Scenario 1: Stochastic Block Model (SBM)

As in [PYP22], we construct two probability matrices P ,Q ∈ [0, 1]n×n and they are defined

as

Pij =


0.5, i, j ∈ Bl, l ∈ [3],

0.3, otherwise,

and Qij =


0.45, i, j ∈ Bl, l ∈ [3],

0.2, otherwise,
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where B1,B2,B3 are evenly sized clusters that form a partition of {1, . . . , n}. We then

construct a sequence of matrices Et for t = 1, . . . , T such that

Et
ij =


Pij, t ∈ A1 ∪ A3,

Qij, t ∈ A2 ∪ A4.

Lastly, the networks are generated with ρ ∈ {0.0, 0.5, 0.9} as a time-dependent mechanism.

For any ρ and t = 1, . . . , T − 1, we let y1
ij ∼ Bernoulli(E1

ij) and

yt+1
ij ∼


Bernoulli

(
ρ(1−Et+1

ij ) +Et+1
ij

)
, yt

ij = 1,

Bernoulli
(
(1− ρ)Et+1

ij

)
, yt

ij = 0.

When ρ = 0, the probability to draw an edge for dyad (i, j) at time t+ 1 remains the same.

This imposes a time-independent condition for a sequence of generated networks. On the

contrary, when ρ > 0, the probability to draw an edge for dyad (i, j) becomes greater at

time t + 1 when there exists an edge at time t, and the probability becomes smaller when

there does not exist an edge at time t.

Figure 2.2 exhibits examples of generated networks at particular time points. Visually,

Scenario 1 produces adjacency matrices with block structures, and mutuality is an important

pattern in these networks. To detect the change points with our method, we use two network

statistics, edge count and mutuality, in both formation and dissolution models. In the

competitor methods, besides the dynamic networks {yt}Tt=1, we also use the edge count and

mutuality in {g(yt)}Tt=1 as another specification. Tables 2.1, 2.2, and 2.3 display the means

of evaluation metrics for different specifications.

As expected, the kerSeg method can achieve a good performance on the covering metric

C(G,G ′) when ρ = 0, since the time-independent setting aligns with the kerSeg’s assumption.

However, the performances of gSeg and kerSeg are worsened when ρ > 0. In particular,

when the networks in the sequence are time-dependent, both gSeg and kerSeg methods can

effectively detect the true change points, as the one-sided Hausdorff distance d(Ĉ|C) are close
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Figure 2.2: Examples of adjacency matrices generated from SBM with ρ = 0.5 and n = 100.

In the first row, from left to right, each plot corresponds to the network at t = 25, 50, 75

respectively. In the second row, from left to right, each plot corresponds to the network at

t = 26, 51, 76 respectively (the change points). In each display, a red dot indicates one and

zero otherwise.

to zeros. Yet the reversed one-sided Hausdorff distance d(C|Ĉ) and the absolute error |K̂−K|

show that both gSeg and kerSeg tend to detect excessive number of change points as the

sequences of networks become noisier under the time-dependent condition. Our CPDstergm

method, on average, achieves smaller absolute error, smaller one-sided Hausdorff distances,

and greater coverage of interval partitions, regardless of the temporal dependence.

Another aspect worth mentioning is the usage of the network statistics in the competitor

methods. The performance of gSeg and kerSeg, in terms of the covering metric C(G,G ′),

improves significantly when we change the input data from networks to network statistics,
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Table 2.1: Means of evaluation metrics for dynamic networks simulated from the Stochastic

Block Model with ρ = 0.0.

ρ n Method |K̂−K| d(Ĉ|C) d(C|Ĉ) C(G,G ′)

0.0 50

CPDstergm 0.3 0.8 2.2 95.35%

gSeg (nets.) 2.9 inf −inf 4.55%

kerSeg (nets.) 0 0 0 100%

gSeg (stats.) 2.1 inf −inf 43.68%

kerSeg (stats.) 0.1 0 0.3 99.70%

0.0 100

CPDstergm 1 0.8 5.8 89.07%

gSeg (nets.) 2.9 inf −inf 4.79%

kerSeg (nets.) 0 0 0 100%

gSeg (stats.) 1.9 inf −inf 44.38%

kerSeg (stats.) 0 0 0 100%

0.0 500

CPDstergm 0 1 1 97.07%

gSeg (nets.) 3 inf −inf 0%

kerSeg (nets.) 0 0 0 100%

gSeg (stats.) 2.1 inf −inf 40.12%

kerSeg (stats.) 0 0 0 100%

which demonstrates the potential of using network level summary statistics to represent the

enormous amount of individual relations.

Scenario 2: Separable Temporal ERGM

In this scenario, we employ time-homogeneous STERGMs [KH14] between change points

to generate sequences of dynamic networks, using the R package tergm [KH22]. For the

following three specifications, we gradually increase the complexity of the network patterns,

by adding more network statistics in the data generating process. First we use two network
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Table 2.2: Means of evaluation metrics for dynamic networks simulated from the Stochastic

Block Model with ρ = 0.5.

ρ n Method |K̂−K| d(Ĉ|C) d(C|Ĉ) C(G,G ′)

0.5 50

CPDstergm 0.1 1 2.4 97.04%

gSeg (nets.) 12.9 0 19.4 27.20%

kerSeg (nets.) 6.4 0 16.6 45.50%

gSeg (stats.) 1.8 36.6 5.8 56.04%

kerSeg (stats.) 0.7 0 4.4 94.60%

0.5 100

CPDstergm 0 1 1 98.04%

gSeg (nets.) 12.3 0 19 27.80%

kerSeg (nets.) 6 0 15.2 47.00%

gSeg (stats.) 1.6 inf −inf 53.50%

kerSeg (stats.) 0.9 0 10 92.70%

0.5 500

CPDstergm 0 1 1 98.04%

gSeg (nets.) 12.3 0 19.2 27.80%

kerSeg (nets.) 4 0 12.7 52.20%

gSeg (stats.) 1.7 36.6 3.9 58.59%

kerSeg (stats.) 1.3 0 7.4 91.40%

statistics, edge count and mutuality, in both formation and dissolution models to let psim = 4.

The parameters are

θ+,t,θ−,t =


−1, −2, −1, −2, t ∈ A1 ∪ A3,

−1, 1, −1, −1, t ∈ A2 ∪ A4.

Next, we include the number of triangles in both formation and dissolution models to let

psim = 6. The parameters are

θ+,t,θ−,t =


−2, 2, −2, −1, 2, 1, t ∈ A1 ∪ A3,

−1.5, 1, −1, 2, 1, 1.5, t ∈ A2 ∪ A4.
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Table 2.3: Means of evaluation metrics for dynamic networks simulated from the Stochastic

Block Model with ρ = 0.9.

ρ n Method |K̂−K| d(Ĉ|C) d(C|Ĉ) C(G,G ′)

0.9 50

CPDstergm 0 1 1 98.04%

gSeg (nets.) 12.6 0 19.2 27.50%

kerSeg (nets.) 11 0 18.7 32.00%

gSeg (stats.) 6.7 5.4 16.9 58.45%

kerSeg (stats.) 4.4 0 14 70.80%

0.9 100

CPDstergm 0 1 1 98.04%

gSeg (nets.) 12.6 0 19 27.50%

kerSeg (nets.) 12 0 19 28.00%

gSeg (stats.) 5.6 1.6 18.8 62.66%

kerSeg (stats.) 4 0 17.3 71.50%

0.9 500

CPDstergm 0 1 1 98.04%

gSeg (nets.) 12.2 0 19 27.80%

kerSeg (nets.) 12 0 19 28.00%

gSeg (stats.) 7.4 0.2 19.1 58.96%

kerSeg (stats.) 5.2 0 19 66.90%

Finally, we include the homophily for gender, an attribute assigned to each node, in both

formation and dissolution models to let psim = 8. The parameters are

θ+,t,θ−,t =


−2, 2, −2, −1, −1, 2, 1, 1, t ∈ A1 ∪ A3,

−1.5, 1, −1, 1, 2, 1, 1.5, 2, t ∈ A2 ∪ A4.

The nodal attributes, xi ∈ {Female,Male} for i ∈ [n], are fixed across time t in the generation

process.

Figure 2.3 exhibits examples of generated networks at particular time points. Specifically,

Scenario 2 produces adjacency matrices that are sparse, which is often the case in reality. For
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comparison, to detect the change points with our method, we use the network statistics that

generate the networks in both formation and dissolution models. In the competitor methods,

besides the dynamic networks, we also use the same network statistics that generate the

networks as another specification. Tables 2.4, 2.5, and 2.6 display the means of evaluation

metrics for different specifications.

1 50 100

1
50

10
0

1 50 100

1
50

10
0

1 50 100

1
50

10
0

1 50 100

1
50

10
0

1 50 100

1
50

10
0

1 50 100

1
50

10
0

Figure 2.3: Examples of adjacency matrices generated from STERGM with psim = 6 and

n = 100. In the first row, from left to right, each plot corresponds to the network at

t = 25, 50, 75 respectively. In the second row, from left to right, each plot corresponds to

the network at t = 26, 51, 76 respectively (the change points). In each display, a red dot

indicates one and zero otherwise.

For psim = 4, the performance of the kerSeg method in terms of the covering metric

C(G,G ′) improves significantly when we change the input data from networks to network

statistics. However, for psim = 6, both gSeg and kerSeg methods tend to detect excessive
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Table 2.4: Means of evaluation metrics for dynamic networks simulated from the STERGM

with psim = 4.

psim n Method |K̂−K| d(Ĉ|C) d(C|Ĉ) C(G,G ′)

4 50

CPDstergm 0 0.1 0.1 99.80%

gSeg (nets.) 1.9 21.7 12 48.83%

kerSeg (nets.) 2.8 0 15.8 78.30%

gSeg (stats.) 2.1 inf −inf 43.61%

kerSeg (stats.) 0 0 0 100%

4 100

CPDstergm 0 0 0 100%

gSeg (nets.) 1.8 18.2 17.1 44.20%

kerSeg (nets.) 2.6 0 15.6 77.40%

gSeg (stats.) 2.1 inf −inf 30.37%

kerSeg (stats.) 0.1 0 0.2 99.80%

4 500

CPDstergm 0 1 1 94.96%

gSeg (nets.) 12 0 19 28.00%

kerSeg (nets.) 4.6 1.7 14.4 51.65%

gSeg (stats.) 1.9 24.9 19.8 48.41%

kerSeg (stats.) 4.3 1.4 19.4 74.02%

number of change points when the networks are highly dyadic dependent due to the inclusion

of the triangle term. Using network statistics as input can no longer improve their perfor-

mance. Our CPDstergm method, which dissects the network evolution using formation and

dissolution models, can achieve a good result when the networks are both temporal and

dyadic dependent. Lastly, for psim = 8, our method permits the inclusion of nodal attributes

to facilitate the change detection, besides edge information. On average, our method pro-

duces smaller absolute error, smaller one-sided Hausdorff distances, and greater coverage of

interval partitions.
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Table 2.5: Means of evaluation metrics for dynamic networks simulated from the STERGM

with psim = 6.

psim n Method |K̂−K| d(Ĉ|C) d(C|Ĉ) C(G,G ′)

6 50

CPDstergm 0.2 1.6 3 91.54%

gSeg (nets.) 12.3 0 19 27.90%

kerSeg (nets.) 9.7 1.4 17.9 37.62%

gSeg (stats.) 15.8 1.5 20.1 24.55%

kerSeg (stats.) 9.4 3.9 18 35.86%

6 100

CPDstergm 0 1 1 94.19%

gSeg (nets.) 12 0 19 28.00%

kerSeg (nets.) 9.6 1 17.5 37.66%

gSeg (stats.) 14.9 1.9 20.3 26.13%

kerSeg (stats.) 8 5.4 16.7 38.45%

6 500

CPDstergm 0 1 1 98.04%

gSeg (nets.) 12 0 19 28.00%

kerSeg (nets.) 8.3 0.2 16.4 42.20%

gSeg (stats.) 1.7 45.1 4.6 49.27%

kerSeg (stats.) 6.1 3.1 15.3 55.24%

2.5.2 MIT Cellphone Data

The Massachusetts Institute of Technology (MIT) cellphone data [EP06] consists of human

interactions via cellphone activity, among n = 96 participants for a duration of T = 232 days.

The data were taken from 2004-09-15 to 2005-05-04 inclusive, which covers the winter and

spring vacations in the MIT 2004-2005 academic calendar. For participant i and participant

j, a connected edge yt
ij = 1 indicates that they had made at least one phone call on day t,

and yt
ij = 0 indicates that they had made no phone call on day t.

As the data portrays human interactions, we use the number of (1) edges, (2) isolates,
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Table 2.6: Means of evaluation metrics for dynamic networks simulated from the STERGM

with psim = 8.

psim n Method |K̂−K| d(Ĉ|C) d(C|Ĉ) C(G,G ′)

8 50

CPDstergm 0.4 1.7 4.4 89.56%

gSeg (nets.) 13.3 0 19.6 27.20%

kerSeg (nets.) 9.5 0.8 18.2 37.86%

gSeg (stats.) 13.4 2.3 19.7 28.00%

kerSeg (stats.) 8.7 4.8 18.3 36.51%

8 100

CPDstergm 0 1.6 1.6 93.11%

gSeg (nets.) 12 0 19 28.00%

kerSeg (nets.) 9.3 1.7 17.6 37.12%

gSeg (stats.) 12.8 4.2 19.5 28.08%

kerSeg (stats.) 8.2 5.8 18.6 36.55%

8 500

CPDstergm 0.4 12.3 2.3 85.71%

gSeg (nets.) 12 0 19 28.00%

kerSeg (nets.) 8.9 2 14.5 43.00%

gSeg (stats.) 5.1 20.2 20.7 32.08%

kerSeg (stats.) 9.6 2 17 37.95%

and (3) triangles to represent the occurrence of connections, the sparsity of social networks,

and the transitive association of friendship, respectively. The three network statistics are

used in both formation and dissolution models of our method. For the competitors, we use

the three network statistics g(yt) as input data, since they provide better results than using

the networks yt. Figure 2.4 displays ∆ζ̂ of Equation (2.14) and the detected change points

of our method, as well as the results from the competitors. Moreover, Table 2.7 provides a

list of potential nearby events that align with the detected change points of our method.

The two shaded areas in Figure 2.4 correspond to the winter and spring vacations, and
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our method can punctually detect the pattern change in the contact behaviors. Both gSeg

and kerSeg can also detect the beginning of the winter vacation, but their results on the

spring vacation are slightly deviated. Furthermore, we detect a few spikes in the middle of

October 2004, which correspond to the annual sponsor meeting that happened on 2004-10-

21. About two-thirds of the participants have prepared and attended the annual sponsor

meeting, and the majority of their time has contributed to achieve project goals throughout

the week [EP06].
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Figure 2.4: Visualization of ∆ζ̂ and the detected change points from our method for the

MIT cellphone data. The detected change points from the competitors are also displayed.

The two shaded areas correspond to the winter and spring vacations in the MIT 2004-2005

academic calendar. The data-driven threshold (red horizontal line) is calculated by (2.15)

with Z0.9.
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Table 2.7: Potential nearby events that align with the detected change points (CP) of our

method

Detected CP Potential nearby events

2004-10-13 Preparation for the Sponsor meeting

2004-10-24 2004-10-21 (Sponsor meeting)

2004-11-02 2004-11-02 (Presidential election)

2004-11-16 2004-11-17 (Last day to cancel subjects)

2004-12-17 2004-12-18 to 2005-01-02 (Winter vacation)

2005-03-24 2005-03-21 to 2005-03-25 (Spring vacation)

2.5.3 Stock Market Data

The stock market data consists of the weekly log returns of 29 stocks included in the Dow

Jones Industrial Average (DJIA) index, and it is available in the R package ecp [JM15]. We

consider the data from 2007-01-01 to 2010-01-04, which covers the 2008 worldwide economic

crisis. We focus on the negative correlations among stock returns to detect the systematic

anomalies in the financial market. Specifically, we first use a sliding window of width 4 to

calculate the correlation matrices of the weekly log returns. We then truncate the correlation

matrices by setting those entries which have negative values as 1, and the remaining as 0.

In the T = 158 networks, a connected edge yt
ij = 1 indicates the log returns of stock i

and stock j are negative correlated over the four-week period that ends at week t. Moreover,

the number of triangles can signify the volatility of the stock market, as the three stocks are

mutually negative correlated. In general, the more triangles in a network, the more opposite

movements among the stock returns, suggesting a large fluctuation in the market. On the

contrary, when the number of triangles is small, the majority of the stock returns either

increase or decrease at the same time, suggesting a stable trend in the market. To this end,

we use the number of edges and triangles in both formation and dissolution models of our

method. For the competitors, we use the networks yt as input data, since they provide better
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results than using the networks statistics g(yt). Figure 2.5 displays ∆ζ̂ of Equation (2.14)

and the detected change points of our method, as well as the results from the competitors.
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Figure 2.5: Visualization of ∆ζ̂ and the detected change points from our method for the

stock market data. The detected change points from the competitors are also displayed. The

data-driven threshold (red horizontal line) is calculated by (2.15) with Z0.9.

As expected, the stock market is volatile. The competitors have detected excessive num-

ber of change points, aligning with the smaller spikes in ∆ζ̂. Those change points can be

detected by our method, if we manually lower the threshold to adjust the sensitivity. In this

experiment, we focus on the top three spikes for real event interpretation. Table 2.8 presents

the three detected change points and the potential nearby events. Given the networks are

constructed using a sliding window, a detected change point indicates the pattern changes

occur amid the four-week time span. As supporting evidence, the New Century Finan-

cial Corporation (NCFC) was the largest U.S. subprime mortgage lender in 2007, and the

Lehman Brothers (LB) was one of the largest investment banks. Their bankruptcies caused
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by the collapse of the mortgage industry severely fueled the worldwide financial crisis, which

also led the DJIA to the bottom.

Table 2.8: Potential nearby events that align with the top three detected change points (CP)

of our method

Detected CP Potential nearby events

2007-04-23 2007-04-02 (NCFC filed for bankruptcy)

2008-10-06 2008-09-15 (LB filed for bankruptcy)

2009-04-20 2009-03-09 (DJIA bottomed)

2.6 Discussion

In this work, we study the change point detection problem in time series of graphs, which can

serve as a prerequisite for dynamic network analysis. Essentially, we fit a time-heterogeneous

STERGM while penalizing the sum of Euclidean norms of the parameter differences between

consecutive time steps. The objective function with the Group Fused Lasso penalty is solved

via Alternating Direction Method of Multipliers, and we adopt the pseudo-likelihood of

STERGM to expedite the parameter estimation.

The STERGM [KH14] used in our method is a flexible model to fit dynamic networks

with both dyadic and temporal dependence. It manages dyad formation and dissolution

separately, as the underlying reasons that induce the two processes are usually different

in reality. Furthermore, the ERGM suite [HHB22] provides an extensive list of network

statistics to capture the structural changes, and we develop an R package CPDstergm to

implement the proposed method.

Several improvements to our change point detection method are possible. Relational

phenomena by nature have degrees of strength, and dichotomizing valued networks into

binary networks may introduce biases for analysis [TB11]. We can extend the STERGM
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with a valued ERGM [Kri12a, DC12a, CG20] to facilitate change point detection in dynamic

valued networks. Moreover, the number of participants and their attributes are subject to

change over time. It is necessary for a change point detection method to adjust the network

sizes as in [KHM11], and to adapt the time-evolving nodal attributes by incorporating the

Exponential-family Random Network Model (ERNM) as in [FH12a] and [FH13].

2.7 Appendix

2.7.1 Newton-Raphson Method for Updating θ

In this appendix, we derive the gradient and Hessian for the Newton-Raphson method to

update θ. The first-order derivative of l(θ) with respect to θ+,t, the parameter in the

formation model at a particular time point t, is

∇θ+,t l(θ) =
∑
ij

{
y+,t
ij ∆g+

ij(y
+,t)−

exp[θ+,t ·∆g+
ij(y

+,t)]

1 + exp[θ+,t ·∆g+
ij(y

+,t)]
∆g+

ij(y
+,t)

}
=

∑
ij

(y+,t
ij − µ+,t

ij )[∆g+
ij(y

+,t)]

where µ+,t
ij = h(θ+,t ·∆g+

ij(y
+,t)). The h(x) = 1/(1 + exp(−x)) is the element-wise sigmoid

function. Likewise, the first-order derivative of l(θ) with respect to θ−,t, the parameter in

the dissolution model at a particular time point t, is similar except for notational difference.

Denote the objective function in (2.8) as Lα(θ). To update the parameters θ ∈ Rτ×p in

a compact form, we first vectorize it as
#»

θ = vecτp(θ) ∈ Rτp×1. The matrices z ∈ Rτ×p and

u ∈ Rτ×p are also vectorized as #»z = vecτp(z) ∈ Rτp×1 and #»u = vecτp(u) ∈ Rτp×1. With the

constructed matrices H ∈ R2τE×τp and W ∈ R2τE×2τE, the gradient of Lα(θ) with respect

to
#»

θ is

∇ #»
θ Lα(θ) = −H⊤( #»y − #»µ) + α

( #»

θ − #»z (a) + #»u(a)
)

where #»µ = h(H · #»

θ ) ∈ R2τE×1.

Furthermore, the second order derivative of l(θ) with respect to θ+,t is
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∇2
θ+,t l(θ) =

∑
ij

−µ+,t
ij (1− µ+,t

ij )[∆g+
ij(y

+,t)∆g+
ij(y

+,t)⊤]

and the second order derivative of l(θ) with respect to θ−,t is similar except for notational

difference. Thus, the Hessian of Lα(θ) with respect to
#»

θ ∈ Rτp×1 is

∇2
#»
θ
Lα(θ) = H⊤WH + αIτp

where Iτp is the identity matrix. For fast implementation, it is possible to use the diagonal

Hessian to approximate the above Hessian matrix. By using the Newton-Raphson method,

the
#»

θ ∈ Rτp×1 is updated as

#»

θ c+1 =
#»

θ c −
(
H⊤WH + αIτp

)−1 ·
(
−H⊤( #»y − #»µ) + α(

#»

θ c − #»z (a) + #»u(a))
)

where c denotes the current Newton-Raphson iteration. Note that both W and #»µ are also

calculated based on
#»

θ c.

2.7.2 Group Lasso for Updating β

In this appendix, we present the derivation of learning β, which is equivalent to solving a

Group Lasso problem. Denote the objective function in (2.9) as Lα(γ,β). When βi,· ̸= 0,

the first-order derivative of Lα(γ,β) with respect to βi,· is

∂

∂βi,·
Lα(γ,β) = λ

βi,·

∥βi,·∥2
− αX⊤

·,i(θ
(a+1) + u(a) − 1τ,1γ −X·,iβi,· −X·,−iβ−i,·)

where X·,i ∈ Rτ×1 is the ith column of matrix X ∈ Rτ×(τ−1) and βi,· ∈ R1×p is the ith row

of matrix β ∈ R(τ−1)×p. Setting the gradient to 0, we have

βi,· = (αX⊤
·,iX·,i +

λ

∥βi,·∥2
)−1si (2.17)

where

si = αX⊤
·,i(θ

(a+1) + u(a) − 1τ,1γ −X·,−iβ−i,·).

Taking the Euclidean norm of (2.17) on both sides and rearrange the terms, we have

∥βi,·∥2 = (αX⊤
·,iX·,i)

−1(∥si∥2 − λ).
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Plugging ∥βi,·∥2 into (2.17), the solution of βi,· is

βi,· =
1

αX⊤
·,iX·,i

(1− λ

∥si∥2
)si.

When βi,· = 0, the subgradient v of ∥βi,·∥2 needs to satisfy ∥v∥2 ≤ 1. Since

0 ∈ λv − αX⊤
·,i(θ

(a+1) + u(a) − 1τ,1γ −X·,−iβ−i,·),

we obtain the condition that βi,· becomes 0 if ∥si∥2 ≤ λ. Therefore, we can iteratively apply

the following equation to update βi,· for each i = 1, . . . , τ − 1:

βi,· ←
1

αX⊤
·,iX·,i

(
1− λ

∥si∥2

)
+
si

where (·)+ = max(·, 0). The matrixX ∈ Rτ×(τ−1) is constructed from the position dependent

weight d ∈ Rτ−1.

2.7.3 Network Statistics in Experiments

In this section, we provide the formulations of the network statistics used in the simulation

and real data experiments. The network statistics of interest are chosen from the extensive

list in ergm [HHB22], an R library for network analysis. Tables 2.9 and 2.10 display the

formulations of network statistics used in the respective formation and dissolution models

of our method for t = 2, . . . , T . Moreover, Table 2.11 displays the formulations of network

statistics used in the competitor methods for t = 1, . . . , T . The formulations are referred to

directed networks, and those for undirected networks are similar.
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Table 2.9: Network statistics used in the formation model

Network Statistics Formulation of g+(y+,t)

Edge Count
∑

ij y
+,t
ij

Mutuality
∑

i<j y
+,t
ij y+,t

ji

Triangles
∑

ijk y
+,t
ij y+,t

jk y+,t
ik +

∑
ij<k y

+,t
ij y+,t

jk y+,t
ki

Homophily
∑

ij y
+,t
ij × 1(xi = xj)

Isolates
∑

i 1
(
degin(y

+,t, i) = 0 ∧ degout(y
+,t, i) = 0

)

Table 2.10: Network statistics used in the dissolution model

Network Statistics Formulation of g−(y−,t)

Edge Count
∑

ij y
−,t
ij

Mutuality
∑

i<j y
−,t
ij y−,t

ji

Triangles
∑

ijk y
−,t
ij y−,t

jk y−,t
ik +

∑
ij<k y

−,t
ij y−,t

jk y−,t
ki

Homophily
∑

ij y
−,t
ij × 1(xi = xj)

Isolates
∑

i 1
(
degin(y

−,t, i) = 0 ∧ degout(y
−,t, i) = 0

)

Table 2.11: Network statistics used in the competitor methods

Network Statistics Formulation of g(yt)

Edge Count
∑

ij y
t
ij

Mutuality
∑

i<j y
t
ijy

t
ji

Triangles
∑

ijk y
t
ijy

t
jky

t
ik +

∑
ij<k y

t
ijy

t
jky

t
ki

Homophily
∑

ij y
t
ij × 1(xi = xj)

Isolates
∑

i 1
(
degin(y

t, i) = 0 ∧ degout(y
t, i) = 0

)
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CHAPTER 3

Change Point Detection in Dynamic Graphs with

Generative Model

This chapter proposes a simple generative model to detect change points in time series of

graphs. The proposed framework consists of learnable prior distributions for low-dimensional

graph representations and of a decoder that can generate dynamic graphs from the latent

representations. The informative prior distributions in the latent spaces are learned from

observed data as empirical Bayes, and the expressive power of a generative model is exploited

to assist change point detection. Specifically, the model parameters are learned via maximum

approximate likelihood, with a Group Fused Lasso regularization. The optimization problem

is then solved via Alternating Direction Method of Multipliers (ADMM), and Langevin

Dynamics are recruited for posterior inference. Experiments in simulated and real data

demonstrate the ability of the generative model in supporting change point detection with

good performance.

3.1 Introduction

Networks are often used to represent relational phenomena in numerous domains [DLL21,

HHL23, HBS23], and relational phenomena by nature progress in time. In recent decades, a

plethora of models has been proposed to analyze the interaction between objects or people

over time, including Temporal Exponential-family Random Graph Model [HFX10, KH14],

Stochastic Actor-Oriented Model [Sni01, SBS10], and Relational Event Model [But08a,
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BLS23]. Though these models incorporate the temporal aspect for analysis, network evolu-

tion is usually time-heterogeneous. Without taking the structural changes across dynamic

networks into consideration, learning from the time series may not be meaningful. Hence, it

is practical for researchers to localize the change points in time, before studying the evolving

networks.

Various methodologies have been proposed to detect change points in dynamic networks.

[CAA20] employed embedding methods to detect both anomalous graphs and anomalous

vertices in time series of networks. [PS20] combined the multi-linear tensor regression model

with a hidden Markov model, detecting changes based on the transition between the hidden

states. [SKC23] learned a graph similarity function using a Siamese graph neural network to

differentiate the graphs before and after a change point. Furthermore, [ZCL19] developed a

screening algorithm that is based on an initial graphon estimation to detect change points.

[HHR20] utilized the singular values of the Laplacian matrices as graph embedding to detect

the differences across time. [CZ15], [CC19], and [SC22a] proposed a non-parametric approach

to delineate the distributional differences over time, and [GA18] and [SC22c] exploited the

patterns in high dimensions via a kernel-based method.

Inherently, network structures are complex due to highly dyadic dependency. Acquiring

a low dimensional representation of the graph can summarize the enormous amount of indi-

vidual relations to promote the downstream analysis. In particular, [SS22] and [KLC23] pro-

posed to detect the structural changes using an Exponential-family Random Graph Model.

Yet they relied on user-specified network statistics, which are usually not known to the mod-

eler a priori. Moreover, [LBF21], [MBF22], and [GDZ23] developed different latent space

models for dynamic graphs to detect changes, but they focused on node level representation,

which may not be powerful enough to capture the information of the entire graph. On the

other hand, generative models recently showed promising results in myriad applications, such

as text generation with Large Language Model [DCL18, LLG19] and image generation with

Diffusion Model [HJA20, RBL22]. Likewise, we are interested in exploring how generative
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models can assist in the field of change point detection for dynamic graphs.

To tackle these challenges, we make the following contribution in this chapter:

• We learn graph level representations of network structures to facilitate change point de-

tection. The informative prior distributions and a graph decoder are jointly learned via

maximum approximate likelihood, with a multivariate total variation regularization.

• We derive an ADMM procedure to solve the resulting optimization problem. The prior

distributions and the graph decoder are updated by inferring from the posterior distri-

bution via Langevin Dynamics. Experiments show good performance of the generative

model in supporting change point detection.

The rest of the chapter is organized as follows. Section 3.2 specifies the proposed frame-

work. Section 3.3 presents the objective function with Group Fused Lasso regularization and

the ADMM to solve the optimization problem. Section 3.4 discusses change points localiza-

tion and model selection. Section 3.5 illustrates the proposed method on simulated and real

data. Section 3.6 concludes the work with a discussion and potential future developments.

3.2 Generative Change Point Detection Model

3.2.1 Model Specification

For a node set N = {1, 2, · · · , n}, we can use a network, graph, or adjacency matrix y ∈ Y

to represent the potential relations for all pairs (i, j) ∈ Y ⊆ N × N . The network y has

dyad yij ∈ {0, 1} to indicate the absence or presence of a relation between node i and node

j, thence Y ⊆ 2Y. The relations in a network can be either directed or undirected. The

undirected variant has yij = yji for all (i, j).

Denote yt ∈ Y t ⊆ 2Y as a network at a discrete time point t. The observed data is a

sequence of networks y1, . . . ,yT . For each network yt, we assume there is a latent variable
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zt ∈ Rd such that the network yt can be generated from the latent variable with the following

decoder:

yt ∼ P (yt|zt) =
∏

(i,j)∈Y

Bernoulli(rij(z
t))

where rij(z
t) = P (yt

ij = 1|zt) is the Bernoulli parameter for dyad (i, j) and it is elaborated

in Section 3.2.2. Conditioning on the latent variable zt ∈ Rd, we assume the network

yt ∈ {0, 1}n×n is dyadic independent.

We also impose a prior distribution to the latent variable as

zt ∼ P (zt) = N (µt, Id)

where µt ∈ Rd is a mean vector at time t and Id is an identity matrix. Implicitly, zt is

considered as a graph level representation for yt. These representations are inferred from

observed data, instead of explicitly specifying them. In this work, we learn the parameters

{µt}Tt=1 of the priors, facilitating change point detection in {yt}Tt=1.

3.2.2 Simple Graph Decoder

The simple graph decoder P (yt|zt) =
∏

(i,j)∈Y P (y
t
ij|zt) is formulated with a Bernoulli pa-

rameter for dyad (i, j) as

rij(z
t) = P (yt

ij = 1|zt) = gij

(
h(zt, t)

)
.

The function h(·) is parameterized by neural networks with h : Rd × N → Rn×n. The

function g(·) is the element-wise sigmoid function with g : Rn×n → [0, 1]n×n.

In particular, we use multi-layer perceptrons (MLP), transferring the latent variable

zt ∈ Rd to U t ∈ Rn×k and V t ∈ Rn×k, respectively. We let the latent dimension d and k be

smaller than the number of nodes n, and

h(zt, t) =


U tV t⊤ ∈ Rn×n, for directed network,

U tU t⊤ ∈ Rn×n, for undirected network.
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Figure 3.1 gives an overview of the proposed framework. Hierarchically, the graph level

representation zt progresses to node level representations U t and V t as an intermediate

step, before the generation of network yt. The graph decoder Pϕ(y
t|zt) with neural network

parameter ϕ is shared across t = 1, . . . , T . It is worth pointing out the simplicity of our

framework, without the need of encoders.

z1

U 1,V 1

y1

N (µ1, Id)

z2

U 2,V 2

y2

N (µ2, Id)

zT

UT ,V T

yT

N (µT , Id)

Pϕ(y
1|z1) Pϕ(y

2|z2) Pϕ(y
T |zT )

. . .

Figure 3.1: An overview of prior distributions and graph decoder.

3.2.3 Change Points

We now specify the change points to be detected in terms of the parameters of the prior

distributions P (zt) for t = 1, . . . , T . Let {Ck}K+1
k=0 ⊂ {1, 2, . . . , T} be a collection of ordered

change points with 1 = C0 < C1 < · · · < CK < CK+1 = T such that

µCk = µCk+1 = · · · = µCk+1−1, k = 0, . . . , K,

µCk ̸= µCk+1 , k = 0, . . . , K − 1, and µCK+1 = µCK .

The change point detection problem comprises recovering the collection {Ck}Kk=1 from a

sequence of observed networks y1, . . . ,yT , where the number of change points K is also
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unknown. For notational simplicity, we denote µ ∈ RT×d as a matrix where the t-th row

corresponds to µt ∈ Rd for t = 1, . . . , T .

3.3 Learning and Inference

3.3.1 Learning Priors from Dynamic Graphs

Inspired by [VB10] and [BV11], we formulate the change point detection problem as a Group

Fused Lasso problem [ABD13] to infer the priors. Denote the log-likelihood of the model for

y1, . . . ,yT as l(ϕ,µ). We want to solve

ϕ̂, µ̂ = argmin
ϕ,µ

−l(ϕ,µ) + λ
T−1∑
t=1

∥µt+1 − µt∥2 (3.1)

where λ > 0 is the tuning parameter for the penalty term. The Group Fused Lasso penalty

encourages sparsity of the differences µt+1−µt ∈ Rd, while allowing multiple sets of coordi-

nates to change at the same time t, an effect that could not be possible with the ℓ1 penalty

of the differences.

To solve the optimization problem in (3.1), we first introduce a slack variable ν ∈ RT×d

where νt ∈ Rd denotes the t-th row of ν, and we rewrite the original problem as

ϕ̂, µ̂ =argmin
ϕ,µ

−l(ϕ,µ) + λ
T−1∑
t=1

∥νt+1 − νt∥2

subject to µ = ν.

(3.2)

Then the augmented Lagrangian can be defined as

L(ϕ,µ,ν,ρ) = −l(ϕ,µ) + λ

T−1∑
t=1

∥νt+1 − νt∥2 + tr[ρ⊤(µ− ν)] +
κ

2
∥µ− ν∥2F

where ρ ∈ RT×d is the Lagrange multipliers and κ > 0 is the penalty parameter for the

augmentation term. Let w = κ−1ρ ∈ RT×d be the scaled dual variable, the augmented

Lagrangian can be updated to

L(ϕ,µ,ν,w) = −l(ϕ,µ) + λ
T−1∑
t=1

∥νt+1 − νt∥2 +
κ

2
∥µ− ν +w∥2F −

κ

2
∥w∥2F . (3.3)
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We further introduce two more variables (γ,β) ∈ R1×d × R(T−1)×d to ease the optimiza-

tion. They are defined as

γ = ν1 and βt,· = νt+1 − νt ∀ t = 1, . . . , T − 1.

Reversely, the slack variable ν ∈ RT×d can be reconstructed as ν = 1T,1γ +Xβ, where X

is a T × (T − 1) matrix with entries Xij = 1 for i > j and 0 otherwise. Substituting the ν

in (3.3) with (γ,β), we arrive at

L(ϕ,µ,γ,β,w) = −l(ϕ,µ) + λ
T−1∑
t=1

∥βt,·∥2 +
κ

2
∥µ− 1T,1γ −Xβ +w∥2F −

κ

2
∥w∥2F .

Thus, we can derive the following Alternating Direction Method of Multipliers (ADMM)

to solve (3.2):

ϕ(a+1),µ(a+1) = argmin
ϕ,µ

−l(ϕ,µ) + κ

2
∥µ− ν(a) +w(a)∥2F , (3.4)

γ(a+1),β(a+1) = argmin
γ,β

λ
T−1∑
t=1

∥βt,·∥2 +
κ

2
∥µ(a+1) − 1T,1γ −Xβ +w(a)∥2F , (3.5)

w(a+1) = µ(a+1) − ν(a+1) +w(a), (3.6)

where a denotes the current ADMM iteration. We recursively implement the three updates

until a convergence criterion is satisfied. Throughout, details about the implementation are

provided in Appendix 3.7.2.

3.3.2 Parameters Update

3.3.2.1 Updating µ and ϕ

Denote the objective function in (3.4) as L(ϕ,µ). Setting the gradients of L(ϕ,µ) with

respect to the prior parameter µt ∈ Rd at a time point t to zeros, we have the following:

Proposition 1. The solution for µt at an iteration of our proposed ADMM algorithm is a

weighted sum:

µt =
1

1 + κ
EP (zt|yt)(z

t) +
κ

1 + κ
(νt −wt) (3.7)
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between the conditional expectation of the latent variable under the posterior distribution

P (zt|yt) and the difference between the slack and the scaled dual variables. The term wt ∈ Rd

denotes the t-th row of the scaled dual variable w ∈ RT×d. The proof is provided in Appendix

3.7.1.1.

Moreover, the gradient of L(ϕ,µ) with respect to the graph decoder parameter ϕ is

calculated as

∇ϕ L(ϕ,µ) = −
T∑
t=1

EP (zt|yt)

(
∇ϕ logP (yt|zt)

)
. (3.8)

The parameter ϕ can be updated efficiently through back-propagation.

Notably, calculating the solution in (3.7) and the gradient in (3.8) requires evaluating

the conditional expectations under the posterior P (zt|yt). We employ Langevin Dynamics

to sample from the posterior, approximating the conditional expectations [XZN17, XLG18,

NHH20, PHN20]. In particular, let subscript l be the time step of the Langevin Dynamics

and s be a small step size. The Langevin Dynamics to draw samples from the posterior

distribution P (zt|yt) is achieved by iterating

zt
l+1 = zt

l + s
[
∇zt logP (yt|zt)− (zt

l − µt)
]
+
√
2sϵ (3.9)

where ϵ ∼ N (0, Id) is a random perturbation to the process. The derivation is provided in

Appendix 3.7.1.2.

3.3.2.2 Updating γ and β

In this section, we derive the update in (3.5), which is equivalent to solving a Group Lasso

problem [YL06]. In particular, we decompose the matrix ν ∈ RT×d to work with γ and β.

With ADMM, the updates on γ and β do not require the network data {yt}Tt=1 but rely on

the prior parameter µ ∈ RT×d learned from the update (3.4).

By adapting the derivation in [BV11], we have the following for our proposed ADMM

algorithm:
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Proposition 2. The Group Lasso problem to update β ∈ R(T−1)×d is solved in a block

coordinate descent manner, by iteratively applying the following equation to each block t =

1, . . . , T − 1:

βt,· ←
1

κX⊤
·,tX·,t

(
1− λ

∥bt∥2

)
+
bt (3.10)

where (·)+ = max(·, 0) and

bt = κX⊤
·,t(µ(a+1) +w(a) − 1T,1γ −X·,−tβ−t,·).

The proof is provided in Appendix 3.7.1.3.

The convergence of the procedure can be monitored by the Karush-Kuhn-Tucker (KKT)

conditions: for all βt,· ̸= 0,

λ
βt,·

∥βt,·∥2
− κX⊤

·,t(µ(a+1) +w(a) − 1T,1γ −Xβ) = 0,

and for all βt,· = 0,

∥−κX⊤
·,t(µ(a+1) +w(a) − 1T,1γ −Xβ)∥2 ≤ λ.

Lastly, for any β, the minimum in γ ∈ R1×d is achieved at

γ = (1/T )11,T · (µ(a+1) +w(a) −Xβ).

In summary, the algorithm to solve the optimization problem in (3.2) via ADMM is

presented in Algorithm 2. The steps to transform between ν and (γ,β) within an ADMM

iteration are omitted for succinctness.

3.4 Change Point Localization and Model Selection

3.4.1 Data-driven Threshold

To localize change points, we can calculate the differences between consecutive time points

in µ̂ ∈ RT×d as

∆µ̂t = ∥µt − µt−1∥2 ∀ t ∈ [2, T ]
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Algorithm 2 Latent Space Group Fused Lasso

1: Input: learning iterations A,B,D, tuning parameter λ, penalty parameter κ, learning

rates η, observed data {yt}Tt=1, initialization {ϕ(1),µ(1),γ(1),β(1),w(1)}

2: for a = 1, · · · , A do

3: for t = 1, · · · , T do

4: draw m samples zt
1, . . . ,z

t
m from P (zt|yt) according to Equation (3.9)

5: µt
(a+1) =

1
1+κ

(m−1
∑m

u=1 z
t
u) +

κ
1+κ

(νt −wt)

6: end for

7: for b = 1, . . . , B do

8: ϕ(b+1) = ϕ(b) − η ×∇ϕ L(ϕ,µ)

9: end for

10: Set γ̃(1) = γ(a), β̃
(1) = β(a)

11: for d = 1, . . . , D do

12: for t = 1, . . . , T − 1 do

13: Let β̃
(d+1)
t,· be updated according to (3.10)

14: end for

15: γ̃(d+1) = (1/T )11,T · (µ(a+1) +w(a) −Xβ̃(d+1))

16: end for

17: Set γ(a+1) = γ̃(d+1),β(a+1) = β̃(d+1)

18: w(a+1) = µ(a+1) − ν(a+1) +w(a)

19: end for

20: µ̂← µ(a+1)

21: Output: learned prior parameters µ̂
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and declare the change points when the corresponding differences are greater than a thresh-

old. Though researchers can choose an arbitrary threshold based on their applications, we

use the data-driven threshold constructed as

ϵthr = mean(∆ζ̂) + Zq × sd(∆ζ̂) (3.11)

where Zq is the q% quantile of the standard Normal distribution, and the standardized

differences are defined as

∆ζ̂t =
∆µ̂t −median(∆µ̂)

std(∆µ̂)
∀ t ∈ [2, T ]. (3.12)

Finally, we declare a change point Ck when ∆ζ̂Ck > ϵthr. The data-driven threshold in (3.11)

is intuitive, as the ∆ζ̂ values close to the change points are greater than those far from the

change points. Tracing in a plot over time, the ∆ζ̂ values can exhibit the magnitude of

changes.

3.4.2 Model Selection

We use Cross-Validation to select λ. In particular, we split the original time series of graphs

into training and testing sets: the training set consists of networks at odd indexed time

points and the testing set consists of networks at even indexed time points. Fixed on a

specific λ value, we learn the model parameters with the training set, and we evaluate the

learned model with the testing set.

For a list of λ values, we choose the λ giving the maximal log-likelihood on the testing

set. Note that the log-likelihood is approximated by Monte Carlo samples {zt
u}mu=1 drawn

from the prior distribution P (zt) as

T∑
t=1

logP (yt) ≈
T∑
t=1

log
[ 1

m

m∑
u=1

[
∏

(i,j)∈Y

P (yt
ij|zt

u)]
]
.

Further computational details are discussed in Appendix 3.7.2. Anchored on the selected λ

value, we learn the model parameters again with the full data, resulting the optimal set of

detected change points.
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3.5 Simulated and Real Data Experiments

In this section, we implement the proposed method on simulated and real data. For simulated

data, we use the following metrics to evaluate the performance. The first metric is the

absolute error |K̂ − K|, where K̂ and K are the respective numbers of the detected and

true change points. The second metric described in [MYW21] is the one-sided Hausdorff

distance, which is defined as

d(Ĉ|C) = max
c∈C

min
ĉ∈Ĉ
|ĉ− c|

where Ĉ and C are the respective sets of detected and true change points. We also report the

reversed one-sided Hausdorff distance d(C|Ĉ). By convention, when Ĉ = ∅, we let d(Ĉ|C) =∞

and d(C|Ĉ) = −∞. The last metric described in [BW20] is the coverage of a partition G by

another partition G ′, which is defined as

C(G,G ′) = 1

T

∑
A∈G

|A| · max
A′∈G′

|A ∩ A′|
|A ∪ A′|

with A,A′ ⊆ [1, T ]. The G and G ′ are collections of intervals between consecutive change

points for the respective true and detected change points.

3.5.1 Simulation Study

We simulate dynamic networks from three scenarios to compare the performance of the

proposed and competing methods: Separable Temporal Exponential-family Random Graph

Model (STERGM), Stochastic Block Model (SBM), and Recurrent Neural Network (RNN).

For each scenario with different number of nodes n = 50, 100, we simulate 10 Monte Carlo

trials of directed dynamic networks with time span T = 100. The true change points are

located at t = 26, 51, 76 so K = 3. Moreover, the K + 1 = 4 intervals in partition G are

A1 = [1, . . . , 25], A2 = [26, . . . , 50], A3 = [51, . . . , 75], and A4 = [76, . . . , 100]. In each

specification, we report the means and standard deviations over 10 Monte Carlo trials for

the evaluation metrics. Throughout, the proposed method is named CPDlatent.

50



Three competitor methods, gSeg [CZ15], kerSeg [SC22c], and CPDstergm [KLC23], are

provided for comparison. For CPDstergm, we first use two network statistics, edge count

and mutuality, in both formation and dissolution models to let p = 4. We then add one

more network statistic, number of triangles, in both formation and dissolution models to let

p = 6 as another specification. For gSeg, we use the minimum spanning tree to construct

the similarity graph, with the approximated p-value of the original edge-count scan statistic,

and we set the significance level α = 0.05. For kerSeg, we use the approximated p-value of

the fGKCP1, and we set the significance level α = 0.001. Moreover, we use the networks

(nets.) and the above three network statistics (stats.) as two types of input data to gSeg

and kerSeg methods.

Scenario 1: Separable TERGM

In this scenario, we apply time-homogeneous STERGMs between change points to generate

sequences of dynamic networks [KH14]. We use three network statistics, edge count, mutu-

ality, and number of triangles, in both formation (F) and dissolution (D) models. The p = 6

parameters for each time point t are

θt
F ,θ

t
D =


−2, 2, −2, −1, 2, 1, t ∈ A1 ∪ A3 \ 1,

−1.5, 1, −1, 2, 1, 1.5, t ∈ A2 ∪ A4.

Figure 3.2 exhibits examples of generated networks. Visually, STERGM produces adjacency

matrices that are sparse, which is often the case in real world social networks.

Tables 3.1 displays the means and standard deviations of the evaluation metrics for com-

parison. Since the networks are directly sampled from STERGM, the CPDstergm method

with correctly specified network statistics (p = 6) achieves the best result, in terms of greater

converge of the intervals. However, when the network statistics are mis-specified (p = 4), the

performance of CPDstergm is worsened, with greater gaps between the true and detected

change points. Also, using either networks (nets.) or network statistics (stats.) cannot
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Figure 3.2: Examples of networks generated from STERGM with n = 100. In the first row,

from left to right, each plot corresponds to the network at t = 25, 50, 75 respectively. In

the second row, from left to right, each plot corresponds to the network at t = 26, 51, 76

respectively (the change points).

improve the performance of gSeg and kerSeg methods: the binary search approach tend to

detect excessive number of change points. Our CPDlatent method, without the need of

specifying network statistics, can achieve relatively good performance on average.

Scenario 2: Stochastic Block Model

In this scenario, we use Stochastic Block Model (SBM) to generate sequences of dynamic net-

works, and we impose a time-dependent mechanism in the generation process as in [MYP22].
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Table 3.1: Means (stds.) of evaluation metrics for dynamic networks simulated from

STERGM. The best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G ′) ↑

50

CPDlatent 0.1 (0.3) 4.3 (5.7) 2.6 (1.3) 90.87%

CPDstergmp=4 1.5 (0.8) 11.7 (7.5) 10.5 (2.3) 67.68%

CPDstergmp=6 0.2 (0.4) 1.6 (1.2) 3 (3.5) 91.54%

gSeg (nets.) 12.3 (0.5) 0 (0) 19 (0) 27.90%

kerSeg (nets.) 9.7 (0.9) 1.4 (0.9) 17.9 (1.2) 37.62%

gSeg (stats.) 15.8 (0.7) 1.5 (0.5) 20.1 (0.3) 24.55%

kerSeg (stats.) 9.4 (0.7) 3.9 (1.3) 18 (1.8) 35.86%

100

CPDlatent 0 (0) 3.9 (1.3) 3.9 (1.3) 91.33%

CPDstergmp=4 0.7 (0.6) 21.9 (10.3) 7.6 (4.3) 67.21%

CPDstergmp=6 0 (0) 1.1 (0.3) 1.1 (0.3) 94.01%

gSeg (nets.) 12 (0) 0 (0) 19 (0) 28.00%

kerSeg (nets.) 9.3 (0.8) 1 (0) 17.7 (0.6) 37.62%

gSeg (stats.) 14.5 (2.3) 3.3 (3.6) 20.2 (0.4) 26.13%

kerSeg (stats.) 8.5 (0.8) 4.5 (1.4) 17.3 (1.7) 36.92%

Two probability matrices P ,Q ∈ [0, 1]n×n are constructed and they are defined as

Pij =


0.5, i, j ∈ Bl, l ∈ [3],

0.3, otherwise,

and Qij =


0.45, i, j ∈ Bl, l ∈ [3],

0.2, otherwise,

where B1,B2,B3 are evenly sized clusters that form a partition of {1, . . . , n}. Then a sequence

of matrices Et ∈ [0, 1]n×n are arranged for t = 1, . . . , T such that

Et
ij =


Pij, t ∈ A1 ∪ A3,

Qij, t ∈ A2 ∪ A4.
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Lastly, the networks are generated with ρ = 0.5 as a time-dependent mechanism. For

t = 1, . . . , T − 1, we let y1
ij ∼ Bernoulli(E1

ij) and

yt+1
ij ∼


Bernoulli

(
ρ(1−Et+1

ij ) +Et+1
ij

)
, yt

ij = 1,

Bernoulli
(
(1− ρ)Et+1

ij

)
, yt

ij = 0.

With ρ > 0, the probability to form an edge for i, j becomes greater at time t+1 when there

exists an edge at time t, and the probability becomes smaller when there does not exist an

edge at time t. Figure 3.3 exhibits examples of generated networks. Visually, SBM produces

adjacency matrices with block structures, where mutuality serves as an important pattern

for the homophily within groups.

Tables 3.2 displays the means and standard deviations of the evaluation metrics for

comparison. As expected, both CPDstergm methods with p = 4 and p = 6 that utilize

the mutuality as a sufficient statistic for the detection can achieve good results, in terms of

greater converge of the intervals. Furthermore, using network statistics (stats.) for both gSeg

and kerSeg methods can improve their performance, comparing to using networks (nets.) as

input data. Lastly, our CPDlatent method, which infers the features in latent space that

induce the structural changes, achieves the best result for networks with block structures.

Scenario 3: Recurrent Neural Networks

In this scenario, we use Recurrent Neural Networks (RNN) to generate sequences of dynamic

networks. Specifically, we sample latent variables from pre-defined priors, and we initialize

the RNN with uniform weights. The graphs are then generated by the matrix multiplication

defined in Section 3.2.2, using the output of RNN. The parameters for the pre-defined priors

are

zt ∼


N (−1, 0.1Id), t ∈ A1 ∪ A3,

N (5, 0.1Id), t ∈ A2 ∪ A4.
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Figure 3.3: Examples of networks generated from SBM with n = 100. In the first row, from

left to right, each plot corresponds to the network at t = 25, 50, 75 respectively. In the second

row, from left to right, each plot corresponds to the network at t = 26, 51, 76 respectively

(the change points).

Similar to the previous two scenarios, the simulation using RNN also imposes a time-

dependent mechanism across dynamic networks. Figure 3.4 exhibits examples of generated

networks. Visually, RNN produces adjacency matrices that are dense, and no discernible

pattern can be noticed.

Tables 3.3 displays the means and standard deviations of the evaluation metrics for

comparison. Because no structural pattern or suitable network statistics can be determined

a priori, neither CPDstergm method with p = 4 nor with p = 6 can detect the change points

accurately. Likewise, both gSeg and kerSeg methods that utilize the mis-specified network
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Table 3.2: Means (stds.) of evaluation metrics for dynamic networks simulated from SBM.

The best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G ′) ↑

50

CPDlatent 0 (0) 0.1 (0.3) 0.1 (0.3) 99.80%

CPDstergmp=4 0.1 (0.3) 1 (0) 2.4 (4.2) 97.04%

CPDstergmp=6 0.3 (0.5) 1 (0) 4.6 (5.6) 94.74%

gSeg (nets.) 12.9 (1.8) 0 (0) 19.4 (0.8) 27.20%

kerSeg (nets.) 6.4 (1.4) 0 (0) 16.6 (2.0) 45.50%

gSeg (stats.) 2.2 (0.7) inf (NA) −inf (NA) 49.21%

kerSeg (stats.) 0.9 (1.2) 0 (0) 5.6 (6.8) 93.50%

100

CPDlatent 0.1 (0.3) 0.1 (0.3) 1.3 (3.6) 98.60%

CPDstergmp=4 0 (0) 1 (0) 1 (0) 98.04%

CPDstergmp=6 0 (0) 1 (0) 1 (0) 98.04%

gSeg (nets.) 12.3 (0.9) 0 (0) 19 (0) 27.80%

kerSeg (nets.) 6 (0.8) 0 (0) 15.2 (2.0) 47.00%

gSeg (stats.) 2 (0.4) inf (NA) −inf (NA) 55.75%

kerSeg (stats.) 0.9 (0.7) 0 (0) 9.6 (7.6) 93.40%

statistics (stats.) cannot produce satisfactory performance. Notably, the kerSeg method

that exploits the features in high dimension with networks (nets.) instead of user-specified

network statistics (stats.) can deliver a good result. Lastly, our CPDlatent method that first

infers the graph level representations from the complex network structures and then utilize

them to detect the change points yields the best result.

3.5.2 MIT Cellphone Data

The Massachusetts Institute of Technology (MIT) cellphone data [EP06] depicts human

interactions via phone call activities among n = 96 participants spanning T = 232 days.
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Figure 3.4: Examples of networks generated from RNN with n = 100. In the first row, from

left to right, each plot corresponds to the network at t = 25, 50, 75 respectively. In the second

row, from left to right, each plot corresponds to the network at t = 26, 51, 76 respectively

(the change points).

An edge yt
ij = 1 in the constructed networks indicates that participant i and participant j

had made phone calls on day t, and yt
ij = 0 otherwise. The data ranges from 2004-09-15 to

2005-05-04, covering the winter break in the MIT academic calendar.

We detect the change points with our proposed CPDlatent method, and we use network

statistics as input data to the three competitor methods. Specifically, we use the number of

edges, isolates, and triangles to capture the frequency of connections, the sparsity of social

interaction, and the transitive association among friends, respectively. Figure 3.5 displays ∆ζ̂

of Equation (3.12), and the detected change points from our method and competitor methods.
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Table 3.3: Means (stds.) of evaluation metrics for dynamic networks simulated from RNN.

The best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G ′) ↑

50

CPDlatent 0 (0) 1.8 (0.7) 1.8 (0.7) 94.77%

CPDstergmp=4 2.0 (1.7) 6.0 (7.7) 15.2 (4.9) 72.10%

CPDstergmp=6 1.0 (0.4) 18.5 (9.4) 14.3 (2.9) 60.25%

gSeg (nets.) 2.3 (0.6) inf (NA) −inf (NA) 29.42%

kerSeg (nets.) 1.5 (0.9) 1.4 (0.7) 5.3 (3.3) 89.25%

gSeg (stats.) 2.9 (0.3) inf (NA) −inf (NA) 2.47%

kerSeg (stats.) 2.8 (0.4) inf (NA) −inf (NA) 9.89%

100

CPDlatent 0 (0) 2.5 (0.7) 2.5 (0.7) 91.96%

CPDstergmp=4 2.0 (1.4) 10.6 (8.0) 14.1 (3.1) 60.37%

CPDstergmp=6 1.2 (1.3) 20.6 (12.6) 15.2 (5.9) 53.21%

gSeg (nets.) 3 (0) inf (NA) −inf (NA) 0%

kerSeg (nets.) 1.4 (0.7) 1.9 (0.7) 5.4 (1.9) 88.95%

gSeg (stats.) 2.9 (0.3) inf (NA) −inf (NA) 4.27%

kerSeg (stats.) 3 (0) inf (NA) −inf (NA) 0%

Furthermore, Table 3.4 provides a list of potential events, aligning with the detected change

points from our method.

Without specifying the structural changes to search for, our method can punctually

detect the beginning of the winter break, which is the major event that alters the interaction

among participants. Similar to the competitors, we have detected a spike on 2004-10-23,

corresponding to the annual sponsor meeting that occurred on 2004-10-21. More than two-

thirds of the participants have attended the meeting, focusing on achieving project goals

throughout the week [EP06]. Moreover, we have detected other change points related to

national holidays and spring break.
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Figure 3.5: Detected change points from the proposed and competitor (blue) methods on

the MIT Cellphone Data. The threshold (red horizontal line) is calculated by (3.11) with

Z0.9.

3.5.3 Enron Email Data

The Enron email data, analyzed by [PCM05, PPY12, PC15], portrays communication among

employees, before the collapse of a giant energy company. We construct T = 100 weekly

networks, ranging from 2000-06-05 to 2002-05-06 for n = 100 employees. We detect the

change points with our method, and we use the same network statistics described in Section

3.5.2 to the competitor methods. Figure 3.6 displays ∆ζ̂ of Equation (3.12), and the detected

change points from our method and competitor methods. Furthermore, Table 3.5 provides

a list of potential events, aligning with the detected change points from our method.

In 2001, Enron underwent a multitude of major incidents, making it difficult to associate
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Table 3.4: Potential nearby events aligned with the detected change points (CP) from our

proposed method on the MIT cellphone data.

Detected CP Potential nearby events

2004-10-23 2004-10-21 Sponsor meeting

2004-12-17 2004-12-18 to 2005-01-02 Winter break

2005-01-18 2005-01-17 Martin Luther King Day

2005-02-22 2005-02-21 Presidents Day

2005-04-02 2005-03-21 to 2005-03-25 Spring break
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Figure 3.6: Detected change points from the proposed and competitor (blue) methods on

the Enron email data. The threshold (red horizontal line) is calculated by (3.11) with Z0.9.
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Table 3.5: Potential nearby events aligned with the detected change points (CP) from our

proposed method on the Enron email data.

Detected CP Potential nearby events

2000-10-16 2000-11-01 FERC exonerated Enron

2001-06-11 2001-06-21 CEO publicly confronted

2001-09-24 2001-08-14 CEO resigned

2001-12-03 2001-12-02 Enron filed for bankruptcy

the detected change points with real world events, locally. Yet, as our proposed method

provides global results over the entire time frame, four crucial change points are detected for

interpretation. Throughout 2000, Enron orchestrated rolling blackouts, causing staggering

surges in electricity prices that peaked at twenty times the standard rate. The situation

worsened when the Federal Energy Regulatory Commission (FERC) exonerated Enron of

wrongdoing by the end of 2000. Subsequently, an activist physically confronted the CEO

in protest against Enron’s role in the energy crisis, and Enron’s stock price plummeted

after the CEO’s resignation in August 2001. Three months later, pressured by Wall Street

analysts and the revelation of the scandals, Enron filed for bankruptcy and the largest energy

company in the U.S. fell apart.

3.6 Discussion

This chapter proposes a simple generative model to detect change points in dynamic graphs.

Intrinsically, dynamic networks are complex due to dyadic and temporal dependencies.

Learning low dimensional graph representations can extract useful features serving change

point detection. We impose prior distributions to the graph representations, and the infor-

mative priors in the latent space are learned from data as empirical Bayes. The Group Fused
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Lasso problem is solved via ADMM, and the generative model is demonstrated to be helpful

for change point detection.

Several extensions to our proposed framework are possible for future development. Be-

sides binary networks, relations by nature have degree of strength, which are denoted by

generic values. Moreover, nodal and dyadic attributes are important components in net-

work data. Hence, models that generate weighted edges, as well as nodal and dyadic

attributes, can capture more information about the networks [FH12b, Kri12b]. While

our framework demonstrates the ability in change point detection, the development of

more sophisticated architectures can enhance the model’s capacity on other tasks and data

[HRT07, KSA10, YMW21, MXW23].

3.7 Appendix

3.7.1 Technical Details

3.7.1.1 Updating µ and ϕ

In this section, we derive the updates for prior parameter µ ∈ RT×d and graph decoder

parameter ϕ. Denote the objective function in Equation (3.4) as L(ϕ,µ) and denote the

set of parameters {ϕ,µ} as θ. We first calculate the gradient of the log-likelihood l(θ) in
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L(ϕ,µ) with respect to θ:

∇θ l(θ) = ∇θ

T∑
t=1

logP (yt)

=
T∑
t=1

1

P (yt)
∇θP (y

t)

=
T∑
t=1

1

P (yt)
∇θ

∫
P (yt, zt)dzt

=
T∑
t=1

1

P (yt)

∫
P (yt, zt)

[
∇θ logP (y

t, zt)
]
dzt

=
T∑
t=1

∫
P (yt, zt)

P (yt)

[
∇θ logP (y

t, zt)
]
dzt

=
T∑
t=1

∫
P (zt|yt)

[
∇θ logP (y

t, zt)
]
dzt

=
T∑
t=1

EP (zt|yt)

(
∇θ log

[
P (yt|zt)P (zt)

])
=

T∑
t=1

EP (zt|yt)

(
∇θ logP (y

t|zt)
)
+

T∑
t=1

EP (zt|yt)

(
∇θ logP (z

t)
)
.

Note that the expectation in the gradient is now with respect to the posterior distribution

P (zt|yt) ∝ P (yt|zt)×P (zt). Furthermore, the gradient of L(ϕ,µ) with respect to the prior

parameter µt ∈ Rd at a specific time point t is

∇µt L(ϕ,µ) = −EP (zt|yt)

(
∇µt logP (zt)

)
+ κ(µt − νt +wt)

= −EP (zt|yt)(z
t − µt) + κ(µt − νt +wt).

Setting the gradient ∇µt L(ϕ,µ) to zeros and solve for µt, we have

0 = −EP (zt|yt)(z
t) + µt + κµt − κνt + κwt

0 = −EP (zt|yt)(z
t) + (1 + κ)µt − κ(νt −wt)

(1 + κ)µt = EP (zt|yt)(z
t) + κ(νt −wt)

µt =
1

1 + κ
EP (zt|yt)(z

t) +
κ

1 + κ
(νt −wt)
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concluding Proposition 1. Evidently, the gradient of L(ϕ,µ) with respect to the graph

decoder parameter ϕ is

∇ϕ L(ϕ,µ) = −
T∑
t=1

EP (zt|yt)

(
∇ϕ logP (yt|zt)

)
.

3.7.1.2 Langevin Dynamics

Calculating the solution in (3.7) and the gradient in (3.8) requires evaluating the conditional

expectations under the posterior distribution P (zt|yt) ∝ P (yt|zt)×P (zt). In this section, we

discuss the Langevin Dynamics to sample zt ∈ Rd from the posterior distribution P (zt|yt)

that is conditional on the observed network yt ∈ {0, 1}n×n. In particular, the Langevin

Dynamics, a short run MCMC, is achieved by iterating the following:

zt
l+1 = zt

l + s∇zt logP (zt|yt) +
√
2sϵ

= zt
l + s∇zt log

[P (yt|zt)P (zt)

P (yt)

]
+
√
2sϵ

= zt
l + s

[
∇zt logP (yt|zt) +∇zt logP (zt)−∇zt logP (yt)

]
+
√
2sϵ

= zt
l + s

[
∇zt logP (yt|zt)− (zt

l − µt)
]
+
√
2sϵ

where l is the time step and s is the step size of the Langevin Dynamics. The error term

ϵ ∼ N (0, Id) serves as a random perturbation to the sampling process. In Section 3.5, we

set l = 40, s = 0.5, and we draw m = 100 samples for each time point t = 1, . . . , T within

an ADMM iteration. The gradient of the graph decoder P (yt|zt) with respect to the latent

variable zt can be calculated efficiently through back-propagation. Consequently, we use the

MCMC samples to approximate the conditional expectation EP (zt|yt)(·) in the solution (3.7)

and the gradient (3.8).

3.7.1.3 Group Lasso for Updating β

In this section, we present the derivation to update β in Proposition 2, which is equivalent

to solving a Group Lasso problem [YL06]. We adapt the derivation from [BV11] for our
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proposed ADMM algorithm. Denote the objective function in (3.5) as L(γ,β). When

βt,· ̸= 0, the gradient of L(γ,β) with respect to βt,· is

∇βt,·L(γ,β) = λ
βt,·

∥βt,·∥2
− κX⊤

·,t(µ(a+1) +w(a) − 1T,1γ −X·,tβt,· −X·,−tβ−t,·)

where X·,t ∈ RT×1 is the t-th column of matrix X ∈ RT×(T−1) and βt,· ∈ R1×d is the t-th

row of matrix β ∈ R(T−1)×d. Moreover, we denote β−t,· ∈ R(T−1)×p as the matrix obtained

by replacing the t-th row of matrix β with a zero vector, and X·,−t ∈ RT×(T−1) is denoted

similarly.

Setting the above gradient to zeros, we have

βt,· = (κX⊤
·,tX·,t +

λ

∥βt,·∥2
)−1bt (3.13)

where

bt = κX⊤
·,t(µ(a+1) +w(a) − 1T,1γ −X·,−tβ−t,·) ∈ R1×d.

Calculating the Euclidean norm of (3.13) on both sides and rearrange the terms, we have

∥βt,·∥2 = (κX⊤
·,tX·,t)

−1(∥bt∥2 − λ).

Plugging ∥βt,·∥2 into (3.13) for substitution, the solution of βt,· is arrived at

βt,· =
1

κX⊤
·,tX·,t

(1− λ

∥bt∥2
)bt.

Moreover, when βt,· = 0, the subgradient v of ∥βt,·∥2 needs to satisfy that ∥v∥2 ≤ 1. Because

0 ∈ λv − κX⊤
·,t(µ(a+1) +w(a) − 1T,1γ −X·,−tβ−t,·),

we obtain the condition that βt,· becomes 0 when ∥bt∥2 ≤ λ. Therefore, we can iteratively

apply the following to update βt,· for each block t = 1, . . . , T − 1:

βt,· ←
1

κX⊤
·,tX·,t

(
1− λ

∥bt∥2

)
+
bt

where (·)+ = max(·, 0).
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3.7.2 Practical Guidelines

3.7.2.1 ADMM Implementation

In this section, we provide practical guidelines for the proposed framework and the Alter-

nating Direction Method of Multipliers (ADMM) algorithm. To detect the change points

with our method in the simulation study, we let the latent dimensions d = 10 and k = 5 for

the graph decoder that is defined in Section 3.2.2. Furthermore, we initialize the penalty

parameter κ = 10, and we let the tuning parameter λ = {10, 20, 50, 100}. For each λ, we

run A = 50 iterations of ADMM. Within each ADMM iteration, we run B = 20 iterations of

gradient descent with Adam optimizer for the graph decoder and D = 20 iterations of block

coordinate descent for Group Lasso. To construct the data-driven threshold ϵthr in (3.11),

we use the 90% quantile of the standard Normal distribution. The 3-layer MLP in the graph

decoder is trained on a Tesla T4 GPU, and the computing time is about 1 hour for 10 Monte

Carlo trials in each simulation study. The code to reproduce the result in the manuscript is

provided in the Appendix.

Since the proposed generative model is a probability distribution for the observed network

data, in this work we stop ADMM learning with the following stopping criteria:∣∣∣∣ l(ϕ(a+1),µ(a+1))− l(ϕ(a),µ(a))

l(ϕ(a),µ(a))

∣∣∣∣ ≤ ϵtol. (3.14)

The log-likelihood l(ϕ,µ) is approximated by sampling from the prior distribution p(zt), as

described in Section 3.4.2. Hence, we stop the ADMM procedure until the above criteria is

satisfied for a′ consecutive iterations. In Section 3.5, we set ϵtol = 10−5 and a′ = 5.

Here we briefly elaborate on the computational aspect of the approximation of the log-

likelihood. To calculate the product of edge probabilities for the conditional distribution
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P (yt|zt), we have the following:

T∑
t=1

logP (yt) =
T∑
t=1

log

∫
P (yt|zt)P (zt)dzt

=
T∑
t=1

logEP (zt)[
∏

(i,j)∈Y

P (yt
ij|zt)]

≈
T∑
t=1

log
[ 1

m

m∑
u=1

[
∏

(i,j)∈Y

P (yt
ij|zt

u)]
]

=
T∑
t=1

log
[ 1

m

m∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij|zt

u)]}
]

=
T∑
t=1

{
− logm+ log

[
expCt

m∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij|zt

u)]− Ct}
]}

=
T∑
t=1

{
Ct + log

[ m∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij|zt

u)]− Ct}
]}
− T logm

where Ct ∈ R is the maximum value of
∑

(i,j)∈Y log[P (y
t
ij|zt

u)] over m samples but within a

time point t.

We also update the penalty parameter κ to improve convergence and to reduce reliance on

its initialization. In particular, after the a-th ADMM iteration, we calculate the respective

primal and dual residuals:

r
(a)
primal =

√√√√ 1

T × d

T∑
t=1

∥µt
(a) − νt

(a)∥22,

r
(a)
dual =

√√√√ 1

T × d

T∑
t=1

∥νt
(a) − νt

(a−1)∥22.

Throughout, we jointly update the penalty parameter κ ∈ R and the scaled dual variable

w ∈ RT×d as in [BPC11] with the following conditions:

κ(a+1) = 2κ(a), w(a+1) =
1

2
w(a) if r

(a)
primal > 10× r(a)dual,

κ(a+1) =
1

2
κ(a), w(a+1) = 2w(a) if r

(a)
dual > 10× r(a)primal.
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3.7.2.2 Post-Processing

Since neural networks may be over-fitted for a statistical model in change point detection,

we track the following Coefficient of Variation as a signal-to-noise ratio when we learn the

model parameter with the full data:

Coefficient of Variation =
mean(∆µ̂)

sd(∆µ̂)
.

We choose the learned parameter µ̂ with the largest Coefficient of Variation as final output.

By convention, we also implement two post-processing steps to finalize the detected

change points. When the gap between two consecutive change points is small or Ĉk−Ĉk−1 <

ϵspc, we preserve the detected change point with greater ∆ζ̂ value to prevent clusters of

nearby change points. Moreover, as the endpoints of a time span are usually not of interest,

we remove the Ĉk smaller than a threshold ϵend and the Ĉk greater than T − ϵend. In Section

3.5, we set ϵspc = 5 and ϵend = 5.
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CHAPTER 4

A Partially Separable Model for Dynamic Valued

Networks

The Exponential-family Random Graph Model (ERGM) is a powerful model to fit networks

with complex structures. However, for dynamic valued networks whose observations are

matrices of counts that evolve over time, the development of the ERGM framework is still

in its infancy. To facilitate the modeling of dyad value increment and decrement, a Partially

Separable Temporal ERGM is proposed for dynamic valued networks. The parameter learn-

ing algorithms inherit state-of-the-art estimation techniques to approximate the maximum

likelihood, by drawing Markov chain Monte Carlo (MCMC) samples conditioning on the

valued network from the previous time step. The ability of the proposed model to interpret

network dynamics and forecast temporal trends is demonstrated with real data.

4.1 Introduction

Networks are used to represent relational phenomena in many domains, such as stock re-

lations in financial market [FHW19], scene graphs in computer vision [SMS21], and mito-

chondrial networks in cancer metabolism [HBS23]. Conventionally, relations are indicated

by the presence or absence of ties. Though connected ties are seemingly identical, relations

by nature have degree of strength, which can be represented by generic values to distin-

guish them. Often, valued networks are dichotomized into binary networks for analysis,

which curtails the information that original networks convey. To prevent potential bias from
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data thresholding [TB11], [Kri12a] extended the Exponential-family Random Graph Model

(ERGM) to fit networks with count dyad values. [DC12a] and [WDB17] focused on networks

with continuous-valued edges. Moreover, [CG20] proposed to model weighted networks in a

hierarchical multilayer framework.

Relational phenomena also progress in time. [RP01] first proposed to model dynamic

networks in a Markovian discrete time framework. [Sni01] and [Sni05] developed a Stochastic

Actor-Oriented Model, which is driven by the actor’s perspective to make or withdraw ties to

other actors. [But08b] introduced a Relational Event Model, focusing on the action emitted

by an entity toward another. Furthermore, [HFX10] defined a Temporal ERGM (TERGM),

by specifying a conditional ERGM between consecutive networks. We refer the interested

reader to [SM17] for a review in modeling network dynamics.

In this chapter, we focus on the structure of count valued networks over time. Besides

being limited to binary networks, existing frameworks model snapshots of networks, which

gives little insight into the underlying dynamic process and little prediction power in how

future networks will evolve [JLY20, GD20]. While a snapshot of a valued network presents the

structural properties appearing at the observed time point, it does not provide information

about the dynamics that produce the structural properties, such as the amount and rate at

which the dyad values increase or decrease. Moreover, as we will demonstrate below, without

a decomposition that separates dyad value increment and decrement, interpreting network

dynamics can be challenging.

[YCZ11] proposed a dynamic stochastic block model, by capturing the transition of com-

munity memberships for individual nodes. [SC16] proposed a latent space model, by assum-

ing the probability of a stronger edge between two nodes is greater when they are closer

in the latent space. These models provide a good comprehension of the relations between

actors over time, though they may not extend to other network structures of interest that

signify the generating process. Furthermore, [WCB10] included a dynamic feature term in

ERGM to capture the change in dyad values over time. Yet the interpretation of network
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dynamics may be difficult.

The ERGM that defines local forces to shape global structure [HHB08b] is a natural

way to model complex networks. Inspired by [KH14] in modeling dynamic binary networks

with a Separable Temporal ERGM (STERGM), we extend the ERGM framework to model

dynamic valued networks as follows.

• We propose a Partially Separable Temporal ERGM (PST ERGM) to fit dynamic valued

networks, assuming the factors that increase relational strength are different from those

that decrease relational strength. In particular, we construct two intermediate networks

to manage dyad value increment and decrement, separately. The dynamics are specified

with two sets of network statistics evaluated on the intermediate networks, and we use

two sets of parameters to facilitate interpretation.

• We adapt recent advances in fitting static binary networks from [HHH12b] to seed an

initial configuration for parameter learning. We exploit the Contrastive Divergence

sampling, an abridged MCMC from [Hum11] and [Kri17b], to expedite the learning

process. We also provide the Metropolis-Hastings algorithm to sample dynamic valued

networks conditioning on the previous networks.

• Our experiments show a good performance of the proposed model. In particular, a

time-heterogeneous PST ERGM on the students contact networks [MFB15] provides

a realistic interpretation of the network dynamics. Furthermore, a time-homogeneous

PST ERGM on the baboons interaction networks [GGP20] produces reasonable out-

of-sample forecasts of the temporal trends.

The rest of the chapter is organized as follows. In Section 4.2, we review ERGM for static

binary and valued networks, and STERGM for dynamic binary networks. In Section 4.3, we

propose the PST ERGM for dynamic valued networks with specifications on the intermediate

networks. In Section 4.4, we discuss the approximate maximum likelihood estimation and
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the Metropolis-Hastings algorithm for drawing dynamic valued networks. In Section 4.5,

we illustrate the methodology with simulated and real data examples. In Section 4.6, we

conclude with a discussion and potential future developments.

4.2 ERGM for Networks

4.2.1 ERGM for Static Binary and Valued Networks

For a fixed set N = {1, 2, · · · , n} of nodes, we can use a network y ∈ Y , in the form of an

n×n matrix, to represent the potential relations for all pairs (i, j) ∈ Y ⊆ N×N . The binary

networks have dyad yij ∈ {0, 1} to represent the absence or presence of a tie and Y ⊆ 2Y.

Let N0 be the set of natural numbers and 0. The valued networks have dyad yij ∈ N0 to

represent the intensity of a tie and Y ⊆ NY
0 . We disallow a network to have self-edge, so

yij = 0 if i = j. The relation in a network can be either directed or undirected, where an

undirected network has yij = yji for all dyads (i, j). In this chapter, we focus on undirected

networks, and the directed variant follows naturally.

The probabilistic formulation of an ERGM for a network y is

P (y;η) = h(y) exp[η⊤g(y)− ψ(η)],

where g(y), with g : Y → Rp, is a vector of network statistics; η ∈ Rp is a vector of unknown

parameters; exp[ψ(η)] =
∑

y∈Y h(y) exp[η
⊤g(y)] is the normalizing constant; h(y), with

h : Y → [0,∞), is the reference function. Moreover, the network statistics g(y) may also

depend on nodal attributes x and dyadic attributes z. For notational simplicity, we omit

the dependence of g(y) on x and z.

In valued ERGM [Kri12a], the parameter space of η has to ensure that P (y;η) is a valid

probability distribution. When the range of dyad value in a network is N0, the condition

exp[ψ(η)] < ∞ is sufficient to guarantee that P (y;η) is a valid distribution. Furthermore,

the reference function h(y) underlies a baseline distribution of dyad values. That is when

72



η = 0, P (y;η) ∝ h(y). Specifically, [Kri12a] defined a Poisson-reference ERGM and [Kri19]

defined a Binomial-reference ERGM for valued networks with respective reference functions:

hPois(y) =
∏

(i,j)∈Y

(yij!)
−1 and hBino(y) =

∏
(i,j)∈Y

(
m

yij

)
,

where m is a known maximum value that each relationship yij ∈ {0, 1, · · · ,m} can take in

this network y. For binary ERGM, usually h(y) = 1 [WP96, Sni02, SPR06, HH06b].

4.2.2 STERGM for Dynamic Binary Networks

The TERGM [HFX10] for a binary network yt conditional on yt−1 is

P (yt|yt−1;η) = exp[η⊤g(yt,yt−1)− ψ(η,yt−1)],

where yt ∈ Y t ⊆ 2Y is a single network at a discrete time point t. The g(yt,yt−1), with g :

Y t×Y t−1 → Rp, is a vector of network statistics for the transition from yt−1 to yt. Yet [KH14]

demonstrated that higher coefficients in TERGM can lead to inconsistent interpretation of

network evolution in terms of incidence and duration. Hence a careful decomposition of

network dynamics is needed. In particular, the incidence, how often new ties form, can be

measured by dyad formation, and the duration, how long old ties last, can be measured by

dyad dissolution.

Instead of modeling the observed yt given yt−1 that muddles network dynamics, [KH14]

designed two intermediate networks, the formation network and dissolution network, between

time t− 1 and t to reflect the incidence and duration. The formation network y+,t ∈ Y+,t is

acquired by adding the edges formed at time t to yt−1 so Y+,t ⊆ {y ∈ 2Y : y ⊇ yt−1}. The

dissolution network y−,t ∈ Y−,t is acquired by removing the edges dissolved at time t from

yt−1 so Y−,t ⊆ {y ∈ 2Y : y ⊆ yt−1}.

Assuming y+,t is conditionally independent of y−,t given yt−1, the STERGM [KH14] for

yt conditional on yt−1 is

P (yt|yt−1;η+,η−) = P (y+,t|yt−1;η+)× P (y−,t|yt−1;η−), (4.1)
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with the respective formation model and dissolution model specified as

P (y+,t|yt−1;η+) = exp[η+ · g+(y+,t,yt−1)− ψ(η+,yt−1)] and

P (y−,t|yt−1;η−) = exp[η− · g−(y−,t,yt−1)− ψ(η−,yt−1)].

In contrast to the TERGM whose parameter simultaneously influences both incidence and

duration, STERGM provides two sets of parameters, where one manages ties formation and

the other manages ties dissolution.

The intuition behind the separable parameterization is that the factors and processes

that result in ties formation are different from those that result in ties dissolution. Many

applications of STERGM on real-world data support the separable assumption for dynamic

networks [BB18, ZDP19, XBS20, UH20, DYP21]. Despite the restriction that the two pro-

cesses do not interact with each other, substantial improvement in interpretability is gained.

4.3 PST ERGM for Dynamic Valued Networks

4.3.1 Increment and Decrement Networks

Although we can use a TERGM [HFX10] to fit dynamic valued networks where yt−1,yt ∈ NY
0 ,

parameter interpretation for the network evolution may be difficult. Consider the respective

edge sum and stability terms as follows:

g(yt,yt−1) =
∑

(i,j)∈Y

yt
ij and g(yt,yt−1) =

∑
(i,j)∈Y

1(|yt
ij − yt−1

ij | ≤ r),

where r is a threshold for the absolute difference in dyad value between time t− 1 and t. In

general, a higher coefficient on the edge sum term would favor networks that increase their

dyad values at time t, while a higher coefficient on the stability term would favor networks

that do not change their dyad values at time t. In this example, a higher coefficient in the

TERGM may lead to inconsistent dyad value movement from time t − 1 to t. Hence, a

careful decomposition of the dyad value transition is also needed.
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Intuitively, as relational phenomena evolve over time, it is assumed the factors and un-

derlying processes that increase relational strength are different from those that decrease

relational strength. For example, in an intensive care unit of a hospital, the number of

contacts between a doctor and a patient may increase as the doctor frequently treats the

patient during the early stage of infection. The count may further escalate if the patient’s

symptoms worsen. In contrast, the doctor may reduce the number of contacts as the patient

later acquires immunity to the disease. The count may further plummet as the doctor uses

medical sensors to monitor the patient after the symptoms alleviate.

Inspired by [KH14], we can also design two intermediate networks to consider the dyad

value movement, separately. Given two consecutive valued networks yt−1 and yt, we con-

struct an increment network y+,t and a decrement network y−,t between time t− 1 and t for

a dyad (i, j) with a scaling factor β = 0.5 as follows:

y+,t
ij = f+(yt−1

ij ,yt
ij) := 0.5(yt−1

ij + yt
ij) + β|yt−1

ij − yt
ij| = max(yt−1

ij ,yt
ij) and

y−,t
ij = f−(yt−1

ij ,yt
ij) := 0.5(yt−1

ij + yt
ij)− β|yt−1

ij − yt
ij| = min(yt−1

ij ,yt
ij).

(4.2)

Note that these are also generalized formulations of the formation network and the dissolution

network in [KH14], since binary networks are special cases of valued networks in terms of

dyad values.

Similar to the formation and dissolution networks, the increment and decrement networks

for a dyad (i, j) appear to result in the observed yt−1
ij and yt

ij. Intrinsically, y+,t
ij and y−,t

ij

return the values from the average 0.5(yt−1
ij + yt

ij) tilting away by the absolute difference

|yt−1
ij − yt

ij| scaled by a factor β between two consecutive time points. In this work, we use

β = 0.5 to not exaggerate or diminish the absolute difference between the two time points,

and to remain on count valued networks as y+,t,y−,t ∈ NY
0 . The resulting max and min

operations have further implications in model interpretation described in Section 4.3.3. For

β ̸= 0.5 that leads to y+,t,y−,t ∈ RY, an extension of our framework with the Generalized

ERGM [DC12a] may be allowed for future development.

In summary, y+,t contains the unchanged dyad values from time t−1 to t and those that
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increased at time t, while y−,t contains the unchanged dyad values from time t− 1 to t and

those that decreased at time t. Furthermore, both of them preserve the momentum when

the dyad value starts to change in the opposite direction. As the bolded segments shown

in Figure 4.1, the momentum of the changes is delayed to the next interval for a model to

digest the stimulus. Similar to [KH14], we substitute the sequence of T observed networks

with the sequence of 2 × (T − 1) extracted networks that focus on dyad value movements,

as augmented input data to a model. Alternatively, y+,t and y−,t can be considered as two

latent networks that emphasize the transitions between time t − 1 and t, instead of two

snapshots of the observed networks yt−1 and yt which give limited information about the

dynamics.

time point
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Figure 4.1: An illustration of yt
ij (black) and the constructed y+,t

ij (red) and y−,t
ij (blue) over

time.

Before proposing the PST ERGM in Section 4.3.2 with details, we further motivate the

increment and decrement networks with a comparison between simple fitted models, using

the baboons interaction networks [GGP20] analyzed in Section 4.5.3. As shown in Figure 4.2,

the difference in edge sums
∑

(i,j)∈Y y
t
ij between t = 25 and 26 is relatively small. Fitting a

valued ERGM [Kri12a] that involves only the edge sum term to y26, we notice the coefficient

is close to that of the same model fitted to y25. However, fitting the proposed PST ERGM

that involves only the edge sum terms to both y+,26 and y−,26, we notice the coefficient of
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∑
(i,j)∈Y y

+,26
ij is positive and that of

∑
(i,j)∈Y y

−,26
ij is negative. The coefficients of the simple

fitted models are displayed in 4.7.1.
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Figure 4.2: The edge sums of the baboons interaction networks yt (black) from day 23 to

28, and the edge sums of the constructed y+,t (red) and y−,t (blue). The edge sums of y25

and y26 are highlighted.

In the example with PST ERGM, the positive coefficient indicates an increment among

dyad values, while the negative coefficient indicates previously high dyad values tend not to

persist to the next time point. There is a fluctuation in dyad values between the observed

time points, though the edge sums appear to be unchanged at the observed time points.

From t = 25 to 26, the total increment of the dyads that increase is 206, and the total

decrement of the dyads that decrease is 164, resulting in a net increase of 42 or 11% of

total value changes. Without a decomposition that separates dyad value increment and

decrement, such dynamics may be neglected. Next, we introduce the proposed PST ERGM

in details.

4.3.2 Model Specification

We first define the form of the model for a sequence of valued networks y1, · · · ,yT with

ERGM specified as the transition between consecutive networks. Under the first order
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Markov assumption where yt is independent of yt−2, · · · ,y1 conditioning on yt−1, we have

P (yT ,yT−1, · · · ,y2|y1) = P (yT |yT−1)P (yT−1|yT−2) · · ·P (y2|y1)

=
T∏
t=2

h(yt,yt−1) exp[η · g(yt,yt−1)− ψ(η,yt−1)].

Besides the dynamics between consecutive networks, P (y1) can be specified by a valued

ERGM [Kri12a] to complete the joint distribution.

To dissect the entanglement between dyad value increment and decrement in dynamic

valued networks, it may be straightforward to consider that the increment network y+,t is also

conditionally independent of the decrement network y−,t given yt−1, as in the STERGM for

dynamic binary networks. However, as we will compare the two cases below, a fully separable

model for dynamic valued networks can be difficult to obtain, while retaining the information

encoded in y+,t and y−,t.

For dynamic binary networks where Y t ⊆ 2Y, the STERGM of (4.1) permits us to

sample y+,t and y−,t individually to produce a unique yt ∈ Y t. Conditioning on yt−1 with a

particular dyad yt−1
ij = 0, the sampled y−,t

ij can only be 0 whereas the sampled y+,t
ij can be

either 0 or 1. Once y+,t
ij is determined, a unique yt

ij is confirmed. Similarly, conditioning on

yt−1 with a particular dyad yt−1
ij = 1, the sampled y+,t

ij can only be 1 whereas the sampled

y−,t
ij can be either 0 or 1. Once y−,t

ij is determined, a unique yt
ij is confirmed. Therefore, a

separable model in the spaces of Y+,t and Y−,t, proposed by [KH14], is a valid probability

distribution for a binary network yt conditional on yt−1.

For dynamic valued networks where Y t ⊆ NY
0 , suppose P (y

t|yt−1) can still be separated

into two conditionally independent models as in (4.1), so that we can sample y+,t and y−,t

individually to produce a unique yt ∈ Y t. Conditioning on yt−1 with a particular dyad value

yt−1
ij ∈ N0 and under the specification of (4.2), a sampled y+,t

ij can be any count value that

is greater than or equal to yt−1
ij , and a sampled y−,t

ij can be any non-negative count value

that is smaller than or equal to yt−1
ij . For example, conditioning on yt−1 with yt−1

ij = 3,

if the sampled y+,t
ij from P (y+,t|yt−1;η+) is 5 and the sampled y−,t

ij from P (y−,t|yt−1;η−)
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is 2, a unique yt
ij is unidentifiable given the two intermediate dyad values. The separated

generating processes cannot decide whether the dyad value yt−1
ij = 3 should increase to

yt
ij = 5 or decrease to yt

ij = 2 at time t.

Since the TERGM in our framework can no longer be separated into two conditionally

independent models as in [KH14], our proposed Partially Separable Temporal ERGM (PST

ERGM) for a sequence of valued networks is

T∏
t=2

P (yt|yt−1;η) =
T∏
t=2

h(yt,yt−1) exp[η · g(yt,yt−1)− ψ(η,yt−1)]

=
T∏
t=2

h+(y+,t)h−(y−,t)
exp[η+ · g+(y+,t,yt−1) + η− · g−(y−,t,yt−1)]

exp[ψ(η+,η−,yt−1)]
,

(4.3)

with h(yt,yt−1) = h+(y+,t)× h−(y−,t) ∈ R and η = (η+,η−) ∈ Rp. The network statistics

g(yt,yt−1) =
(
g+(y+,t,yt−1), g−(y−,t,yt−1)

)
∈ Rp is a concatenation of the increment net-

work statistics g+(y+,t,yt−1) ∈ Rp1 and the decrement network statistics g−(y−,t,yt−1) ∈

Rp2 such that p1 + p2 = p. The normalizing constant exp[ψ(η+,η−,yt−1)] is∑
yt∈Yt

h+(y+,t) exp[η+ · g+(y+,t,yt−1)]× h−(y−,t) exp[η− · g−(y−,t,yt−1)].

Though we cannot generate y+,t and y−,t to produce a unique yt with PST ERGM, we can

directly sample yt by using the Metropolis-Hastings algorithm described in Section 4.4.3.

In this chapter, we use the Poisson and Binomial reference functions:

h+(y+,t) =
∏

(i,j)∈Y

(y+,t
ij !)−1 and h−(y−,t) =

∏
(i,j)∈Y

(
mt

y−,t
ij

)
, (4.4)

for the increment and decrement process, respectively. The term mt in h−(y−,t) is a pre-

determined maximum value that each dyad value y−,t
ij ∈ {0, 1, · · · ,mt} can take in y−,t.

Furthermore, the reference function h+(y+,t) in the increment process does not require an

upper bound for a dyad value y+,t
ij that it can increase to, but y+,t

ij has an implicit lower

bound that is equal to yt−1
ij inherited from the construction of y+,t

ij = max(yt−1
ij ,yt

ij). In
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the decrement process, the reference function h−(y−,t) imposes an upper bound mt for each

dyad value y−,t
ij that it can decrease from, with an explicit lower bound that is equal to 0.

To capture the variation in structural properties between different intervals, we can also

specify a time-heterogeneous PST ERGM
∏T

t=2 P (y
t|yt−1;ηt) as

T∏
t=2

h+(y+,t) exp[η+,t · g+(y+,t,yt−1)]× h−(y−,t) exp[η−,t · g−(y−,t,yt−1)]

exp[ψ(η+,t,η−,t,yt−1)]
,

where ηt = (η+,t,η−,t) differs by time t. Unless otherwise noted, we focus on the time-

homogeneous PST ERGM of (4.3) whose parameter η = (η+,η−) is fixed across t = 2, · · · , T .

The time-heterogeneous PST ERGM is a special case of (4.3) as ηt = (η+,t,η−,t) can be

learned sequentially for each t.

4.3.2.1 Reference Measures

Inherited from valued ERGM [Kri12a], the reference function h(yt,yt−1) specified with (4.4)

in a PST ERGM underlies a baseline distribution for yt. Consider a PST ERGM with the

edge sums of increment and decrement networks as two network statistics:

g(yt,yt−1) =
(
g+(y+,t,yt−1), g−(y−,t,yt−1)

)
=

( ∑
(i,j)∈Y

y+,t
ij ,

∑
(i,j)∈Y

y−,t
ij

)
∈ R2.

Let Y t(yt−1) ⊆ {yt ∈ NY
0 : yt

ij > yt−1
ij ∀ (i, j) ∈ Y} be a sample space for yt starting from

yt−1. The increment network y+,t is essentially the yt, and the PST ERGM P (yt|yt−1;η)

for yt ∈ Y t(yt−1) becomes a dyadic independent truncated Poisson distribution:

∏
(i,j)∈Y

(yt
ij!)

−1 exp(η+ · yt
ij)

exp
(
exp(η+)

)
−

∑yt−1
ij

u=0 (u!)
−1 exp(η+ · u)

=
∏

(i,j)∈Y

PPois

(
yt
ij

)
1−

∑yt−1
ij

u=0 PPois(u)
,

where PPois(x) denotes the probability mass function of Poisson
(
λ = exp(η+)

)
evaluated at x.

Moreover, let Y t(yt−1) ⊆ {yt ∈ NY
0 : yt

ij < yt−1
ij ≤ mt ∀ (i, j) ∈ Y} be another sample space

for yt. The decrement network y−,t is essentially the yt, and the PST ERGM P (yt|yt−1;η)
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for yt ∈ Y t(yt−1) becomes a dyadic independent truncated Binomial distribution:

∏
(i,j)∈Y

(
mt

yt
ij

)
exp(η− · yt

ij)(
1 + exp(η−)

)mt

−
∑mt

u=yt−1
ij

(
mt

u

)
exp(η− · u)

=
∏

(i,j)∈Y

PBino

(
yt
ij

)
1−

∑mt

u=yt−1
ij

PBino

(
u
) ,

where PBino(x) denotes the probability mass function of Binomial
(
mt, p = logit−1(η−)

)
eval-

uated at x. The derivations of the two special cases are provided in 4.7.2.

Next, we consider the general network statistics g(yt,yt−1) ∈ Rp. For Y t(yt−1) ⊆ {yt ∈

NY
0 : yt

ij > yt−1
ij ∀ (i, j) ∈ Y}, the PST ERGM becomes a Poisson-reference valued ERGM:

P (yt|yt−1;η) =

(∏
(i,j)∈Y(y

t
ij!)

−1
)
exp[η+ · g+(yt,yt−1)]∑

yt∈Yt(yt−1)

(∏
(i,j)∈Y(y

t
ij!)

−1
)
exp[η+ · g+(yt,yt−1)]

,

with the Poisson reference function and the increment network statistics directly evaluated

at yt ∈ Y t(yt−1). Moreover, for Y t(yt−1) ⊆ {yt ∈ NY
0 : yt

ij < yt−1
ij ≤ mt ∀ (i, j) ∈ Y}, the

PST ERGM becomes a Binomial-reference valued ERGM:

P (yt|yt−1;η) =

(∏
(i,j)∈Y

(
mt

yt
ij

))
exp[η− · g−(yt,yt−1)]∑

yt∈Yt(yt−1)

(∏
(i,j)∈Y

(
mt

yt
ij

))
exp[η− · g−(yt,yt−1)]

,

with the Binomial reference function and the decrement network statistics directly evaluated

at yt ∈ Y t(yt−1). Next, we provide four levels of interpretation to PST ERGM.

4.3.3 Model Interpretation

We first compare the formulations of STERGM and the proposed PST ERGM. The STERGM

[KH14] for dynamic binary networks given as

P (yt|yt−1;η) =
exp[η+ · g+(y+,t,yt−1)]

exp[ψ(η+,yt−1)]
× exp[η− · g−(y−,t,yt−1)]

exp[ψ(η−,yt−1)]

is fully separable, while the PST ERGM for dynamic valued networks given as

P (yt|yt−1;η) ∝ exp[η+ · g+(y+,t,yt−1)]× exp[η− · g−(y−,t,yt−1)]

is partially separable. Though both models are distributions over the observed networks, the

user-specified network statistics g+ and g− in both models are evaluated at y+,t and y−,t that
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are extracted from the observed networks. Hierarchically, two layers of network features are

extracted: dyad value movements via y+,t and y−,t, and their structural properties via g+

and g−. These dynamics are then captured by g(yt,yt−1) =
(
g+(y+,t,yt−1), g−(y−,t,yt−1)

)
with an exponential-family model. In alignment with the separability, the choice of network

statistics in g+(y+,t,yt−1) ∈ Rp1 can be different from that in g−(y−,t,yt−1) ∈ Rp2 , depend-

ing on the user’s knowledge of which local forces matter in which process to shape the global

structures over time. In contrast to STERGM, the increment and decrement processes in

the PST ERGM are not conditionally independent, as discussed in Section 4.3.2.

Next, we present the similarity between STERGM and PST ERGM in how they dissect

network evolution. The idea of separability originates from epidemiology to approximate

disease dynamics: Prevalence ≈ Incidence × Duration. [KH14] used the formation and

dissolution networks to reflect incidence (how often new ties are formed) and duration (how

long old ties last since they were formed). Since the duration of ties is the inverse of the rate

at which ties dissolve, the parameter η− in the dissolution model of STERGM can signify the

persistence of network features [KH14]. Translating these into PST ERGM, the structural

properties of dynamic valued networks are characterizations of the amount and rate of dyad

value increment and decrement. The more often dyad values increase and they increase with

a greater magnitude per time step, the more high dyad values will be presented over time.

The less frequent dyad values decrease and they decrease with a smaller magnitude per time

step, the more high dyad values will be preserved over time. Conceptually, we can broadly

regard incidence as how often dyad values increase, and regard duration as how long dyad

values have kept increasing until they decrease. The duration of the continuing increment

is the inverse of the rate at which dyad values decrease. Inherited from Equation (4.2), the

increment and decrement networks are also encoded with the values to which the dyads have

increased or decreased.

Furthermore, the ERGM framework has a dyadic level interpretation for a static bi-

nary network in terms of change statistics [HHB08b]. We provide similar interpretation for
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dynamic valued networks with PST ERGM, by changing a dyad value in yt to see how in-

crement and decrement processes impact the network structures. Specifically, we calculate

the ratio of probabilities of two networks that are identical except for a single dyad. Suppose

the dyad value yt
ij ∈ N0 jumps from a to b where b ̸= a. Conditioning on the rest of the

network yt
−ij and yt−1, the ratio P (yt

ij = b|yt
−ij,y

t−1)/P (yt
ij = a|yt

−ij,y
t−1) is

y+,t
old !

y+,t
new!

exp[η+ ·∆g+(y+,t,yt−1)ij]×
(
mt

y−,t
new

)
/

(
mt

y−,t
old

)
exp[η− ·∆g−(y−,t,yt−1)ij].

The change statistics ∆g+(y+,t,yt−1)ij denote the difference between g+(y+,t,yt−1) with

y+,t
ij = y+,t

new and g+(y+,t,yt−1) with y+,t
ij = y+,t

old while rest of the y+,t remains the same,

and the ∆g−(y−,t,yt−1)ij are denoted similarly except for notational difference. When both

a, b > yt−1
ij , only y+,t by construction is updated, regardless of a > b or b > a. In other words,

only the increment process contributes to the structural changes in yt when the dyad value

yt
ij is different. Similarly, when both a, b < yt−1

ij , only the decrement process contributes

to the structural changes in yt. However, when the value b falls on the other side of yt−1
ij

with respect to the value a, both increment and decrement processes start to contribute

to the structural changes in yt. Intuitively, the construction by (4.2) can be considered as

rectified linear units, gated by yt−1
ij that differs by dyad (i, j) and time point t. When a

dyad value overcomes a threshold, it activates the corresponding process via user-specified

network statistics to impact the network structures.

In addition to the dyadic level interpretation, the parameters of PST ERGM can be

interpreted at the structural level, as in [KH14]. Though we cannot generate y+,t and y−,t

to produce yt given fixed parameters, we can learn the unknown parameters of PST ERGM

given observed yt and yt−1 to interpret the dynamics via g(yt,yt−1) from an exponential-

family model. When fitting a PST ERGM on the observed yt conditional on yt−1, the

dyad value movements (increased, decreased, or unchanged) between consecutive time points

become fixed. As we augment the observed networks with a sequence of 2× (T −1) networks

that separate dyad value increment and decrement, the learned parameters (η+,η−) ∈ Rp

can signify the structural changes in yt stemming from the two processes. In general, for a
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particular positive g+
i (y

+,t,yt−1) in the increment process, a positive η+
i is associated with

increasing dyad values to have more instances of the feature that is tracked by g+
i (y

+,t,yt−1)

in the extracted y+,t. On the contrary, a negative η+
i will disrupt the emergence of this

feature by not increasing dyad values, resulting in fewer instances of the feature in y+,t.

For a particular positive g−
i (y

−,t,yt−1) in the decrement process, a positive η−
i is associated

with not decreasing dyad values to have more instances of the feature that is tracked by

g−
i (y

−,t,yt−1) in the extracted y−,t. However, a negative η−
i will target this feature by

reducing dyad values, resulting in fewer instances of the feature in y−,t. Equivalently, a

negative η−
i is associated with a shorter duration of the feature appearance. Moreover,

since we learn the parameters (η+,η−) jointly as described in Section 4.4, the parameters

that reflect the dynamics via g(yt,yt−1) =
(
g+(y+,t,yt−1), g−(y−,t,yt−1)

)
balance the two

processes. Though we assume the factors that increase relational strength are different from

those that decrease relational strength, they can be interacting in practice and the effects of

interactions over time are absorbed into (η+,η−) with a partially separable model.

y1

y+,2

y−,2

y2 yT−1

y+,T

y−,T

yT

η̃+

η̃−

ŷT+1

Increment Process

∏T
t=2 h

+(y+,t) exp
(
η+ · g+(y+,t, yt−1)

)

Decrement Process

∏T
t=2 h

−(y−,t) exp
(
η− · g−(y−,t, yt−1)

)

Forecasting Process

. . . MCMC

Sampling

Jointly

Learning

Jointly

Learning

Figure 4.3: An overview of PST ERGM for dynamic valued networks.

Figure 4.3 gives an overview of the PST ERGM framework. The white solid circles denote
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the sequence of observed networks as time passes from left to right. The dashed circles denote

the sequence of increment networks, and the dotted circles denote the sequence of decrement

networks. Note that each observed network is utilized multiple times to extract information

that emphasizes the transition between consecutive time steps. The model with respect to

the observed networks is partially separated into the increment process and the decrement

process. Once the parameters in the two triangles are learned jointly, we can perform MCMC

sampling to generate ŷT+1 in the forecasting process. Though yt can be further conditioned

on more previous networks to calculate the network statistics and to construct y+,t and y−,t,

we only discuss PST ERGM under first order Markov assumption in this chapter.

4.4 Likelihood-Based Inference

The PST ERGM parameter estimation consists of two phases, extended from recent ad-

vances in fitting static binary networks. Specifically, we first maximize the log-likelihood

ratio to seed an initial configuration, followed by the Newton-Raphson method to refine the

parameters. The algorithms are provided in 4.7.3.

4.4.1 Log-likelihood Ratio

Throughout, the parameters (η+,η−) = η ∈ Rp are estimated jointly. The log-likelihood of

PST ERGM in (4.3) with
(
g+(y+,t,yt−1), g−(y−,t,yt−1)

)
= g(yt,yt−1) ∈ Rp is

l(η) =
T∑
t=2

{
log[h(yt,yt−1)] + η · g(yt,yt−1)− ψ(η,yt−1)

}
.

The term exp[ψ(η,yt−1)] involves a sum over all possible networks in Y t ⊆ NY
0 , which is

often computationally intractable except for models with particular conditional independence

properties [LRS18] or small networks [YSH21]. Consequently, we approximate the MLE using

MCMC methods. To maximize the log-likelihood, we calculate its first and second derivative
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with respect to η:

S(η) =
T∑
t=2

{
g(yt,yt−1)− Eη[g(y

t,yt−1)]
}

and H(η) =
T∑
t=2

−Cov[g(yt,yt−1)]. (4.5)

The gradient S(η) illustrates that ERGM fitting is essentially a feature pursuit: finding a

parameter η such that the expected network statistics are close to the observed network

statistics. Moreover, to obtain the standard errors of η, the Fisher Information matrix can

be approximated by the Hessian as I(η) ≈ −Ĥ(η̃) evaluated at the learned parameter η̃

with MCMC samples [HH06b].

Approximating Eη[g(y
t,yt−1)] and Cov[g(yt,yt−1)] of (4.5) with MCMC samples, the

parameter η can be updated iteratively by the Newton-Raphson method. However, generat-

ing new MCMC samples at each learning iteration is computationally expensive. To reduce

the computational burden, we use the log-likelihood ratio as a new objective function to

approximate the MLE as in [Sni02], and [HH06b]. Let η0 be another initialized parameter,

the log-likelihood ratio is

r(η,η0) =
T∑
t=2

{
(η − η0)

⊤g(yt,yt−1)− logEη0

(
exp[(η − η0)

⊤g(yt,yt−1)]
)}
.

Note that the distribution to draw samples from is now changed as we introduce an initialized

parameter η0 to the log-likelihood ratio.

Generating a sufficiently large number of samples from P (yt|yt−1;η0) only once for each

time t, and then iterating a Newton-Raphson method with respect to η until convergence

yields a maximizer of the approximated log-likelihood ratio. Though anchored on pre-

determined samples can greatly expedite the estimation, the efficiency of not having to

update the MCMC samples between learning iterations comes with a cost. [GT92] pointed

out that the approximated log-likelihood ratio via MCMC samples degrades quickly as η0

moves away from η. We address this issue in the next section.
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4.4.2 Normality Approximation and Partial Stepping

[HHH12b] proposed two amendments to improve the fitting for static binary networks. We

adapt them to the PST ERGM for dynamic valued networks, to seed a starting point for the

Newton-Raphson method. Let yt
1, · · · ,yt

s be a list of s networks sampled from P (yt|yt−1;η0).

Since they are drawn from the same distribution, we can assume their network statistics

multiplied by the difference of the two parameters, (η − η0)
⊤g(yt,yt−1), follow a normal

distribution N (µt, σ
2
t ) with

µt = (η − η0)
⊤µt and σ2

t = (η − η0)
⊤Σt(η − η0).

The µt and Σt are the respective mean vector and covariance matrix of g(yt,yt−1) evaluated

from the sampled yt
1, · · · ,yt

s. Given that exp[(η − η0)
⊤g(yt,yt−1)] is now log-normally

distributed, the ratio of the two normalizing constants at t can be replaced by

Eη0

(
exp[(η − η0)

⊤g(yt,yt−1)]
)
≈ exp(µt +

1

2
σ2
t ),

and the approximated log-likelihood ratio becomes

r̂s(η,η0) = (η − η0)
⊤
[ T∑

t=2

g(yt,yt−1)−
T∑
t=2

µt

]
− 1

2
(η − η0)

⊤
[ T∑

t=2

Σt

]
(η − η0).

Although the approximated log-likelihood ratio r̂s(η,η0) degrades quickly as η0 moves

away from η, we can restrict the amount of parameter update to prevent the degradation of

r̂s(η,η0). With a step length γt ∈ (0, 1] at time t, we create a pseudo-observation

ξ̂(y) =
T∑
t=2

γtg(yt,yt−1) +
T∑
t=2

(1− γt)µt (4.6)

in between the observed network statistics
∑T

t=2 g(y
t,yt−1) and the estimated network statis-

tics
∑T

t=2µt from MCMC samples drawn from P (yt|yt−1;η0). Instead of the difference be-

tween
∑T

t=2 µt and
∑T

t=2 g(y
t,yt−1), we limit the amount of parameter update based on the

difference between
∑T

t=2µt and ξ̂(y) in each learning iteration. Empirically, the step length
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γt is helpful in dampening the possibly drastic variations across different time intervals, for

a stable parameter update when searching for an initial configuration.

Thus, we sequentially update the parameter in the direction of the MLE, while maintain-

ing the approximated log-likelihood ratio r̂s(η,η0) estimated by MCMC samples is reason-

ably accurate. The closed-form solution for the maximizer of the approximated log-likelihood

ratio at a specific learning iteration is

η̃ = η0 +
[ T∑

t=2

Σt

]−1[
ξ̂(y)−

T∑
t=2

µt

]
.

Once an initial configuration is obtained from maximizing the approximated log-likelihood

ratio, we proceed to the Newton-Raphson method to further update the parameter near its

convergence. In this two-phase fusion where each component performs its designated task,

both procedures require shorter learning iterations and undertake smaller computational

burdens than only on their own.

4.4.3 MCMC for Dynamic Valued Networks

Fitting PST ERGM can be heavily dependent on MCMC sampling. In this section, we intro-

duce the Metropolis-Hastings algorithm for drawing yt conditional on yt−1. The superscript

t is omitted for yt, y+,t, y−,t, and mt to facilitate notational simplicity, as MCMC sampling

is performed within a particular time point t. Additionally, we use a superscript k to refer

to the current MCMC iteration.

In practice, valued networks are often sparse. To accommodate the sparsity of networks,

as our proposal distribution, we employ a zero-inflated Poisson distribution that is also used

in ergm.count [Kri19], an R library for static valued networks:

P (yk+1
ij ;λ, π0) =


π0 + (1− π0) exp(−λ) if yk+1

ij = 0;

(1− π0) exp(−λ)× λy
k+1
ij /yk+1

ij ! if yk+1
ij ∈ N,

(4.7)

where λ = yk
ij+0.5 and π0 ∈ [0, 1) is a pre-defined probability for the proposed dyad jumping
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to 0. The 0.5 in λ prevents the proposed yk+1
ij from locking into 0 when yk

ij = 0, and the

proposed (i, j) is chosen randomly. We let π0 = 0.2, a default value for the Poisson proposal

distribution used in ergm.count, and it can be adjusted based on the user’s prior knowledge

on the sparsity of networks. The acceptance ratio α for the proposed yk+1
ij is

q ×
y+,k
ij !

y+,k+1
ij !

exp[η+ ·∆g+(y+,yt−1)ij]×
(

m

y−,k+1
ij

)
/

(
m

y−,k
ij

)
exp[η− ·∆g−(y−,yt−1)ij], (4.8)

where y+ and y− are constructed from the observed yt−1 and the proposed network at

MCMC iteration k+1. The change statistics ∆g+(y+,yt−1)ij denote the difference between

g+(y+,yt−1) with y+
ij = y+,k+1

ij and g+(y+,yt−1) with y+
ij = y+,k

ij while rest of the y+

remains the same. The change statistics ∆g−(y−,yt−1)ij are calculated similarly except for

notational difference, and the transition probability ratio q is

q = P (yk
ij;λ = yk+1

ij + 0.5, π0)/P (y
k+1
ij ;λ = yk

ij + 0.5, π0).

In this context, we propose a dyad value from the space of yt, but we decide to accept

the proposed dyad value based on the construction of increment network y+,t and decrement

network y−,t, namely the dynamics between time t−1 and t. As we consolidate the temporal

aspect into the PST ERGM, MCMC sampling becomes especially important in forecasting

future networks besides its primary usage in parameter learning. Conditioning on the last

observed network yT under first order Markov assumption, we can forecast ŷT+1 given the

learned parameters η̃+ and η̃− with the above scheme.

4.4.3.1 Contrastive Divergence Sampling

[Hum11] applied a K-step Contrastive Divergence (CDK) sampling, an abridged MCMC, to

speed up parameter estimation for static binary networks. Introduced in [Hin02] and [CH05],

and applied to ERGM in [Fel14] and [Kri17b], the Contrastive Divergence (CD) for ERGM

is formulated as

CDK = KL[Pdata(y
obs) ∥ P∞(y)]−KL[PK(y) ∥ P∞(y)].

89



The Pdata(y
obs) is the distribution of the observed data, P∞(y) is the true model distribution,

and PK(y) is the distribution of K-step MCMC samples [Hum11]. The gradient of CDK for

minimization given as

∇CDK = g(yobs)− EK [g(y)] = 0

builds the foundation of CDK sampling, where EK [g(y)] is the expected network statistics

under the distribution of K-step MCMC samples.

In CDK sampling, each sampled network is generated after K transitions starting from

the observed network, so a burn-in phase is not required, and a tremendous sample size is not

indispensable. Moreover, a small value of K can be used. In seeding an initial configuration

via maximizing the approximated log-likelihood ratio, the CDK sampling is in favor of the

normality approximation, since each sampled network is at most K dyads different from the

observed network. In the second phase where the learned parameter is close to the MLE,

the network statistics of the MCMC samples are close to those of the observed networks.

However, a small value of K generates a pseudo-observation of (4.6) that is not distinct from∑T
t=2 g(y

t,yt−1), which may compromise the advantage of the partial stepping. Hence, a

trade-off among the number of transitions, sample size, and learning iteration is needed. See

[Kri17b] for a detailed study of using CD in ERGM fitting, especially regarding the choice

of hyperparameters and stopping criterion.

4.5 Experiments

In this section, we apply PST ERGM to simulated and real data, for demonstrative purpose.

Though the following real data can be analyzed by other frameworks such as Stochastic

Actor-Oriented Model [Sni01] or Relational Event Model [But08b], we focus on the structure

of dynamic valued networks, instead of the instantaneous action emitted by an actor given

time-ordered sequences of historical events. In practice, when a network with relational

strengths between nodes is observed at multiple time points, we can apply PST ERGM to

90



investigate the significance of network structures over time, especially those that can signify

the network generating process.

The network statistics of interest are chosen from an extensive list in ergm [HHB22], an

R library for network analysis. In this demonstration, the choice of network statistics in the

increment process is identical to that in the decrement process. For real data experiments,

the detail of the implementation and the formulations of selected network statistics are

provided in 4.7.4.

4.5.1 Simulation Study

In this simulation with T = 10 and n = 50, we test our Metropolis-Hastings algorithm

by generating y2, . . . ,yT given y1 with pre-defined parameters η+ and η−. We then test

our parameter learning algorithms by estimating the coefficients from the artificial data to

compare with the true parameters. We choose four network statistics, (1) edge sum, (2)

zeros, (3) mutuality, (4) transitive weight for both increment and decrement processes. The

g+(y+,t,yt−1) ∈ R4 is specified as follows:(∑
ij

y+,t
ij ,

∑
ij

1(y+,t
ij = 0),

∑
i<j

√
y+,t
ij y+,t

ji ,
∑
ij

min(y+,t
ij ,max

k∈N
(min(y+,t

ik ,y
+,t
kj )))

)
.

The g−(y−,t,yt−1) ∈ R4 is specified similarly except for notational differences.

We initialize η+ = (−2, 2, 1, 1), η− = (−1, 2, 1, 1), and the maximum dyad value for

decrement networks mt = 3 for t = 2, . . . , T . To ensure the networks are sampled with

reasonable mixing and do not depend on initialization, each sampled yt is generated after

20× n× n MCMC transitions starting from an empty network. We repeat the process until

we have 50 sequences of y1, · · · ,yT . As shown in Figure 4.4, the simulated network statistics

have converged both within and across time points. In particular, the simulated networks

are designed to be sparse, about 80% of the dyad values in yt are zeros.

We then learn the parameter of PST ERGM for each generated sequence. To seed an

initial configuration, we apply 20 iterations of partial stepping starting from a zero vector.
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Figure 4.4: The distributions of network statistics based on 50 generated sequences of net-

works. The network statistics are evaluated at yt from t = 2 to 10.

An MCMC sample size of 100 with CDn sampling is used for each time t. The number of

MCMC transitions is set to n. Subsequently, to refine the parameter, we apply 5 iterations

of Newton-Raphson method, where an MCMC sample size of 1000 with CDn sampling is

used for each time t. The medians and standard deviations of |η̃+−η+| over 50 estimations

are reported in Table 4.1. The corresponding results for |η̃−−η−| are reported in Table 4.2.

# of time step & node |η̃+
1 − η+

1 | |η̃+
2 − η+

2 | |η̃+
3 − η+

3 | |η̃+
4 − η+

4 |

T = 10, n = 50 0.0027 (0.065) 0.0046 (0.087) 0.0021 (0.056) 0.0128 (0.064)

Table 4.1: The medians (standard deviation) of |η̃+ − η+| over 50 estimations.

# of time step & node |η̃−
1 − η−

1 | |η̃−
2 − η−

2 | |η̃−
3 − η−

3 | |η̃−
4 − η−

4 |

T = 10, n = 50 0.0471 (0.169) 0.0228 (0.182) 0.0108 (0.162) 0.0033 (0.076)

Table 4.2: The medians (standard deviation) of |η̃− − η−| over 50 estimations.

On average, the estimations are close to the true parameters as the medians of absolute

differences are close to zeros. We also check if the 95% confidence intervals of the learned

parameters cover the true parameters. Figure 4.5 displays the confidence intervals η̃i±1.96σ̃i

for the 50 estimations, where σ̃i denotes the standard error of η̃i. The standard errors are
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Figure 4.5: The 95% confidence intervals (black bars) of the 50 learned parameters (dots)

for each network statistic. The blue horizontal lines indicate the true parameter values

η+ = (−2, 2, 1, 1) and η− = (−1, 2, 1, 1). The red bars indicate the confidence intervals that

do not cover the true parameters.

obtained from the Fisher Information matrix I(η) ≈ −Ĥ(η̃) of (4.5) evaluated at the learned

parameter η̃ with 100 sampled networks for each t. Each sampled network is generated after

1000 MCMC transitions starting from the observed yt. We notice that the true parameters

are covered by the confidence intervals most of the time.

4.5.2 Modeling: Students Contact Networks

[MFB15] used wearable sensors to detect face-to-face contacts between students among nine

classes in a high school. The real-time contact events were logged for every 20-second interval

of any two students within a physical distance of 1.5 meters from 02-Dec-2013 to 06-Dec-2013.

Additionally, online social network (Facebook) was submitted by the students voluntarily.

In this demonstration, we model student interactions within one of the nine classes, whose
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class name is MP. There are n = 29 students which consist of 11 females and 18 males. We

divide the entries by day to construct T = 5 undirected valued networks, where yt
ij is the

number of unique contacts between student i and student j on day t. The duration of each

contact can be different and expansive. The nodal covariate xi ∈ {F,M} is the gender of

student i, and dyadic covariate zij ∈ {1, 0} indicates whether student i and student j are

friends on Facebook or not.

We choose six network statistics of interest for analysis, and we learn a time-heterogeneous

PST ERGM
∏5

t=2 P (y
t|yt−1;ηt) for the data. A time-homogeneous model was attempted,

but the large variation between different intervals suggests that a time-heterogeneous model

is appropriate and realistic. The estimated coefficients and standard errors for the increment

process are reported in Table 4.3. The corresponding results for the decrement process are

reported in Table 4.4.

Network Statistics η+,2 η+,3 η+,4 η+,5

Edge sum 3.215 (0.092) 3.316 (0.097) 3.023 (0.111) 3.197 (0.079)

Dispersion -6.825 (0.231) -7.576 (0.201) -6.470 (0.222) -6.506 (0.201)

Homophily (M) 0.151 (0.073) 0.223 (0.079) 0.096 (0.086) 0.135 (0.059)

Heterophily (M-F) 0.042 (0.068) 0.083 (0.080) 0.067 (0.082) 0.056 (0.057)

Facebook -0.005 (0.042) 0.123 (0.031) -0.033 (0.047) 0.092 (0.035)

Transitive weight -0.142 (0.038) -0.068 (0.026) -0.015 (0.044) -0.187 (0.032)

Coefficients statistically significant at 0.05 level are bolded.

Table 4.3: The parameter estimation (standard error) of η+,t for the students contact net-

works.

The positive coefficients on the edge sum term in the increment process from t = 2 to 5

indicate frequent interactions among students throughout the week. However, the negative

coefficients on the edge sum term in the decrement process from t = 3 to 5 suggest a short

duration on the increase of contact occurrences. In other words, the number of contacts
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Network Statistics η−,2 η−,3 η−,4 η−,5

Edge sum 0.432 (0.214) -0.980 (0.220) -0.630 (0.183) -0.294 (0.162)

Dispersion -6.572 (0.277) -6.144 (0.323) -6.102 (0.275) -6.680 (0.270)

Homophily (M) -0.161 (0.184) 1.344 (0.213) 0.665 (0.189) 0.390 (0.150)

Heterophily (M-F) -0.222 (0.190) 0.481 (0.174) -0.205 (0.189) 0.100 (0.152)

Facebook -0.083 (0.088) 0.231 (0.105) 0.193 (0.088) 0.099 (0.079)

Transitive weight 0.087 (0.066) -0.445 (0.075) -0.446 (0.044) -0.077 (0.045)

Coefficients statistically significant at 0.05 level are bolded.

Table 4.4: The parameter estimation (standard error) of η−,t for the students contact net-

works.

fluctuates over time, which supports the adoption of a time-heterogeneous model. Similarly,

the highly negative coefficients on the dispersion term in both increment and decrement

processes suggest a strong degree of over-dispersion in the number of contacts. This can be

verified by the standard deviation of non-zero dyad values across five days, which is 10.2,

whereas the mean is about half in magnitude, which is 5.8.

In the increment process from t = 2 to 5, the positive coefficients on the homophily for

males suggest a strong gender effect in promoting more interactions among male students.

Additionally, the positive coefficients in the decrement process from t = 3 to 5 indicate that

the active interactions among males tend to be ongoing once they have begun. However, these

effects are less significant for students of different genders, given the imbalanced proportion

between females and males. As supporting evidence, about 89% or 136 out of
(
18
2

)
= 153

pairs of male students have contact events logged by sensors, and their average span is 2.8

days. In contrast, about 71% or 141 out of 198 pairs of male and female students have

contact events logged, and their average span is 2.3 days.

Furthermore, in the increment process from t = 2 to 5, the alternating signs of coefficients

on the Facebook term indicate that if two students are friends online, they occasionally have
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active interactions in school. However, the majority of positive coefficients on the Facebook

term in the decrement process suggest that online friendships maintain offline interactions.

About 82% or 119 out of 145 reported Facebook friendships have contact events logged in

school, and their average span is 2.9 days. Lastly, the transitive relationship in the number

of contacts is weak, as indicated by the negative coefficients in the increment process. The

majority of negative coefficients in the decrement process suggests that the transitivity tends

not to persist over time.

To validate the learned model heuristically, we simulate networks with the estimated

parameters to compare the sampled network statistics with the observed network statistics.

For t = 2, . . . , 5, we generate 100 valued networks yt conditional on the observed yt−1,

where each sampled network is generated after 200×n×n MCMC transitions starting from

an empty network. We then construct the corresponding y+,t and y−,t and calculate their

network statistics. The distributions of the simulated network statistics and the observed

network statistics values are displayed in Figure 4.6. Overall, the simulated network statistics

align with the observed values, suggesting the learned PST ERGM is a good representation

of the observed data in terms of the six selected network statistics.

4.5.3 Forecasting: Baboons Interaction Networks

[GGP20] studied the interactions among n = 13 baboons for a duration of 28 days. The

contact events are recorded by sensors for every 20-second interval of any two primates within

proximity of 1.5 meters. The data is divided by day to construct a sequence of T = 28

undirected valued networks, where yt
ij is the number of unique contacts between baboon i

and baboon j on day t. The duration of each contact can be different and expansive. In

this experiment, we learn a time-homogeneous PST ERGM based on the data from day 1

to 23, and we forecast 5 subsequent networks to compare with the observed network from

day 24 to 28. Though a time-heterogeneous model can learn the transitions well, it lacks the

ability to forecast future networks as a learned parameter ηt is tailored to the designated
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Figure 4.6: The distribution of the sampled network statistics (box plots) and the observed

network statistics values (red lines) across four consecutive intervals for increment (Inc) and

decrement (Dec) processes.

time point t and cannot be extended to the next time point t+ 1.

We choose four network statistics for this task. The estimated parameters and standard

errors for both increment and decrement processes are reported in Table 4.5. To forecast

out-of-sample data, we generate 100 valued network ŷt conditional on the observed yt−1 for

t = 24, · · · , 28. Each sampled network is generated after 200 × n × n MCMC transitions

starting from an empty network. We then construct the corresponding ŷ+,t and ŷ−,t and

calculate their network statistics. The distributions of the forecasted network statistics and

the observed network statistics values are displayed in Figure 4.7.

In exchange for the extrapolation of future temporal trends, the time-homogeneous PST

ERGM that consolidates the fluctuation throughout 23 days into one parameter η may intro-

duce variation to the forecasted network statistics. The discrepancy on day 25 in Figure 4.7

is potentially impacted by this outcome. Furthermore, the discrepancy of the propensity

term on day 27 in the decrement process may be influenced by the increase of all network

statistics from day 26, as our proposed PST ERGM allows interaction between the two pro-

97



Network Statistics η+ η−

Edge sum 4.674 (0.017) -0.160 (0.014)

Propensity 9.937 (0.204) 10.345 (0.154)

Dispersion -14.728 (0.139) -14.064 (0.103)

Transitive weight -0.060 (0.007) -0.145 (0.007)

Coefficients statistically significant at 0.05 level are bolded.

Table 4.5: The parameter estimation (standard error) for the baboons interaction networks

from day 1 to 23.

cesses. Note that the y+,t and y−,t in PST ERGM are no longer conditionally independent

as the sample space of valued networks is infinite. In summary, besides prediction error for

the unseen data, the learned time-homogeneous PST ERGM effectively recovers the sudden

change on day 26 along with the temporal trends from day 24 to 28.
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Figure 4.7: The distribution of the forecasted network statistics (box plots) and the observed

network statistics values (red lines) for increment (Inc) and decrement (Dec) processes from

day 24 to 28.

Another aspect worth mentioning is the comparison between the edge sum term and the
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propensity term in this experiment. The propensity term
∑

i<j 1(yij > 0) is essentially a

thresholding version of the edge sum term
∑

i<j yij. We can dichotomize a valued network

into a binary network and count the number of edges to calculate the propensity term. In

the first column of Figure 4.7, the observed edge sums in red lines present a decreasing trend

followed by an increasing trend in both processes from day 24 to 28. The dispersion term

and the transitivity term that are also evaluated with the valued networks produce similar

patterns. However, in the second column of Figure 4.7, the observed propensity terms in

red lines primarily show a decreasing trend in both processes. Empirically, dichotomizing

dynamic valued networks into dynamic binary networks, or dyad value thresholding, for

network analysis may introduce biases [TB11] that result in unrealistic network dynamics.

4.6 Discussion

This chapter introduces a probabilistic model for dynamic valued networks. In practice, the

factors and processes that increase relational strength are usually different from those that

decrease relational strength. While dynamic network models should capture the intrinsic dif-

ference between consecutive networks, models neglecting the confounding effect of structural

change may result in misinterpretation of network evolution. Inspired by [KH14], we propose

a PST ERGM to dissect valued network transitions with two sets of intermediate networks,

where one manages dyad value increment, and the other manages dyad value decrement. Our

proposed PST ERGM provides the interpretability of network evolution and the capability

to forecast temporal trends.

Several improvements to the PST ERGM are possible for future development. We can

extend the sample space to networks with continuous dyad values. In this context, novel ref-

erence functions and network statistics are needed as PST ERGM becomes a continuous prob-

ability distribution. Furthermore, besides dyad value increment and decrement, alternative

ways to dissect network evolution are permitted, as long as the confounding effect of network
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dynamics is avoided. Over time, the number of participants and the process that induces

their relations may not be fixed or completely observed. It is of great importance for a dy-

namic network model to identify the temporal changes punctually [PYP19, YMW21, KLC23]

and to adjust the structural changes accordingly [KHM11].

Finally, model degeneracy which is studied theoretically by [HRS03] is a well-known

challenge in the ERGM framework. In modeling dynamic valued networks, though an infinite

sample space does not have a maximal graph on which a PST ERGM will concentrate, the

MLE can be difficult to find by the MCMC methods. Also, the geometrically weighted

statistics that are used to alleviate the degeneracy problem in fitting static binary networks

are currently not available for valued networks. Therefore, a rigorous way to design more

informative network statistics as in [SPR06], and a systematic way to evaluate the goodness

of model fit as in [HGH08] are needed for dynamic valued networks. The tapered ERGM

introduced in [FH17], and [BH22] can also be extended to the PST ERGM to alleviate the

degeneracy issue.

4.7 Appendix

4.7.1 Comparison of Simple Fitted Models

In this section, we present the simple fitted models that motivate the increment and decre-

ment networks in Section 4.3.1. First, we fit a Poisson-reference valued ERGM [Kri12a]

that involves only the edge sum term g(yt) =
∑

(i,j)∈Y y
t
ij to y25 and y26, respectively. The

coefficients and standard errors are displayed in Table 4.6. We notice the two coefficients

are similar, providing little information about the transition. Furthermore, we fit a PST

ERGM that involves only the edge sum terms g(yt,yt−1) =
(∑

(i,j)∈Y y
+,t
ij ,

∑
(i,j)∈Y y

−,t
ij

)
to

both y+,26 and y−,26. The coefficients and standard errors are displayed in Table 4.7. The

positive and negative coefficients reveal the fluctuation in dyad values between the observed

time points.
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Network Statistics η for g(y25) η for g(y26)

Edge sum 2.371 (0.033) 2.421 (0.035)

Table 4.6: The parameter estimation (standard error) for the baboons interaction networks

on day 25 and day 26, respectively. Coefficients statistically significant at 0.05 level are

bolded.

Network Statistics η+ η−

Edge sum 1.887 (0.055) -0.843 (0.069)

Table 4.7: The parameter estimation (standard error) for the baboons interaction networks,

using the increment and decrement networks. Coefficients statistically significant at 0.05

level are bolded.

4.7.2 Special Cases of PST ERGM

In this section, we derive two special cases of PST ERGM, under a specific set of sufficient

statistics and temporal information. Consider a simple PST ERGM with the edge sums of

increment and decrement networks as two network statistics:

g(yt,yt−1) =
(
g+(y+,t,yt−1), g−(y−,t,yt−1)

)
=

( ∑
(i,j)∈Y

y+,t
ij ,

∑
(i,j)∈Y

y−,t
ij

)
∈ R2.
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Let Y t(yt−1) ⊆ {yt ∈ NY
0 : yt

ij > yt−1
ij ∀ (i, j) ∈ Y} be a sample space for yt starting from

yt−1. The increment network y+,t is essentially the yt, and we have

P (yt|yt−1;η) =

[∏
ij(y

t
ij!)

−1 exp(η+ · yt
ij)
]
×
[∏

ij

(
mt

yt−1
ij

)
exp(η− · yt−1

ij )
]

∑
yt∈Yt(yt−1)

[∏
ij(y

t
ij!)

−1 exp(η+ · yt
ij)×

∏
ij

(
mt

yt−1
ij

)
exp(η− · yt−1

ij )
]

=

∏
ij

(
mt

yt−1
ij

)
exp(η− · yt−1

ij )∏
ij

(
mt

yt−1
ij

)
exp(η− · yt−1

ij )
×

∏
ij(y

t
ij!)

−1 exp(η+ · yt
ij)∑

yt∈Yt(yt−1)

[∏
ij(y

t
ij!)

−1 exp(η+ · yt
ij)
]

=
∏
ij

(yt
ij!)

−1 exp(η+ · yt
ij)∑∞

u=yt−1
ij +1

[
(u)−1 exp(η+ · u)

]
=

∏
ij

(yt
ij!)

−1 exp(η+ · yt
ij)

exp
(
exp(η+)

)
−

∑yt−1
ij

u=0 (u!)
−1 exp(η+ · u)

=
∏
ij

PPois

(
yt
ij

)
1−

∑yt−1
ij

u=0 PPois(u)
,

where PPois(x) denotes the probability mass function of Poisson
(
λ = exp(η+)

)
evaluated at

x. The PST ERGM P (yt|yt−1;η) for yt ∈ Y t(yt−1) becomes a dyadic independent truncated

Poisson distribution.

Moreover, let Y t(yt−1) ⊆ {yt ∈ NY
0 : yt

ij < yt−1
ij ≤ mt ∀ (i, j) ∈ Y} be another sample

space for yt. The decrement network y−,t is essentially the yt, and we have

P (yt|yt−1;η) =

[∏
ij(y

t−1
ij !)−1 exp(η+ · yt−1

ij )
]
×
[∏

ij

(
mt

yt
ij

)
exp(η− · yt

ij)
]

∑
yt∈Yt(yt−1)

[∏
ij(y

t−1
ij !)−1 exp(η+ · yt−1

ij )×
∏

ij

(
mt

yt
ij

)
exp(η− · yt

ij)
]

=

∏
ij(y

t−1
ij !)−1 exp(η+ · yt−1

ij )∏
ij(y

t−1
ij !)−1 exp(η+ · yt−1

ij )
×

∏
ij

(
mt

yt
ij

)
exp(η− · yt

ij)∑
yt∈Yt(yt−1)

[∏
ij

(
mt

yt
ij

)
exp(η− · yt

ij)
]

=
∏
ij

(
mt

yt
ij

)
exp(η− · yt

ij)∑yt−1
ij −1

u=0

[(
mt

u

)
exp(η− · u)

]
=

∏
ij

(
mt

yt
ij

)
exp(η− · yt

ij)(
1 + exp(η−)

)mt

−
∑mt

u=yt−1
ij

(
mt

u

)
exp(η− · u)

=
∏
ij

PBino

(
yt
ij

)
1−

∑mt

u=yt−1
ij

PBino

(
u
) ,
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where PBino(x) denotes the probability mass function of Binomial
(
mt, p = logit−1(η−)

)
eval-

uated at x. The PST ERGM P (yt|yt−1;η) for yt ∈ Y t(yt−1) becomes a dyadic independent

truncated Binomial distribution.

4.7.3 Parameter Estimation Algorithms

The partial stepping algorithm of PST ERGM parameter estimation to seed an initial config-

uration is provided in Algorithm 3. In this work, we let γtc be the ratio of the current iteration

c to the maximum number of iterations C for each time t. Only in the last learning iteration

where γtc = 1 do we use the difference between observed network statistics
∑T

t=2 g(y
t,yt−1)

and estimated network statistics
∑T

t=2µt to update the parameter.

Algorithm 3 Partial stepping algorithm

1: Input: initialized parameter η0, learning iteration C, sample size s, {y1, · · · ,yT}

2: for c = 1, · · · , C do

3: for t = 2, · · · , T do

4: Generate s MCMC samples yt
1, · · · ,yt

s from P (yt|yt−1;ηc−1) as in Section 4.4.3

5: Calculate µt = s−1
∑s

i′=1 g(y
t
i′ ,y

t−1)

6: Calculate Σt = s−1
∑s

i′=1 g(y
t
i′ ,y

t−1)g(yt
i′ ,y

t−1)⊤ − µtµ
⊤
t

7: end for

8: For γtc = c/C, calculate ξ̂(y) =
∑T

t=2 γ
t
c g(y

t,yt−1) +
∑T

t=2(1− γtc)µt

9: ηc = ηc−1 + [
∑T

t=2Σt]
−1[ξ̂(y)−

∑T
t=2µt]

10: end for

11: η̃ ← ηc

12: Output: learned parameter η̃

Once a parameter is obtained from maximizing the approximated log-likelihood ratio,

we proceed to the Newton-Raphson method to further update the parameter near its con-

vergence. The Newton-Raphson algorithm of PST ERGM parameter estimation is provided
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in Algorithm 4. The CDK sampling algorithm to generate a single sampled network yt
i′ is

provided in Algorithm 5, and it is used in Step 4 of Algorithm 3 and Step 4 of Algorithm 4.

Algorithm 4 Newton-Raphson algorithm

1: Input: initialized parameter η0, learning iteration C, sample size s, {y1, · · · ,yT}

2: for c = 1, · · · , C do

3: for t = 2, · · · , T do

4: Generate s MCMC samples yt
1, · · · ,yt

s from P (yt|yt−1;ηc−1) as in Section 4.4.3

5: Calculate µt = s−1
∑s

i′=1 g(y
t
i′ ,y

t−1)

6: Calculate Σt = s−1
∑s

i′=1 g(y
t
i′ ,y

t−1)g(yt
i′ ,y

t−1)⊤ − µtµ
⊤
t

7: end for

8: Calculate Ŝ(ηc−1) =
∑T

t=2[g(y
t,yt−1)− µt] and Ĥ(ηc−1) = −

∑T
t=2 Σt

9: ηc = ηc−1 − Ĥ(ηc−1)
−1Ŝ(ηc−1)

10: end for

11: η̃ ← ηc

12: Output: learned parameter η̃

The complexity of Algorithm 5 to sample one valued network with K MCMC transi-

tions is O(KCα). The term Cα is the complexity of calculating the acceptance ratio α with

Equation (4.8), which depends on the choice of network statistics for both increment and

decrement processes as well as the randomness of the proposed dyad values from Equa-

tion (4.7). Likewise, for Algorithm 3, the complexity to sample s valued networks in Step

4 is O(sKCα). In Steps 5 and 6 of Algorithm 3, the complexity of calculating the mean

vector µt ∈ Rp and the covariance matrix Σt ∈ Rp×p of s sampled network statistics is

O(sC2g + sp + sp2). The term C2g is the complexity to calculate the two network statis-

tics g(yt,yt−1) that are based on the user’s choice. Finally, the complexity of calculat-

ing the pseudo-observation ξ̂(y) and the maximizer η̃ in Steps 8 and 9 of Algorithm 3 is

O(TC2g + T + p2), where T is the number of observed networks. Overall, the complexity of

Algorithm 3 is O
(
C[T (sKCα + sC2g + sp+ sp2) + TC2g + T + p2]

)
, where C is the number of
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Algorithm 5 Contrastive Divergence sampling

1: Input: MCMC transition step K, parameter η = (η+,η−), {yt−1,yt}

2: Set ỹ = yt

3: for k = 1, · · · , K do

4: Choose randomly a dyad (i, j) s.t. i ̸= j

5: Propose a dyad value ỹk+1
ij from Equation (4.7)

6: Calculate the acceptance ratio α for ỹk+1
ij from Equation (4.8)

7: if uniform(0, 1) < α then

8: Accept ỹk+1
ij

9: end if

10: end for

11: Output: a sampled network ỹ

learning iterations. The complexity of Algorithm 4 is similar, except for different choices of

the input parameters and MCMC variation in the proposed dyad values.

4.7.4 Experiment Details

In this section, we provide the formulations of selected network statistics used in the two

real data examples. The network statistics of interest are chosen from an extensive list in

ergm [HHB22], an R library for network analysis. The choice of network statistics for the

increment process is identical to that for the decrement process. Furthermore, we provide

the learning schedules of the two experiments.

4.7.4.1 Students Contact Networks

The formulations of six network statistics used for the students contact networks [MFB15] are

displayed in Table 4.8. The superscripts are omitted for notational simplicity. In this time-

heterogeneous PST ERGM
∏5

t=2 P (y
t|yt−1;ηt), the parameter ηt is learned sequentially for
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t = 2, · · · , 5, and we initialize ηt
0 of Algorithm 3 as zero vector.

Network Statistics Formulations

Edge sum
∑

i<j yij

Dispersion
∑

i<j

√
yij

Homophily (M)
∑

i<j yij × 1(xi = M ∧ xj = M)

Heterophily (M-F)
∑

i<j yij × 1(xi ̸= xj)

Facebook
∑

i<j yij × zij

Transitive weight
∑

i<j min(yij,maxk∈N(min(yik,ykj)))

Table 4.8: The network statistics used for the students contact networks.

To seed an initial configuration for each ηt, we implement C = 20 iterations of Algorithm

3 where an MCMC sample size of s = 100 with CD5×n sampling is used, followed by another

C = 20 iterations of Algorithm 4 where an MCMC sample size of s = 100 with CD10×n sam-

pling is used. The term n is the number of students in this data, which is 29. Subsequently,

to refine the learned parameters, we implement C = 10 iterations of Algorithm 4 where an

MCMC sample size of s = 1000 with CD25×n×n sampling is used.

Finally, the standard errors are obtained from the Fisher Information matrix I(ηt) ≈

−Ĥ(η̃t) of Equation (4.5) evaluated at the learned parameter η̃t with 1000 sampled net-

works. Each sampled network is generated after K = 20×n×n MCMC transitions starting

from observed yt.

4.7.4.2 Baboons Interaction Networks

The formulations of four network statistics used for the baboons interaction networks [GGP20]

are displayed in Table 4.9. The superscripts are omitted for notational simplicity. In

this time-homogeneous PST ERGM
∏23

t=2 P (y
t|yt−1), the parameter η is shared across

t = 2, · · · , 23 and is also used to forecast the temporal trends for t = 24, · · · , 28. We
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initialize η0 of Algorithm 3 as zero vector.

Network Statistics Formulations

Edge sum
∑

i<j yij

Propensity
∑

i<j 1(yij > 0)

Dispersion
∑

i<j

√
yij

Transitive weight
∑

i<j min(yij,maxk∈N(min(yik,ykj)))

Table 4.9: The network statistics used for the baboons interaction networks.

To seed an initial configuration for η, we implement C = 20 iterations of Algorithm 3

where an MCMC sample size of s = 100 with CDn sampling is used for each time t, followed

by another C = 20 iterations of Algorithm 4 where an MCMC sample size of s = 100 with

CD2×n sampling is used for each time t. The term n is the number of baboons in this data,

which is 13. Subsequently, to refine the learned parameter, we implement C = 10 iterations

of Algorithm 4 where an MCMC sample size of s = 1000 with CD50×n×n sampling is used

for each time t. In this experiment, we let the maximum dyad value of decrement networks

mt = 200 for each t, a moderate upper bound that is greater than the highest dyad value of

decrement networks y−,2, · · · ,y−,28 constructed from the observed networks.

Finally, the standard errors are obtained from the Fisher Information matrix I(η) ≈

−Ĥ(η̃) of Equation (4.5) evaluated at the learned parameter η̃ with 1000 sampled networks

for each time t. Each sampled network is generated after K = 20×n×n MCMC transitions

starting from observed yt.
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CHAPTER 5

Conclusion

This dissertation presents three self-contained papers, focusing on the statistical models and

computational techniques for change point detection and dynamic networks modeling. The

extensive experiments on both simulated and real data demonstrate the effectiveness of the

proposed methods.

The framework with the Separable Temporal Exponential-family Random Graph Model

(STERGM) detects structural changes in network dynamics via network statistics. By em-

ploying the Alternating Direction Method of Multipliers (ADMM) and Group Fused Lasso

regularization, the learned parameters can reflect multiple time points where the network

structures have substantially changed. Yet, this approach requires users to specify the types

of structural change to be detected, which are often not known to the modeler before the im-

plementation. Therefore, another approach to extract the change patterns from time series

of graphs is in high demand.

The introduction of a generative model presents a different avenue in the change point

detection methodologies. By incorporating prior distributions and a graph decoding mech-

anism, the empirical Bayes approach to learn the priors provides a graph representation

learning framework for change point detection. However, several extensions are possible for

future developments. Generative models that can produce weighted graphs, as well as nodal

and dyadic attributes, should be included. Subsequently, a more complicated neural network

architecture is required to permit these extension.

Lastly, the Partially Separable Temporal Exponential-family Random Graph Model (PST
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ERGM) focuses on networks whose relations possess degree of strength. The dynamics be-

tween consecutive valued networks are decomposed into two intermediate networks, where

one controls dyad value increment and the other controls dyad value decrement. The pro-

posed model specifies each transition with two sets of network statistics derived from the

intermediate networks and uses two distinct parameters to facilitate model interpretation.

Improvements to PST ERGM are also possible for future development. The sample space

can be extended to networks with continuous dyad values, since more real-world situations

can be included. As time evolve, the number of nodes may not be fixed. It is of great

importance for network models to adjust the network sizes accordingly.

The methodologies developed in this dissertation are validated through numeric simula-

tions and real-world applications. The results underscore the potential of these models to

provide insights into the dynamics of networks, which can be crucial for decision-making in

various domains. In conclusion, this dissertation not only contributes to the field of dynamic

networks through statistical modeling and computational techniques, but also sets the stage

for future research that could further unravel the complexities of network evolution.
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