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Crosswell Tomography 

Transmission Tomography 

Crosswell transmission tomography is becoming a com­
monly used tool for seismic mpdeling. The basic idea is to 
back project a set of many rays to yield an estimate of the 
distribution of velocities needed to produce the observed 
travel times (Peterson, 1986; Dines and Lytle, 1979). This is 
done by minimizing the difference between the observed and 
calculated travel times, usually through an iterative process 
based on a least squares inversion. 

One difficulty with iter.uive inversions is knowing when 
to stop the process. Iterative inversions are performed pri­
marily because of the tremendous size of the matrix involved, 
but also because the assumptions used and the measurement 
errors make an exact solution uninformative. The iterative 
procedure enables one to stop the inversion process some 
time before the exact solution is approached. However, some 
criteria needs to be develop<!d to adequately determine the 
proper stopping point. We have been developing an objective 
technique to find a stopping time. A statistical method called 
cross-validation is used to find a stopping point which we 
expect will minimize prediction error and prevent overfitting 
to a specific data set of travel times. The idea is to divide 
the rays randomly into n sets, then build a series of sub­
models by leaving out one of the sets while using all the oth­
ers. The RMS residual of each submodel is calculated for 
each iteration. At first, the prediction RMS for the excluded 
r.tys will go down as the model improves. At some iteration 
the prediction error, or RMS, for the excluded rays will begin 
to increase. This happens because the iterative algorithm 
begins to overfit the model to the specific set of rays used. 
The iteration with the minimum predicted RMS is found for 
each submodel. We expect that the mean iteration lit which 
the minimum predicted RMS occurs to be the best stopping 
time for the model built using the entire data set. 

The existence of background anisotropy can also pro­
duce large errors in the results. This is due to the fact that 
the sampled area can have a range of velocities depending on 
the angle of incidence of the ray. Unless a complete angular 
coverage of rays is present for all sampled regions, it is 
impossible to produce an adequate inversion that includes 
anisotropy. The way in which we rectify this problem is to 
first determine the background anisotropy, then remove it 
from the travel times befon: they are invened (Johnson and 
Peterson, 1986). The P-wave anisotropy may be approxi­
mately represented as 

V/ =A + Bsin (2$) + Ccos (2$) + Dsin (4$) + Ecos (~) 

where q, is the angle of direction of propagation. A function 
of this form is fitted to the data represented as q, vs average 
velocity. The coefficients A, B, C, D and E represent the 
strength of the anisotropy. The background anisotropy can 
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be determined in the laboratory from rock samples, from the 
travel time data itself, or from a separate experiment in the 
same anisotropic rock which is relatively free of fractures or 
other anomalous zones. This method will not, of course, give 
a solution for changes in anisotropy, but has given adequate 
solutions in our field tests. 

Diffraction Torrwgraphy 

The applications of full-waveform diffraction tomogra­
phy has not been as extensive as transmission tomography, 
but the potential developments may prove valuable. In 
diffraction tomography less spatial coverage of sources and 
receivers are needed to obtain resolution equivalent to 
transmission tomography, because scattered waves at various 
angles are used in forming the image. The basic idea of 
diffraction tomography is to back propagate the scattered 
wavefield in order to reconstruct the velocity penurbation 
causing the scattering. 

Making use of finite difference synthetic simulations, we 
have investigated this method rather extensively and have 
funher developed the method in order to be applicable to 
field data. These developments include the application of two 
and a half dimensional (2.5-D) corrections to our field data. 
The inversion is done using two separate methods: The first 
is the conventional back projection method (Devaney, 1984; 
Wu and Toksoz, 1987) and the second is a quadratic pro­
gramming method with constraints. The Born approximation 
is utilized for linearization (rather than the Rytov) since this 
approximation is quite accurate in representing fractured 
media. The inversion methods have been tested on 2-D 
pseudo spectral finite difference forward data and on 2.5-D 
Born forward data together with the 2.5-D corrections. 

Grimsel Test Site • A Case Study 

During the past three years we have carried out experi­
ments at the Grimsel rock laboratory in the Swiss Alps in 
cooperation with the Swiss cooperative for the storage of 
nuclear waste (NAGRA). In one area of the laboratory two 
parallel drifts and two parallel boreholes form a 10 by 21 
meter region. This region was chosen so that a mylonitic 
fracture zone crosses this region at a strike of about 45 
degrees. The primary objective of this study was to gather 
high quality P- and S-wave data across the fracture zone to 
determine the seismic visibility of the fractures. Seismic 
sources were placed at 0.5 meter intervals in the boreholes 
and at 0.5 meter intervals in shallow holes drilled into the 
drift wall. A three component accelerometer package was 
recorded at corresponding locations to give complete four­
sided coverage. Three experiments were performed in this 
region, one each in 1987, 1988 and 1989. The results of the 
1987 and 1988 experiments will be presented along with 
preliminary results of the 1989 experiment. 



The travel times were picked by eye on the component 
with the strongest P-wave motion using an interactive picking 
routine. A total of 4004 values were produced. These values 
were inverted using an algebraic reconstruction technique 
with a pixel array of 44 by 88. The stopping criterion which 
we developed performed well and also showed the stability 
of this particular data set. This produces a pixel size of 0.25 
meters which is the resolution we expect given the 
wavelength of 0.7 meters and station spacing of 0.5 meters. 
These inversions were performed without the anisotropy 
corrections, but these results proved inadequate. 

Previous experience has shown that the Grimsel granite 
is highly anisotropic\ 10%). The method outlined above was 
used to remove the background anisotropy and another inver­
sion performed using the same input parameters. These 
results were quite different and proved more stable. The 
improvement is more marked when just the borehole to 
borehole times are inverted. 

The results from the 1987 (Figure I) and 1988 (Figure 
2) inversions show many similar features and many unex­
pected differences. Most of these differences are attributable 
to the different source strengths. The fracture zone is visible 
in both results, but is dominated by tunnel affects in 1987 
and by a large anomalous zone which does not correspond to 
any feature seen in the drifts or boreholes. These results have 
increased our understanding of the practical aspects of a 
tomographic survey. 

The full waveform methods were also applied to these 
data sets. For practical implementation, only the borehole to 
borehole waveforms were used in the inversions. A back­
ground attenuation value is estimated for the region using a 
simple statistical approach. Estimates are the wavelet are 
found by a common source gather, common receiver gather 
and average of all traces. The data are inverted after the 
background attenuation is corrected for, the incident field 
removed, the data reconvolved and the 2-D corrections 
applied. Results of the back propagation and quadratic pro­
gramming inversions (Figure 3) show features corresponding 
to fracture zones in the core samples and anomalous zones in 
the transmission tomograms. 
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Tomographic image of the 1987 survey after 
anisotropy corrections. 
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Tomographic image of the 1988 survey after 
anisotropy corrections. 
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Tomographic image of the 1988 survey using 
full wave diffraction tomography. 
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