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FOURIER TRANSFORM ZERO FIELD NMR AND NQR
David Bruce Zax
‘Abstract

The characterization of the structural and chemical properties of
matter, particularly in disordered condensed phases, is a difficult
process. Feﬁ analytical methods work effectively on polycrystalline or
amorphous solids. In many systems the chemical shifts measured by
traditional high resolution splid state NMR meéhods are insufficiently
sensitive or the informatipn contained in the dipole-dipole couplings
is more important. In these cases Fourier transform zero field
mggnetic resonance may make an important contribution. Zero field NMR
and NQR is the subject of this thesis.

Chapter I presents the quantum mechanical backgréund and
notatiohal formalism for what follows. Chépter II gives a brief review
of high resolutioﬁ magnetic resonance methods, with particular emphasis
on techniques applicable to dipole-dipole and quadrupolar couplings.
Level-crossings between spin-1/2 and quadrupolar spins during
demagnetization transfer polarization from to low y nuclei. This is
the basis of very high sensitivity zero field NQR.measurements by field
cycling.

Chapter III provides a formal presentation of the high resolution
Fourier transform zero field NMR method. Theoretical signal functions
are calculated for common spin systems, and examples of typical spectra
are presented. Chapters IV and V review the experimental progress in

zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for



quadrupolar spin systems.

Variations of the simple experiment described in earlier chapters
which use pulsed dec fieids are presented in Chapter VI. Some
advantages of these variant experiments are suggested. Theorétical
predictions for the experimental spectra are given and compared to
experimental results. High sensitivity experiments closely related to
traditional level-crossing spectroscopy are discussed. Some two-
dimensional zero field correlation experiments are proposed.

Chapter VII contains a description of the application of group
theory fo problems of coupled spins in the apsence of applied fields.
Normal point group theory and time reversal are both importaﬁt.

Experimental details and a description of a zero field NMR
spectrometer apbear in Chapter VIII. Design criteria are presented,
along with suggestions as to some variations and technological

improvements.
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I. Preliminaries

The work described in this thesis is primarily concerned with the
extraction of chemical and structural information from disordered solid
state systems. The technique to be described is nuclear magnetic
resonance (NMR)., 1In NMR, the nuclear moments which occur naturally in
a large number of nuclei are used as spies to relay to the
experimentalist microscopic details about the local environment often
inaccessible by any other technique. The interactions of nuclei with
their environment help elucidate chemical and/or structural properties
of matter and, less direcﬁly, dynamical behavior. This information
appears in its richest form in solid state materials. Yet it is also
in solids that it is most difficult to reveai. This thesis describes a
new techﬁique for the extraction of such information with both high
sensitivity and high resolution and from disordered systems. The
method to be described is zero field NMR. fhe goal of this first

chapter will be to present the required fundamentals.

A, Microscopic and Quantum Mechanical Formalities

1. The Nuclear Spin

Due to considerations of nuclear bonding whose origins remain
mysterious but much appreciated by chemists, most atoms contain nuclei
with a degree of freedom known as spin. The spin degree of freedom
corresponds classically to a dipolar (or higher order) nuclear magnetic
moment. The energy of an atom or molecule containing a nucleus with a

magnetic moment depends on the state of the nucleus. Formally the



nuclear moment is treated as an angular momentum operator, which I will
label with the generic symbol I. (Occasionally, when two different
spins types with significantly different properties simultaneously
comprise our spin system, the second will be labeled S.) This angular
momentum satisfies all the traditional properties of angular momenta.

In units where h=1

12|¢(1,m)> = I(I+1)|y(1,m)> (1.1)
and

II$(Im> = n|pI,m> mn=-I,-T+1,...,T (1.2)

I, is conventionally chosen to be the diagonal component of the angular
momentum and m is the projection of the angular momentum along the
(arbitrarily chosen) z-axis. I may be either integral or half-integral

and each nuclear spin I has 2I+l magnetic sublevels. For I=1/2 the

eigenstates are often represented by the short hand notation,

lo> = vz P> B> = G - > (1.3)

There are two additional components of the angular momentum which are
off-diagonal in the conventional basis set. In terms of raising and

lowering operators,

1| 1/2

Ll @m> = [(T-m) (T4m+1) 1777 [9(T, m41)> (1.4)
and

1/2

I |w(@,m)> = [(I+m)(I-m+l)]~/ “|9(I,m-1)> (1.5)

or, as angular momenta



1
I, = 5 (I +1) (1.6)
and
I = 2, -1) (1.7)
y 21 4+ - )

For spin-1/2 particles, these operators are proportional to the Pauli

spin matrices, and

1
I. = & s, (1.8)
J 2]
where
2
s, = E (1.9)
j :
for E the identity operator. The Pauli matrices S5 satisfy
s.sksj = - 8 if j =k
= Sy if j=k “(1.10)

The different components of the angular momentum operators satisfy the

commutation relations

[I, , I

jp i (1.11)

kel 7 Tiplka T Tkatip T Mgiabea N1
where j,k, and 1 are any cyclic permutation of %, y, and z, and p and q
identify a specific nucleus.

We will ignore the possibility that excited nuclear states might
make any contribution to observables in whatever follows, as the energy
differences between the ground and excited states is exceedingly large
and requires exotic instrumentation.1

The magnetic moment of the nucleus interacts with any and all

surrounding electromagnetic fields. The strength of that interaction



is governed by two parameters. The first is some physical constant
characteristic of the structure of all similar nuclei (and presumably
measured many years ago when magnetic resonance experiments were
carried out in physics laboratories with the goal of measuring these
nucleaf properties). The second and more important parameter is.some
local envirommental variables which differ from molecule to molecule
and site-to-site and are characteristic of structural or chemical

properties at those sites. The measurement and interpretation of these

Table 1.1: Nuclear Spin Hamiltonians

Interaction Form of the Hamiltonian
Chemical Shift H =- 4I-0-B
cs 0
Dipole-Dipole HD = - Ij-ﬁ-Ik where j=k and
-3
Daﬂ = 7j7Eﬁ rjk (saﬂ - 3eaeﬂ) and
a,f=x, y, z and e, is a direction cosine
J coupling HJ = - Ij-J-Ik where j=k
eQ s
Quadrupole , H, = - ——=—5=—= I:V-I where

Q 4I(2I-1)A

vV = {Vaﬂ}; a,f=%x,y, z

latter parameters is the goal of this work and all modern NMR. These
chemically sensitive term; include the chemical shift, the direct
dipole-dipole coupling, the quadrupolar coupling, and the J coupling.
The Hamiltonians corresponding to these interactions are summarized in
Table 1.1.2 More useful expanded forms wili be derived below. To
arrive at these other forms will require a brief development of tensor

notation.



2. Rotations and Tensors

The Hamiltonians of Table 1.1 are expressed as products of spin
(I) and spatial (e.g. D and 6) terms. Each is a tensor. It will prove
necessary to delve rather deeply and often into the problem of the
operations of éngular momenta and their higher order relatives, with
specific reference to their transformation properties under rotations.
Traditionally rotatibns between axis systems are parameterized in terms

3,4 These

of the Euler angles («,8,v7) and a rotation operator R(a,8,7).
three angles relate a three-dimensional coordinate system to any other
via three rotations: a rotation of v radians about the original z-axis,
B radians about the new y-axis, and a« radians about the newest z-axis,
with @ and v < 27 and 8 < n. It is awkward to work with this set of

rotations about a set of continually varying axes, and it is customary
to derive the form of the rotation operator referenced to a fixed set

of axes. In this fixed set of axes, the rotation operator R can be

formally written
R(a,B,7) = R(0,0,v)R(0,8,0)R(a,0,0) (1.12)

that is, a rotation about the fixed z axis by a radians, the fixed y
axis by B, and the fixed z axis by y. As an example, consider the form
of a general operator £ expressed in the basis set of the coordinate
system (x,y,z) when viewed instead from a new reference frame
(x',y',z'). The operator has not changed, and no observables
associated with the operator £ can be affected by simply reexpressing
it in a new basis set. Only the description of that operator differs.

This is made more formal if we note that, for any operator P



plp - !l - E (1.13)

where E is the identity operator. By definition, multiplication by the

identity operator leaves all operators unchanged; that is,
-1,.,-1
<x,y,z|€|x,y,z> = <x,y,z|P PéP PIx,y,z>
’ ' ' -1 ' ' '
= <x',y',z IPEP lx v y',z'> (1.14)
and

Plx,y,z> o= |x',y',z'> (1.15)

For P = R(a,B,v7) this establishes a simple relationship between the
form of the operator in the old frame of reference and the new. For
vectors in three space, the transformation R can be derived from

geometric considerations. Its most general form is

cosy siny O cosfp 0 -sinB|| cosa sina O

R(a,B,v) = |-siny cosy O 0 1 0 -sina cosa O (1.16)
0 0 1 sinB 0 cosp 0 01

This sort of transformation functions merely as a bookkeeping operation
and can have no fundamental effect on any observables. It may,
however, serve as a notational aid by taking observables from one
reference frame to a second. Presumably, the interesting behavior of
these observables is more succinctly expressed or observed in the new
reference frame.

The description of rotations on operators which are not readily
expressed as vectors in three-space is more difficult, and is the
motivation for the development of techniques for the study of the
algebras of angular momenta.5 Angular momentum and higher'order

spherical tensor operators serve as a convenient basis set for the



description of many problems in NMR. The general form of the spherical
tensors is presented here and provides the groundwork for subsequent

chapters. We will take as fundamental Racah’s definition of the

spherical tensors;6 that is, an operator Tg is a spherical tensor
operator of rank k and order q if
k k 1/2
= +
(T, Tq ] Tory ((FQ) (kEqh1)) (1.17)
and
ok k
I., T = T 1.18
(15, Tg ] aTg (1.18)
where
-1/2
= + +
Iil +(2) (Ix + in) (1.19)
and
I0 = Iz (1.20)

The commutation relations can be used to derive the transformation
properties of the spherical tensors (and/or angular momenta) under
rotations. The angular momentum operators are the generators of finite

rotations. Following Edmonds,3

R(a,B8,7) = eXP(ivlz)exp(iﬁly)eXP(iaIz) (1.21)

Writing down an expanded form for the exponential operators of Equation

(1.21):

. . 1,2.2 i .3.3 .
exp(ifI,) = 1 + i9I, - = 0717 - =671, + ... 1.22
P ( J) i 72 j 3 3 ( )

Because the nuclear spin basis vectors are chosen as eigenstates of I,



rotations about the z-axis are particularly simply expressed and

exp(ifl ) |¥(I,m)> = (1 + ifm - l-02m2 - 5-03m3 + . )| YOI, >
z 2 6

=  exp(ifm)|¥(I,m)> (1.23)

Rotations about the x- and y-axes are more difficult to derive from
first principles. An explicit expression will be derived using the
Pauli spin matrices and will therefore be a proof only for the case of
a spin-1/2 nucleus. All higher dimensionél systems follow by induction
from this proof.

Consider a rotation through an angle § = 2¢ about the j axis.
Using Equation (1.8) to reexpress the rotation in terms of the Pauli

matrices;

+ ...

1,22 i 33
R = exp(i6I, xp(ig¢s,) = 1 + igs .- 5 ¢"s5- = ¢”s;:
exp(if1,) = exp(ids,) tigss- G éss- g oSy

cos¢ + 1 sjsin¢ _ (1.24)

For sj * S (otherwise, the rotation commutes with the operator),

exp(i¢sj)6% sk)exp(-i¢sj)=-% (cos¢g + isjsin¢)sk(cos¢ - isjsin¢)

1 2 . 2 < s
= E{cos ¢ s, + sin ¢ Sjsksj + lsln¢cos¢v(sjsk-sksj)]

1 2 . 2 .
= -7((005 ¢ - sin"¢) S -2singcosé sl)
= cos2¢ Ik - sin2¢ I1
= cosf Ik - sing I1 (1.25)

Explicit matrix representations of the rotation operators are given by



the Wigner rotation matrices D%m.(a,ﬂ,y). Symmetry properties relate

7

many of the elements of the D matrices,’ and will often be exploited.

Summarizing, for any operator £

RER'T =  D(a,B,7)€D “(a,B,7)

—  D(a,8,7)€D(-7,-B,-a) (1.26)
and
R =D(a,,7) = exp(imy) &  (B) exp(ima) (1.27)

where the d(B8) matrices are the matrix representations of the operator
which for j = y guarantee that Equation (1.27) holds. If £ is a

spherical tensor, a special relationship holds:

e
=3
e
1

I Ma

k k
1.28
q Dq(@:8m) T ( )

p
that is, tensors of rank k transform under rotations only into other
tensors of the same rank. Generally, analytic forms for the
transformation properties of the spherical tensors will only be
required for k = 1 or 2 (as k = 0 is trivial and all others a bit too
involved.) Zeroth rank tensors are invariant to all rotations; first
rank tensors transform as vectors, and second rank tensors have the
rotational properties of the d electronic orbitals. The important
transformation properties of the spherical tensors are encapsulated in
Equation (1.28).

As the spherical tensors are traditionally defined they exhibit
particularly simple transformation properties with respect to rotations

about the z-axis. More frequently in NMR applications rotations about

the x-y plane are required. Table 1.2 gives the transformations of a



Table 1.2:

10

Transformations of Operators

A. Definitions of Second Rank Tensors Uk:
U, = 6"/2 [312- 1(I+1)]
_ -1/2 -1/2 2 .2
1+ = 2 (IyIz + IzIy) u,, = 2 (Ix Iy)
_ -1/2 _ -1/2
1. = 2 (LI + I1I) U, = 2 (IXIy + Iny)
B. Transformation under Rotations Rj(ﬂ):
[ U ] --J—f{-];sinzﬂ U,. - sinfcosf U, } + l(3cos29-1)U ]
0 2 2+ 1+ 2 0
U1+ - sinfcosé U2++ cos2fd U1+ - JTS- sinfcosd UO
Rx(o) Ul- Rx(-o) = siné U2_+ cosf Ul- J_
1 2 . 3 .2
U2+ -2—(1+cos 6) U2+ + sinfcos? U1+ - "7 sin [/ U0
U2_ cosf U2_- sinf Ul-
U, 3 {%sin20 U,,- sinfcosd U, } + -]2;(3c0520-1)U0
U1+ - sing U2_+ cosf U1+
Ry(ﬁ) Ul- Ry(-ﬁ) = - sinfcosé U2++ cos2f Ul- + 43 s?ﬁcosa Uo
1 2 . 3 .2
U2+ 5(1+cos 8) U2+ + sinfcosd Ul- + 5 sin 0 U0
U2_ cosé U2_ + siné U1+
Yo Yo
U1+ cosf U1+ + sinf Ul-
Rz(o) Ul- RZ(—0) = - sinég U1+ + cosé Ul-
U2+ cos2f U2+- sin26 U2_
U2_ sin26 U2++ cos28 U2_
L J L .
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set of linear combinations of the second rank spherical tensors which
will frequently prove useful in the analysis of NMR experiments and in
the zero field NMR and NQR experiments which follow.

3. Hamiltonians: Tensor Notation

The fundamental problem of NMR is the solution of the time-
dependent Schroedinger equation. It is therefore necessary to find a
convenient representation of the nuclear spin Hamiltonians which will
simplify the task of the calculation and analysis of spectra. This
presents a paradox. The Hamiltonian is a scalar operator and is
presumably unaffected by rotations and/or- translations in space. Yet
it is a continuing theme in modern NMR experiments that an appreciation
of the properties of tensors under rotations is essential to
understanding modern NMR experiments.

The solution to this apparent paradox is that the nuclear spin
Hamiltonians of Table 1.1 are the products of tensorial interactions.
Just as the dot product takes two vectors and produces a number

operator, the generalized dot product of two kth rank tensors is

K
H = (T-¢) = 3 (-1)378¢cK (1.29)

-k q -9

Hamiltonians can always be expressed as just such a contraction of two
tensor operators. One (C) operates on the spatial degrees of freedom
and the other (T) on the spin degrees (which, however, are expressed in
a basis set necessarily referenced to the laboratory frame fixed in
space). While at intermediate stages of the calculation, either spin
or spatial variables may take "center stage" separately or sequen-
tially, actual calculation of Hamiltonians requires that ultimately the

contraction of Equation (1.29) is performed. Rotations which operate.
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separately in only one or the other of the reference frames profoundly
effect the observables. Bulk rotations of the entire system, which
transform the two sets of spherical tensors identically from one
reference frame to a second can have no effect on observables. An
attempt will be made to clearly delineate between those rotations which
are transformations between coordinates, and which effect only
bookkeeping, (of which Equation (1.14) is an example) and a rotation of
either the spin or spatial frames with respect to the other, whereby

observables of the system are fundamentally altered.

B. Nuclear Spin Hamiltonians

The total nuclear spin Hamiltonian consists of a number of
independént contributions., There are two broad classifications of
interactions: laboratory frame interactions ﬁhder the control of the
experimentalist, and local or molecular frame interactions whose
measurement is the goal of the experiment. As the laboratory frame
interactions are the experimentalist’s only tools, they will be
detailed first.

1. Laboratory Frame Interactions

a. The Zeeman Hamiltonian

This Hamiltonian describes the direct coupling of the nuclear spin

magnetic moment with an externally applied magnetic field. 1Its form is

H, =-2 vyHI.B = 2w i I. (1.30)

where 7jﬁ is the nuclear moment of the jth spin and is characteristic

of a particular nucleus and ©0j is the Larmor frequency. Magnetogyric
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ratios of many common nuclei are w;/2m ~ 1 kHz/gauss in familiar units,
-or ~ 10 MHz/Tesla in more proper units. Nnumerical values are almost
universally assigned not in angular frequency units of radians/sec (w),
but in the more common frequency units v = w/2rx where the standard unit
is hertz. In common laboratory fields of a 1-10 Tesla (10-100 kgauss)
the Larmor frequencies of most nuclei fall between 10-500 MHz.

b. The Rf Hamiltonian: Rotations in Spin Space

Oscillating magnetic fields are the experimentalist’'s primary tool
for the manipulation of nuclear spin systems. We will assume that the
rf field is applied in the plane perpendicular to the static magnetic

field, and

H = 27jh B1 cos wt I = wl[exp(iwt) + exp(-iwt)] I¢ (1.31)

rf ¢

where w is the frequency of the applied rf field, wy its strength, and

I¢ = cos¢ Ix + sing Iy (1.32)

All subsequent calculations are simplified if the rf Hamiltonian is
transformed into an equivalent time-independent form. This is known as
moving to an interaction picture, or entering the rotating frame. All
other Hamiltonians will need to be modified to consistently fit this
rotating frame picture of the rf Hamiltonian. Starting from the time-
dependent Schroedinger equation (with energies expressed in angular

frequency units so as to remove all factors of Planck’s constant):
i— = Hv (1.33)

with
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H = Hz + Hrf + Hloc (1.34)

where Hloc refers to all the local interactions to be described

immediately below. Substituting

¥ = U8 = exp(iwIzt) e (1.35)

and O represents the eigenstate in the rotating frame. Then the

Schroedinger equation can be rewritten

; 5(U0) . U se,  _
i 5T i (St e + U 5t = HU® (1.36)
Rearranging,
., 68 _ -1 ,-1 6U
l?t—:' = (U HU - iU -S—E ) ) (137)
But
§U : -
-s—t- =  lw IZU (138)
and
. 60 -1
i 3t = (U HU + wIz) 2] (1.39)

Using the rotation operators tabulated previously, the rotating frame

Zeeman Hamiltonian is written

c
jars
a
Il
jae
]

Z (v - wo) Ijz = I Aw Ijz (1.40)

J N
where the rotated Hamiltonian is indicated by the ~ and Aw is the

resonance offset. Similarly, in the rotating frame

-1 - .
U HrfU Hrf = w [1 + exp(2iwt)] I

p (1.41)

and the rf Hamiltonian in the rotating frame contains both a static
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component and a rapidly rotating component. If wy>>w; then only
components of H whose time average over many Larmor periods (wo)'1 is
nonzero contribute (to first order) to observable features. The
rapidly rotating component of Equation (l.41) has zero time average and

can be ignored, and the first order rf Hamiltonian is

' ~

Hrf = <Hrf>t = wlI¢ (1.42)

For each of the H;,., these same two steps (entering the rotating frame
and averaging over the Larmor éeriod) will need to be repeated. If

w = 7B0 (Equation (1.40)), then in the rotgting frame the Zeeman
Hamiltonian is zero. This is referred to as the on-resonance condition
and the rf field is most effective in causing transitions between
eigenstates. As long as w; ~ Aw the rf field is near resonance and can
interact with the spin system. Generally the on-resonance condition is
assumed. If the rf Hamiltonian is strong (Hrf >> Hloc) and on
resonance then the effect of the applied rf field may be well-
approximated as a rotation in spin space about the ¢ axis in the x-y
plane.

2. Local or Molecular Frame Interactions

Each of the molecular frame Hamiltonians is a second-rank tensor,
and a principle axis system exists where its matrix representation can
be given a diagonal form. As these Hamiltonians are not necessarily
observed in the principle axis system but more generally in the
laboratory frame of reference and in the rotating frame, each of the
local Hamiltonians will have representations in their own principal
axes, in the lab frame, and in the rotating frame. As the rotation

operators have been defined in this chapter, there exists a rotation R,
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defined with respect to the fixed laboratory frame of reference, such
that R(y,B8,a) takes operators from the local or molecular frame of
reference (subscripted M) into the laboratory frame (subscripted L).
This coordinate transformation is shown in Figure 1.1. rR1 performs

the inverse rotation;
R&MR = EL _ (1.43)

In the rotating frame at high field the orientation of the x and y axes

is arbitrary and without loss of generality we can choose y = 0 and
R = R(0,8,0) = R(A) (1.44)

If the internal Hamiltonians are observed in high field this
transformation between the principal axis system and the laboratory
frame is required in order to explain the observed spectra. Where two
or more interactions are simultaneously present there will be a
different R for each interaction.

a. Chemical Shift

The symbol ;j represents the chemical shift tensor of the jth
nucleus (typically ~ ppm). The largest component of the Zeeman
interaction is isotropic and chemically uninformative. The chemical
shift ;j is a correction to the Zeeman Hamiltonian which arises from
the shielding of the external magnetic field due to perturbations in
the electron cloud at a given site. The chemical shift is an
anisotropic second rank tensor and different for chemically

distinguishable sites. The size of the anisotropy is comparable to the

interaction itself. 1In its principal axis system,
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Laboratory Frame

Figure 1.1. Relationship between the
laboratory frame of reference (x,y,z) and the
molecular frame (xy,yy,zy). The laboratory
frame is reached from the molecular frame by a
rotation R({l) about the laboratory-fixed axis
system. The most general rotation R(Q}) is
described by rotations about the z, y, and z
axes successively. In most NMR applications,

only the latter two rotations are necessary.

XBL 855-8884
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Hcs = - ? 1jﬁBo- aj- I (1.45)

Because its magnitude is proportional to the applied field By, in zero
applied field H,, = 0. In the rotating, laboratory frame related to

the principal axis system by the transformation R(0,f8,a)

H = - 273.'613

I [0, +%¢ (3cos2B - 1 + nsinZBcos2a)](1.46)
cs ; zj

0 iso 2 "aniso

While most high resolution NMR techniquesz’8

emphasize the importance
of measuring the isotropic component of the chemical shift and/or its
anisotropic components, in ﬁhe work to be described below the existence
of a chemical shift will rarely prove relevant and in most cases it

will be ignored.

b. Dipole-Dipole Couplings

In many spin-1/2 systems and in particular for Iy nuclei, the
dipole-dipole couplings dominate the spectral features in the solid
state. The classical energy of one magnetic dipole in the field of a

second 1is

H = - flﬁg (I.-I. - 3 (I,-r..0(I,-,,)) (1.47)
D r3 1 72 r2 1 712 2 712 )
12 12

Substituting p; = v;Hi, the dipole coupling constant (again, in angular

frequency units) is given by

Y17,h
wll)z =_1_§__ (1.48)
2ﬁr12

For many coupled spins, the dipole-dipole Hamiltonian is given as a sum

over all pairs, and
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H = = H.. (1.49)
D ok Djk

Henceforth I focus on a single pair. In zero applied field, the two-
spin dipole-dipole Hamiltonian (Equation (1.49)) has four eigenstates
and three distinct energy levels. The eigenstates can be divided into

the triplet manifold (T Tg, and T_ ) and a singlet (S), whose energies

+?
are

1
<t |Hp|T,> = <T |HjT> = -Fw

<%|HD|S> =0

D (1.50)

<to | ITe> = wp

The rotating frame form of Equation (1.49) is given by again expanding
in a laboratory-based reference frame. As Hb and HQ are formally
identical (except that there is no asymmetry parameter n in the static
dipolar tensor) the same treatment will apply to the quadrupolar

coupling to be treated below, and’

HD = - v (A+B+C+D+E+F) (1.51)
with
A = I.1 (1-3c0520)
1lz7 2z
B = L (1-3cos?6)(I, I, - I, -I.)
2 °s 1z72z -~ "1 "2
3 .
cC = - 5-51nﬁcosoexp(i¢)(11212+ + Il+122) (1.52)
*
D = C
E = - é- in2€ xp(2i¢) (I, . I,,)
g ST Yexp 1+ 2+
*
F = E

(These forms differ slightly from those found in most standard
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referencesl?+1l because I have defined the transformation between L and
M frames with what amounts to opposite signs of the Euler angles from
most authors.) When the dipolar Hamiltonian is observed in the
presence of a large external magnetic field, it is further necessary to
enter the rotating frame where the rf Hamiltoniaﬁ is static and the

dipole-dipole Hamiltonian observed in high field is

, _ w
H = <H (t)> = .2 fexp(-iwI t) (A+B+C+D+E+F)exp(iwl t)dt
D D Wy z z

= - wy(A + B) ) (1.53)

Because the A and B terms have an explicit dependence on R the energy
levels of the truncated dipolar Hamiltonian do’as well. 1In any
reasonably large field, no higher order correction terms are necessary.
The truncated Hamiltonian described above may reﬁuire further
modification. The B term in Equation (1.53) contains spin operators
which "flip" spin 1 while spin 2 Qflops.“ These flip-flop terms are
effective only if the total energy of the system is conserved. If the
spin system contains spins with two different magnetogric ratios g
and vyg then the spin reference frame is doubly accelerated with respect
to each of the Larmor frequencies. The B terms of the dipolar
Hamiltonian are then oscillatory at frequencies comparable to the
difference in Larmor frequencies. For heteronuclear spins (say 13¢ ana
1H) this large difference in Zeeman energies makes these flip-flop
terms ineffective; their time average is zero. Even for a single spin
species (meaning y; = 7g) the flip-flop terms may be truncated by large

12 11

chemical shift differences or quadrupole coupling constants.
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c. Quadrupole Couplings

For spins I =2 1, the largest of the internal Hamiltonians is most
often the quadrupolar Hamiltonian. It arises from the electrostatic
interaction of an asymmetric chgrge distribution in the nucleus with
surrounding electric field gradients (created by an asymmetric electron
cloud distribution). This interaction is present in ~70% of all the
elements in the periodic table. In spherical tensor notation, the form

of the quadrupolar Hamiltonian is

. eq
HQ - - 3 m!m Ij jIj J (1.54)

which emphasizes that it is characteristic of a single spin label and

<t

site. The nuclear quadrupole moment, eq, is a fixed nuclear parameter.
Therefore, the nuclear quadrupole interaction in any particular
compound is determined entirely by the size and direction of the
electronic field gradient, V. HQ is often more chemically sensitive
than is the chemical shift. Quadrupole coupling constants are quite
broad-ranged (~10 kHz - 1 GHz), and we will concentrate in this work on
systems at the low end of this range.

In the principle axis system and'using the conventional

definitions,ls'14
vV, = eQ (1.55)
LA A
n = _ZZ__V < 1 (1.56)
ZZ
v, I > v I v, | (1.57)

and
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v +V +V =0 (1.58)
Further defining

2 _
e qQ. 59
AyD = ZTId (1.59)
the quadrupolar Hamiltonian for a single spin takes on the simple

expanded form

2 2 .2
Hy = - (D DI, - I+ + g (I - 1] (1.60)

For a spin 1 nucleus in zero field, there are three eigenstates (x,y,

and z) with energies

<x|HQ|x> = -(l-n)A <y|HQ|y> = -(l+n)A <z|HQ|z> = 2A (1.61)

For quadrupolar nuclei in high field, the same transformations
performed on Hp must be applied to HQ. Rotating into the laboratory
frame and then into the rotating frame, the truncated first order

quadrupolar Hamiltonian is

Héj - - %-AQj(I)(3I§ - I(I+41)) [(1-3cos’B)+nsin’fcos2a]  (1.62)

If

HZ >> qu(I) (1.63)

then the first order approximation may suffice. 1If the high field
condition of Equation (1.63) does not hold, it may be necessary to go
higher order in perturbation theory. The second order shift in energy

due to the quadrupolar coupling 1515’16
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)y 3Aé:ﬁlz 9 2
- .z -1- -1-
HQj wg {c1(41(1+1) 1 8Iz) + 02(21(21+1) 1 212)} (1.64)
where
2 2 2 2 3 2 2 2
¢, = z (sin"2a-cos " Bcos 2a + 5 cos B - n cos " Bcos2a| sin"B (1.65)
3 . 4 2 [ 2 2 2. . 2 n .2
c2 = §-s1n B +'—€_ [ ¢y cos 2a - cos Bsin Za] + Cy 5-51n Bcos2a (1.66)
and
1 .2
¢y = 1 - 7 sin B (1.67)

d. J Couplings

The final significant interaction is the J coupling (also called
the exchange coupling, electron mediated dipole coupling, or indirect
dipole-dipole coupling). Its form is

H, =- 3 I, -J,

(1.68)
j=k NN

- I
k "k
In general, the J couplings are anisotropic with an isotropic
component. Only the latter is routinely measured. Anisotropic
components of the J tensor have the same transformation properties as
the dipolar couplings and are rarely separable from them. The

isotropic J coupling takes the form

1
H, =- 3 J(Iszz + 3 (1+j1_k+ I (1.69)

I..))
J 3ok k -jT+k
In zero field, two J coupled spins can be classified in the same sets

of eigenstates as the dipolar coupled pair (i.e. the triplet and the

singlet). All the triplet energy levels are degenerate, and
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1 3
<rlH;|r> = -7 J <s|H |s> = +J (1.70)

The isotropic J coupling is independent of orientation even in high
field. 1If, however, the jth and kth spin Larmor frequencies differ by
much more than the size of the J coupling, then the flip-flop terms are

truncated and in the weak coupling limit

H = X JI.I
J 3wk zj zk (1.71)
C. Macroscopic Considerations
1. The Density Operator

The density operator is a convenient bookkeeping formalism for
the description of macroscopic phenomena.17 It serves as a shorthand
method for summarizing all available information about macroscopic
ensembles of quantum éystems. Due to the small size of the quantum of
nuclear spin energy (for example, hwy ~ 100 MHz corresponds to a
thermal energy kT ~ 5 mK) no NMR detector is capable of observing
individual events of absorption or emission. Only the average behavior
weighted over a large number of similar systems is detected. The
density operator serves as a convenient formalism for the calculation
of the parameters of such macroscopic systems, to the extent that the
experimentalist has any knowledge or control over such parameters.

Formally, we can define the matrix representation of p as

(1.72)

where the coefficients ¢, and ¢, are the probability factors that the
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system is in eigenstate a or b, and the bar over the product indicates
ensemble averaging over some large number of otherwise identical
systems. The diagonal elements p,, are the populations of the energy
levels. Off-diagonal elements are termed coherences.

Expectation values for operators are given by
<¢> = Tr [{p] = Tr [p€] (1.73)

a. Time Evolution

More importantly, time evolution under a Hamiltonian operator H
is readily treated using this formalism. The Von-Neumann equation for

the evolution of p is

82~ i(p,H] = i(pH - Hp) (1.74)

For H time-independent, a formal solution to the differential equation

is
p(t) = exp(-iHt)p(0)exp(iHt) (1.75)
The abth element of p can be evaluated

Pp(t) = exp(-iE_t)p(0) exp(iE t)

t

Pap(0) exp(i(E - E )t)

pab(O)exp(iwbat) = pab(O)exp(-iwabt) (1.76)

If H is not time-independent, we will assume it can be subdivided into
n time-independent pieces. Then the Von-Neumann equation can be
integrated stepwise over each time-interval and in each step Equation

(1.75) holds. Over n such time intervals,

p(t) = exp(-iHntn)...exp(-iHltl)p(O)exp(iﬂltl)...exp(iHntn) (1.77)

is a formal solution and exp(-iH t ) is termed a propagator. Fourier
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transformation with respect to any one of the t  results in a one-
dimensional spectrum with all the other time variables as parameters;
Fourier transformation with respect to two different time variables

18 where the one-dimensional

results in a two-dimensional spectrum
spectra are the projections onto the w; and wy axes, and the crosspeaks

correspond to correlations between the two time-variables.

b. The Density Operator at Equilibrium

For a spin system in equilibrium with the lattice at a finite
temperature Ty, the populations of the system satisfy the Boltzmann

distribution law,

o AE/KT (1.78)

o |”

where

AE = E_ - Eb = w (1.79)

At equilibrium p is necessarily time-independent and no coherences may
exist. The equilibrium density operator is completely charécterized by
the population ratios of Equation (1.78). As nuclear spin energies in
attainable laboratory fields are considerably smaller than thermal
energies, the exponentials of energy differences in the distribution
law can be expanded in a power series and trunéated after the first
term, and

n AE

a
—_— = 1 - == ) (1.80)
nb kT

This is the high field, high temperature approximation. We will never
be concerned with the density operator as such but instead its close

relative, the reduced density operator defined by
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p = p - DE (1.81)

where E is the unit matrix and b is a normalization constant chosen

such that
Tr[p] =1 (1.82)

The dynamical evolution of the reduced density operator, p;, and the
density operator, p, are identical as the identity operator E commutes
with all unitary operations. All subsequent references to the density
operator will refer to the reduced density operator and the subscript
will be dropped. |

The equilibrium density operator in the high temperature limit is
proportional to its energy. Im high field,vthe Zeeman Hamiltonian is

much larger than the local Hamiltonians, and in operator form

p = bIIZ = ;bII_zj (1.83)
J
with
7IB
bI = TET (1.84)

and Z is the partition function. Where only a single spin species is
involved, then all of the bI's are identical and without loss of
generality it can be omitted (as it serves only to scale the absolute
size of all observables). When more than a single type of magnetic
nucleus exists in the sample, it will generally prove important to
retain at least the ratio between the normalization constants.

2. Magnetization, Polarization, and Other Order

The nuclear ordering which appears as a sample in high field

reaches equilibrium with the lattice gives rise to a longitudinal
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magnetization, whose value is given by

M = 9B Tr [pL,] (1.85)

At equilibrium in high field for all other operators £

Tr [p€] =0 if Tr [sz] =0 (1;86)

This is a restatement of the Curie law

2,2
Ny™h"I(I+l)
M = XOB0 T B0 (1.87)

Equally spaced energy levels are characterized by equal population
differences. Transverse magnetization is longitudinal magnetization
which has been rotated into the x-y plane and therefore tr(I, p) or
tr(Iyp) is nonzero. Transverse magnetization is normally the only
observable. The magnitude of the signal observed in an rf coil is

given by the Faraday law of induction, and

4 w- M (1.88)

€ - dt 0'x

where ¢ is the flux in the coil. Polarization will be used rather
loosely to describe the more general case of any long-lived steady

state; i.e.
[p,H] = 0 (1.89)

and at least one operator £ exists, such that Tr [p€] »# 0. Last,
coherence refers to any off-diagonal elements of the density operator
(transverse magnetization or otherwise).

It will occasionally be necessary to talk about the "size" of an
operator, e.g. when by some technique order is transferred from one

spin to a second. Arguments about the "size" of an operator can be
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made more exact by referring to a function called the norm. If P is a

matrix, ||P|| represents its norm. The norm is roughly analogous to
the length of a vector. Formally, the norm is a function such that: 19
1. |[]p|] > 0 unless Pijj = O for all i,j. Then lle|| = o.
| 2. For all constants a, ||aP|| = a||P||.
3. 1lpy + Byll= [ + |IByl].

A definition of the norm of an (nxn) matrix is

[1?]] = JTr [PPT]/n (1.90)

The norm is equivalent to the rms eigenvalue of P. As the eigenvalues
of p are just its population differences, as the norm decreases there
is less nuclear spin polarization.

3. Spin Temperature

If in high fields a longitudinal magnetization exists in the
sense of Equation (1.83) yet its magnitude‘is incommensurate with the
Curie law for T = Ty where Ty is the lattice temperature, then we will
define a spin temperature T, such that the Curie law holds. For times
short compared to the spin-lattice relaxation time Ty, spin and lattice
temperatures need not be correlated.

4. Adiabatic Demagnetization: Strongly Coupled Spins

The concept of spin temperature is intimately connected to the
process known as adiabatic demagnetization in either the laboratory
frame (ADLF)20 or rotating frame (ADRF),Z]"23 although I will be
primarily concerned with the former. If a sample of polarized strongly
coupled nuclei is removed slowly from the polarizing field, as long as

vBg >> Hy,. the density operator p remains unchanged and
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T = L 7 (1.91)

where B is the initial value of the field and By its final value. If
the demagnetization is allowed to proceed to Bg = 0, then Equation
(1.91)'cannot hold because it implies that the spin temperature
vanishes. This difficulty is eliminated if the effects of the dipolar

24,25 assumes that

fields are included. The spin temperature hypothesis
the density operator remains describable by a spin temperature at all
values of the field and therefore p is always proportional to the
instantaneous Hamiltonian. If the spin temp;rature hypothesis holds,
then the demagnetization can be followed through all values of the

external field By, and Equation (1.91) is only an approximation to the

complete description of T,

9 2 1/2
: Bf + Bloc
TS = 32 N 32 TL (1.92)
0 loc

for Bloc = Hloc/7' For By = 0, the final density matrix is (as usual,

to within a proportionality constant)

p = H (1.93)

loc

Because Hy,. contains only bilinear terms the density operator of
Equation (1.93) corresponds not to a magnetization but instead to some
other form of nuclear spin polarization. If the spin system is not
strongly coupled then the spin temperature hypothesis is not expected
to hold and the results of an slow demagnetization are more difficult
to predict. Some discussion of this more complex and interesting case

is given in Chapter II and again in Chapter VI,
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In the presence of extensive networks of dipole-dipole couplings,
it may become difficult to define what in fact constitutes the system
being studied. I will define a spin system as being any set of coupled
spins where the B terms in the dipolar Hamiltonian are effective in
establishing a common spin temﬁerature. Therefore, I-S (e.g. lH-13C)
systems in high field will be treated as two independent systems.
Furthermore, for S a quadrupolar (I = 1) nucleus in an ordered phase,
two S spins with different quadrupole couplings also constitute two
independent spin systems. In zero field, all spin-1/2 nuclei
constitute a spin system which may be tregted as isolated spins only to
the extent that some of the dipole-dipole couplings are significantly
larger than all others. In these systems the spin temperature
hypothesis is not expectéd'to hold. Quadrupolar spins in environments
of lower than cubic symmetry are always isolated except perhaps at some
accidental value of both the externally applied magnetic field and

orientation of two neighboring spins where spin diffusion is rapid.
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II. High Resolution High and Zero Field Nuclear Resonance

One of the greatest of impediments to the use of NMR as a
technique for the routine analysis of solids is the problem of "powder
broadening."26 In the solid state all of the largest terms and most
interesting constituents of the local frame Hamiltonians (chemical
shift, dipole-dipole coupling, and quadrupole coupling) are
anisotropic. When observed as a perturbation on the high field Zeeman
Hamiltonian, their magnitude depends on the precise relationship
between the orientations of the local principal axes and the externally
applied field (as described in Section I1.B).

Often oﬁly powders or similarly disordered systems are available.
Then the absorption lineshape f(w) consists of one or more absorption
lines and essentially a different spectrum for each local system
orientation present in the sample. The bandwidth of absorption is as
large as the magnitude of the local Hamiltonians. Where the
interaction of interest is a single-body interaction (i.e. a chemical
shift or quadrupolar coupling) powder lineshapes may be sufficiently
structured so that some information may be extracted.26’27 But where
the spectrum arises from large numbers of strongly interacting spins
(=23 coupled spin-1/2 nuclei) resolved structure in high field powder

1,28'30 and the high field powder spectrum generally

patterns is unusua
resembles a broad and featureless band like the spectrum of Figure 2.1.
Even for the single-body interactions, the presence of overlapping
lines from chemically or crystallographically inequivalent sites may

render these spectra uninterpretable. In this chapter, I briefly -

review the most common approaches to high resolution NMR in solids and,
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Figure 2.1. High field spectrum of 1,2,3,4-

tetrachloronapthalene
bis(hexachlorocyclopentadiene) adduct. Like
most dipolar powder patterns, little structure
is resolved even though only a small number of

spins (4) are strongly coupled one to another.
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in somewhat more detail, to high sensitivity pure NQR.

A, High Field NMR Methods

1. Coherent Averaging

As the presence of high resolution NMR fagilities at virtually
every chemistry department testifies, the routine measurement of
chemical shifts in solution by NMR is central to the identification and
characterization of chemical compounds. In analogy to liquid state
spectroscopy, by far the largest number of high resolution solid state
NMR studies?:8 emphasize the primacy of chemical shifts, due both to
its chemical sénsitivity and its ease of interpretation. Because the
chemical shift is often no larger than (and generally much smaller
than) the other local fields, these other terms must be suppressed
before the solid state chemical shifts can be.observed. In liquids,
nature averages all tﬁe anisotropic interactions to zero via rapid,
isotropic motion. In solids, the experimentalist attempts to mimic the
process of stochastic averaging used in nature with some form of
coherent averaging. As such, experimental work has.emphasized:

1. Isolation of individual spins. Resonant rf fields can be

used to decouple abundant spins (typically 1H) from rare (13C,

15N, 31P) so that the latter might be observed free of the

31 Alternatively, multiple pulse

heteronuclear couplings.
sequences (WAHUHA,32 MREV-8,33 BR-2434) which decouple the abun-
dant spins from one another allow for observation of spectra

dominated by only their chemical shifts.

2. Averaging out of the chemical shielding anisotropy (CSA). As
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the solid state chemical shift contains an anisotropic éomponent
- (Equation (1.46)), chemical shift spectra of powders are broad
and may be poorly resolved. Chemical shiftvpowder patterns can
be transformed to narrow line spectra by:
a) Choosing to work with single crystals; or, more
generally, by
b) Magic angle sample spinning (abbreviated MASS,
occasionally MAS or MAR).35 Slow spinning.breaks the CSA
powder pattern into a finite (preferably small) number of
sharp lines.36 Rapid spinning produces liquid-like
spectra.
3. Combinations of (1) and (2).
In polycrystalline or disordered samples what is ideally accomplished
is the obliteration of all anisotropic components of the local
Hamiltonians. The traceless interactions (quadrupolar, dipolar, and
heteronuclear J céuplings) are averaged to zero and become irrelevant
while the isotropic terms (homonuclear J couplings or isotropic
chemical shifts) survive and are measured. Rarely, multiple-pulse NMR
is used to isolate small numbers of interacting spins (typically an IS
system). In favorable cases dipole-dipole couplings can be extracted

37-39

from the resulting powder spectra Combinations of MAS and

multiple pulse techniques result in high-resolution two-dimensional

chemical shift-dipole-dipole correlation spectra.40

High resolution NMR in solids is reviewed in significantly
greater detail in texts devoted to the subject.z’8

2. Deconvolution Methods

As the quadrupolar coupling constant A(I) often is large neither
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the high field nor strong rf assumptions need hold. Because to first
order the |-1/2> + |1/2> transition is unshifted by the quadrupolar
Hamiltonian, the spectrum observed in NMR experiments on half-integral
quadrupolar nuclei in asymmetric environments may be due exclusively to
coherence between these two energy levels. Residual spectral
broadening is often dominated by the second order quadrupolar frequency
shift (Equation (1.64)). Correction terms from higher-order
perturbation theory depend on angular factors which differ from the
Pz(cosﬂ) dependence of either the first order shifts or the chemical
shift anisotropy, and there is no laboratory axis about which rapid
spinning simultaneously eliminates both the second-order quadrupolar
broadening and the CSA. Even with MASS, all tﬁat is observed is an
averaged powder pattern which results from a convolution of the
partially averaged second order quadrupolar and chemical shift
anisotropy powder patterns.41

Even where only a portion of the quadrupolar spectrum can be
observed it is possible to accurately measure quadrupolar couplings in
half-integer spin systems using two-dimensional NMR techniques. The
central transition spectrum can be observed as a function of the flip
angle § = w1Th where o is the length of the applied rf pulse.
Fourier transformation with respect to the rate of nutation of the
observable in the rf field results in characteristic patterns which are
matched to the fundamental parameters, A(I) and n.42 Where many such
patterns overlap, the analysis becomes more difficult.

In the important case of the spin-1 nucleus (14N or 2D) althird

possibility exists. Bloom and coworkers use an algorithmic method they

call "de-Paking" to extract quadrupolar tensors from experiﬁentally



37

observed high field powder patterns.43 If a specific form for the
powder lineshape distribution function is assumed, high field spectra
can be processed So as to separate out the quadrupolar couplings (which
serve as a scaling constant determining the overall spectral width)
from the assumed lineshape function. If the assumed lineshape
(generally, n=0) is a good approximation to the real form the
deconvolution results iﬁ a sharp line for each distinct quadrupolar
coupling constant in the sample.m"45 Where the actual lineshape
function differs from the assumed form, the de-Paked spectra are
distorted.

De-Paking is most successfully applied to 2p NMR, where the
quadrupolar tensor is often axially symmetrié and the quadrupole moment
not so large as to make the spectroscopy prohibitively difficult. This

14N. As its quadrupole moment is large and its

14

is not the case for

N NMR spectra are rarely
q 14

magnetogyric ratio is small, solid-state

d.%® Because high quality high fiel

observe N spectra are so
difficult to measure, neither de-Paking nor any other high field

technique is generally useable.

B. Zero and Low Field NQR Methods

The motivation for zero- and low-field solid state magnetic
resonance experiments is clear; in zero field, the local frame
Hamiltonians are observed directly and at their untruncated values.

The high field powder methods described above achieve high resolution
by averaging away the anisotropic terms in the Hamiltonian. Zero field

methods aim instead to render the anisotropy irrelevant by removing the
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laboratory-based reference axis.

Experiments in zero field NMR date from the earliest years of
magnetic resonance.#’ Both theoretical and experimental work on the
behavior of strongly coupled spin systems in low fields (H, ~ Hy.,.),
particularly in connection to the spin temperature hypothesis, is
extensive.ll’za’25 Nonetheless, zero field NQR experiments are far
more common.l* For pure NQR, there are two experimentally very

different cases which need be treated separately:

1. Local Fields > 1 MHz and Isotopic Abundance High

At high frequencies and nuclear densities, direct observation of
the pure NQR spectrﬁm is possible using straightforward techniques.
For 3501, the zero field resonance frequency is often ~30 MHz, and as
this isotope appears at relatively high natural abundance (~75%) the
expected signal amplitudes are comparable to many high field NMR
experiments done at similar frequencies. In ahalogy to NMR experiments
rf pulses applied at resonance to an NQR line result in a free
induction signal whose transform is the spectrum of that transition®®
or a continuous wave (CW) sweep may reveal the spectrum more directly.
Experimental complications arise because the NQR lines may appear at
widely separated frequencies; or, for spin-3/2 nuclei, a small Zeeman
field is required to lift some degeneracies and provide complete
information about the quadrupolar tensor. These techniques are well-
known and relatively unrelated to the work described in the rest of
13,14

this thesis. Standard reference works provide a deeper treatment.

2. Local Fields < 1 MHz or Isotopic Abundance Low

Where the local fields are small and/or the interesting magnetic

nuclei appear at low density, direct detection of pure NQR is difficult
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due to the low frequencies and/or small numbers of nuclei which:
contribute to the signal. In most direct detection schemes the signal
2).

available for detection is ~0(w In extraordinary circumstances (low

T, high density of spins, and/or large sample volumes)ag or with non-

Faraday law SQUID detectors,50

zero field signals can be detected at
these low frequencies but such opportune circumstances are rare. Often
the low sensitivity of pure NQR necessitates more elaborate experiments
with higher sensitivity.

Most high-sensitivity methods use field cycling techniques of the
sort introduced by Ramsey and Pound’! to probe the zero field
frequencies indirectly. Preparation of polarizatioh and observation of
the signal take place in as large an applied field as is available so
as to maximize the detected signal. In between these two phases of the
experiment, the spin system is brought to low or zero field and its
behavior monitored as a function of the evolution in these low fields.
Because nuclear Spin-lattice relaxation times (Tl) in solids may be
rather long (anywhere from 100 ms to 100 hours depending on the
temperature, nuclear spin species, and the specific compound) the field
cycle need not be executed particularly rapidly. Unless otherwise
specified, the nuclear spin Ty's will be assumed much longer tﬁan any .
other time interval in the experimental scheme (an assumption which may
often imply lowered temperatures and inconveniently long polarization
periods!) and will not be a limiting factor in performing the
experiments.

The field cycling and level-crossing experiments of Ramsey and
Pound, Andersen,52 Redfield,53 Hahn,54 and ot:]:xersss'58 are closely

59-63

related to the Fourier transform zero field experiments which are
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the main subject of this thesis, and will be described in some detail.
Their high sensitivity is inextricably linked to the behavior of spin
systems under demagnetization. In the presence of large quadrupolar
splittings, quadrupolar nuclei are not strongly-coupled to one another
and the demagnetization is not characterized by a spin temperature.
Therefore, the rest of this chapter will be devoted to some predictions
about the form of a system of spins after demagnetization from a large‘
applied field.

a. Adiabatic Demagnetization

1, Isolated Spins

The simplest case that can be treated is that of an isolated spin
(for concreteness, S = 1) initially polarized in a large external
field, By. For simplicity, H, in the polarizing field is assumed much
larger than HQ. Then the initial density operator pS corresponds to a
magnetization proportional to S, (Equation (1.83)). The applied field
is slowly reduced froﬁ its initial value B, to zero. At the end of the
demagnetization p has some new form which we wish to make explicit.

In principle, the time development of p can be solved numerically
by direct integration of the Von-Neumann time development Equation
(1.73) through all values of the external field and times. This is,
hpwever, a tedious operation which results in little physical insight.
In the limiting case of an adiabatic field sweep a more appealing,
approximate presentation is possible.64

In an adiabatic process and where.the Hamiltonian contains no
degenerate eigenstates for any value of the time-dependent parameter,

the populations which characterize the final density operator are those

which characterize the initial density operator. Whatever populations
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are prepared in high field are taken over smoothly into the zero field
eigenstates which correlate to the high field eigenstates. The
problem, then, is reduced to ascertaining the correlations between high
and zero field eigenstates with particular attention to values of the
field where eigenstates may become degenerate. At most values of the
field, the correlations are obvious. Certainly as long as H, >> Hq,
the eigenstates are always approximately equal to the eigenstates of
the high field Hamiltonian Hy. Similarly, at low values of the applied
field (where H, << HQ) the true eigenstates are nearly the eigenstates
of the zero field Hamiltonian HQ. Only for values of the external
field where H, ~ HQ and where eigenstates of the full Hamiltonian
become degenerate or nearly degenerate are the correlations between
eigenstates problematic.

This situation is shown in Figure 2.2. The exact problem is to
identify the correlations between eigenstatés before and after a level-
crossing of the sort illustrated in the figure. Near the level
crossing field two possibilities exist: first, that the eigenstates
follow the "trajectories" described by the solid lines in the boxed
region. For some value of the external field the energies of the two
eigenstates go through an "accidental degeneracy" where the eigenstates
are degenerate. At any arbitrarily small disﬁance on either side of
the crossing the eigenstates are well-defined and correlations can be
established. But within the framework of the adiabatic approximation,
no conclusions can be drawn about the transfer of populations. For an
energy splitting rigorously equal to zero, no finite rate of
demagnetization can satisfy the conditions of the adiabatic

approximation. If level crossings are frequent, then only a very



Figure 2.2. Level crossing region. As some external parameter
(e.g. the applied magnetic field) is varied, the energies of
eigenstates |1'> and |2'> approach one another. In the level
crossing region (boxed area) the eigenstates may either cross

(dotted lines) or avoid one another (solid lines).
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different approach will afford any insight into the nature of the
demagnetized operator p.

The second possibility, of course, is that there is no level
crossing. This case is shown in the correlation trajectory described
by the dotted lines in Figure 2.2 and corresponds to an anti-level
crossing or an avoided crossing. In an avoided crossing and within the
framework of the adiabatic approximation, the populations are
maintained in the same energy-ordered sequence before and after the
avoided crossing. If there are only avoided crossings, then the
demagnetized operator p is simple to predict. All populations are
conserved in precisely the same energy level ordering scheme in high
and low fields.

Yet again the question appears merely to have been reformulated,
and in a form that appears no more tractable. Now the task is to
identify whether allowed or avoided crossiﬁgs are more likely, and
whether the level-crossing behavior depends on the details of the spin
system or not. The solution is surprisingly simple. Pairs of
eigenstates which far from the level crossing region are uncoupled by
off-diagonal matrix elements may cross. As no coupling term exists,
two such energy levels cannot know that there is any crossing to be
avoided. If, however, the Hamiltonian contains coupling terms which
are off-diagonal and make no first order contribution to the energies
far from the level crossing region all crossings are avoided. As the
difference in energies of the two eigenstates becomes arbitrarily close
to zero, what was formerly merely a perturbation can no longer be
treated by perturbation theory, and the effect of the "perturbation" is

to cause the eigenstates of the system to repel one another.
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This difference will be made explicit using the specific example
of a spin-1 nucleus. (Explicit expressions for the eigenstates and
energies of spin-1 and spin-3/2 nuclei as a function of field are
available®® but will not be used because they provide little
qualitative insight.) The full Hamiltonian consists of a term
proportional to the Zeeman frequency in the applied field and a

quadrupolar term,

H = Hy+ H, (2.1)

The Zeeman Hamiltonian is generally represented in the laboratory frame
of reference as described in Section I.B. As the high field
approximation need not hold (because the applied field takes on all
values and the crossing field occurs where Hy, ~ HQ), it is preferable
to represent both HQ and H, in a single consistently defined frame and
in practice I will use the molecular frame, where the total Hamiltonian
is

H = HQ + alsx + azsy + a3Sz (2.2)

The ay are proportional both to the direction cosines and sines derived
from R(Q) which relate the molecular axis system to the laboratory
direction along which the external field is applied, and to the
strength of the applied field. Only the latter changes during the
demagnetizations. Therefore the eigenstates of H depend both on the
strength and direction of the applied field. 1In either of the two
extfeme limits (HZ>>HQ or H; = 0) these eigenstates are readily
identified as either the high field (|1'>, |2'>, and |3'>) or zero

field (|1>, |2>, and |3>) eigenstates, numbered in order of descending

energies. At intermediate values of the field, the eigenstates will be
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.represented as |p>, |¢>, and |r> which correspond in the zero field
limit to [1>, |2>, and |3>.

Table 2.1

A. Eigenstates and Eigenvalues of Spin-1 in Zero Field:
-1/2

|2> = x> = -1 (2) [+1> - |-1>); <2[Hy|2> = -A(L-m)
1> = |y> = @) Y2 [|+1> + |-1>]; <1|Hy|1> - -ACL+n)
[3> = |z> = o> ; <3|HQ|3> - 2A
|+1>, |-1>, and |0> are the projections of IZ on the molecular z-axis
B. Matrix Representations of I_, I , I
. x' Ty’ Tz
|> |y> [z> |> |y> |z> > |y> |=>
«<x|fo o o] <x|[0 o 1 «|[0 i o0
21 =<yl}0 0 1|J21=<yl|l0 o0 0] 2 I=<y[[-1 0 O
* «|lo 1 o Y «|l1 o o <|lo o o
66

In the conventional basis set of zero field NQR given, along
with a number of operator representations, in Table 2.1, each angular

momentum operators couples pairs of eigenstates only, and in matrix

form the Hamiltonian is

| 2> 1> [3>
<2] [ -A(1-9) ia, a,

H = <1 -ia;  -A(1l+n) a; (2.3)
<3| a, a; 2A

If any two of the aj's are zero then the external field mixes only
pairs of the zero field basis vectors. This problem can be
diagonalized exactly and the eigenstates and energies written down as a

function of the Zeeman energy. Choosing only a, = 0 (i.e. the field

applied along the molecular y axis)



46

H = HQ + a28y A (2.4)

The energy of state |p> is independent of the field and 1> is an
eigenstate for all values of the a,. |1>, |p>, and |2'> are identical.
The other two (|q> and |r>) are mixed states. The eigenvalﬁe equation

for this pair is

(-A-(L-mA) (-3428) - a2 = 2% - 2a(l+n) - (28%(L-m) + a5) = 0 (2.5)
with eigenvalues
aemt[a@m? + ea’(1-n) + 4al
- ~ : (2.6)
- 3 AQ) x3 JA2(3-n)2 + bal 2.7)

In the limit a;, -+ 0, the eigenvalues are (as might be expected)

A, = 2A, -A(l-n) (2.8)

while in the high field limit a,>>A the eigenvalues are

1
Ai = iaz + E‘(l'ﬂ)A (2.9)

The details of the correlation diagram depend on the absolute sign of A
(and the convention used in defining HQ; NQR and NMR conventions
generally differ.65 Consistency with eqﬁation (1.54) is intended if
not maintained). For A positive, |1'> correlates with |1>; for A
negative, to |3>. 1In either case, |3'> correlates with |2>. Also in
either case, there is one level crossing in the correlation diagram for
demagnetization along the molecular y-axis. The level crossing

behavior expected for demagnetization precisely along the x, y, and z-
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axes respectively is shown in Figure 2.3 for A assumed positive. For
demagnetization along these axes, level crossings are allowed and the
adiabatic approximation can not be applied.

If, however, at least two of the three coefficients aj are
nonzero, then all level crossings become avoided crossings. Thus as
any pair of energy levels approach one another they repel and |1>
always correlates with |1'>, |2> with |2'>, etc. As long as the
adiabatic condition is satisfied, populations remain ordered as they
were in high field.

Consider the Hamiltonian of Equation (2.3) with A positive,
ap>>a; and a3 = 0. This corresponds to applying the external field not
precisely:along the molecular y-axis but instead tipped slightly into
the y-z plane. It is reasonablé to treat the component of the field
along the molecular z-axis.(who;e mégﬁitude is represented by a ) as a
perturbation and to ignore its effects on the mixing of states |2> and
|3>. It will havevimportant consequences only in the range of values
of the external field where the level crossing occurs for a; = 0 and
where |q> and |r> are nearly degenerate. This corresponds to the range
of values of fields where the energy of |q> in the absence of a;
differs by no more than 2§ from E = -A(l+n). Then the |p>, |q>

subblock of H is

| > |a>
Hpq - <pl E + 2§ € (2.10)
<q| € E

where ¢ is proportional to a;. The associated eigenvalue equation is

(E+ 25 - X)(E - X) - 62 = E2 + 26E - 52 - 2X(E+6) - Az =0 (2.11)

whose solutions are
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Figure 2.3. Allowed level crossings for demagnetized spin-1 nucleus.
The externally applied field is oriented alongvthe principle axes of
the quadrupolar tensor, and A is assumed positive. a). x axis; no

level crossings occur. b). y axis; |r> and |q> cross. c¢). z axis; |

and |p> cross.
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A, = (E+8) = | 6"+ ¢ (2.12)

If ¢ »# 0, there is no value of § where A, = X_ and therefore no level
crossing. For arbitrarily small displacements of the direction of the
applied field from any of the principle axes of the quadrupolar tensor
and in the adiabatic limit, only the level-anticrossing behavior is
exhibited. Therefore, to a very high degree of approximation the
demagnetized state of an isolated quadrupolar spin (with S arbitrary)
is uniform over the entire powder pattern. Only for demagnetizations
precisely along each of the axes dé eigenstaées cross. This fact will
be used extensively in Chapter VI, where the assumption of a uniformly
prepared demagnetized density operator will be én important
simplification. In the absence of spin-lattice relaxation and in the
adiabatic 1imit’the entire order prepared in high field is transported
to zero field.

2, Coupled Spins

It is rare that isolated spins are found in nature. Occasionally
crystals may be found which contain only a single type of magnetic
nucleus (e.g. 1y in gypsum) or magnetic spins of a chemical identity
which occur only as a low percentage of the total number of similar

13C, ~1% natural abundance). As discussed in the first

atoms (e.g.
part of this chapter, spins are isolated in high field if their
magnetogyric ratios differ significantly, or if appropriate sequences
of rf pulses are used to artificially isolate them. But in
demagnetizing a sample from high field to low field it is

experimentally rather more difficult to maintain good isolation of one

spin type from all others. In zero applied field the Zeeman energies



51

of all nuclei are identical independent of y. In the absence of strong
quadrupolar couplings (i.e. only spin-1/2 nuclei or quadrupolar nuclei
in cubic crystals) all spin types are strongly coupled.50 Even if
there are strong quadrupolar couplings so that I and S spins are not
matched in zero field, there may be some other value of the field
intermediate between B, and zero where spin diffusion between the two
spin species is allowed and efficient.67
Often, for example, a spin system contains a quadrupolar (S)
nucleus in addition to some spin-1/2 species (labeled I and most often
1H). It is in precisely this sort of system that the indirect, zero

52-57,68,69 work best and attain the

field level-crossing techniques
highest sensitivity. This section provides a brief description of the
basic procedure with particular emphasis on the mechanism by which
polarization is transferred in the laboratory frame.

In moderately high laboratory fields as are commonly used in NMR
spectrometers, the 1H resonance frequency is = 60 MHz. Apart from 3T
and some covalently bound halogen compounds, the resonance frequencies
(Zeeman plus quadrupolar) of all other spin species lie at frequencies
below that of the 1H.nuclei. In zero field, on the other hand, the 1H
pure dipolar frequencies generally fall in a rather broad band from
zero to as much as 100 kHz. Quadrupolar S spins have zero field
resonance frequencies which range from zero to several megahertz.
Inevitably, at some value of field intermediate between the large
laboratory field By and zero field the splittings between pairs of S
spin energy levels equal those between the I spins.

In some range of fields about the level crossing field, the

quadrupolar spin sublevels are capable of communicating via spin flip-
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flops with the network of strongly coupled I spins. If the S spin
sublevels are less polarized than the I spins and if the rate of
passage through the level-crossing field is slow compared to the
inverse of the I-S dipole-dipole couplings, some I spin magnetization
should appear as order in the S spin system after demagnetization. In
this section, I will try to give a simple quantitative argument which
will illustrate the process of I-S polarization transfer and which
clarify the essential process which lies at the heart of all high
sensitivity zero field methods. Most of this model is developed in

68 .nd Edmonds®? and -the description which

69a

greater detail by Blinc
follows relies heavily on the latter presentation.
Assume for simplicity that S = 1, and that in high field the S

spins are unpolarized (as their T;'s may greatly exceed those of the I
spins). The I spins consist of a set of equally spaced Zeeman levels.
All level-crossings are assumed to take placenin "large" fields H,>>H;
for the I spins but in "small" fields HZ<<HQ for the S spins. A rough
energy level diagram is given in Figure 2.4. The total number of S
spins is N’ (each assumed uncoupled from all others) and the initial

density operator describing the S spins is

S
pjk = 0 (2.13)
Because the S spins are uncoupled pS is of dimensionality 2S+1. The
number of I spins is N (each assumed coupled to all other I spins in a

system characterized at all times by a single spin temperature) such

that

(2.14)
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Figure 2.4, Polarization transfer from I spins to S spins. I spins
are in eigenstates of Hy; S spins are in eigenstates of HQ. As the
external field is decreased to zero, energy splittings in the I spin

bath successively match S spin quadrupolar splittings. I spins are

warmed and S spins cooled until a common "spin temperature" is reached.

54
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The dimensionality of pI is (2)N.

The S spins are in contact with the I spins only at fields where
energy splittings of the S spin quadrupolar (plus Zeeman) Hamiltonian
are equal to splittings in the I spin Zeeman (plus dipolar)
Hamiltonian. For S = 1 the pairs of energy levels separated by the
zero field v, v_, and vy lines become sequentially matched to the I
spin splittings. At each level crossing, the population differences of
the S spin levels reach a "spin temperature" associated with the
pseudo-two level system which matches that of the I spin bath. Both
the number of spins of either type and the energy of the system at a
level crossing is fixed. These conservation laws are the basis of the
rest of the analysis. At the first level cfossing energy conservation

requires that
' [
2bI(N +N) = 2bIN _ (2.15)

where bi is the I spin population coefficient after the first level
crossing. Rewriting in terms of the initial polarization and a number

operator, X,

b.=Xb (2.16)

The I spins are now characterized by a new density operator

= 2X bIIz 5. (2.17)

I
ik ik

and a new spin temperature. Some of the order originally stored in the

I spins has "leaked out" into the S spin system. Because not all of

the S spin levels participate in the polarization transfer at any one

time pS is not described by a spin temperature. Only diagonal elements
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are nonzero, and they can be written compactly in terms of the

eigenvalues of a population operator P where

<¢k|p|¢j> - pf;jskj (2.18)

At the end of the first level crossing the diagonal components of pS

are given by

P|p> = 'XbI Ip>
Ple> = |o> (2.19)
Plr> = Xb, |r>

At the.second level crossing, the v_ line of the spin 1 comes in
contact with the I spin reservoir and reaches equilibrium. The
population difference between the |q> and |r> étates equilibrates with
the I spin bath (now somewhat warmer than before due to the transfer of
polarization analyzed above). Subject to the_same'conservation laws

and restrictions on numbers of particles, after the second level

crossing the new populations of ps are given by
P|p> = 'be IP>
Plg> = - 2% o> (2.20)
Plr> = [6:4 +%X2)b1|r>

Finally, the |p> and |q> eigenstates become energy matched and
equilibrate with the I spin bath. After the final level crossing, the

populations are

3.3
Plp> = - (7 X7+ Xby |p>
3,3 1.2
Plg> = (ZX-7X)bI|q> (2.21)
Plr> = (X + l-X2)bI|r>

2
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Similarly,

1 3 2 '
p = Z{3 X* - X"+ 2X] bIIz 6jk (2.22)

During the.demagnetization, the norm of pS is increased at the expense
of pI.
Reviewing the assumptions of the coupled spin model:
1. The I spins constitute a strongly coupled spin network
characterized at all times and for all values of the field by a
single spin temperature. |
2. The é spins are isolated from one another and interact only
with the I spins and then only at level crossing fields.
3. At the level crossing fields only.pairs of S spin quadrupolar
energy levels are matched to the I spin Zeeman energy.
4, All level crossings occur in fields large compared to the I
spin dipolar fields.
If all these conditions hold then the model provides a reasonable
description of the demagnetization. If the sample is merely returned
to high field the level crossings described above occur again and in
reverse order. Even if there is no relaxation and no additional fields
are applied, the final populations returned to high field are not equal

S 11,24

I and p°. No matter how slow the

to the initial populations of p
field cycle, the polarization transfer process is not reversible.

In the commonly used frequency sweep methods the zero field
spectrum is probed by low-frequency irradiation after demagnetization.
If the irradiation is on-resonance with an S spin NQR transition that
line is saturated and the populations of two S spin eigenstates are

equalized. After the irradiation phase, the sample is returned to high
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field and through the level crossing region where the S spin history is
communicated to the I spins. The final spin temperature of the I spins
depends on whether an S spin resonance was found, the populations of
the S spins after irradiation, which specific line(s) was (were)
saturated, all the relaxation times which éharacterized the system, and
whether the level crossing sequence was repeated many times or only
once. Detailed predictions as to the observed signal and sensitivity
for many of these cases and for S>1 are given elsewhere in more
complete reviews of field cycling NQR methods.68’69 .
Over a broad range of frequencies and types of spin systems of
interest, the sensitivity of the technique is relatively frequency-
independent and, to some extent, independent of the actual number of S
spins in the sample. Higher sensitivity variants exist as well, 69p,70
What is common to them all is the idea that the polarization induced in
the abundant, high v I spins in the polarizatibn phase is exploited by
arranging the experimental parameters such that the § spins share in

that order.

3, Deuterium-Hydrogen Level Crossings

For systems where the zero field absorption frequencies appear at
very low frequencies, the theory presented above requires extensive
modification. Neither the level-crossing sequence nor the irradiation
phase proceeds quite as simply as described above. This is
particularly true for the specific case of deuterium, where the zero
field splittings generally are less than 200 kHz. As 1y pure dipolar
absorption may extend out to nearly those frequencies, none of the
assumptions of the coupled spin model need hold. Even when the 1y

dipolar bath frequencies are much lower than the v, and v_ lines, they
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almost certainly are as large as the vy line. In the first level
crossing both v, and v_ lines are likely to be polarized to nearly the
same extent consistent with the 1H Zeeman temperature at the crossing
field. The vy line is in resonance with the dipolar bath with its own
spin temperature. As the Zeeman splittings collapse into the dipolar
linewidth levels separated by the v line approach the new spin
temperature of the combined Zeeman-dipole-dipole Hamiltonian (warmed
somewhat by the first stage of polarization transfer). Where level
crossing to the S spins occurs at such low frequencies, the extent to
which the lines separated by the v, line-are differentially populated
will certainly depend on the frequency of the vy line, and a new spin
temperature no cooler than that which characterizes the order stored in
the (v,, v_) pair is established. Where n is small the population
differences between the |1> and |2> states may be negligible. 1In any
case, the final populations reached via demagnetization of systems with
small quadrupolar couplings will differ markedly from those described
in the above model. Nonetheless, the basic principle (that the order
stored in the S spins is comparable to that stored in the I spins) is
still wvalid.

A further consequence of this dependence on the polarization
transfer from and to I spins is that there is a precipitous drop in
available signal powers at very low S spin frequencies. The very
source of the high sensitivity (the bath of ly nuclei) short circuits
the indirect process by direct absorption of radiation. If the zero
field lH energy levels are saturated by direct absorption of rf,
quadrupolar transitions found in the same range of frequencies are not

observable. Because the irradiation phase is non-selective, level
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crossing techniques which monitor only the disappearance of 1y signal
in high field are unable to distinguish between energy absorption by
the quadrupolar nuclei and direct absorption by the bath.

(In principle, the vastly differing linewidths between, say,
deuteron (2D) and proton (IH) resonances might result in observable
changes in the signal even at the lowest frequencies. Should the
proton resonance be saturated while a 2D line remains unaffected,

14 bath during

magnetization transfer back from the rare spins to the
remagnetization would marginally repolarize the 14 bath. Therefore,
slight decreases in the observed lH signal should be observed for
irradiation simultaneously near a 2D resonance and at a bath frequency.
To my knowledge, such effects have not previouély been reported--which
may be an indication of the small amount of order actually stored in
the quadrupolar system in a single crossing, or the breakdown of the
assumption that the two types of nuclei are ndh-interacting at the
residual fields. 1In any case, the effect is probably too small to be
routinely noticed.)

At the very lowest frequencies, frequency sweep methods suffer
from another important disadvantage. The rate at which spin
transitions occur under rf irradiation is proportional to the frequency
at low frequencies.51’71 The absorption of energy under irradiation
decreases asymptotically towards zero at the very lowest frequencies.
Spectral features near zero frequency become increasingly difficult to
observe, particularly if accurate lineshapes are required. This may be
the greatest advantage of the Fourier transform methods to be described
in subsequent chapters; in principle, they are equally sensitive at

all zero field frequencies (although as a practical matter they perform
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best at frequencies somewhat lower than 500 kHz). Moreover, the
lineshapes observed in the absence of all applied fields are reliable.
This will prove important in any analysis of strongly coupled spins.
Further comments on level-crossing experiments and possible
applications of level-crossings in Fourier transform zero field
experiments with isotopic selectivity will appear in Chapter VI.

b. Sudden Demagnetization

64 or (ideally) instantaneous

In the opposite limit of sudden
switching off of Bj there is a different and simpler solution to the
form of the demagnetized density operator p. No assumptions need be

made about the spin system. Beginning from a spin system with a

Hamiltonian

H = H, + H (2.23)

and a density operator p. At a time r, the external polarizing field
responsible for H, is instantaneously turned off. The spin system is
unable to follow the change in the applied field, and the state of the

system (and of p) is unchanged;

p(r) = p(r) (2.24)

(Note that this is not equivalent to the final state reached by
adiabatic demagnetization of an isolated spin system, where all
populations are unchanged and in the new eigenstates.) Though the
density operator is unchanged, the Hamiltonian and thus the eigenstates
are different. Even if p expressed in the eigenbasis of the
Hamiltonian including the Zeeman term is diagonal, it need not be in
the zero field eigenbasis. If p contains off-diagonal elements, it

begins to evolve at the frequencies characteristic of Hy,c (cf Equation
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1.75).

In principle, the evolution of p might be detected in zero
field, just as the absorption of energy might be monitored directly in
the field cycling methods described previously. Experiments based on
this idea have been performed on liquid samples.72’73 In solids, and
where the natural frequencies of Hy,. are so low that field cycling
methods are required, high field detection is likely to prove much more
sensitive. At a time t;, the external field is instantaneously
reapplied. The time-evolved operator p(f+t1) can subsequently be
probed indirectly by measurihg the high field free induction decay.
Such an experiment is shown schematically in Figure 2.5.

Because the technical requirements for sudden demagnetization are
experimentally more difficult to fulfill than for adiabatic
demagnetization, the former approach is more rarely attempted.53a’74
It is, however, the essential component of Fourier transform zero field
NMR experiments. The‘basic zero field experiment is described more

fully in Chapter III.

C. Summary

To sum up; if a measurement of the chemical shift tensor proves
sufficiently informative, high field techniques are cépable of
providing such information. If, however, the chemical, structural, or
dynamical information required is found most directly in the traceless,
anisotropic interactions such as the dipolar or quadrupolar tensors,
high field techniques generally observe only powder pattern lineshapes.

Such spectra are simply interpretable only under restrictive
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Figure 2.5. Response of a spin system to a sudden change in the
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assumptioné about the numbers of interacting spins and the form of the
interaction. In the presence of larger numbers of interacting spins,
or where the response from several different systems overlap, all
information about these interactions is generally sacrificed in order
to measure the isotropic interactions with greater precision.

Where the measurement and interpretation of these anisotropic
interactions is desired, zero field methods are more promising. For
systems with large quadrupolar couplings, pure NQR may be employed. At
lower frequencies, lower concentrations, and at somewhat sacrificed
resolution, field-cycling techniques utilizing level-crossings become
essential. And at the lowest frequencies or where maximum resolution
is required, or where indirect techniques fail due to the absence of a
suitable bath of spin-1/2 nuclei, Fourier transform zero field
techniques may be essential. Furthermore, working in the time-domain
makes possible the extention of these experimeﬁts to include

18 Some

applications of two-dimensional correlation spectroscopy.
extensions using two-dimensional spectroscopy will be covered in

Chapters VI and VIII.
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ITI. Fourier Transform Zero Field NMR and NQR

Faraday’s law (Equation (1.88)) gives the voltage induced in an rf
coil by an oscillating magnetization. This signal is proportional to
both the size of the initiél magnetization and the frequency at which
it oscillates (i.e. the resonance frequency). In high fields, both
terms are field-dependent. The equilibrium magnetization given by the
Curie Law (Equation (1;87)) is proportional to the applied field. In
the high field limit the frequency of oscillation is essentially the
Larmor precession frequency. The obserygd signal’s strong field
dependence is the continuing motivation for the purchase of higher
field (and more expensive) superconducting magnets. Direct detection
of low frequency magnetic resonance requires large sample volumes and
extensive signal averaging. The alternative field-cycling methods
outlined in Chapter I1 combine the resolution advantage of zero field
experiments with the sensitivity of high field NMR. I will concentrate
only on experiments where both polarization and detection phases take
place in a large static magnetic field (in practice, nearly all of our
experiments are performédlin a persistent superconducting magnet of
nominal field strength 4.2 Tesla (42 kgauss) where the 14 Larmor
frequency 185.032 MHz). Practical experimental details, and some

thoughts on alternative instrumentation, are given in Chapter vIII.’?

A, A Practical Two-Step Field Cycle

Since it is impractical and expensive to repeatedly energize and

deenergize the high inductance magnets routinely used in modern NMR
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spectrometers, in the field cycling experiments described in this
thesis the field cycle presented in an idealized faghion in Figure 2.5
is always executed in two distinct steps as illustrated in Figure 3.1.
In the first step, the sample is removed from the region of
concentrated flux within the bore of the superconducting magnet and
mechanically transported through space. This step takes the spin
system at equilibrium in high field to an intermediate field Bint-
This intermediate field arises from some combination of the fringe
fields of the main solenoid, electromagnets, the earth’s field, and
other stray magnetic fields; and is are sufficiently reduced in size so
as to be readily matched by electromagnets which can be rapidly
switched in times ~1 ps. Practical values of the intermediate field
are < 500 gauss. Detailed descriptions of the apparatus are available
elsewhere.’? For simplicity I assume that the intermediate field is
sufficiently large that the high field condition Hy>>H, . applies in
the intermediate field. The eigenstates at high field and at the
intermediate field are identical. 1In the absence of significant spin-
lattice relaxation, the total magnetization prepared in high field is
conserved in B; . and the density operator p which describes the spin
system is unchanged independent of the rate of demagnetization.

(Formally, however, p is characterized by a much reduced spin

temperature;

Bint
T = T (3.1)

where Ty is the lattice temperature.)

At the intermediate field p corresponds to a bulk magnetization
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Figure 3.1. Magnetic field vs. time in two-step experimental

field cycling diagram. In the first step the sample is removed
from the polarizing field by mechanical means and the field slowly
falls from By to By... Bj,. is rapidly turned off. A time t,
later, B; . 1s turned back on and the sample mechanically returned
to Bo.
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parallel to B For simplicity I assume that B; . and By are

int-
coaxial. At a time t = 0, B;, . is suddenly switched off. The density
operator p is unable to follow the rapid change in the field, becomes
time-independent, and evolves in zero field. At t = t;, By . is
suddenly reapplied and the sample transported back to By for detection
of the evolved operator p(ty). The two-step cycle of Figure 3.1 is
equivalent to the hypothetical cycle of Figure 2.5 if Bint is large

enough. This condition is assumed, and from here on I focus on the

evolution of the magnetization transported to low field.

B. A Formal Calculation of the Signal

The central question is the érediction of the signal expected for
the sequence in Figure 3.1, and its solution will occupy the rest of
this chapter. Two coordinate systems (the high field frame with z-axis
parallel to the appliéd field and some consistently chosen local or
molecular frame), and the relationship between them, are required. The
local frame is chosen so that otherwise identical but arbitrarily
oriented systems have the same expanded form of the Hamiltonians
(Equations (1.47), (1.54), and (1.68)). For simple systems (e.g.
isolated quadrupolar spins or a pair of dipolar coupled spin-1/2
nuclei) it will prove convenient to choose the principal axis system of
the main interactions, but this is neither necessary nor generally
possible. Where some convenient choice of zero field axis system
exists which will make subsequent calculations simpler or more
informative, it will be useful to exploit that option.

As was described in Chapter I, transformations between axis
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systems are conventionally described in terms of Euler angles, and in
most NMR applications only two are required. The transformation which
takes the laboratory (L) frame into the local or molecular (M) frame is

R L),
-1 -1
<1oc|§M|loc> - <lab|RR €, RR""[1ab> (3.2)

The relationship between the laboratory and molecular frames is
illustrated in Figure 1.1. In a disordered system, where many
orientations of the local frame are allowed, R will differ for each of
those orientations and the form of the operator §M of Equation (3.2)
will differ for each orientation because R does.

Following the logic of the sudden‘appfoximation described at the
end of chabter II, at a time t = 0 the intermediate field B;, . which
guarantees the high field condition is instantaneously switched off.
Before the switching of the field, the spin system was in eigenstates
of the high field Hamiltonian (made up of a Zeeman term aﬁd a set of

’
truncated local fields Hloc)

H = H,+ Hj__ (3.3)

with
[p, H] = [p, Hz] = [p, Hy ] = 0 (3.4)

Except for special cases, in the untruncated fields Hige

e, Hi 1 = O (3.5)

and therefore
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b0 L. (3.6)

that is, there is time evolution under Hi,c: At a time t

p(t) = exp(-iHloct)p(O)exp(iﬂloct) 3.7)

At a time tq, the evolution implied in Equation (3.7) is interrupted by

reapplication of B After a time ~Ty (which in solids may be as

int-

short as ~10 us), coherence in a solid is assumed to disappear and

[p(ty), I,1 =0 (3.8)

Evolution of the density operator (Equation 23.7)) is most conveniently
described in the molecular frame where the Hamiltonian is identical for
all orientations and reached by a tranformation of variables as given
in Equation (3.2). Because all measurements are made in the laboratory
frame of reference, the calculation of observables must include the
reexpression of p in that frame. This is followed by an integration
over the known or assumed distribution of orientations, R(1). Starting
from p expressed in the laboratory (L) frame of reference, the sequence

of transformations resulting in the evolved density operator is
p. (t.) = < lex (-iH, t.)R (O)R'lexp(iﬁ t, )R> (3.9)
L' "1 P 0c 1ML loc 1 '

where the subscript L identifies p as being expressed in the laboratory
frame of reference and the angle brackets <> imply an averaging over
all R(Q1) = R(0,B8,a). If the initial density operator prepared in the

high field polarization interval is

(O = I =TI (3.10)
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then p reexpressed in the molecular frame is

oy () = R (@), (OR(®)

exp(-iaIz)exp(-iﬂIy)IzLexp(iﬂIy)exp(iaIz)

Ichosﬂ - I __sinfcosa + IyM51nﬂ51na (3.11)

xM

Ignoring the details of the zero field Hamiltonian Hy,., a general

time-evolved zero field operator £(t) can be defined by

E(t) = exp(-iHloct)fgxp(iﬂloct) - (3.12)

and

pM(tl) = IZM(tl)cosﬂ - IXM(tl)sinﬂcosa + IyM(t1)51nﬁ31na (3.13)

Following the logic of Equation (3.9) the lab frame operator py(tq) is
calculated by rotating the time-evolved form (Equation (3.13)) back to
the laboratory frame. This is precisely the strategy adopted at the
end of this chapter. Here, a different approach is used which
simplifies subsequent algebraic manipulations. What is measured is
never the density operator itself, but only the expectation value of
some observable (Equation (1.73)). The theory is simplified if the
observable is assumed to be I ; (although in practice an rf pulse is
required to transform longitudinal magnetization like I,; into the
observable transverse magnetizations IxL and IyL)’ and the actual

quantity to be calculated is the signal function

G(tl) = Tr [pL(tl)IzL] (3.14)

Using the general rule that
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Tr [ABC] = Tr [CAB] = Tr [BCA] (3.15)

and, substituting for p; from Equation (3.9),

G(t,) = Tr [<RpM(t1)R-1IZL?] - Tr [<pM(t1)R’112LR>] (3.16)

1)
This is equivalent to calculating the signal function with the
observable defined in the molecular frame rather than in the laboratory

frame. The required transformation of IzL is given in Equation (3.10).

The signal G(tl, Q) for a given orientation, R, is

G(tl, Q) = Tr[(IZMcosﬂ - Ist1nﬂcosa + I sinBsina)

yM
(IZM(tl)cosﬂ - IXM(tl)sinﬂcosd + IyM(tl)sinﬂsina)](3.17)

Integrating the signal function G(t;,0) over the known or assumed

distribution of local frame orientations, P(Q1), the observable G(tl) is

G(t = [ G(ty, 9) P(2) do (3.18)

1)

In high field, the distribution of orientations P(Q) is convoluted with
orientation-dependent absorption frequencies to produce high field

26 In zero field, the distribution of orientations

powder patterns.
P(Q) is convoluted instead with an orientation dependent intensity
distribution. Where in high field R(2) is revealed by the shifts in
frequency as a function of orientation, in zero field it is the
intensities of the various absorption lines which change. This
comparison is shown in Figure 3.2. For the common case where the

probability distribution is uniform (e.g. a powder distribution where

all orientations are equally probable)
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P(@)da = - Z]';d(cosﬂ)da (3.19)

Over the entire sphere, the orthogonality of the rotation matrices’

restricts the signal function to only auto-correlations of the angular
momenta., The orientation dependence of the zero field signal is easily

integrated over  and yields
1
G(tl) = E-Tr [(IzM(tl)IzM+ IxM(tl)IxM + IyM(tl)IyM)] (3.20)

.
coswkjt' (3.21)

1 |
=3 Z z 1

i,k P=x,Yy,Z

<Gyl

Equation (3.21) provides a general prescription. for the calculation of
zero field spectra acquired by the sequence of Figure 3.1. It is also
the heart of the program DBZINT.FOR which we commonly use for the
simulation of zero field spectra of dipolar coupled spin-1/2 nuclei.
From an assumed geometry the molecular frame Hamiltonian Hy,e 1s
calculated and diagonalized. The operators Iemo IyM’ and I,y are
expressed in the eigenbasis of the zero field Hamiltonian. The zero
field frequencies correspond to the difference in energy between pairs
of eigenstates connected by nonzero elements of these operators, and
the iine intensities are the squares of the individual matrix elements.
For simple systems (i.e. quadrupolar nuclei with n=0 or some
special cases of dipolar coupled systems where a molecular axis of
quantization exists) simple selection rules may exist and components of
the molecular frame operators may be diagonal, i.e. non-evolving. In
more general systems, no choice of basis set results in particularly

simple evolution operators and non-zero matrix elements exist between
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any pair of eigenstates.

In the remainder of this chapter, I present solutions to Equation
(3.21) for a number of examples of spin systems where the Liouville
space of eigenstates is sufficiently small (and/or enough selection
rules exist) so that the operations suggested in this section are

conveniently made explicit.

C. Coupled Spin-1/2 Systems

1. Two Identical Dipoie-Dipole Coupled Nuclei

A natural choice for the molecular frame z-axis is along the
internuclear vector rj, connecting spins 1 and 2. Expressed in this

frame of reference, Equation (1.47) becomes

HD = - (11-12 - ‘3121122 ) (3.22)
where, as before,
Y{Yoh
o, = L2 (3.23)
D 21rr3
12

The initial condition is assumed to be magnetization, i.e.

p(0) = Iz = Izl + I22 (3.24)

As described in Subsection I.B.2.b, the eigenstates of this Hamiltonian
are traditionally given as the triplet (symmetric with respect to
interchange of the two spin labels) and the singlet (antisymmetric with
respect to exchange). Table 3.1 provides explicit forms for the
eigenstates and eigenvalues of Equation (3.22). The matrix

representations of the angular momentum operators IxM’ IyM’ and IzM are
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identical to those given in Table 2.1 Table 3.1 adds matrix
representations for the second rank tensors UkM' No matrix elements of

these operators couple the singlet state to the triplet manifold and

Table 3.1

A. Eigenstates of Two Coupled Spin-1/2 Nuclei in Zero Field

1> = -1 @Y (o> - 1851 1> = (@Y7 [aw> + |pp]

1/2 1/2
|T> = Y2 [lap> + |>] s > = @2 [lap> - |pa>]
where a and 8 correspond to <Iz> = 1/2 or -1/2, respectively

B. Matrix Representations of Uk

Matrix elements between S and T states are zero; within the T manifold

|-> |+ [o>.
<- 1 0 0
IE'UO = <+ 0 1 o0
<0 0 0 -2
|-> |+ |o> : |-> |+ o>
<- 0 -0 i <- 0 0 0
IEUl_= <+ 0 0 0 .]—2-U1+= <+ 0 0 -i
<0 -1 0 0 ' . <0 0 i 0
|-> |+ o> |-> [+ |o>
<- 0 1 O <- -1 0 O
{20, = <+ 1 0 0 {2v, = < 0 1 o0
<0 0 0 0 <0 0 0 0
For |-> = |x>, |+> = |y>, and [0> = |z> this same set of operators

describes an isolated spin-1 system.

the singlet has no effect on the spectrum. The singlet is not included
in any of the matrix representations of Table 3.1. Time evolution

under the Hamiltonian can be described using Equation (1.75), and
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Ij(tl) = Ij coswlkt1 + (IkII + Illk)51nw1kt1 (3.25)

and

(I I +1 Ik)(t (I I + IlIk)cosw t, - I.sinw,. t (3.26)

V- k1~ %k

This describes time evolution for six of the eight operators first and
second rank tensors necessary to describe the evolution of the three
level system. The remaining two operators (proportional to Uy and U,,)
are diagonal in the zero field basis set and undergo no evolution. The
trace of Equation (3.20) is easily performed once a few general rules

are described;

Tr [Ij k] = sjk (3.27)
and
Tr [Ij k 1] 0 for all j,k,1 (3.28)
Therefore,
%—Tr[ z (t )I ] = l-(cosw t, + cosw,,t. + cosw ) (3.29)
JM 1 3 2171 3271 13%1

i=x,y,z

For two coupled spin-1/2 nuclei, and in the basis set of Table 3.1
o = b = 3, (3.30)
31 2D :

and

Wi, = 0 (3.31)

. Normalizing to unity at zero time, the zero field free induction decay

from two identical spin-1/2 nuclei is
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G(t,) = %— 1+ 2cos(-§wntl)] (3.32)

1’
An experimental example of this prediction is shown in Figure 3.3,
where the zero field NMR spectrum of the 1H nuclei in Ba(ClO3)2-H20 is
presented. Crystalline water molecules are well isolated one from
another, and the spectrum corresponds closely to the case of two
coupled identical spin-1/2 nuclei. 1In the absence of molecular motion
which may average the observed couplings, the observed line splitting
(42 .4 kHz) corresponds to a 14-14 distance of 1.62+.02A. Single
crystal spectra of this same>compound have already appeared in Figure
3.2. As this two-spin system is convenient for experiments,
theoretical modeling and easy interpretation of results I will return
to this compound and spectrum repeatedly in subsequent sections.

2. Two Distinguishable Dipole-Dipole Coupled Nuclei

The singular difference between the heteronuclear (I-S) spin pair

(e.g. 13C-lH) and the homonuclear (I-I) spin pair described above is
that for two spin species the high field density operator can no longer

be written as IzL alone. Rather,

pL(O) = bIIzL + bSSzL (3.33)

where the coefficients by and bg differ in general because the
magnetogyric ratios of the two spin species do. The density operator
of Equation (3.33) corresponds to an unequal division of the initial
magnetizations between the two spins in high field. Even though the
zero field Hamiltonian for the two spin systems is independent (to

within a scaling constant) of the chemical identity of the two spins,



Figure 3.3. !H NMR spectra of Ba(ClO3),-H,0. At top: High field
single crystal spectrum. Middle: High field powder spectrum. Bottom:
Zero field powder spectrum. The splitting in the zero field spectrum

corresponds, in the absence of motion, to r = 1.62%.02 A.
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the high field preparation sequence can discriminate between the two
spin species. Rewriting Equation (3.33) in a form which emphasizes the

difference between it and the density operator of Equation (3.24)

_,pL(O) = b+ (IZL + SzL) + b_(IzL - SZL) (3.34)
with
b.+b
IS
b+ = 5 (3.35)
and
b.-b
b - 123 (3.36)

In this form I emphasize the existence of two distinct high field
components of the initial density operator p with very differing
symmetries. The first term corresponds to the average magnetization
shared between the two spins, is symmetric with respect to interchange
of the spin labels; and has the same characteristics as the
magnetization in Equation (3.24). The second term in Equation (3.34)
corresponds to the difference between the initial magnetizations at the
two spins, is antisymmetric with respect to exchange of the two spin
labels, and has no counterpart in the homonuclear problem. It couples
the singlet state of the zero field Hamiltonian to the triplet
manifold. It is responsible for new transition frequencies not allowed
in the homonuclear case.

Both types of operators are first rank tensors. The symmetric
combination behaves precisely as does the operator I, for two
identical spin-1/2 nuclei as described immediately above. Under the

influence of Hp, these operators evolve into second rank tensor
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operators. The antisymmetrié combination transforms under the rotation
operator R'l(ﬂ) into first rank antisymmetric molecular-frame operators
proportional to (I y-Syy), (IyM'SyM)' and (IzM'SzM)' The only nonzero
matrix elements of these operators are <-|IxM-SxM|S>, <+|IyM-SyM|S>,
and <O|IzM-SzM|S>. These operators evolve into a new set of first rank
tensor operators (of the general form (IjSk-Iij)) at frequencies
characteristic of transitions between the singlet and triplet
manifolds. Because of the differing symmetry characteristics of the
two types of operators, no cross terms between these two sets can ever
contribute to the trace of EQuation (3.20). ‘In the laboratory frame,

py, always consists of two orthogonal pieces, and

pL(tl) = b+(t1)(IzL + SZL) + b_(tl)(IzL - SzL) (3.37)
where
b (0) 3
b+(t1) = 3 [1 + 2cos(§thl)]. (3.38)
b_(0) L '
. b_(tl) = ——3——{cos(th1) + 2cos(§th1)] (3.39)

The zero field signal G(t;) depends on which nuclear spin reservoir is

observed in high field. If the S spin system is observed,

G(tl) = Tr [SzL pL(tl)] (3.40)

- b+(t1) - b_(tl) (3.41)

or, if the I spins are observed,
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G(tl) = Tr [IZLpL(tl)] (3.42)

= b+(t1) +b (t (3.43)

1)

Because the high field resonance frequencies wy and wg differ, it is
possible to selectively irradiate either spin species in high field and
alter the initial condition. In particular, if either b, or b_ is made
equal to zero by an appropriate preparation sequence the observed
spectrum is simplified by the disappearance of one set of lines. These
predictions are confirmed by the zero field NMR spectra of the 13¢.1y
pair in ﬁ-Ca(H13COO)2 shown in Figure 3.41 The observed spectra
precisely follow the predictions of Equations (3.41) and (3.43).
Assuming no motion, the observed dipole-dipole coupling corresponds to
a 13¢.14 distance of 1.11A. Figure 3.5 is a comparison of the high and
zero field NMR spectra observed for I-I and I-S two-spin systems.

The signal function G(t;) corresponds to the magnetization stored
in the T or S spins after a zero field evolution period t;. Most
frequently, it is the frequency-domain spectrum (the Fourier transform
of G(tl)) which is of interest. Where it is difficult to attain useful
polarization levels in high field (either because the equilibrium S
spin magnetization is small or where the S spin Ty is inconveniently
long), zero fiéld evolution could conceivably be of use as a method of
polarization transfer between spin species. As b, and b_ evolve

differently in time, there exist values of ty which maximize the

evolved S spin magnetization. The maximum in SzL(tl) occurs when



Figure 3.4. 14 detected zero field NMR spectra of 1y-13¢ pair in
p-ca(ul3co0y,. 13

sequence. The sample is depolarized in zero field, then returned to

C spins are polarized by field-cycling preparation

high field for ~10 s (approximately Tiy). A complete field cycle is
executed with fixed time t; = 32 ps. This strongly magnetizes the 13¢
nuclei to 160% of theirvequilibrium value. Ty, is several minutes. 1In
high field the 14 nuclei are repolarized. Prior to executing the field
cycle with variable time ty, a resonant rf pulse is applied to the 1H
spins of length, from top: 0°, 66°, 90°, 114°, and 180°. This
generates the zero field initial conditions indicated in the plot. The
spectra closely follow the predictions of the text. The observed w

corresponds to <r 3>1/3 = 1,11 A.
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Figure 3.5. Summary of the high field and zefd field Hamiltonians,
eigenstates, and spectra for homonuclear (I-I) and heteronuclear (I-S)
dipole coupled spin pairs. Transitions are indicated by the arrows.

In high field the transition energies are orientation dependent and the
spectrum is continuous absorption band. The zero field energy levels
are orientation indepéndent, and the zero field spectrum consists of a
finite number of absorption lines. 1In I-I systems, only transitions

within the triplet manifold are allowed.
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§S §b éb

zL + -
- . — - 0 (3.44)

6t1 8t1 8t1

or, defining x = (th1/2),

[3sin3x b+ - (sin2x + sinx)b_ ] =0 (3.45)

Solutions to Equation (3.44) include wpt; = 0,2n,4%,..., where

Tr [pS,1] = 0. A second set of solutions is given By

2b * (Ab? + 144bi+ 48b_'_b_)1/2
cos X = (3.46)

24b+

b + 3b
- —_— _.;_'_ ; (3.47)

6b+ !

In the limit bg = 0, then b, = b_ = by and

2 + 14 1 2
cos xv = —5; <~ "33 (3.48)
Choosing cos x = -(1/2),
Tr(S_.p) = = (3b, + b) (3.49)
zLP A I S :

which corresponds to a very significant transfer of polarization from
the I to the S spin. In this two spin system, and for an initially
depolarized S spin, 75% of the total order in the sample can be
transferred from I to S. A derivation of the actual value of S,; is
more complicated for the last root of Equation (3.43) and only the

results are given here;
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3

b’b 27

Tr(S, p) = L 3[— L. 9b_bf + —b_b_?_ - 54bi (3.50)
162b.| 2 2

In the limit b+ =b_ (i.e. no initial polarization on the S spins),

Equation (3.49) simplifies to give

49

TI(S,.p) = - Tz b, (3.51)

In the limit b_ = 0 (i.e. a homonuclear spin system) then this solution
corresponds to a minimum at -1/3 of the originally prepared
magnetization, precisely as is found in the homonuclear zero field free
induction decay of Equation (3.32).

3. Heteronuclear J Spectroscopy in Liquids

The antisymmetric operators which allow transitions between the
singlet and triplet manifold to take place provide a mechanism for the
observation of pure J spectra‘in the zero field NMR of heteronuclear
liquids. Ordinarily, one does not expect to observe oscillating
magnetization from J couplings between pairs of nuclei in a liquid
because the J coupling is isotropic in space. No spatial truncation
occurs when a magnetic field is applied to a liquid. Thus, the removal
of the field results in no discernable change in the density operator.
In a residual field perpendicular to the polarizing field, oscillations
corresponding to the Larmor frequency in the residual field may be
observed. This is the basis of the Varian magnetometer experiment for

d.72’73 In heteronuclear

the measurement of the earth's magnetic fiel
systems, the application of a magnetic field truncates the J coupling

in the spin variables rather than the spatial variables. 1In a large

field, the flip-flop terms in the J coupling tensor are rejected
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because of the difference in Larmor frequencies (Equation (1.71)). The
initial spin polarizations are also different (consistent with the
magnetogyric ratios y; and vg).

The transitions within the triplet manifold of the two spin-1/2
system all appear at zero frequency because the J coupling shifts all
energy levels within the triplet by the same amount in the same
direction (Equation (1.70)). It is only the transition between the
triplet and the singlet which carries any information and it appears at
a frequency equal to the J coupling itself. Skipping the intermediate
steps (which are similar to those in dipolar coupled systems as
discussed above), and noting that without loss of generality R(1) =1,
the zero field free induction decay from a heteronuclear J coupled pair

of spin-1/2 nuclei is

1
M_(t)) = 3 (b, *b cosit (3.52)

+ 1)

Rapid molecular reorientation in a liquid limits the interactions to
those within a molecule and Ty's in liquids are usually long. In zero
field the linewidths in the heteronuclear liquid are dominated by field
inhomogeneities. Therefore, these systems provide a sensitive test for
the effects of residual fields on the width of zero field resonance
lines. Figure 3.6a shows the 31P-detected zero field spectrum of
diethyl phosphite ((C,H50),PH). The directly bound lH-3!P coupling is
very much larger than any of the couplings to methylene 14 nuclet
several bonds away and it is a good approximation to treat this systems
as a two spin-1/2 system. The triplet of lines predicted by Equation
(3.52) is observed and the spacing corresponds reasonably well with

previously reported values of the J coupling.76 Now consider the
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Figure 3.6. Zero field J spectra of diethylpﬁosphite ((CoH50) oPHO) .
Both spin systems equlibrate in high field. Immediately prior to the
field cycle, a 180° pulse is applied to the ly spins. This enhances
the amplitude of the peaks at XJ. The coupling between 31p and the
directly bound Iy contributes the sharp line at * 692 Hz. a). 31p
detected spectrum. Only signal from the directly bound pair is
observed. The spectrum is artificially broadened for purposes of
display. The true linewidth is ~ 1 Hz. b). 14 detected spectrum.
The same line at * 692 Hz is observed. In addition, broad peaks

corresponding to the ethyl group l4's are observed at * 100 Hz. This

most likely corresponds to their Zeeman frequency and a residual field

~.02 gauss.
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effect on the spectrum of a small applied field;
H = (—yIIJ. + 7ssj)Bres +J I-S (3.53)

with J >> B The eigenvalues of H are changed from their zero

res’
field values only to second order in the field, and the Zeeman
Hamiltonian is truncated by the much larger J coupling. The absence of
Zeeman-broadened lines in the spectrum of Figure 3.6a indicates the
quality of the zero field region. (Just how bad the zero field region
can afford to be is shown in Figure 3.6b. Here, the same experiment is
performed with 1§ detection of the high field signal. The same narrow
three-1line spectrum is observed for the P-H pair. 1In addition, all the
other H nuclei appear at approximately their Larmor frequency of ~100
Hz, with a spread of +20 Hz. At this level of residual field the
J-coupled line is still less than 1 Hz wide.) Where broad lines are
observed in zero field, the source will rarely be imperfections in the
applied fields which can routinely be adjusted to within several

hundredths of a gauss of zero. Broad lines are more often the result

of a distribution in local Hamiltonians.

D. Quadrupolar Spin Systems

NQR spectra of integer and half-integer spins differ greatly from
one another. A general and more detailed presentation of pure NQR is

given in the standard reference works.13’14

Here I dwell only on those
aspects which are essential to the remainder of this work.

As the quadrupolar Hamiltonian HQ is generally much larger than

Hpy, in this section I will deal with only those aspects of Fourier
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transform NQR which apply to isolated quadrupolar nuclei. Experimental
data on coupled spin-1 nuclei, and a discussion of the possible use of
dipole-dipole couplings in structure determination, appear in Chapters
V and VI.

1. Integer Sping: I =1

Of the integer spins, only I =1 (2D and 14N) systems are
commonly observed. This will be the only case I will discuss. 1In the
case of the spin 1 nucleus, operator techniques prove extremely
powerful and the majority of my discussion will rely heavily on the
" operator set presented in Tables 2.1 and 3.1:;66’77 The spin-1
quadrupolar Hamiltonian (Equation 1.68) consists of two commuting
terms, one proportional to the spin operator Uo;and a second
proportional to the spin operator U, ; it and its three eigenstates
(with n=0) are formally identical to the triplet manifold of two
spins-1/2, and therefore the problem of the homonuclear pair. For
nonzero 7, the term in HQ proportional to n breaks the degeneracy of
the two states (|x>,|y>) and requires that the eigenstates be chosen
proportional to what otherwise would appear to be the rather awkward
linear combination of the tables.

a. The Signal Function

All of the algebraic machinery established in the calculation of
G(ty) for the homonuclear pair is directly applicable to the problem of
the spin-1 nucleus in zero field. As there are three distinct energy
levels there are also three distinct transition frequencies. In direct
analogy to Equation (3.32), the zero field free induction decay from a

polycrystalline sample for I = 1 is
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G(t = %-(cos What, + CcOS W, .t + CcOS w (3.54)

23%1 31%1 21%1)
with

Wiy = 2nA Wyq = -(3+n)A Wy = (3-n)A (3.55)

In keeping with the convention long established in zero field NQR, only
positive frequencies will be displayed and therefore three lines will
be observed (where the same signal function G(tl) would result in three
pairs of lines as we have chosen to display the spin-1/2 spectra). A
number of illustrative examples of typical spin-1 zero field NMR
spectra appear in Chapter V. Figure 3.7 shows a comparison between the
zero field spectra of I-I and I-S dipole-dipole coupled spin systems
and of a spin-1 quadrupolar nucleus.

b. Explicit Calculation of p

In this section, I take a somewhat different approach to the
calculation of the.signal function of Equation (3.54). Rather than
calculating G(tl) as in Section B, I obtain an explicit expression for
the lab frame representation of the density operator for a specific
orientation, pg(tl). This corresponds to following the evolution of
the lab frame magnetization at each orientation of the powder for all
times ty.

While it is always possible to represent p as a matrix of
numbers, somewhat greater insight is gained if instead p is represented
in an operator basis set. This approach has gained popularity in the
use of fictitious spin-1/2 operator bases in the analysis of multiple-
quantum NMR /7 -80 but its use in NQR is older.81 Generally, a traceless

NXN Hermitian matrix is represented by NZ-1 independent traceless
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Figure 3.7. Comparison of spectra and Hamiltonians for two

dipole-coupled spin-1/2 nuclei, and for a spin-1 quadrupolar
nucleus. a). Summary of zero field eigenstates and transition
frequencies of dipole-coupled pair. Transition frequencies allowed
in both I-I and I-S systems are shown in bold lines; allowed only
in I-S, dashed. For comparison to quadrupolar spins, only positive
frequencies are shown. b). Eigenstates and energy levelé of
spin-1 system in the notation of Table 3.1. A non-zero value of 75
splits the |+> and |-> eigenstates. For n = 0, the spectrum is
identical to that of the I-I pair.
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operators. The operators in Tables 2.1 and 3.1 provide a convenient
basis set for the discussion of spin-1 nuclei in zero field. The
transformations of the first rank tensors under rotations are given by
Equation (1.25); the second rank tensors U, in Table 1.2. Time
evolution is summarized in Equations (3.25) and (3.26).

Until Equation (3.13) the treatment of Section III.B is adequate.

At a time ty the density operator pn(tl) is

Q .
pM(tl) = cosﬂ(Ichosw12t1 + (IxMI +I I Dsinw

yM ytam 12%1)

cosw,qt; + (IyMI;M+IzMIyM)Slnw

t

-sinﬁcosa(IXM 23t1)

1 + (IXMIZM+IZMIXM)51nw31t1) (3.56)

+51nﬂ51na(IyMcosw31

or, in slightly more compact notation,

Q . .
pM(tl) = cosﬂ(Ichoswlzt1 + U2+M51nw12t1) - sln.,Bcosa(IxMcosw23tl +

cosw, . t '+ U sinw,.t.) (3.57)

U sinw,,t,) + 51nﬂ51na(IyM 3151 1-M 31%1

1+M 2371

Finally, pﬁ must be rexpressed in the laboratory frame pg = R'lpﬁR, and

Pt = ag(ET g +ag(eTy + ag(t)I; + a,(c)Vs  + ag(tUpy

+ a6(t1)U1-L + a7(tl)U2+L + a8(t1)U2_L (3.58)
where

2 . 2
1-(cos acosw, ., t.+sin acosw

al(tl) = sinBcosfB[cosw 23t 31tl)]

12t

a2(tl) = sinfBsinacosa(cosw,.t, - cosw

3151 23%1)

a3(tl) = coszﬂcoswlztl + sinzﬂ(coszacosw23t1 + sinzacosw31t1)
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I; cosﬂsinzﬂsinZa (sinw,.,t, + sinw,.t. + sinw12t1) (3.59)

a,(t)) = - 23%1 31%1

. .2 2 . .
aS(tl) = cosfsinfB(sin a51nw31t1 - cos aslnw23t1 - cosZa51nw12t1)

a6(t1) = sinacosasinﬂ[2coszﬂsinw12tl+c052ﬂ(sinw23t1+ sinw31t1)]

2, .
) + cos2acos fBsinw. .t

. 2 2 . 2 .
a7(t1) = sin B(sin"asinw,,t,- cos asinw 1251

3141 23%1

1 . 2 ; . 2 . .
a8(tl) = - E-sanacosﬂ[(l+cos ﬂ)31nw12t1- ?ln ﬂ(51nw23t1+51nw31t1)

Normally when the external field is reapplied only I, ; and U, are
stored as diagonal elements of p;, but suitable detection sequences can
be designed to transform any of these lab-based tensor operators into
an observable transverse magnetization. In the most general ordered
system all of these coefficients may be non-zero. Magnetization
initially aligned in fhe laboratory frame may appear as any other type
of operator. If n =0, ay, ag, ay, and ag vanish and the magnetization
is limited to excursions in the plane defined by the laboratory and
molecular z-axes. Where the sample contains a distribution of
orientations P(Q1), the ap coefficients must be integrated over that
distribution function. In powders where P(Ql) is a constant, only aj
has non-zero integral over all space, and is responsible for the free
induction signal of Equation (3.54). In powders there are no
observables orthogonal to the initially prepared operator. I return to
this point in Chapter VI.

2. Half-Integer Spins: I = 3/2, 5/2

Kramer'’s theorem (which will be introduced and explained more
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rigorously in Chapter VII) states that each energy level of a zero
field Hamiltonian with half-integral spin must be at least doubly
degenerate. An isolated.spin I nucleus has 2I+1 eigenstates but because
of this degeneracy there are no more than (21+1)/2 distinct energy
levels. If each energy level were coupled to all others, the number of
lines which would be expected to be observed (ignoring the inevitable
line at zero frequency which éorresponds to coupling between degenerate
pairs of eigenstates) would be (2I+1)(2I-1)/8 = (4I2-1)/8. Generally
far fewer lines are observed. 1In contrast to the integer spin, the
Hamiltonian of a half-integer spin nucleus consists of two non-
commuting pieces. The asymmetry parameter 5 couples only eigenstates
with vastly differing quadrupolar energies and perturbs their energies
only to second order in perturbation theory. In the basis set where
I,v is a good ﬁuantum number, corrections to the zeroth order
.eigenstates are small. Particularly for small values of n, but even
for larger values, the eigenstates of the quadrupolar Hamiltonian can
be identified as being almost eigenstates of lIle. Were I,y a
rigorously good quantum number, then in the molecular frame the dipole

selection rule

AmM = *1 (3.60)

would hold and only I-1/2 distinct non-zero frequency lines can be
observed by the experimental scheme developed in this chapter. Even
where the asymmetry parameter n breaks this selection rule, the
amplitudes of the "forbidden" lines are small and they are rarely
observed. 82

The spectrum observed in high field is generally not the entire



100

powder pattern but instead only that portion which is unshifted to
first order by the quadrupole coupling (for spin systems where the
second order quadrupolar broadening in not too severe. For other
systems, no high field technique is well suited and only zero field
methods with direction detection in low field, or with indirect
detection via level crossings are applicable.) As long as some portion
of the high field powder pattern is unifdrmly observed, it can be shown
(see Appendix A) that‘the intensifies of the zero field spectra are
uniformly scaled by the detection sequence. Calculation of the
spectrum in this chapter will therefore be based on the assumption of
uniform and, implicitly, complete detection.

The simplest case is for I = 3/2. By either of the counting
schemes outlined above, only a single non-zero line can be observed and
the two components of the electric field gradient tensor cannot be
individually determined. On the other hand, each unique line must
correspond to a unique site. Performing the calculation indicated in

Section III.B, the zero field free induction decay is

1
G(tl) = 3 (3 + 2costt1) (3.61)
with
e2qQ 1 2
wQ = 5% 1+ 3N (3.62)

The existence of only a single nonzero frequency line is from the
counting arguments discussed above. It is less obvious that the
relative intensities of the nonevolving and evolving components should
also be independent of e2qQ and n. It can be shown, independent of the

size of g5, that this is generally true.
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An illustration of the zero field NQR spectrum of a system of
spin-3/2 nuclei is shown in Figure 3.8, in the 7Li spectrum of
Li,S0,-Hy0. Diffraction studies reveal two sites, and they are clearly
resolved in the zero field spectrum at frequencies consistent with the
values of e2qQ and 5 derived from high field single crystal studies of
the same compound.83 The broad lines are presumably due to dipolar
couplings to 14 nuclei in nearby H,0 molecules and should be
considerably narrowed by replacement of the 14 atoms with 2p.84

For I = 5/2 no closed form solution to the eigenvalue equation
can be given. For any given value of 5, the eigenvalue equation can be
reduced to a pair of identical cubic equations which can be solved
analytically. Tables of the eigenvalues for spin-5/2 nuclei in zero

82 most often, the eigenvalue equation is given

field have been given;
as an expansion in 5. For n = 0 and where Im is a good quantum

number, the form of the zero field signal is

1
G(tl) = o5 (53 + 32 costtl + 20 cosZth1 ) (3.63)
for
3e29Q
wQ = 10% (3.64)

Slightly more than half of the magnetization fails to evolve (either
because it originally corresponds to I,y or because it corresponds to
matrix elements gf Iy or IyM which couple degenerate eigenstates). Of
the rest, nearly twice as much evolves in the coherence associated with
the transitions |1/2> -+ |3/2> than at transitions of the form

|3/2> - |5/2>. Unlike the spin 3/2 case, and in common with all larger

half-integer spin systems, as n grows both the spacing between lines
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Figure 3.8. Zero field TL1 NQR spectrum of polycrystalline
Li,50,-Hy0. The lithium zero field evolution was sampled at 10 ps
intervals for a total of 630 us. One line (in additibn to non-
evolving signal which appears at zero frequency in the spectrum)
is expected for each site and two such sites are resolved. &he

zero frequency line is partially truncated.
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and their relative intensities will vary in a regular fashion. For

I = 5/2 and larger values of 5, a third line may appear at the sum of
the two "allowed" lines but even for n = 1 its amplitude is less than
7% of that of either of the two other lines. Tables of dipole-allowed

intensities and normalized frequencies as a function of n are given for

I =5/2, 7/2, and 9/2 elsewhere.8?2 For I = 5/2 and to order n2, the
transition frequencies are11
3/2,5/2 2292
w /e = A (12 - —-él- (3.65)

for the line between the states which forfn = 0 can be associated with

|1,4| = 3/2 and 5/2, and

2

Ww/%03/2 L a6+ sz? y (3.66)

for the line between the 1/2 and 3/2 eigenstates. Where it is
observed, the transition frequency between the 1/2 and 5/2 eigenstates
appears at the sum of these two frequencies. |

Figure 3.9 shows an example of a typical zero field NQR spectrum
for I = 5/2. 1t shows the 2751 spectrum of polycrystalline potassium
alum (KA1(804)2-12H20). Using Equations (3.65) and (3.66), the
quadrupolar tensor elements e2qQ/h = 391%+2 kHz and n = .17%.05 can be
derived. Presumably, the abundant 1y nuclei in the lattice are

responsible for the breadth of the observed spectral lines.
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Figure 3.9. Zero field 2751 NQR spectrum of polycrystalline
KAl(SO4)2-12H20. Each distinct spin-5/2 nucleus has two zero
field frequencies in addition to some non-evolving magnetization.

Only one site is observed.
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IV. Experimental Results: Dipolar Coupled Systems

Both high and zero field NMR are sensitive to structure and
geometry in disordered solids. The spectrum of the ibcal nuclear spin
Hamiltonians detailed in Section I.B reflect the crystalline or
molecular characteristics which are the source of these Hamiltonians.
In the presence of motion, NMR spectra are averaged in a fashion
characteristic of the dynamic processes and an analysis of the spectrum
may reveal these processes. High field magnetic resonance yields
information whose fundamental content is %dentical to that of zero
field spectra but whose analysis is considerably more difficult because
of the superposition of orientational broadening on top of the useful
structural information in the spectrum. Because the evolution of the
nuclear spin systems is observed (ideally) in the absence of all
perturbing fields (dc or rf) the only limitation on the observgd
linewidths is that imposed by the nature of the spin system itself,
rather than by orientational broadening, field inhomogenetty, or
saturation. The spectral linewidths correspond to the minimum allowed
for that system (sample and T) and consistent with the Hamiltonians
being observed. Multiple pulse sequences have the potential to modify
the information content of zero field spectra,85'87 but no applications
to zero field dipolar spectra have appeared. In this chapter and the
next, what is intended is a critical review of the current experimental
situation.

Since an understanding of many of the results of this and
subsequent chapters requires an appreciation of the effects of motion

on nuclear spin interactions a brief review is given in Appendix B.
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More complete treatments using more sophisticated models are available
throughout the literature of modern NMR.88  The focus in this work has
been not on a deep understanding of the dynamics themselves but rather
on the interpretation of the spectra. Motional averaging will be
discussed on an ad hoc basis and only where necessary.

All spectra which appear in this thesis are of polycrystalline

samples at room temperature.

A, Two and Three Coupled Spin-1/2 Nuclei

In Chapter III the simple case of two coupled spin-1/2 nuclei was
discussed. Still, a number of minor but inferesting points remain
undiscussed. The gross features of Figure 3.2 (three lines of equal
intensity) are explained by the exact treatment of the two-spin system.
In this section, I confront some of the fiﬁer details which arise, for
the most part, from the breakdown of the static two-spin model. 1In
this chapter I hope to explore some of the current capabilities and
limitations of the technique of zero field NMR.

Two details in Figure 3.2 merit further discussion:
contributions to the zero field linewidth (as the "high resolution"
zero field NMR lines are still ~4 kHz full width at half maximum and
are significantly broader than would be acceptable in most other high
resolution applications), and the low intensity absorption bands at
roughly double the frequency of the main bands. (These latter are
almost certainly not due to instrumental artifacts. Wﬁile an obvious
source for lines at multiples of some fundamental frequency is non-

linearity in the receiver section of the spectrometer, the relative
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amplitudes of these lines show little or no dependence on the strength
of the input signal.)

1. Contributions to the Linewidth

a. Residual Fields

One possible source for contributions to the linewidths observed
in zero field NMR spectra is the effect of residual dc fields. 1In
routine operation the zero field region is shimmed using a Hall effect
gaussmeter and the residual dc field is certainly less than 100
milligauss. For isolated 1H nuclei, 100 mgauss corresponds to a Larmor
frequency of ~400 Hz. Dipolé-dipole couplings in a solid truncate the
Zeeman interaction just as the J coupling truncates the effects of
residual fields in diethylphosphite (Figure 3.6). The anisotropy of
the dipole-dipole coupling introduces a directional dependence;
additionally, the zero field spectrum must depend on whether the
residual field is primarily paréllel or perpendicular to the prepared
magnetization. (In the limit of exceedingly large longitudinal fields
HZ>>Hloc’ there is no signal in a "zero field" experiment as the
polarizing field is never turned off!) 1In Figure 4.1 the powder
ﬁattern lineshape is simulated for a pair of coupled spin-1/2 nuclei in
the presence of small residual dc fields. The resulting Zeeman-
perturbed dipolar spectra bear no close resemblance to the experimental
results of Figure 3.2 even for applied fields much larger than might
actually be expected to be present.

b. Other Dipole-dipole Couplings

In any real solid, small numbers of spins are isolated only to
the extent that the dipole-dipole couplings between clusters have not

had sufficient time to act; roughly, for a time 7 such that



107

Figure 4.1. Simulations of low field NMR épectra. The sample is
assumed composed of two-spin Iy systems with r = 1,60 A. Spectra are
calculated for transverse (a,c,e) and longitudinal (b,d,f) residual
fields of: '

a, b). 0.35 gauss (1.5 kHz).

c, d). 1.17 gauss‘(S.O kHz).

e. f). 2.34 gauss (10.0 kHz).

The spectra are seen to broaden and acquire structure but none of these
simulations closely reproduces the observed features. The residual

fields are almost certainly smaller than 0.35 gauss.
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IIHDCCIIT < 1 where IIHDccll is a "mean" dipole-dipole coupling
constant characteristic of the distance between clusters. Dipole-
dipole couplings are zero only for two magnetic nuclei infinitely far
apart. In most high field solid state techniques high resolution is
achieved by causing the time-average of the dipole couplings to become
vanishingly small and observing only those components of the total
spin-Hamiltonian which survive the averaging process.z’8 The approach
in this work is instead to emphasize these couplings and at their full
values. Where these multi-spin couplings are emphasized and no active
effort is made to discriminate between large and small couplings,4o
"clusters" and thus well-resolved zero field dipole-dipole spectra may
be observed only in carefully chosen real-world systems.
Traditionally, linewidths in solids are expressed (and

calculated) in terms of moments of the lineshape, where the nth moment

of the lineshape is given by
<™ = f(‘)’(w - <w>)" f(w)dw / j‘; £f(w) dw (4.1)

and f(w) is the lineshape of the specific line or band of interest.
The moments can be calculated from first principles and without
reference to exact dynamical calculations or numerical diagonalization

9,11 (Note that in this section I refer not

of multi-spin Hamiltonians.
to the more usual second moment of an entire high field spectrum
referenced to its center at w = wQ the Larmor frequency, but rather to
the second moment of an isolated line referenced to its center of
gravity.) Several authors have treated the moments of the lineshapes

for pure NQR lines.66:84,89 1y, coupled spin-1/2 nuclei closely

resemble a spin-1 nucleus, and few modifications to the theories for
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NQR linewidths are necessary to accomodate pairs of 1§ nuclei. In an
attempt to explain the observed zero field linewidth, the experimental
moment of the spectral line at ~42 kHz was calculated from the spectrum
for comparison to theoretical results. The experimentally observed

second moment is

M2 = <Aw2> = (2.82 £.05 kHz)2 (4.2)

The lH-lH dipole-dipole tensor trivially substitutes for the spin-1
quadrupolar tensor. The only necessary modification to the theory for
spin-1 nuclei is that only the contribution from 3/4 of the total
number of crystalline Hy0 molecules is included. Two coupled spin-1/2
nuclei comprise a four-level system. The triplet mainfold (3/4 of the
total number of pairs) mimics a spin-1 three level system while the
singleﬁ (the other 1/4) corresponds to a nonmagnetic spin-0 p&rticle.

2> the numerical constants

In the theoretical calculation of <Aw
tabulated by Vega were used.®® Based on the neutron diffraction
data,90 all 1H-18 vectors in the unit cell are parallel. Using the

single-crystal neutron diffraction coordinates, the theoretical second

moment is

<Aw?> = (1.95 +.01 kHz)> (4.3)

If the angle between the crystalline axis system and the internuclear
vector is changed, the theoretical value takes on values as large as
the observed but only for severe and improbable deviations from those
of the diffraction study. Therefore other dipole-dipole couplings
appear unlikely to explain the entire linewidth. More complicated

calculations which might include not only the dipole-dipole couplings
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but also small residual fields might be attempted but were not.

c. Dilution Studies

In order to observe at higher resolution the line at 42 kHz,
samples of Ba(ClO3)2-H20 were recrystallized from D,0 solution. In the
recrystallization, most of the crystalline 14 atoms were replaced by 2p
atoms. This greatly reduces the dipole-dipole couplings between sites
as the 2D quadrupolar tensor is known to have a large motionally-

induced asymmetry parameter at room temperature91

and couplings between
integer spins with large n and half-integer spins are quenched in zero
fie106: 84 Simultaneously, the number of ly.1g pairs decreases as the
square of the percentage of residual 1H nuclei in the lattice. IH-1H
pairs within a single water molecule should still have nearly unchanged

2p

resonance frequencies. 14 nuclei which share an oxygen atom with a
nucleus are coupled only much more weakly to far distant lh's ana
appear near zero frequency. Pairs of 2D nuclei are not expected to be

1H'spectrum.

observed in the
The second moment calculation suggests a significant percentage of
the linewidth is due to unresolved couplings to other molecules in the
lattice. This contribution to the linewidth decreases approximately
linearly with the decrease in 1§ concentration. Figure 4.2 shows zero
field NMR spectra observed as a function of the 14 concentration.
Removing 14 from the lattice decreases the width of the lines in the
spectrum of the residual pairs. As these lines narrow it becomes
apparent (Figure 4.2c,d) that two distinct resonance frequencies were
hidden beneath the single peak observed in the completely protonated

form. (Whatever is happening to the spectral features of the line at

zero frequency is unfortunately masked by the spectra of all the
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Frequency (kHz)

Figure 4.2. 14 zero field NMR spectra of
partially deuterated Ba(Cl04),-H,0.

a). 100% 1H.
b). 60% lu.
c). 31z 1H.

d). 10% lH.
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unpaired sites, which is concentrated in a broad blob characteristic of
the range of local fields in the crystal about zero frequency.) This
splitting is similar to that expected for quadrupolar spin-1l nuclei
with an asymmetric tensor‘v. Residual fields, which cause the entire
absorption pattern to broaden and move to higher frequencies, cannot be
the source of this splitting.

13,

Motionally induced asymmetries in Iy dipole-dipole

92 93

couplings, in carboxylic acids, and in hydrate crystals94 have

previously been observed in high field. It is known from 2p NMR

studies91

that the water molecules in this and many other hydrates
execute jumps which interchange the two nuclear sites. If the flips
occur rapidly, this sort of motion cannot be observed in pure NMR
because the dipolar tensor is unaffected by the interchange of the two
nuclear positions. The dipolar tensor is, however, modified if these
flips are not precisely rotations by =« but instead have a mean value of
m. Small angle librations superposed on the flipping motion should be
observable in the NMR spectrum. Section C of Appendix B treats the
effect of small amplitude librations on quadrupolar tensors (relying on

11 4f the results of Bayergs). These

the presentation by Abragam
results are equally relevant to the problem of two spins-1/2. Assuming
the rather unphysical but eminently tractable picture that only rocking
modes  in the plane defined by the internuclear vector and normals to

the bisector of the HOH bond are allowed, the motionally averaged zero

field dipolar Hamiltonian <ﬁD(t)> is
<H (t)> = w_. (1 - ﬂ)[312' I(I+1l) + (I2 - 12)] (4.4)
D D z ik y )

where
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To first order in 5, the high frequency transitions are shifted by -nuwp

and -2nwp from the static value of 3wp/2. Solving for n and wp,
n = .052 (4.6)
and

wD/ZR = 29.87 kHz 4.7)
In terms of the molcular parameters,

<6?)>? - 19 = - 11° (4.8)
and, corrected for the libration,

= +
i, 1.59 +.01 A (4.9)

in closer agreement with neutron diffraction results.90

d. Double Frequency Lines and More Water

The high frequency lines at multiples of the fundamental dipolar
frequency conclusive argue for the breakdown of either the zero field
or two-spin approximations. Two coupled spins in zero field cannot

51,71,96 4t

support the observed energy splitting. It is well-known
in low applied fields overtone lines at multiples of the fundamental
absorption frequency are allowed. Figure 4.3 shows simulated low field
spectra of Ba(Cl03),-Hy0 as a function of the strength of the applied
Zeeman field. At fields H; ~ Hp a rather complicated pattern is
observed and for applied fields ~2Hj lines appear at roughly twice the

Zeeman energy. For larger fields these lines grow progressively

weaker. But no double-frequency lines are observed in the range of



Figure 4.3. Low field NMR simulations, showing the transition from
zero field spectrum to high field spectrum as a function of the applied
field in two-spin system. The assumed spin system is two 14 nuclei
1.60 A apart (wp/2m = 29.3 kHz). The magnetic field is assumed
perpendicular to the magnetization so that precession occurs. a).

2.94 gauss (12.5 kHz). b). 5.87 gauss (25 kHz). <c¢). 11.74 gauss (50
kHz) .

d). 23.5 gauss (100 kHz). e). 47.0 gaussv(200 kHz). £f). 93.9 gauss
(400 kHz). In (d-f) the horizontal scale is changing. These
simulations show the source and decay of the allowed transitions at
twice the Larmor frequency in addition to the transformation of the

zero field spectrum into the high field Pake pattern.
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fields where the dipolar spectrum is still sharp.

 In dilution studies of Ba(Cl03),-Hy0 the double frequency lines
disappear, which suggest that near-neighbors are involved. Simulations
of small numbers of interacting pairs (< 3) fail to reproduce these
features. For many more than six interacting spin-1/2 nuclei, an exact
calculation of the spectrum using the formalism of Section III.B is
difficult.

Even allowing for an enlarged nuclear spin system the double
frequency lines remain mysterious. For pairs of pairs, lines at this
frequency appear at vanishingly small intensities if the prepared and
detected operator is I, ;. The amplitudes of these lines vary with
changes in an as-yet unidentified variable. Figure 4.4 shows two
spectra of Ba(ClO3)2-H20 taken with all routinely set experimental
parameters identical and separated in time by two days. In the first
spectrum, the amplitude of the high frequeﬁcy satellite lines is ~5%
that of the main lines; in the second, nearly zero. Often, these high
frequency lines appear badly phased with respect to the main lines in
the spectrum.

All of these observations are consistent with the possible
preparation and detection of interpair dipolar order created at some
point in the field cycle and detected in high field. Dipolar order
between two pairs has been observed in high field studies of gypsum,
Ca804-2H20.97 The amount of such order prepared during the field cycle
might depend on factors which are not routinely well-regulated, such as
the precise rate of demagnetization. Were such a state prepared before
the field Bint is quenched it would evolve at the observed frequencies.

Transported back to high field, this type of dipolar order can be



S - Ba (CIO3)2 *H0

a)

b)

U A

l il | | |
2100 -50 0 50 100

Frequency (kHz)

Figure 4.4. 14 zero field NMR spectra of polycrystalline
Ba(ClO3)2-H20. All experimental parameters which the
experimentalist routinely sets were identical. 1In a) little
evidence appears of the double frequency lines. 1In b), these

lines are of relatively large amplitude.
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converted into an observable by any pair of pulses and would appear in
quadrature with the signals due to the evolution of Zeeman order. This
may serve as a warning as to the complexity of the demagnetization
process in systems of discrete energy levels and where the spin
temperature hypothesis does not hold.

Other two spin systems exhibit spectra similar to that of
Ba(C103)2-H20. Two spin systems differ from one another only to the
extent that they really are two spin systems and therefore to the
extent that the ideal three-line spectrum is broadened and ultimately
split by dipolar couplings to other magnetic nuclei. 1In Figure 4.5,
two zero field NMR spectra of other two spin systems are shown. The
spectrum of the first (K2C204-H20) is nearly indistinguishable from
that of our model hydrate, Ba(ClO3)2-H20 and even reproduces the weak
double frequency transitions. In other systems (Li,50,-H,0 and
CaCl,-Hy0, shown in Figure 4.6) the ideal triplet is significantly
broadened. Céuplings to other high vy nuclei (either the 7Li or other
water molecules in the lattice) contribute to the linewidths.
Nonetheless, these weaker interactions are insufficient to produce any
radically new features.

2. Beyond Water: the Methyl Group

In search of new and different zero field NMR spectra, Figure 4.7
shows a series of spectra of sodium acetate trihydrate. Each sample
was recrystallized from D50 and the only 14 nuclei in the sample are
found in the methyl groups of the acetate anion. Despite this
dilution, the zero field NMR spectrum of the network of -CHj groups,
whose spectrum is shown at the top of the figure, is basically

unstructured. Couplings between methyl groups are strong and the



a)

b)

ﬂ | KyC,0,H 0
Liy SO, *Hy0
| l | | |
-100 -50 O 50 100
Frequency (kHz)
Figure 4.5. 1H zero field NMR spectra of polycrystalline a).

K,Cy0,-H,0 and b). Li,S0,-Hy0. In both the three-line spectrum is
observed. In a). the spectrum is stikingly similar to that of
Ba(ClO3)2-H20; even the double frequency lines are reproduced. 1In
b). the lines are significantly broadened by nearby H,0 sites and
the 'Li spectrum.
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High field

Zero field

| | | I |
-100 0 100

Frequency (kHz)

Figure 4.6. High field and zero field 1y »r spectra of

polycrystalline CaCl,-2H,0, acquired after a two-pulse solid echo
sequence. The high field Pake pattern is significantly broadened
and the singularities ill-defined. The zero field lines are broad

yet well-resolved.



Figure 4.7. Zero field NMR spectra of polycrystalline -CH; group in
sodium acetate (NaOAc-3D20) as a function of concentration of the -CH3
groups. At top, the spectrum of the system with 100% -CH; groups.
Middle and bottom, -CH3 groups have been replaced by -CD3 groups. At
low concentrations the spectrum shows the features characteristic of
isolated methyl groups. Assuming rapid rotation about the C5 axis the
splitting observed in the spectrum at bottom corresponds to

<r3>"1/3 ~ 1,89 A,
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system closely resembles a dense lattice of coupled spins (discussed in
more detail below) rather than a collection of isolated groupings of
three spins. Replacing a large percentage of the remaining s with
2p previously was shown to greatly increase the resolution in zero
field NMR. To avoid complications which might arise from mixtures of
isomers (and because of the extremely small number of three spin
systems found in a statistical distribution at low concentrations),
three samples were recrystallized from solution as mixtures of
NaOAc-3D,0 containing only perdeuterated -CD5 and perprotonated -CH,
groups. At low concentrations (~10% or less protons) the spectrum of
the isolated methyl groups appears. It, like the spectrum of the
dipolar coupled pair, consists of a triplet of'iines. Unlike the two
spin systems, most of the integrated intensity appears at zero
frequency.

Using the formalism of Chapter III and the results of Appendix B
it is simple to numerically calculate the spectrum of the isolated -CHjy
group. In this section, I attempt less formalism if no less rigor.

The simulation of the spectrum in the fast motion limit consists of two
nearly distinct problems: first, the calculation of the eigenstates
and energies of the zero field Hamiltonian, and second, a calculation
of the relative intensities of the observed lines. First, the
Hamiltonian:

At high temperature the -CHj group undergoes rapid rotation about
its C; axis and the zero field molecular frame will be referenced to
this symmetry axis. (None of the conclusions which follow depend in
any way on any assumptions about that motion except that it is rapid

and that, over a time period comparable to the inverse of the dipolar
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couplings, the methyl group rotational potential well is at least

three-fold symmetric.) The Hamiltonian can be written

HD = wp jik [Ij-Ik - 3(Ij-rjk)(Ik-rjk)] (4.10)

where all the ik are assumed equal in length. Hp can be expanded and
wp defined as in Chapter I. Because of the assumption of rapid motion
about the molecular z axis, the averaged Hamiltonian <ﬁD(t)> is most
readily calculated in an interaction frame where the spatial variables
are changing with time. This is in contrast to the more familiar high
field picture where the spin variables are accelerated with respect to
the spatial and laboratory frames. (A somewhat more formal treatment is
given in Appendix B.) In this accelerated frame of reference, and as
long as the methyl group motion is rapid, the Hamiltonian observed in
an NMR experiment is Equation (4.10) averaged over many periods of the
rotation. This corresponds to truncating all terms in the Hamiltonian
which do not commute with rotations about the axis of rotation, and if

the spin Hamiltonlan is expanded with its z-axis chosen as above

<H> = H =wII+II

p (11, 2253z ¥ 13211,

1
Z-(I1+I2 + I1 12 + 12+I3_+ 12 13 I3 Il + I3 Il+)] (4.11)

The eigenstates of H, gg are

|¢l> = Iaaa> = |¢4> |¢2> =-}§ [Iqaﬂ>+|aﬂa>+|ﬂaa>] = |¢3>
|¢5> - [|eap> + exp(in/3)|afa> + exp(2ir/3)]|Baa>] = |¢6> (4.12)

F

and
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*

* 4> - 6> (4.13)

|¢7> = |¢5>
The bar over an eigenstate is a symbol I will occasionally use to
indicate the inversion of all spin operators (i.e. |a> is changed to
|ﬂ> and vice versa). No particular significance can be attributed to
any specific choice of eigenstates, as any linear combinations of
degenerate levels are also eigenstates. Because of the rapid motion
about the C5 axis, molecular quantum numbers J (the total angular
momentum) and |M] (the projection of J on the quantization axis) can be
defined and are good quantum numbers. Eigenstates |¢1>-|¢4> comprise a
quartet with J=3/2 which is functionally equivalent to a pseudospin-3/2
particle. Eigenstates |¢5>-|¢8> correspond to a pair of J = 1/2 two-
level systems and can be treated as two isolated pseudo spin-1/2

particles. Where E = <¢n|Heff|¢n>,

E = -E, = -E, = E = %-w (4.14)

E.. = E, = E, = E, = 0 (4.15)

Formally, the normalized signal averaged over a powder distribution

function is given by

pX Tr[IjIj(tl)]
- - j=x,v,z :
G(tl) > Tr[IjIj] (4.16)

J1=X,y,2

The operators Ij are block-diagonal in the expectation values of J.

The sums over the traces can be separated into traces over each of the

pseudo-particles, and
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? (2Tr [14) 515159 + Tx [143/9153/2¢E) 1)
G(t,) = (4.17)
1 ;: (2Tx (131 551 5] * 0% [T13/2%53/2])

The zero field Hamiltonians H;,. vanish for a spin-1/2 particle and
magnetization associated with these two pseudo particles is
nonevolving. Only Ix3/2 and Iy3/2 contain off-diagonal matrix elements
between nondegenerate states. All other operators are non-evolving.
For the spin-1/2 submatrices, Tr [Ij1/21j1/2] = 1/2 and

Tr [123/2123/2] = 5, For each of IX3/2 and Iy3/2,

. 3 _
Tr [Ij3/21j3/2(t)] -2+ 3 COSGE thl) (4.18)
Substituting back into Equation (4.17),
3
3+4+6cos(—2-wtl)+5
6(t,) = D
1 3+4+6+5
; ‘l.[2 + coské- ty)] (4.19)
3 2 “p1 :

In the frequency domain this produces a triplet of relative intensities
1:4:1 and is closely reproduced by the spectrum of the most dilute
system shown at the bottom of Figure 4.7. The observed dipole-dipole

coupling corresponds to a 1H-1H distance of 1.89A.

B. Heteronuclear Spin Systems

The basic differences between hetero- and homonuclear spin
systems have been covered in Chapter III. In this section, I present

simulations of spectra for larger heteronuclear spin networks .and
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comment on the possible use of field-cycling NMR as a means for
inducing polarization transfer from abundant, high y spins to lower
sensitivity spin-1/2 nuclei. Some aspects of this problem weré covered
in detail in Section C of Chapter III. These are really the same
problem because the magnetization function, Tr [Szp(tl)], and the
spectrum, f(w), are a Fourier-conjugate pair.

In Section III.C I showed that in an I-S pair t; might be chosen
so that the final transfer of polarization from I to S spin is more
efficient than by any other technique. The final value of the S spin
magnetization is much larger than might be observed if the two spihs
were brought into equilibrium in high field via standard techniques
like cross-polarization.98’99 The complete undémped time evolution of
the magnetization function for the I-S pair is shown in Figure 4.8a.
This technique is not, unfortunately, of general utility. As the
number of interacting spins becomes larger (Figures 4.8b,c,d),
magnetization tends to wander rather more chaotically from site to
site. Maxima in the function SzL(tl)lare not as well defined nor as
dramatic as in larger spin systems. Where small numbers of spins are
not well-isolated, couplings to other spins rapidly damp out the
oscillations and the theoreﬁical maxima may not be achieved. 1In the
experiménts illustrated in Figure 3.4 the maximum observed transfer of

13C nuclei in 13C-calcium formate was ~40% of the initial

order to the
14 order. This is only about half the maximum predicted in Figure
4.8a. Figures 4.9 and 4.10 illustrate the zero field spectra predicted
for the other common spin groupings occurring in organic compounds,

13CH2 and a rapidly spinning 13CH3. The spectra observed for S, (0) = 0

are in fact the Fourier transforms of the magnetization functions



Figure 4.8. Simulated polarization transfer functions Sz(tl) for InS

spin systems for I = 14 ana s = 13

C. In each simulation, the S spins
are assumed initially depolarized. The y-axis is in units of the
equilibrium ly magnetization. a.)- ¢). Common groupings of spins in
organic compounds. Realistic bond lengths (1.095 A) and angles
(109.5°) are used.

a). I-S dipole-dipole coupled pair. At its‘peak, S, =.75. An
equilibrium distribution would correspond to I, = S, = .5.

b). 13CH2 group. Peaks are well-defined but the maximum value (~.55)

is somewhat less than equilibrium (.67).
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Zero Field NMR
13
CH2

Theory

Frequency (kHz)

Figure 4.9. Simulated zero field spectra of 13CH2 groups as a
function of the high field initial condition. Tetrahedral bond
angles and r,_ y = 1.095 A assumed. The stick spectra are shown in
the insets; superposed, spectrum convoluted with a 6 kHz
Lorentzian line. For the initial condition where the
magnetization is shared equally between sites, several of the

allowed transitions have nearly vanishing intensity.
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Zero Field NMR

13
CH3
Theory
|+S,
|Z
,-S,
~80 0 | 80
Frequency (kHz)
Figure 4.10." Simulated zero field spectra of rapidly spinning

13CH3 group as a function of high field initial condition.
Tetrahedral bond angles and r; y = 1.095 A assumed. The stick
spectra are shown in the insets; superposed, spectrum convoluted

with a 6 kHz Lorentzian line.
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plotted in Figure 4.8b and 4.8c and are calculated with the simulation
program HETZF.FOR, which is similar to DBZINT.FOR but also accepts
heteronuclear spins.

A more general approach to the problem of transferring order from
one spin species to a second in low field is to use the level-crossings
described in Chapter II; or, in systems of.spin-1/2 nuclei, adiabatic
demagnetization. In a coupled spin system demagnetized to zero field,
polarization stored in the I nuclei is transferred to the S nuclei
consistent with equilibrium in the the untruncated Hamiltonian Hj. As
the remagnetization reestablishes Zeeman order, the magnetization

stored in the S spins while in zero field remains there.ll’24

C. More Complicated Spin Systems

As the number of strongly coupled spihs increases, the number of
discrete transition frequeﬁcies present in the spectrum multiplies
rapidly. A treatment based on considerations of symmetry will be given
in Chapter VII. For the present, these comments aim to establish a
framework for the understanding of subsequent zero field NMR spectra
presented in this chapter.

Depending upon which Hamiltonians dominate the spectrum,
predictions about the numbers of lines expected from systems of coupled
spin-1/2 nuclei vary greatly. In high field and if there are no
couplings between spins, then N spins produce N transition frequencies,
.and each line is characteristic of the chemical shift o at a specific
site. This situation is common in high field, high resolution dilute

13C).

spin spectroscopy (often In the weak coupling limit (Ao >> J)
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the energy levels of isolated spin-1/2 nuclei are split by the secular
component of the J coupling (Equation (1.71)) and each chemical shift
line breaks up into a number of lines roughly equal to the number of
near neighbors. There are certainly no more than N such neighbors and
often far fewer. This is commonly the situation for 1y high resolution
NMR in liquids. A gross overestimate of the number of allowed lines is

N2,

More often, the number of spectral 1ines increases only linearly
with N.

In strongly coupled spin systems, the eigenstates of the
Hamiltonian can no longer be identified as belonging to a single spin
but rather are characteristic of the system of N spins in concert.
Excitation under an rf pulse corresponds to the flipping of a single
spin and each eigenstate is excited simultaneously. In high field and
the rotating frame where I, is a good quantum number a single pulse can
only excite coherences where Am = 1. This diﬁole selection rule for Am
can be manipulated éo,that different values of Am = n are
excited. 100101 peyer lines are observed in these higher order spectra

and these lines are presumably more readily interpreted. In strongly

coupled systems in high field,102

_ (2N)!
W = N T(N-1) | for n = 0 (4.20)

where W is an upper bound to the number of allowed lines per order.

As described in Section 4 of Chapter III, the zero field spectrum
acquired by the sequence of Figure 3.1 is also the product of dipolar
selection rules (aithough the alteration of these selection rules is
one of the topics covered in Chapter VI). In the absence of uniaxial

molecular motion (as in the CHy group above) where zero field molecular
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frame selection rules exist, or other unusual circumstances, all energy
levels are coupled to all others by the three angular momentum
operators. The number of eigenstates in an N spin-1/2 system is 2N;
therefore, the maximum number of lines which might be expected to be

observed is

v o=2% V-1 (4.21)

As was shown by explicit calculation for I = 1 and will be generalized
in Chapter VI, in a powder sample the only observables are proportional
to those operators which appear in the prepared density operator p(0).
For p(0) = I,;, only a single oscillating component of the
magnetization is detected and there is no distinction between positive
and negative frequencies. To facilitate comparison to high field
spectra, we have chosen in dipolar coupled spin systems to treat the
real data set G(ty) as if it were a complex function and a Fourier
transformation yields a symmetrized spectrum f(w) = f(-w). Only half
the lines enumerated in Equation (4.21) contain independent
information.

There is one coupling constant for each pair of nuclei in the sum
of Equation (1.49), and only N(N-1)/2 couplings provide all available
structural information. Even for small spin systems, the geometrical
problem is grossly overdetermined as there are far more lines than
couplings. If individual lines are not well-resolved because too many
lines appear in the spectrum, this may prove to be a crippling
difficulty‘which renders any analysis difficult or impossible. The
technique of multiple quantum NMR is designed specifically to overcome

this difficulty.103
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Equation (4.21) overcounts the actual number of lines which
appear in the spectrum if there are symmetries in the Hamiltonian. A
more detailed treatment is given in Chapter VII. One symmetry
operation in particular plays a sufficiently important role to be
mentioned here. Time reversal symmetrylol”105 has a profound effect on
the spectra of systems where the total spin angular momentum is half-
integral. Time reversal symmetry guarantees that for N odd, all
eigenstates are at least doubly degenerate. W is really equal to tﬁe
number of coupled pairs of energy levels (rather than eigenstates). For
N odd Equation (4.21) overcounts the number of allowed lines by a
factor of four. (An additional line appears at zero frequency; as in
half-integer quadrupolar nuclei, this corresponds to magnetization
shared between degenerate pairs of eigenstates.) For strongiy coupled

spin systems in zero applied field,

w= 22N -1y N even

(4.22)

N-1

W= 2NN

1) +1 N odd

In any case, for N = 4 the number of allowed transitions becomes
large and lines corresponding tb individual transitions are rare.
Dipolar couplings to distant spins (for two 1y nuclei 10A apart the
dipolar coupling constant is still ~ 100Hz) may fail to split lines but
still contribute significantly to the linewidths. (The near-neighbors
in Ba(ClO3)2-H20 are > 5 A away) . Giveh a large number of inherently
broad lines it is rare that any will be well resolved. Geometric
information in larger spins networks will rarely be derived by solving
for observed line frequencies and extracting the dipole-dipole

couplings. Instead, this information is most conveniently derived by
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computer simulation.

1. Structure Determination: N = 4

In this section, two examples of spectra of isolated groupings of
four coupled 14 nuclei will be shown. Distances within a "spin system"
are, for the most part, short compared to the distances between "spin
systems." The evolution in zero field is determined primarily by the
near-range couplings, and if there are few enough of these couplings
sufficient structure might be observed in the spectrum to characterize
the configuration and geometry of these isolated groups.

| Figure 4.11 shows the zero field powder NMR spectrum of 1,2,3,4-
tetrachloronaphthalene bis(hexachlorocyclopentadiene) adduct. The high
field spectrum was shown in Figure 2.1. To our knowledge, no structure
determination has been performed on this compound. The geometric
question of interest is the configuration of the 14 nuclei situated
about the central ring. These course details are readily modeled.
Figure 4.12 shows spectra predicted to arise from six possible
conformations. Only one of the predicted zero field spectra bears a
close resemblance to the observed spectrum.

A sketch of the molecular structure of di(u-hydrido) decécarbonyl
triosmium ((p-H)2053(CO)10) is shown in Figure 4.13a. (p-H)2053(CO)10
is a metal carbonyl cluster complex whose crystal structure has been
studied both by single crystal neutron and x-ray diffraction.}0® Two
molecules share one unit cell whose volume is ~800 A3. The carbonyl
groups contain only a negligible number of magnetic nuclei; neither are
the heavy metal nuclei likely to complicate the observed spectrum. In

zero field the more abundant magnetic isotope, 18905 (I =3/2), evolves

independently of the spin-1/2 nuclei due to its large quadrupole



Figure 4.11. Top: the molecule 1,2,3,4-tetrachloronaphthalene

bis(hexachlorocyclopentadiene) adduct. The configuration of the four
14 atoms about the central ring is unknown. All other ring positions
are chlorinated. The high field spectrum of this compound is shown in
Figure 2.1.

Bottom: Zero field NMR spectrum. The sharp peak at zero frequency is
truncated for purposes of display. The evolved zero field
magnetization is sampled at 5 ps intervals giving an effective zero
field bandwidth of *100 kHz. Only half that;spectral width is shown.

The magnetization is sampled once every minute. Twelve 256-point zero

field FID's were summed and Fourier transformed to yield this spectrum.

Figure 4.12. Simulated zero field spectra for six possible

configurations of the 14 nuclei about the central ring in the molecule
1,2,3,4-tetrachloronaphthalene bis(hexachlorocyclopentadiene)
adduct.For clarity, only the configuration of the central ring is
shown, to the left of the associated spectrum. For each configuration,
the zero field spectrum is calculated, broadened to match the
experimentally observed linewidths, and plotted. The simulation at
bottom right closely resembles the observed spectrum (Figure 4.11). A
Co, axis of symmetry which interconverts the two innermost (1 and 1')
and two outermost (2 and 2') sites is assumed. Because of the assumed
symmetry, only four distances characterize the simulation;

rll' = 2.83 A, r12 = 2,22 A, rlzf = 4,34 A, and ]'.'22' = 5.01 A.
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1,2,3,4 Tetrachloronaphthalene-
bis (hexachlorocyclopentadiene) adduct

Zero Field NMR
Powder Spectrum

]
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Figure 4.11

XBL 853-10397
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Figure 4.13. Structure of (p-H)2053(CO)lO in

the solid state. Top: Approximate molecular
geometry. Bottom: Simplified representations
showing only the arrangement of the 1y atoms
within a single unit cell. Positions 1 and 1’
and 2 and 2’ are related by an inversion

center.
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187Os, has a low magnetogyric ratio and

moment. The spin 1/2 isotope,
appears at low natural abundance.

The four IH nuclei in one unit cell afe relatively isolated from
all other magnetic spins. The approximate arrangement of the four 1y
nuclei is shown if Figure 4.13b. The spin lattice relaxation time T;
for the lH nuclei is long (= 1 minute) and there appears to be little
motion which might complicate the interpretation of the spectrum. An
early powder NMR study of the high field spectrum of this compound
(shown in Figure 4.14) which assumed only two protons interacted
strongly was unable to reprdduce the observed spectrum.107 Thus
(p-H)2053(C0)10 makes a good test case for the applicability of zero
field NMR to the location of H nuclei in modefately large spin
systems.

Figure 4.15 (top) shows the experimentally obtained zero field
NMR spectrum of (y-H)20s3(CO)1o. The zero field spectrum proves
unequivocally that thé two-spin interpretation is incorrect. 1In
comparison with the H)O spectra of section A, far too many features are
resolved to allow for the possibility that the coupling between only
two spins dominates the spectrum. To reasonably approximate the
spectrum requires that the spin network be treated as (minimally) four
interacting spins; i.e. considering both sets of Iy pairs in the unit
cell.

Figure 4.15 (bottom) shows a simulated zero field spectrum based
on the neutron diffraction study done at low (110 K) temperature.

While some similarities are evident, the match between the observed
zero field NMR powder;spectrum and that predicted by the coordinates of

the diffraction study is not particularly good. Attempting to improve
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Figure 4.14. High field NMR spectra of polycrystalline

(p-H)ZOs3(C0)10. Upper:. Experimental spectrum obtained by solid echo
sequence, with polarizing period between successive shots of 2 minutes.
Center and below: computer simulations of the high field spectrum
ignoring chemical shifts based on a "best fit" to the room temperature
zero field NMR results (rll' = 2.81 A, rio = 2.38 A, and rio' = 5.17 A)
and the low temperature neutron diffraction data (rll' = 2.94 A,

Y19 = 2.38 A, and r12’ = 5.28 A). The simulations are convoluted with
a Gaussian lineshape function to account for the finite number of

orientations sampled in the simulations,

Figure 4.15. Zero field NMR spectrum of polycrystalline

(p-H)2053(CO)10. Upper: Experimental spectrum. Eleven zero field
FID’s 256 points long were summed and Fourier transformed. The zero
field signal was sampled at 5 ps intervals; only half the full
bandwidth is shown. Center and below: computer simulations of the
zero field spectrum based on the distances given in Figure 4.14. The
stick spectra of the simulations are broadened with a Lorentzian
lineshape function of ~2.8 kHz to more closely match the observed

features. A sharp line at zero frequency has been truncated.
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the fit, an iterative brute force three step process (simulation, plot,
and comparison to the experimental results by the graduate student
eyeball) was developed. Assuming that the equilibrium positions of the
14 nuclei are consistent with the known inversion symmetry of the unit
cell, all four 14 nuclei lie in one plane, and only three distinct
distances (rll" Ti9r, and r19 in the notation of Figure 4.13) are
. independent. One of these distances serves as a scaling constant which
determines only the absolute width of the zero field spectrum. The
other two parameters determine the spectral appearance and were
exhaustingly varied until an.acqeptable fit was achieved; (In
practice, it was simpler to choose ry, and the angle between ry, and
ri11+ as the two parameters.) Finally, the speétrum was scaled so that
the strongest bands appeared at identical frequencies in the
experimental and simulated spectra. Small variations in the remaining
parameters lead to noticeable changes in the sﬁape of the spectral
bands, as is shown in Figure 4.16. 1In favorable cases, distances
derived from zero field NMR experiments appear reliable to ~.02A, even
in larger spin systems where individual lines may not be resolved.
Small deviations remain between the observed and calculated
spectra even for the four-spin geometry which gives the "best fit"
within the assumed constraints. One disturbing element is that there
are comparatively short inter-1H contacts between 2 and 2' sites in
different unit cells; in fact, shorter than the 2-2' distance within a
given cell. This may call into quéstion the appropriateness of
considering only a four-spin network rather than eight, twelve, or
Avogadro’'s number. Practical constraints on computer memory make it

infeasible to model larger (>8) spin networks. In cases such as this,



Figure 4.16. Simulations of the zero field NMR spectrum of

polycrystalline (p-H)2053(CO)10. e) corresponds to Simulation A of
Figure 4.15 with slightly less broadening (~2.6 kHz). By columns, rqj,
varies by -0.03, 0.00, and +0.03 A from that of simulation e). By
rows, the angle between r11- and rig varies by -59, 0°, +5° from that

of simulation e).
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it should also be unnecessary. The assumed Lorentzian linewidth of 2.8
kHz is much broader than whatever additional features might be
introduced by a new coupling constant wp/27x~700Hz. More importantly
(and generally), the effect of an isolated spin at a distance r is very
different from that of a cluster whose closest approach is r. In the
former case, the main interaction of the isolated spin is with the
nearby cluster. In the latter case, the main interactién is with its
nearest neighbors, and the dipole-dipole coupling to nearby spins will
partially truncate the interactions with more distant neighbors.

2. Comparison of Zero and High Field NMR in Model Systems

Figures 4.17 and 4.18 show the simulated zero and high field NMR
spectra for ten model groupings of identical nuclear spins (all
chemical shifts equal and chosen equal to zero). The zero field
spectra are calculated using the program DBZINT.FOR (largely written by
Dr. James B. Murdoch). The simulated powdef patterns were calculated
using the prégram PAT6.FOR. The powder patterns are calculated by
formulating Hp as in DBZINT.FOR and performing a numerical truncation
by adding on a large Zeeman interaction. In order to simulate the
powder, the effective field is applied over a large number of
directipns relative to the arbitrarily chosen "molecular frame". The
number of orientations depends primarily on the patience of the
programmer and the expense of computer time, and ranged from ~14400
(for the 3 spin systems) to 400 (for the six spin systems). The
spectrum for each orientation is summed with all others, and the
resulting powder pattern convoluted with a Gaussian lineshape to
account for "residual couplings" and all unsampled orientations.

Although a Lorentzian more accurately reproduces observed zero field



Figures 4.17, 4.18. Calculated high field and zero field NMR spectra

for systems of small numbers of static, equivalent coupled Iy spins and
for a variety of geometries as illustrated. Internuclear distances
were chosen so that all the spectra appear to fit in the same frequency
range. The base distance is that of the two-spin Pake pattern where
rij = 1.60 A. Each of the high field spectra is calculated by summing
the simulated spectra over a large number of orientations of the spin
system in an externally applied field (varying from as many as 14,400
orientations for the three-spin systems to as few as 400 for the six-
spin systems. The resulting spectra (see insets) are then convoluted
with a Gaussian lineshape to account for the finite sampling intervals
and the effects of all other spins. The zero field spectra are
calculated using the procedure indicated in Chapter III. The delta
function simulationsv(fhe insets) are convoluted with the same Gaussian
as the high field spectra for comparison, although a Lorentzian line
seems to more accurately reproduce experimental results. In most of
the odd-spin systems, a sharp zero frequency peak has been truncated in

the unbroadened spectra; occasionally, in the broadened spectra as

.well.
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lineshapes, the same Gaussian lineshape was used to broaden the zero
field spectra so these figures are a worst-case estimate of the
resolution advantage of zero field NMR for the observation of dipole-
dipole couplings in solids. 1In all systems the zero field spectrum is
more structured, but for large N neither spectrum need contain many
resolved features.

3. Zero Field NMR for N -+ Avogadro'’s Number

As the number of coupled spins grows large, the zero field
spectrum rapidly becomes too complex to be modeled exactly. Exact
dynamical approaches require'that a density matrix with ~22N matrix
elements, and corresponding angular momentum operators of equivalent
size, be multiplied, diagonalized, and otherwise manipulated. Even for
relatively large machines, for N > 10 it will be impossible for the
program to remain core-resident and execution times will become
intolerably long. Moreover, it is in preciseiy these cases that the
result of an exact spéctral $imu1ation are least meaningful. For these
large N systems, the spectrum merges slowly into a broad, continuous
absorption band where individual dipole-dipole couplings are |
unmeasureable and only a statistical model of the lattice as a whole
can be extracted.

The model for zero field NMR lineshapes in dense spin-1/2 systems

9%  For dipolar fields which are stationary,

is due to Kubo and Toyabe.
Gaussian, and Markoffian a simple form can be derived for the decay of

an initial polarization. In zero field, these assumptions lead to a

polarization function
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1(t) = 3 (1 + 21 - a%ed) (exp(- %Azti)] (4.23)

2 is one half of the second moment of the resonance line. This

where A
polarization decay function is identical to pL(tl) if pL(O) =1I,. The
Fourier transform of this decay function is shown in Figure 4.19, along
with the same decay function multiplied by a Lorentzian decay to
account for finite Ty. This theory has found its primary application
to the analysis of muon polarization decéy.108 Further modifications
can be introduced account for métional effects109 but these corrections
are not large. The KuonToyabe form provides a convenient model for
comparison to experimental results in densely coupled lattices. Even
in sparse spin systems, the prediction that 1/3 of the total
magnetization fails to evolve corresponds closely to what is observed.

Figure 4.20 shows the zero field spectrum of squaric acid. 110
This system does not strictly satisfy the conditions of the Kubo-Toyabe
model. The magnetic nuclei in squaric acid correspond more closely to
a linear distribution than to the isotropic distribution assumed in the
model. Nonetheless, the general shape of the spectrum is similar to
that predicted in the statistical approach.

Figure 4.21 is the zero field NMR spectrum of lauric acid
(CH3(CH2)lOCOOH). The proton zero field spectrum at naturai abundance
(Figure 4.19a) is broad and virtually featureless, and characteristic
of most "off-the-shelf" organic compounds. An attempt was made to
increase the resolution by observation of the residual 1§ nuclei in a
highly enriched randomly deuterated samples (>90% 2D) of lauric acid
(Figures 4.19b,c). While the spectrum is considerably narrowed little

structure other than that predicted in Equation (4.23) is resolved.
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Figure 4.19. Fourier transform "spectrum" of the Kubo-Toyabe

magnetization decay function (Equation (4.23)), with A2 = 3900 sz.

a). With no Lorentzian decay superposed; central line is truncated.

b). With 2 kHz Lorentzian decay superposed; central line is

truncated. c¢). With 4 kHz Lorentzian decay superposed.
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0 Squaric Acid

-60 -30 0) 30 60
’ Frequency (kHz)

XBL 853-1571

Figure 4.20. Zero field Iy R spectrum of polycrystalline

squarié acid. The flat wings and sharp central spike correspond

closely to the spectrum of Figure 4.19c.



Figure 4.21., Zero field Iy am spectra of polycrystalline lauric acid
(CH3(CH2)10COOH). a). Spectrum of completely protonated material.
Sharp features centered at zero frequency are distorted due to
truncation of the decay function. b). Spectrum of 93% randomly
deuterated lauric acid. Relatively sharp peaks at ~*35 kHz may be due
to residual pairs. Continuing to replace residual lyrs by 2prs results
in ¢). Spectrum of > 96% deuterated randomly deuterated lauric acid and

little improvement in resolution.
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Figures 4.22-4.24 show the zero field spectra of amorphous Si:H,
>90% randomly deuterated palmitic acid, and 1,4-dimethoxybenzene
(CH,DOC¢D,0CH,D). In each sample, the magnetic spin-1/2 nuclei are
reasonably dilute and reasonably uniformly distributed throughout the
sample volume. Each resembles the spectrum of the Kubo-Toyabe theory,
with a broad, occasionally structured central band. In addition, and
at much lower intensity, absorption lines appear at relatively higher
frequency which may be due to small numbers of strongly coupled pairs
or triplets. At extremely high dilution (>99% 2D) these sharper
features might begin to dominate the spectrum (but at significantly

lowered signal-to-noise).
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Figure 4.22. Iy or spectra of materials-grade amorphous

silicon hydride. a). High field spectrum after solid echo
sequence.

b). Zero field spectrum. c¢). Zero field spectrum X 6. Broad,
low intensity lines at ~45 kHz are presumably due to tightly bound

species.
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a) Palmitic Acid
>90% 2D

b) X 16

I I N I
—-50 0 50

Frequency (kHz)

Figure 4.23. a). 1H zero field NMR spectrum of >90% randomly
deuterated palmitic acid (CH3(CH2)1ACOOH), closely matching the
Kubo-Toyabe form. b). The same spectrum X16. Small peéks at ~ 30

kHz may be due to isolated pairs.
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OCH,D
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Fipure 4.24. a). 1H zero field NMR spectrum of d6-

dimethoxybenzene (CH,DOCH, OCH,D). The spectrum appears much like
the Kubo-Toyabe form, although the observed structure at *15 kHz
probably reflects the pair-wise dipole-diple couplings within the

methyl group, instead.



162

V. Experimental Results: Quadrupolar Spin Systems

The interactions between the local electric field gradients and
quadrupolar moments of nuclear spin systems with I > 1 often give a
more detailed picture of the local electronic environment than do the
chemical shifts observed in the same systems. Yet the chemical shifts
are far more frequently measured. In no small part, this is because
experimental techniques for the sensitive and accurate measurment of

quadrupolar couplings are less well developed.

A, Comparison of Chemical Shifts and Quadrupolar Couplings

As a comparison of the chemical sensitivity of chemical shifts
and quadrupolar couplings, Figures 5.1 and 5.2 show experimental 2751
MASS and zero field NQR spectra of two inorganic aluminum salts,
potassium and ammonium alum (KA1(SO,),-12H,0 and (NH,)AL(S0,),-12H,0).
The high field (7.05 Tesla) MASS spectra were graciously provided by
Dr. Steven W. Sinton of the Exxon Corporation. The high resolution,
high field spectra of these two compounds are essentially identical.
Isotropic shifts in these two compounds are nearly the same and the
chemical shift is insufficiently sensitive to distinguish between the
two. In the MASS spectrum of a mixture of the two salts, only a single
main line appears. This is a common limitation of high field studies
of 27Al. MASS studies of 27Al reveal the isotropic chemical shifts
only where the second order quadrupolar broadening (and thus the
quadrupolar coupling itself) is small. Except in rare cases and at

110

very high fields the chemical shift differences between similarly
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Figure 5.1. From top to bottom: 2751 magic angle sample spinning
(MASS) NMR spectra of potassium alum (KAl(SO4)2-12H20), ammonium alum
(NH4A1(304)2-12H20), and a 1.3:1 mole ratio mix of the two. Spectra
are observed at 78.2 MHz with a spinning speed of 4 kHz. Chemical
shifts are referenced to A1(H20)g+.

Figure 5.2. From top to bottom: 27A1 zero field NQR spectra. Each
site conributes two lines to the zero field spectrum. For potassium
alum, equ/h = 39142 kHz; for ammonium alum, e2qQ/h = 438%+2 kHz. 1In
each compound n = 0.17%.05. The pair of high frequency lines in the

spectrum at bottom clearly indicates the presence of two distinct

sites.
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coordinated aluminum sites are too small to be resolved. Only the
difference between tetrahedral (at ~60 ppm from the chemical shift
reference, Al(H20)2+) and octahedral coordination (~0 ppm) is routinely
resolved.111

Figure 5.2 shows the zero field spectra of these same two
compounds obtained by the experimental technique described in Chapter
III. 1In the pure NQR spectrum and for I = 5/2, two lines are predicted
for each type of site, and the predicted pair is indeed observed for
each pure compound. Even though the zero field resonance lines are
broad, the mixture at bottom certainly conta%ns at least two chemically
distinct aluminum nuclei. The broader peaks at ~50 kHz merge into a
single line in the spectrum of the mix, but the pair of lines at high
frequency remain distinct and clearly indicate the presence of two
identifiable components.

Because both the chemical shift and quadrupolar contributions to
the nuclear spin Hamiltonian result from interactions of the nucleus
with the surrounding electron cloud (rather than with other magnetic
nuclei like the dipole-dipole coupling) spectra dominated by these
single-spin interactions are more simply interpreted than those which
primarily reflect the correlations between multiple spins. Spectral
lines in quadrupolar systems are generally associated with specific
crystalline or molecular sites. The assignment of lines is often
automatic because sum rules relate the frequencies of the allowed
transitions at a given site. This is in contrast to the dipole-dipole
coupled systems presented in Chapter IV where modeling the interactions

of more than two or three spins requires a computer modeling. The high
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resolution achieved in 2D Fourier transform NQR spectra, the
observation of dipole-dipoie couplings between sites is routine. As
they appear only as a perturbation to the main Hamiltonian, the rate of
increase in the number of lines is far slower than in systems where the
dipole-dipole coupling dominates the spectrum.

The existence of small couplings between chemically
distinguishable sites is analogous to the common . "weak-coupling" limit
in liquid state high resolution NMR, and suggests possible two-
dimensional applications of time-domain NQR to the problems of
structure determination and crystallography in disordered solids.

692,112 4, 2p NQR is a frequency domain

Double-transition spectroscopy
approach. Some time-domain experiments with the same goal are
described in Chapter VI.

The rest of this chapter will focus on studies of spin 1 systems--
specifically, 2p--where field cycling Fourier transform zero field NQR
is most powerful and generally applicable. The local fields
characteristic of quadfupolar spin systems are generally larger than is
pure spin-1/2 networks and necessitate the use of switched fields
larger than are required to satisfy the high field condition in systems
of dipole-dipole coupled spins. All experiments in this chapter used

switched fields of ~300 gauss (three times larger than was used in

obtaining the spectra of dipolar coupled systems shown in Chapter 1IV).

B. High field NMR of Deuterium

High field quadrupole perturbed NMR studies of integer spin

nuclei (realistically, 2D and occasionally 14N) are among the most



168

demanding of solid state experiments. The sensitivity of 2p NMR to
dynamical processes in molecules has accelerated the development of new

113 ana interpretatioh of

techniques for efficient broadband excitation
the observed spectra.114 Even in highly enriched samples high quality
high field spectra are far from routine: its magnetogyric ratio is low,
the quadrupole moment results in high field spectra often 250 kHz wide,
and relaxation times may be inconveniently long. Magic angle spinning
of integer spin nuclei requires extremely careful adjustment of the

115 and the range of isotropic shifts is small. While

spinning axis
cross polarization revolutionized high field ' NMR of low vy spin-1/2
nuclei it is not generally applicable to quadrupolar nuclei. Even with
high power rf transmitters (~1 kwatt) experimehtally observed spectra
are distorted by incomplete excitation of the entire powder pattern.116
This may be particularly serious if.the derivation of important
information depends on a comparison of the observed lineshape function
f(w) to that predicted by a particular model.

For comparison to the zero field spectré of the remainder of this
chapter, Figures 5.3-5.5 show high field powder spectra of four of the
perdeuterated compounds to be discussed in this and the next chapter.
All spectra were acquired using the 5-pulse low power composite
quadrupolar echo sequence introduced by Levitt113 (~200 watts of rf
power and 5.0 ps 90° pulses) and phase cycling. The spectrometer data
acquisition system (see Chapter VIII) is incapable of sampling the FID
at the required rate (> 300 kHz). The bandwidth of the spectrometer
was artificially doubled by accumulating two transients in succession

with their sampling periods offset by one-half of a sampling period.

These two FID’s were subsequently interwoven to provide a single data
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set with an effective sampling rate twice that of either data set
individually. Prior to Fourier transformation the out-of-phase
component of the detected magnetization was zeroed to eliminate

116 and to facilitate comparison

contributions from non-echoed signals
to the zero field spectra where a similar procedure is routine.

Figure 5.3 shows high field spectra of perdeuterated
1,4-dimethoxybenzene (DMB) and 1,4-dimethylterephthalate (DMT). 1In
both compounds, only high field signals from the -CD; groups are
observed. T, relaxation times differ greatly between the methyl group
and sites on the aromatic ring. Even when the spins are allowed to
polarize for several minutes between successive shots, little
additional signal is observed. ‘The ratio of the integrated signals
arising from the ring sites to that of the methyl groups is much less
than the stoichiometric ratio of 3:2. Moreover, whatever ring site
signal exists is spread over a frequency rénge more than three times as
large.

Figure 5.4 shows high field spectra of perdeuterated
1,8-dimethylnapthalene. From top to bottom I illustrate the effect of
the length of the high field polarization period on the observed
spectrum. For very short polarization periods (~200 ms) only signal
from the -CDj groups is observed. At longer times, signals from the
aromatic ring sites begin to grow but at different rates. (There is
also evidence for anisotropic relaxation within the -CD, group. For
very short times the central singularities in the Pake pattern are less
pronounced than at longer times.) Finally, for polarization periods as
long as minutes little additional signal is observed.

The spectrum of perdeuterated lauric acid (CD3(CD2)1OCOOD) in
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Figure 5.3. High field 2p powder pattern spectra. The 5-pulse
quadrupolar echo sequence {(w/2)o(n)ﬂ(w/2)0(3w/4)“(ﬂ/4)o replaces each
of the n/2 pulses of the normal quadrupolar echo sequence) is applied
and the echo sampled until no signal éan be observed. Rf pulse
strength was w;/2n = 50 kHz and the dephasing period r between sets of
pulses was 30 pus. a). Spectrum of pérdeuterated 1,4-dimethoxybenzene
(DMB) . Spectrum is result of 1034 scéns with 30 s between scans.

b). Spectrum of perdeuterated 1,4-dimethylterephthalate (DMT).
Spectrum is the result of 800 scans with 10 s between scans. No

additional signals were observed with recycle rates as long as 2 m.
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Figure 5.4. High field 2p powder pattern spectra of perdeuterated

1,8-dimethylnaphthalene (DMN) acquired with the five-pulse
quadrupolar echo sequence, as a function of the polarizat{on
period between scans.

a). 200 ms/shot, 1710 shots. b). 3 s/shot, 616 shots,
c). 6 s/shot, 2000 shots. d). 15 s/shot, 1436 shots.
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Figure 5.5 shows a similar progression. For short times, only siénal
from the methyl groups is observed. At longer times, the deuterons on
the alkane chain contribute more and more significantly to the overall
intensity of the signal. These spectra illustrate some of the
difficulties associated with high field NMR studies of 2p. In none of
the experimental spectra of these samples is the entire powder pattern

corresponding to the static sites be observed.

C. Zero field NQR of Deuterium

These technical difficulties associated with high field NMR of 2p
make zero field NQR studies attractive. Instead of a powder pattern
hundreds of kilohertz wide, all of the magnetization which evolves in
zero field is concentrated in a small number of lines which can be
individually as narrow as ~100 Hz. All the signal energy is
concentrated in a comparatively small bandwidth. Because the signal-
to-noise ratio is generally referenced to a unit bandwidth, this
provides a significant signal-to-noise advantage in the zero field
experiment which may more than compensate for the disadvantage of
having to observe the evolving magnetization indirectly in a ppint-by-
point manner. The high field spectra of Figures 5.3-5.5 and the zero
field spectra which follow are acquired in comparable émountslof time.

Many of the most powerful applications of 2p MR spectroscopy are
in systems which are motionally averaged and it is the dynamic process
itself which is interesting.117 In this chapter, only systems which
are static or where the motion is rapid will appear and the results of

Appendix B will generally be adequate for an interpretation of the
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Figure 5.5.
lauric acid (CD3(CD,)1,COOD) acquired with the five-pulse quadrupolar
echo sequence, as a function of the polarization period between scans.
a). 200 ms/shot, 6454 shots.
b).
c).
d).

1 s/shot, 4324 shots.
15 s/shot, 1146 shots.
1 m/shot, 444 shots.

High field 2p powder pattern spectra of perdeuterated

17442
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experimental results which follow.
In Section III.C the zero field free induction decay for an
isolated spin-1 nucleus evolving under HQ was shown to be (in slightly

different form)

G(tl) = %-[cos(ZnAtl) + cos(3—n)At1 + cos(3+4n)At (5.1)

1!

where for I =1, A = e2qQ/4ﬁ. Each isolated deuteron contributes three
lines of equal intensity to the zero field spectrum. The principle

axis of the quadrupolar tensor eQ = V,, often lies along the bond axis

z
and the electron cloud distribution in C-D bonds is nearly
cylindrically symmetric about that axis.?’2 1In the absence of motion,
n is generally small. In deuterated systems, one line generally
appears at a very low frequency and the other two at higher
frequencies. For static C-D bonds, typical values are A < 50 kHz and
n < .1. Two lines are predicted to appear“near or below 150 kHz and
the third at somewhat less than 10 kHz. (Following the convention
established in other pure NQR studies, all zero field quadrupolar
spectra are presented with positive frequencies only displayed.)

If at least two of the three lines can be assigned to a
particular site, then the field gradient parameters A and n are
determined. Observation of the third, low frequency lines becomes
important when the sample contains multiple sites. Pairs of high

frequency v _, v, lines are identified if a third line can be found at

the difference frequency
v = v - v : (5.2)

2

The vy lines are rarely accessible in any “D level-crossing experiments
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because they appear well within the band of direct Iy dipolar
absorption. When strong couplings (wp = nA) exist between sites with
similar values of their quadrupolar tensors, then the spectral pattern
may require a detailed and presumably iterative simulation. Dipolar.
structure between spin-1 nucleil ip zero field NQR spectra have
previously been observed and explained in N,, -ND;, and D,0
groups.69’118’119

The 2D spectrum of perdeuterated dimethylterephthalate (DMT) in
- Figure 5.6 illustrates many of the general features of zero field 2p
NQR. The intense band at ~38 kHz is assignable to the methyl groups.
The treatment of rapid rotation given in Appendix B explains why the
-CD3 group appears at this relatively low freqﬁency. Assuming the
methyl group configuration is nearly tetrahedral, Equation (B.3)
applies with 4 the complement of the tetrahedral angle, or § = 70.5°,

The principle component of the quadrupolar temsor V,, is averaged to

z

the value

1 2
VZZ - 5-(3cos § - 1) sz = -,33 (5.3)

where Z is the principai axis of the motionally averaged tensor <§(t)>
and ¢ is the angle between the axis of rotation and the C-D bond. The
experimentally observed quadrupolar frequency is very nearly 1/3 that
which characterizes other chemically similar C-D bonds. No lines are
observed near zero frequency and therefore n = 0. The high frequency
region of Figure 5.6 shows four resolved lines and indicates two
distinct aromatic ring sites exist. These presumably correspond to
those sites "near to" and "far from" the methyl groups which are locked

in the trans configuration in the solid state. Whatever vg lines might
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Figure 5.6, Zero field 2D NQR spectrum of
DMT, with polarization period of 2
minutes/shot. Sampling increment was 3 us. A
total of 334 points were sampled, and two zero
field free induction decays were added
together. The methyl group signal is
concentrated near 40 kHz. The ring sites
appear at ~135 kHz. Four lines are observed
which correspond to v, and v_ lines for ring
sites "near to" and "far from" the methyl

groups. Cf Figure 5.3b,
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exist should appear at very low frequencies. Due to their low
intensity and frequency, these lines are undoubtedly buried under the
tail of the methyl group zero frequency.line. In high field (Figure
5.3b) no trace of these sites is observed. Despite the fact that these
sites never approach equilibrium during the high field polarization
period, the signal intensity associated with these siﬁes appears in
such a narrow bandwidth that while the zero field signal is weak it is
also clearly visible.

Figure 5.7 is an expanded view of the methyl group region of DMT
(observed in a different experiment than that shown in Figure 5.6).
Much additional structure is resoived. Dipole-dipole couplings between
methyl deuterons are the source of these splitfings. The motion of the
methyl group rapidly interchanges the spatial locations of the three
individual deuterons. They therefore have identical (and, in this
case, axially symmetric) quadrupole coupling ﬁénsors. Where HQ is
highly degenerate small perturbations like the dipole-dipole couplings
dramatically affect the spéctrum. Similar spectra are observed for
ordered -CD3 groups in nematic phases of liquid crystals in high
field.120 The precise value of the dipolar coupling constant wp, and
therefore the distance between deuteron nuclei, is found by computer
simulation of both <HQ(t)> and <HD(t)>.

A simulation of the spectrum produced for wp/27 = 540 Hz is
indicated in the stick spectrum inset in Figure 5.7. The 2p.-2p
internuclear distance (1.79 A) agrees within experimental limits with
the value previously observed for the distance between methyl group
sites in the protonated form of this molecule as derived by zero field

NMR.%8 It is a curious and as yet unexplained fact that an accurate
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Figure 5.7. Zero field D NQR of the -CDy —
group of DMT. Cycle time: 10s; sampling
increment: 3 us; number of points: 1001. At
this recycle rate no signal from the ring
sites could be observed. Splittings within
the methyl group line correspond to the
dipole-dipole couplings between methyl group
deuterons; the stick spectrum inset is a
simulation of the motionally averaged system
with wp/2r = 490 Hz, or <r3>"1/3 = 1.79 +.03
A,
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simulation of this spectrum (and all other similar solid state axially
symmetric -CD3 groups measured to date) requires tha; the dipolar and
quadrupolér couplings have the same sign. This is in direct conflict
with the conclusion drawn from all the liquid crystal studies, where
the dipolar pattern of Figure 5.7 appears inverted about the center of
the unperturbed quadrupolar line and the two couplings have opposite
signs.

The spectrum of 1,4-dimethoxybenzene (DMB) in Figure 5.8 shows
similar gross features. Four lines appear at frequencies
characteristic of the v and v_ lines of the aromatic ring sites. A
complex absorption band centered at ~36 kHz is the spectrum of the
spinning -CD3 group. In addition, a large number of low frequency v
lines are observed; a broad, structured band centered at ~2 kHz, and
two other single lines at 4 and 6 kHz. These latter two lines appear
at precisely the splittings between pairs of lines centered at ~135 kHz
and satisfy the sum rule Equation 5.2. Even the lineshapes in the
triplets of lines indicated by the letters "A" and "B" match and
conclusively determine which sets of lines correspond to a single site.
It is likely that the site nearest to the methyl group corresponds to
the broader triplet of lines labeled "B". The inequivalence of the two
ring sites has previously been observed in 2D and 13¢ chemical
shifts.121

The -CDj methyl group spectrum, however, is significantly more
complicated than either the ring sites or the -CDj group in DMT. The
structured band at ~2 kHz indicates that the quadrupolar tensor in the

CD3 group is non-axially symmetric. The dipole-dipole couplings are

superposed on this asymmetry. Even if the methyl group rotation lies



Figure 5.8. Zero field 2D NQR spectrum of DMB. Top: Cycle time:

7 s; sampling increment: 3 us; number of points; 1001l. Signals from
both methyl and ring sites are observed, in addition to v; lines at
frequencies less than 10 kHz. Bottom: Blow-ups of the three regions
where peaks are observed. From 0-9 kHz, vy lines for both methyl and
ring sites. From 32-41 kHz, methyl group lines. From 130-139 kHz, v,
and v_ lines of the ring sites. Lines "By" and "B," are split by
exactly the frequency of the line "Bg"; similarly, Ag, A1, and Ay. The
"A" lines presumably correspond to the ring site far from the methyl

group, and the "B" lines those near to the methyl group.

= 179.1 kHz

2 -2
&9 178.5 kHz &R

R oA "

ny = .045 ng = .067
Cf. the high field spectrum, Figure 5.3a.
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in a potential well of at least three-fold symmetry such that each
methyl group deuteron has an identical quadrupolar tensor n need not;be
zero. One model for the introduction of an asymmetry into <§(t)> is to
assume that the motion is in a three-fold well where in one orientation
(site 1) the unaveraged tensor differs from the other two.122 For
simplicity, assume that each of the instantaneous values of V is

axially symmetric and that the methyl group motion corresponds to jumps

through 120°. 1In the molecular frame XYZ rotating with the methyl

group,
- 2 2 2 2 2 2
HQl— (A+38A) ([31,-1(I+1) 14, +[6 [(Ix-TPdg, - (I +I,I0d0 1) (5.4)
2 2 2 2.2 2 -1
HQ2= P [A ([31,-I(I+1) 1dy, +J6 [(Ix-Idy, - (IXIZ+IZIX)d01]}]P
2 2 2 2 2.2 2 -2
HQ3= P [A.([312-1(1+1)]d00 +J6 [(Ix-1y)dg, - (IXIZ+IZIX)d01]}] P

where 3AA is the difference between the coupling constant at site 1 and
that at sites 2 and 3, and P = exp(2irI;/3). Averaging over the motion
corresponds to summing the time-averaged contributions from each of the

three sites, and

2 2 2 .2 .2 2
<HQ(t)>= (A + M)Ay, [31,-T(I+1) ]+ J6 na [dg,(Ig- 1) - dgp (Tl + TI0)]

2

1 2 Cay .
5-(A + AA) (3cos 0-1)[BIZ-I(I+1)] - 3AA51n0cosﬁ(IXIZ+ IZIX)

3 . 2 2 2
+ i-AA51n 0(Ix - Iy) (5.5)

In this frame the Hamiltonian is no longer diagonal. The terms in
(IXIZ + IZIX) contribute only to second order, however, and the

effective asymmetry parameter is approximately
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2
(A + AA)(3cos 8-1)
In a methyl group where # =~ 70.5°
4 AA
"ett = AT oA (5.7)

‘ Motionally averaged methyl group field gradient tensors are axially
symmetric if the instantaneous values of V have at least three-fold
symmetry over the rotational cycle The methyl group in DMB lies very
close to one hydrogen atom on the ring and there is no reason to expect
such symmetry. The nearness of the methyl group to one of the ring
sites is also reflected in the breadth (due to unresolved dipole-dipole
couplings) of the set of ring site lines marked A, and it is on this
basis that we suggest that the A sites are those near to the methyl
group. Other types of motion superposed on the pure rotational modes
of the -CD3 group (e.g. "rocking" as it attempts to avoid the ring 2D)
further complicate the analysis.

Precisely because the resolution in fhis spectrum is exceedingly
high these smaller features (dipole-dipole couplings ~500 Hz and small
asymmetry parameters) which no other technique could detect appear and

complicate the analysis. De-Paking43

of the spectrum of Figure 5.3a
would allow for the extraction of only the average value of the
(assumed) axially symmetric quadrupolar tensor and perhaps a hint that
V was not quite axially symmetric. Values for the motionally averaged
quadrupolar tensor alone can be extracted from the spectrum even in the

absence of a complete simulation of the observed pattern. Vega has

shown that dipolar couplings between spin-1 nuclei leave the first
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moment of the resonance line unshifted.66

As long as the zero field
NQR intensities are undistorted by different T; relaxation rates during
transit, the first moment can be measured by integrating over the band.

From the measured centers of gravity of the (v, v_) and v\ regions,

the tensor components

2 Q ,
_€ g% = 47.9 kHz
(5.8)

n = .096
can be derived.

Figure 5.9 compares the spectrum of the methyl group region of
monodeuteromethyl (-CH,D) DMB to that of perdeuterated DMB. One might
think that observation of the methyl group in the absence of dipole-
dipole couplings (or, at least quenched to the order that they are
quenched) would afford more accurate measurement of <§(t)>. In the
partially deuterated compound only a ﬁair of lines are observed and it
would be tempting to assign them as the v  and v_ lines associated with
<V(t)>. Unfortunately, the first moment of the absorption lines is
shifted to much higher frequency in thé -CHyD group. This is neither
an indication of experimental error nor a counterproof of the effect of
dipolar couplings on the first moment. Rather, it serves as a warning
about attempts to extrapolate results from one system to other closely
related systems. In replacing two of three methyl group deuteron
nuclei with protons only half as massive, the moment of inertia of the
methyi group is significantly perturbed. There is certainly reason to
expect that the details of the motion are simiiarly perturbed. While
the static value of V may be no more than marginally changed by the

isotope effect, this is almost certainly not the case for motionally
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a)

b)

i l I 1 ! | |
20 40 60

Frequency (kHz)
Figure 5.9. Comparison of 2p zero field NQR spectra of methyl group

régions in a). partially deuterated (CHZD) DMB and b). perdeuterated
DMB. While only a pair of lines appear in the former, they are
shifted to much higher frequency and considerably broader than the

-lines in the latter.
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averaged systems.84
The linewidths in the partially protonated methyl group of
Figure 5.9 are broader than those in the perdeuterated molecule. With

only small asymmetry parameters, the quenching of the dipole-dipole
coupling between integer and half-integer spins may become inefféctive.
Unless nA >> wD(1H-2D), the heteronuclear couplings may be more
effective in broadening zero field NQR lines than homonuclear couplings
between nuclei the same distance apart.

Figure 5.10 shows the zero field spectrum of perdeuterated 1,8-
dimethylnaphthalene (DMN). As might by now be expected, absorption
lines appear in the traditional three regions of the spectrum. The
methyl group spectrum is surprisingly similar to those observed in DMT
and show no asymmetry. As the two neighboring methyl groups are
extremely close to one another, it might be expected that the field
gradient for sites pointing nearly at the heighboring -CD3 group should
differ from that observed for sites pointiﬁg away. Dipole-dipole
couplings between groups are not much smaller than those within a group
and might be expected to contribute to the observed features.
Nonetheless, except for a smail frequency shift its spectrum appears
nearly identical to that of the -CDj group in DMT.

Despite the high resolution and good signal-to-noise ratio in the
spectrum of Figure 5.10 the complete set of ring site tensors cannot
yet be assigned. Not all of the high frequéncy v,, v_ lines can be
assigned to mates in the vy which satisfy the sum rule of Equation
(5.2). The source of the intensity variations in the ring site region
lines is also unclear. There is evidence for differing T1's, which is

an explanation for the small intensity of the ring site lines in DMT
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Figure 5.10. Zero field 2y NQR of DMN. Lines:appear in v, region,

-CD3 region, and at the ring sites. The methyl group shows the same

structure observed in DMB. Cf. Figufe 5.4.
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and DMB, in the high field spectra of Figure 5.4. Some sets of lines
might coincidentally overlap and dipole-dipole couplings between sites
might split some lines. The coupling between the equivalent 4 and 5
sites, opposite to the methyl groups, should be ~200 Hz and may well
spread signal from these two deuterons over a relatively broad range.
Some of these possibilities might be experimentally resolved using some
of the two-dimensional correlation experiments described in Chapter VI.
Not all 2D NQR spectra are as simple and well-resolved as the
rest of the examples given in this chapter. Figure 5.11 shows the zero
field NQR spectrum of polycrystalline perdeuterated lauric acid,
(CD3(CD2)1OCOOD). Again the same three traditional regions of the
spectrum appear. The methyl group region (~35 kHz) resembles no other
methyl group yet observed. The region where the methylene groups
appear is unusually broad and few resolved features appear anywhere in
the spectrum. There are two reasonable explanétions: first,
unresolved dipole-dipéle couplings between sites may broaden out the
structural features. This possibility might explain the lack of
resoved features but cannot account for the broad range of quadrupole
couplings. Theoretical studies of 2p quadrupolar couplings in simple

123 and thus

alkanes predict that A should range from only ~42-45 kHz,
that the high frequency band should appear at ~130 kHz. A more likely
source of such a distribution of quadrupolar absorption frequencies is
a distribution of motional modes. In zero field spectroscopy, spectral
features are broadened primarily by terms inherent to the observed
Hamiltonian. Instrumental or experimental contibutions to the

linewidths are negligible. Broad zero field lines reflect the

intrinsic breadth of the nuclear interactions.
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Figure 5.11. Zero field 2D NQR of lauric acid. Lines appear in v
region, -CD5 region, and at the alkane sites (>100 kHz). The methylene

absorption region is unusually broad and probably reflects a range of

librational modes in the sample. Cf. Figure 5.5.
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The resolution adVantage of zero field NMR can be used to assist
in the study of high field parameters of nuclear spin systems.

Figure 5.12 shows an experiment which affords an experimental method of
differentiating between the high field T;'s of different types of
deuterons. The experimental strategy is to obtain the zero field
spectrum by whatever means possible. Normally it is advantageous to
sample the evolved magnetization as quickly as possible after the
return to the magnet to minimize its decay via spin-lattice relaxation.
In the experiment of Figure 5.12 the sample is allowed to sit in high
field a time T comparable to that of a spin-lattice relaxation time.

If spin diffusion between all sites is allowed, then the amplitude of
all lines in the zero field spectrum disappear with a uniform time
constant Tj. If‘spin diffusion is allowed only between some subset of
spins, then the lines in the spectrum disappear with different rates at
the different sites.

Figure 5.13‘shows the results of such an experiment on DMN. At
the top, at the end of the zero field period t; the sample is returned
to high field and the evolved magnetization is sampled as soon after
the sample is safely lodged in the high field detection coil as was
deemed possible (probably within ~35 ms of the actual return to the rf
probehead). In the middle and below, the experiment was repeated with
longer values of T. Over the space of ~500ms, the methyl group
spectrum disappears into the noise while the spectra of the ring sites
are virtually unaffected in either amplitude, phase, or any other
readily observed experimental parameter. This suggests that the -CDg
group high field T; is ~200 ms. As the cycle time of the zero field

experiment is ~250 ms, it is also virtually field independent. (If Tl
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Figure 5.12. Zero field-high field relaxation

rate correlation experiment. The zero field
spectrum is observed as a function of T, where
T ~ Ty. If different parts of the sample have
very different relaxation times, the zero
field spectrum will disappear nonuniformly

with T.
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Figure 5.13. Example of zero field-high field

relaxation rate correlation experiment. The
sample is DMN. a). T =T’ ~ 35 ms (i.e. the
signal is measured as soon as possible after
the sample is securely within the bore of the
magnet. b), T =T' + 115ms; c¢). T =T' +
315 ms. Over the space of 315 ms the methyl
group signal largely disappears; no change is

observed in the ring site signals.
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is field dependent, it generally increases with increasing field. If
at any field strength between Bj and zero T; were significantly shorter
than 200 ms, it would be surprising to observe any -CD3 group signal
after returning to high field. In Chapter VI I present some
experiments which give an approximate upper bound to TlQ in very low
fields.) No decay in signal amplitude at the ring sites is observed
over these short times. This is consistent with the interpretation of

the T, data contained in Figure 5.4.
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VI. Variant Experiments

In this chapter, I apply some of the principles of zero field NMR
established in previous chapters to a variety of possible variant
experiments whose merits (if they exist) will be described along with
their interpretation. Section A covers the possibility of changing the
selection rules which govern the zero field evolution period. 1In
Section B several of the experiments suggested by the discussion of
Section A are analyzed. Section C discusses an approach to high-
sensitivity zero field NQR via level crossings. Finally, Section D

presents some two-dimensional applications.

A. Other Initial Conditions

1. Initial Conditions Prepared in High Field

Among the simplest variants are experiments where different high
field conditions are prepared or detected in combination with the
experimental field cycle of Figure 3.1. Throughout this section,
comments about the prepared operator apply equally to the detected
operator, and should really read prepared and/or detected. Examples of
possible operators include time dependent states (such as transverse
magnetization, I, or I_) or non-equilibrium longitudinal order (such as
dipolar or quadrupolar order). To within a proportionality constant, a
dipolar or quadrupolar ordered spin system is described by a density

operator

2

- [3IzL

oL - I(I+1)) (6.1)
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which is time independent (at least for times short compared to T,).

In this section I repeat the calculation of Section III.B. All
experimental conditions are assumed unchanged except for the
possibility of a more general initial condition. The initial density
operator p(0) is most generally a sum over operators of arbitrary
tensor rank and order rather than just the first rank tensor operator
corresponding to Zeeman order (Equation (3.10)). Steps in the analysis
of the signal function include reexpressing p in the local frame,
allowing evolution under Hy,. for a time t;, returning to high field,
taking the trace of p with the detected operator and finally
integrating over the orientational distribution function P(Q1) to give
the signal function G(ty). Well-known properties of the rotation

7

matrices’ are used to simplify the calculations. Two of the more

important relationships are
j* - RN
D“m(a,ﬂ,v) (-1 D-#_m(a,ﬂ,v) (6.2)

and the orthogonality condition

81r2

J* J' -
JD#m (a’ﬂt‘Y) D#lml (a,ﬁ,‘Y) dﬂ = 2j + l (6-3)

sjj'su#'smm'

For simplicity I assume that the initial operator p;(0) and the
detected operator (which I will call A) are each proportional to a
single spherical tensor operator., The generalization to cases where p

is a sum over such tensors is trivial. Assuming that

- J
pp(0) = T (6.4)

p reexpressed in terms of molecular frame operators is
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j
py(0) = nf-j p) (-a,-,0) T, (6.5)

Time-evolution is appended formally, and

j . .
py(t) = nf-j D) (-¢,-B,0) T) (€) (6.6)

At a time t,, the intermediate field By . is reapplied and in a short
time p commutes with the high field Zeeman Hamiltonian. As in Chapter
IT1I, the signal function is the trace of the detected operator with the

evolved operator integrated over all orientations;

G(tl)"= fG(tl,Q)dﬂ = JTr [p(t)A] P(Q) da (6.7)

The trace is invariant to unitary transformations and it will again
préve convenient to transform the observed operator A to the mélecular
frame rather than reexpressing the evolved density operator p(ty) in
the laboratory frame (cf Equations (3.15) and (3.16)). If A is
proportional to another laboratory frame spherical tensor, TQL, then in

the molecular frame

A A p
Ay - pX D#m(-a,-ﬂ,O) TpM (6.8)
p=-X
and the signal function is
A J

Gty = fTr ez by TA)( E bl

j
p=-2 pm M - § k TK:M(tl)}] P(Q) 40 (6.9)

Rearranging Equation (6.9) so as to separate the integration over Q

from the trace over the operators,
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> 3 o J - pr dn 6.10
G(t;) = Tr [{ = Ty Z T () J Doy Dim P(Q) dn)] (6.10)
p=-2 T Kk=-]
. . )Y .
Substituting for me from Equation (6.2),
G(t,) = Tr [( 3 3o e NCDTE Fo3*  p pea) amy1¢6.11)
(e - w2 M Z e -k-k pm '

For P(Q2) uniform over the sphere the integration over I is given by

Equation (6.3) and

G(t,) CLEE %Tr[Tj(t)Tj]S] (6.12)
1 25 +1 r~-3 ®’M* 1Y T-kMT “mk ’

Equation (6.12) states that in a powder sample for the field-cycle of
Figure 3.1 and a uniformly prepared p(0), G(tl) = 0 if the initial and
detected operators are orthogonal, and the signal is maximized if

A = p(0). As long as this latter condition is satisfied all A of a
given tensor rank result in identical selection rules and identical'
spectra independent of order. For p(0) = I, or I_, the signal function
is identical to that for p(0) = I,. Practically it will always be
easier to work with populations operators such as I, than with
coherences of the same rank.

Initial conditions of higher rank (e.g. dipolar or quadrupolar
order) result in spectra where the selection rules governing line
frequencies and intensities are derived from these higher rank tensors
(e.g. the five second rank tensors if the initial condition is
quadrupolar order). Time development of the second rank tensor
operators (j = 2) in a spin-1 system is given in Section III.C

(Equations (3.25) and (3.26)). Two of the five second rank tensors
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(U2+ and Uo) are time-independent. Each of the others evolves at one
of the frequencies corresponding to the vy, v, or v_ 1ines; If
quadrupolar order is uniformly prepared and detected with unit
efficiency in high field the zero field spectrum is the same three-line
spectrum observed starting from Zeeman order except that 40% of the
total order stored in the initial density operator does not evolve.

124 ana higher order

Techniques which prepare high field dipolar
operators (such as multiple quantumloo'lol) are known. If a spin
temperature can be defined, then adiabatic demagnetization in the

21-23 (ADRF) creates a state corresponding to pure

rotating frame
truncated dipolar order. But when a spin temperature exists and
dipolar order can be uniformly prepared the zero field spectrum is
virtually guaranteed to be unstructured. The spin temperature
hypothesis holds only in the limit of a large nﬁmber of tightly coupled
spins. For these "infinite" spin systems the zero field spectrum
acquires the characteristic Kubo-Toyabe form discussed in Section
IV.C.3. For isolated quadrupolar systems or where small groups of
coupled spins are isolated from all others, p can be calculated for
arbitrary high field preparation sequences but this requires
foreknowledge of precisely those coupling constants which presumably
are the goal of the experiment. Perhaps more troubling, it is the
orientation-dependent values of the truncated Hamiltonians which
determine the initial condition.

In disordered systems, few techniques exist for the uniform

125 other than Zeeman order (which

preparation of any type of order
nature provides). If the density operator prepared in high field is

orientation-dependent it depends on the Euler angles a and B and the
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same transformation R(Q1) which takes the spin system between the
molecular and laboratory frames. If the initial condition is
orientation-dependent then

p (0) = jzk ™ (@ | (6.13)

and Equations ((6.10)-(6.12))) no longer follow because the integration
over I must include the (often rather involved) dependence of p on a
and 8. There is no general analytic solution of the form of Equations
(3.21) or (6.12) to the intensities of zero field lines. This is a
serious (in fact, fatal) ﬁandicap in the énalysis of all but the
simplest dipolar-coupled spin systems. For more than three coupled
spins, the zero field spectrum f(w) is oftenva nearly continuous
absorption band. Then the intensities as well as the frequencies must
be modeled if useful information is to be derived from the spectrum.
In spectra of isolated quadrupolar spins this is less of an
objection. Complete information about V can often be derived from the
frequencies alone. (It will, of course, make modeling of any small
dipolar couplings superposed on the quadrupolar spectrum virtually
impossible.) In many quadrupolar systems, the existence of new
selection rules associated with higher rank tensor operators may prove
essential to a complete assignment of the quadrupolar tensors. Under
dipole selection rules not all possible transition frequencies can be
observed in spectra of half-integer quadrupolar spins with I = 5/2 (as
explained in Section III.C)., These dipole selection rules are overcome
when p(0) corresponds to a higher rank tensor. When a sample contains
several inequivalent sites, the observation of these new lines may

prove as important as the observation of the vy line is in NQR studies
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of spin-1 nuclei.

Generation of high field initial conditions proportional to
higher rank tensors will not generally prove worth the effort. In any
disordered system pulsed methods for the transformation of Zeeman order
into other forms of order are inefficient precisely because sequences |
which uniformly prepare any given initial condition are unknown. Only
populations survive the time it takes to travel between high and low
fields; oherences prepared in p dephase and are lost. Thus, the
prepared density operator is "smaller" than after equilibration in B
and results in correspondingly smaller signals. Any non-adiabatic
preparation sequence suffers from this same objection. In the next
section, I describe techniques which achieve the same end (non-dipole
selection rules) with greater efficiency, in that the norm of p is more
nearly conserved during the preparation sequence.

2. Demagnetization to Zero Field

This process h#s been described in detail in Chapter II. In this
section I aim not to repeat that discussion but rather to approach it
from a slightly different perspective. If a polarized sample is
removed from the polarizing field so that the rate of change in H is
slow compared to all the frequency differences between eigenstates the

demagnetization is said to be adiabatic.%*

In the absence of spin-
lattice relaxation, the full order prepared in high field is conserved
and transported as populations to zero field and the norm of p is
conserved during demagnetization. Depending upon the details of the
spin system and the'demagnetization that order can be distributed in p

in many different ways but for isolated spins populations remain

ordered according to energy level.
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In the thermodynamic limit of'large numbers of coupled spins
evolution of p under adiabatic demagnetization in the laboratory frame
(ADLF) is treated by invoking the spin temperature hypothesis.za’25 At
all times the density operator is described by a single spin
temperature and at all fields remains proportional to the instantaneous

Hamiltonian. If a spin temperature exists, then for B = 0 the

demagnetized density operator is (to within a proportionality constant)

py(0) = Hy (6.14)

Again, where the spin-temperature hypothesis holds the zero field
spectrum tends to be uninteresting. It is in precisely those systems
where the spin temperature hypothesis does mnot apply that the zero
field spectrum contains resolved structure. In the general case there
may be a different "spin temperature" associated with each degree of
freedom in the zero field Hamiltonian. The most general statement

about the dénsity operator after slow demagnetization to zero field is

[pM, H].OC] = 0 (6.15)

and the slower the rate of demagnetization the larger the ratio between
the norm of p in high and zero fields. Except for the isotropic
component of the J coupling tensor, the zero field Hamiltonians are
exclusively second rank tensor operators. I choose to expand p as a

sum over operators fj such that

[S‘j,Hl ] =0 (6.16)

oc

where the §j constitute an orthonormal basis set
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Tr(§j§k) = §,. (6.17)

and

Py = ? ajgj (6.18)
For multispin Hamiltonians, the set of all operators gj may be
difficult to enumerate. Some general guiding principles exist. For
any spin system and its Hamiltonian, H, the number of orthogonal
operators which commute with H is one less than the number of different
energy levels (the sum over all the populations being just the total
number of spins and is fixed). As the Hamiltonians themselves consist
of terms proportional to sums of spherical tensors, the §j will also be
proportional to sums of spherical tensors. The details of these
operators §j depend on the specifics of the spin system and the
Hamiltonians. Two general cases can be specified:
1. The Hamiltonian is composed of two (or mbre) commuting
operators. 1In high field the Zeeman Hamiltonian and the secular
component of the dipole-dipole Hamiltonian comprise such a set.
In zero field, the quadrupolar Hamiltonian is the sum of two
terms: one proportional to the spin operator (3I§-I(I+1)) and the
second proportional to n(Ii-Ig). For a spin-1 system, these
terms commute. (For what should be obvious reasons I refer to
the first term as "quadrupolar order" and the second as "eta
order.") 1In either case, a set of operators which commute with H
is given by either of these commuting operators and their powers
and/or products. The set generated by this method will form a

basis set of operators but will not generally be the orthonormal



205

basis set of the gj. For example, quadrupolar order is a second
rank tensor. Its square is a reducible fourth rank tensor which
need not be orthogonal to it.
2. The Hamiltonian contains only non-commuting operators. An
example is the zero field quadrupolar Hamiltonian of a half-
integer spin nucleus. Then the only operators which commute with
H are the powers of H. H2, H3,... are a basis set but, as in
(1), not generally the orthonormal basis set of the §j.
In either case, if the Hamiltonian contains only second rank tensor
operators, the demagnetized operator p can only contain even rank
operators. For isolated quadrupolar nuclei, the maximum rank spherical
tensor operator in p is 2I, and for N coupled spin I nuclei no larger

than 2NI.

Table 6.1: Operator Representations of Spin Density Matrices

Spin System Dimension of p Ranks of Operators in p
I =1/2 2 1, 0
I =1 3 2,1, 0
2 X (I=1/2) 4 2, 3x1, 2x0
I =3/2 4 3, 2,1, 0
I =2 5 4, 3, 2,1, 0
I =5/2 6 5, 4, 3, 2,1, 0
I=3 7 6, 5, 4, 3, 2,1, 0
I =17/2 8 7, 6, 5, 4, 3, 2,1, 0
3x (I =1/2) 8 3, 5x2, 9x1, 5x0

In the column "Rank of Operators", an means there are n orthogonal

sets of qth rank tensors in an operator representation of p

Table 6.1 enumerates the number and rank of operators required to
completely describe the density operator for various spin systems.

Even though there are only three distinct energy levels in both I =1
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and I = 5/2 spin systems, the sets of operators §j which describe these
two systems are very different. For isolated spin-1 nuclei, the
constants of the motion are precisely quadrupolar and eta order, two
second rank tensors which are interconverted by rotations. For half-
integer quadrupolar spins, only powers of HQ itself commute with HQ.
For I = 5/2 the constants of the motion are not quadrupolar and eta
order, but instead (in the limit of vanishing 5) quadrupolar and

hexadecapolar order, a fourth rank spherical tensor operator given

byl26

4 L (3s1* 4 5[5-6I(I+1)]I§ + 30221 (1+1) ]} (6.19)

To = 1780 z

Figure 6.1 illustrates the difference between ﬁhe two population
operators which describe I =1 and I = 5/2 spin systems in zero field.
What is the relevance of these rather arcane discussions? After
demagnetization the norm of p is (ideally) not vefy different from its
high field value and p contains only even rank tensor operators. It
is, however, in eigenstates of Hioe and therefore time-independent; in
the absence of any intercession by the experimentalist no useable
signals emanate. If p can be perturbed so at to create coherence,
transition frequencies might be observed which are determined by the
selection rules corresponding to the matrix elements of the higher rank
tensors created in p during the demagnetization. The next two sections

deal with methods of creating and monitoring such coherence.

B. Zero Fileld NMR with Pulsed dc Fields

Two alternative zero field experiments are illustrated in Figure
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Figure 6.1. Population operators for I = 1

and I = 5/2 (n = 0) in zero field.

populations are equal, no order exists.

If all

I=1

quadrupolar order corresponds to a difference

in population between |O> and the average of

the populations of |+> and |->; eta order, to

the difference between |+> and |-> as shown at

top.

hexadecapolar order correspond to the

I = 5/2 quadrupolar order and

population ratios shown at bottom.
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6.2. In these variants, the system is demagnetized not to some low

field B, but instead all the way to zero field. After

int
demagnetization, a strong dc pulse (yB >> Hloc) is applied to the spin
system. This transforms some of the nuclear spin order stored during
demagnetization into coherences. (Similar narrowband behavior can be

observed after application of a resonant rf pulse.127)

At a time tq,
the intermediate field B;, ., may be suddenly turned on, trapping any
coherence which has evolved into laboratory frame magnetization (as in
Figure 6.2a); or, a second pulse may be applied which stores some of
the evolved magnetization as population differences. Remagnetization
to high field transforms these population differences into Zeeman order
for observation (Figure 6.2b). The demagnetizétion process has been
discussed in Chapter II. Some of the results of that discussion will
be exploited below. For the moment, I concentrate instead on the zero
field evolution period, ty, instead.

Throughout this section, all operators are consistently expressed
in the local (M) frame. The dc pulses, however, are inexorably tied to
the laborator& (L) frame. A 6, pulse applied in the laboratory frame
will in fact correspond to a different pulse direction and effective
nutation angle for each orientation of the local frame in the sample.
Its effects are more simply described if the pulse is reformulated in
the local frame. Assuming that laboratory frame pulses of only a
single phase are applied, subsequent operations are marginally
simplified if the pulse is applied along the laboratory z axis.
Furthermore, it is convenient to express the transformation R which
mediates between the two frames not in terms of rotations fixed in the

laboratory frame but instead referenced to the local frame. In terms
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Figure 6.2. Zero field NQR experiments using fulsed field to create
and possibly store coherence. a). Sample is demagnetized to zero
field. A dc pulse of length § = 1jBr applied to the sample creates
coherence. A time t; later, the intermediate field is reapplied. This
stores any magnetization which may have appeared along the axis defined
by Bint for observation in high field as G(t1,0). b). A dc pulse of
length § creates coherence, and a time t, later a second dc pulse of
length ¢ stores coherence as populations. The sample is remagnetized

to high field where the signal G(t1,0,¢) is observed.

210
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of lab-based axes, I have defined
-1 . . _
R@|> = exp(-laIzL)exp(-lﬁIyL)|L> = > (6.20)

The same rotations about fixed molecular frame axes effect the same

transformation
-1 . .
R (@[> = exp(-laIzM)exp(-lﬂIyM)|L> = [ (6.21)

Wherever explicit forms for R are required in this chapter, the
convenient if non-conventional representation of Equation (6.21) will

be used. Transformed into the local frame,

<Llexp(i61)|1> = <L|RR'1exp(ioIZ)RR’?|L>

= <M|exp(-iaIz)exp(-iﬂIy)exp(iﬂIz)exp(iﬂIy)exp(iaIz)|M> (6.22)

where the pulse flip angle § is defined for a field strength By, pulse

length 7, and magnetogyric ratio 7y by

§ = 2ny.B.r (6.23)

i1

The generalization to pulses applied along more than a single axis in
the laboratory frame is tedious but straightforward.

The advantage of expressing p as a sum over spherical tensors
should now be clear: under any number of frame transformations and/or
strong dc pulses about whatever axis, order originally proportional to
an nth rank tensor is transformed only into order associated with other

nth rank tensors. Only time evolution transforms tensors of one rank

into a second. Evolved order can be stored as a magnetization by a

trapping field (as in Figure 6.2a) only if it corresponds to a first

rank tensor; or, as a population difference by a second dc pulse (as in
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Figure 6.2b) only if it corresponds to a tensor of the same rank as one
of the fj operators of Equation (6.18). Where the zero field NMR
experiment described in Chapter III corresponds to autocorrelations of
first rank tensors only, the one-pulse zero field experiment shown
schematically in Figure 6.2a and described more fully below yields
cross correlations between even rank { tensors and the first rank
tensors (I+, I, or Io); the two-pulse zero field expériment of Figure
6.2b, auto- and cross-correlations of the §j operators. The transition
frequencies observed in this latter experiment are governed by the
matrix elements of the even.rank tensors gj.’ The dipole selection
rules of zero field NMR with sudden switching with p(0) proportional to
Zeeman order are overcome just as surely as théy would be if high field
initial conditions corresponding to higher forms of order could be
created. One distinct advantage of zero field NMR or NQR with dec
pulses is that there is less loss of signal iﬁtensity than might be
achieved in any high field preparation schemes. Another possible
advantage is discussed below in Section C.

The goal of the rest of this section is the calculation of the
signal function G(tl) for the sequences of Figure 6.2. I specialize to
the case I = 1 where these calculations are loﬁg and unwieldy but not
undoable. Some experimental spectra derived by these two sequences are
presented and briefly compared to theory. In either sequence the heart
of the calculation is the transformation of the diagonal second-rank
tensor operators U, and U, ,, corresponding to quadrupolar and eta
order, under a dc pulse.

1. Transformation and Evolution of Quadrupolar Order

The first task is to find the form of the molecular frame
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operator Uy after the application of a § pulse along the laboratory
z-axis. A molecular frame form for the pulse is given in Equation

(6.22). The transformed operator, Uy(d), is

Uy(8) = Rexp(-ioIZ)R'lu Rexp(ioIZ)R'l (6.24)

0

Explicit and lengthy calculations making liberal use of the relations

in Table 3.2 give for a specific orientation

Uo(ﬂ,O) = aoU + al+U1++ a;_ U1 + a2+U2++ a,_ U2 (6.25)

with

a

0" -3—;-[(30032;3-1)2 + 3sin2ﬂcoszﬂcosﬂ + %—sin4ﬂ00529]

sina ¢, + cosa ¢

o
I

1+ 1 2
a;_ = -sina ¢y + cosa 1 : (6.26)
a, = -sin2a cg + cos2a <,

a,_ = sin2a.c4 + cos2a Cqy

where the coefficients cq-¢, are

c, = ~I:sinﬁcos,B[(3cos2;9-1)+200s0(sinzﬂ-coszﬂ)-sinz,Bcos20]

sing [2coszﬂsin0 + sinzﬂsin20]

c, = Iz sinzﬂcosﬂ sin2a(2sinf-sin24) (6.27)
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¢, = Ig sin2ﬂ cosZa[(1+c052ﬂ)c0520-Acoszﬂcoso+(3coszﬁ—1)]

At a time ty, the transformed operator Uo(ﬂ,ﬂ) evolves into

Uo(tl,ﬂ,ﬂ) =3a U + a, U, + (6.28)

0l0 + 294Ugy * 81, (Uy cosw,,t

1 Igsinwyqty)

+ al_(Ul_cosw31t1-Iyslnw31t1) + a2_(Uz_cosw12t1-12s1nw12tl)

2. Transformation and Evolution of Eta Order

In analogy to Equations (6.24) and (6.25),

1

' -1 : -
U,, () = Rexp(-1I )R U, Rexp(iI )R (6.29)

2
and

U2+(0,0) =b U, +b, U +b b

0% * P1U1 ¥ 01U

b2 U (6.30)

-+ 2+U2+ * DoY)

where

b, = I? LEQEZE sinzﬁ[(1+cos2ﬂ)cos20-4coszﬂcosa+(3coszﬂ-1)]

0 4
sin2a , 2 .
+ —%— sin BcosB[sin2-2sind])

bl+ = cosacos?2a c5 + cosasin?a Cg + sinacosZa c7 + sinasin2a c8
bl- = cosxcos2a c7 + cosasinla c8 - sinacos?a c5 - sinasinla Ce
b 2 . 2 1 2 . 4

o4 = cos Bcos2f + sin"Bcosé +-Z cos 2asin B(cos2f-4cosf+3) (6.31)
b2_ = E&%ﬁﬁ sinAﬁ[cos20—écosﬂ+3]-cosﬂ[sinzﬂsin0+-%(1+cos2ﬂ)sin20]

where
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c, = sinﬂ[%{1+coszﬂ)sin20 - coszﬂsinﬂ]

5
Ce = sinBcosB(cos2f-cosf) (6.32)
ey = fiﬁéggié [351n2ﬂ + (coszﬂ-sinzﬂ)cosﬂ - (1+coszﬂ)c0520]

c, = sinﬁ[coszﬁsin20 + (sinzﬂ-coszﬁ)sinﬁ]

As previously (Equation (6.28)) at a time t

U2+(t1,9,0) = bOU0 + b2+U2+ + bl+(U1+cosw23t1-Ix31nw23t1) (6.33)

+ bl_(Ul_cosw3lt1-1ysinw31t1) + b2_(U2_cosw12t1-1251nw12t1)

These compact forms (Equations (6.29) and (6.33)) show what operators
are created after a pulse is applied to a demagnetized spin-1 nucleus.
The signal observed in either of the experiments of Figure 6.2 depends

on the distribution of initial conditions p(0, 1). Most generally,

p(0,0) = kl(Q)U0 + kz(ﬂ)pz+ (6.34)

and the initially prepared operator is a function of i. 'In Chapter II
I showed that, ignoring the singular points which exist for
demagnetization along any of the molecular frame principal axes, after
adiabatic demagnetization of an isolated spin-1 nucleus the initial
condition is independent of Q. This ié a particularly fortuitous
result and all subsequent calculations of signals G(tl) are based on

this assumption. The demagnetized density operator is then
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p(0) = = ([T Uy +U,,) (6.35)

independent of Q. (Depending upon the sign of the quadrupolar coupling

constant, there may be an overall sign change in p.) Similarly,
p(ty.0,8) = [3Uy(t;,0,0) + 7, (t,6,0) (6.36)

3. Calculation of Signals

Two cases need be treated, corresponding to the two experimental
sequences of Figure 6.2.

a. Sudden switching of B

Evolution is terminated by the rapid reapplication of a large
static magnetic field B; .. Just as in Chapteté II1-V, the observable
is IzL’ or, in the molecular frame where the density operator is

expressed

IzL = _cosﬂIZM - cosasing IxM + 51nasinﬂIyM (6.37)

and the signal function for a particular orientation is

G(tl,o,ﬂ) = Tr [p(tl,ﬂ,ﬂ)(cosﬂIzM—cosas1nﬂIxM+51na51nﬂIyM)] (6.38)
As usual, the signal function is
G(t,.0) = fc(cl,a,n) P(Q) da (6.39)

Useful angular averages of the trigonometric functions appear in Table
6.2. 1In combination with the orthogonality conditions of Equations
(3.27) and (3.28) only a small number of terms contribute to the
integral of Equation (6.39). The signal function integrated over a
uniform powder distribution for that portion of p proportional to

quadrupolar order is
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=

(t1,0) = [(2sin26+sinf) (sinw, .t +sinw31t1)] (6.40)

2371

[

Gy z

and for that portion of p proportional to n order

1 . . . .
Gn(tl,a) = -Tg{[(251n20+51n0)(31nw23t1+251nw12t1)]
' (6.41)
+ (sin24 + 251n0)51nw31t1}
Table 6.2: Averages of Trigonometric Functions
A. Functions of Polar Angle §
2 1 . 2 2 2, .2, 2 b, . 2, 2
<cos B> = 3 <sin B> = 3 <cos Bsin g> = 15 <cos Bsin > = 35
4 1 L4, 8 2, .4 8 4, . 4, 8
<cos B> = 5 <sin B> = 15 <cos Bsin p> = 05 <cos Bsin B> = 315
<c056ﬂ> = %— <sin6ﬂ>== %g <cos6ﬂsin2ﬂ> = é%- <coszﬂsin6ﬂ> = é!%
8, _ 1 .. 6, 128 n, _ 1 . n,  n(n-2)...2
<cos B> = 9 <sin B> = 375 <cos B> = o <sin B> = D) (0-1).. .3

for n even

B. Functions of Azimuthal Angle o

<sin2na>'= <coszna> = %- <sin4na> = <cosana> = %- <cosznasin2na> =-%

2 . . 5
<cos acos2a> = -<51n2ac052a> = <cos6na> = <51n6na> =-Tg

4

Predictions as to the flip angle dependence of the signal intensities
for each of these contributions separately are shown in Figure 6.3a and
b. The total signal is the sum over these two terms weighted by the kj
coefficients. For the initial condition described in Equation (6.36),
the predicted signal intensities are shown in Figure 6.3c. Some

experimental results are shown in Figure 6.4. It is reasonable to

compare theoretical calculations for isolated spins only to the
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Figure 6.3. Coefficients from Equations (6.40) and (6.41l) as a
function of # corresponding to the production and detection of signals
proportional to sin wt for initial conditions corresponding to
uniformly prepared and detected a). quadrupoléf order; b). eta order;

and c). the density operator of Equation (6.35).



0.25

-0.25

0.25

-0.25

0.25

l

/4

XBL 857-11242

219



220

Figure 6.4. Experimental one-pulse spectra (sine Fourier transforms)
of DMB for a). 6 = 40°; b). 6 = 60%; c). 4 = 90°; d). 4 = 120°%; e). ¢
= 135°; £). ¢ = 180°. For small flip angles, the spectra are

relatively undistorted. As predicted, the v+nlines grow in much more

rapidly than v_ or uo.
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intensities of the aromatic ring sites, which are much more isolated
than are the the methyl group deuterons. The agreement between the
theoretical predictions éf Equations (6.40) and (6.41) and the observed
spectra is not particularly étriking. As predicted by theory, the v,
lines grow in somewhat more rapidly and are always stronger than either
the vy or v_ lines, but the precise flip-anglg dependence of Figure 6.3
is not reproduced. It is gratifying to observe that for flip angles

= n, a minimum in the signal intensity is observed. This, at least, is
consistent with theory.

Along axes other than that of the Pulse, no signal should be
observed in polycrystalline samples. The integration over a and B
guarantees that magnetization can only appear along the axis of the
applied field. This result is well-known in more traditional pulsed
NQR48 applications. Equivalent spectra are expected whether the the
field cycle is executed as in Figure 6.1, or inverted (i.e. the
intermediate field is suddenly turning off and a time t; later, order
is stored with a short pulse).

b. Two-Pulse Experiments

Evolving coherence can also be stored for later observation by a

second dc field pulse with flip angle ¢ and®2,128

p(ty,6,4,0) = Rexp(-i¢Iz)R-1exp(-th)Rexp(-iHIZ)R—lp(O)

Rexp(iﬂIz)R-lexp(th)Rexp(i¢Iz)R-1 (6.42)

Remagnetization to high field restores that part of p(tl,0,¢) which is
proportional to p(0) as Zeeman order suitable for detection. (The
remainder of the diagonal elements of p(t1,0,¢) remagnetize to

quadrupolar order in high field. I will not concern myself with this
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potential complication.) The detected operator is therefore identical

to the initial operator, and the signal function is

G(t,,6,4) = 1) G(t,,0,4,0) P(Q) a0 - fTr[p(O)p(t1.0.¢.0)] P(Q) d0(6.43)
Playing at old tricks (Equations (3.15)) again, the signal function is
more readily calculated if the second pulse is treated as if it
operated on the detected operator (with a negative flip angle) rather
than on the evolved operator, and
G(t;,0,4,0) = Tr [Rexp(-i¢Iz)R'1exp(-th)Rexp(-iﬂIz)R-lp(O)

Rexp(ioIz)R.lexp(i.Ht:)Rexp(:I.qSIz)R-1 p(O)]

= Tr|(exp(-iHt)Rexp(-141 )R-lp(O)Rexp(iol )R-lexp(th)}
z z

{Rexp(1¢IZ)R'1 p(0)Rexp(-1¢Iz)R'1}]

= Tr [p(t,0,0) p(0,-4,M)] | (6.44)

and

G(ty,0,4) = [ Trlp(t;,0,0)0(0,-4,8)] P(D) d0 (6.45)

Substituting for p from Equation (6.34),

G(ty,0,4) = J Tc [{kon(t1,0,0)+k2U2+(t1,0,0)} (6.46)

2U2+
The components of Equation (6.46) can be found elsewhere in this
chapter (Equations (6.28),(6.33), (6.35), and Table 6.2). Three types

of terms contribute to the signal. First, terms which originate as

quadrupolar order in the initial condition and which are detected as
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quadrupolar order in the detected operator. Second, terms which
originate as eta order in the initial condition and which are detected
as eta order in the detected operator. And last, terms which originate
as quadrupolar order and are detected as eta order, or vice versa. Any
pair of pulses will prepare and store some component of the total spin
order, and no pair of pulses can force all of the initially prepared
spin order to evolve. The signal amplitude is maximized for § + ¢ =
2nn (thus guaranteeing that for t) = 0, G(tl) = ]1; the first point in
the free induction decay corresponds to the area under the spectrum).

A general solution to Eqﬁation (6.43) is-

G(tl,9,¢) =d, +d +F d

+ d, co t, + d, cos
0 ) +cosw t _ ‘sw _ w

231 1 3171 2 (6.47)

1 12%1

where

dj = <(aj(0)+bj(0))(aj(-é)+bj(-¢))> (6.48)

and the angle brackets < > indicate an averaging over all orientations,
Q2. For uniformly prepared initial conditions all autocorrelations
(<ajaj> or <bjbj>) contribute to the signal but the only non-zero
cross-correlations are <aj b,> = -<a;_ by _>. All the correlation
coefficients are given in Table 6.3. Figure 6.5 shows graphically the
correlation coefficients for ¢ = -0, where the total evolving signal
intensity is maximized. As field pulses of only a single polarity are
currently available, this sequence is mimicked by a (8, 2n-0) sequence
of pulses. Figure 6.6 plots the predicted line intensities for the
same two-pulse sequence assuming the initial condition of Equation

(6.33). The entries in Table 6.3 predict that the spectrum is

independent of which pulse comes first. Figure 6.7 compares the
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Figure 6.5. Coefficients from Table 6.3 for ¢ = 2x - §, corresponding
to the production and detection of signals proportional to cos wt for
initial conditions corresponding to uniformly prepared and detected a).
quadrupolar order; b). eta order; c). cross terms between quadrupolar
and eta order. Heavy lines correspond to order stored as non-evolving
Uy, or U, operators after the pulse. The amount of non-evolving order
is independent of the relative amounts of quadrupolar and eta order.

Only coefficients of v, and v_ terms are effected by the cross terms.
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Figure 6.6. Theoretical intensities observed in (8, 2x - 4) two-pulse
zero field experiment for the initial density operator and the detected
operator proportional to p of Equation (6.35). The minimum in the

nonevolving component of the stored order is observed for 4 ~ 55°.
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a) | c)

b) d)

0 50 I00 150 O 50 100 150
Frequency (kHz)

Figure 6.7. Experimental demonstration of the equivalence between
(8, 2« - ) sequence and (2n-0, #) sequence for the two-pulse
experiment on DMB. a). (450, 315°) sequence. b). (315°, 45°)

sequence. c). (90°, 270°) sequence. d). (270°, 90°) sequence.
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experimentally observed spectra of perdeuterated DMB observed with a
two-pulse (f, 2n-8) sequence and with a (2#-4,8) sequence. As
predicted, the spectra are virtually identical.

The maximum evolving magnetization, integrated over the powder
distribution, appears for # ~ 55°, and approximately 70% of the

prepared order is transformed into time-dependent eigenstates (as

Table 6.3: Correlation Coefficients for Two-Pulse Experiments

B

Term n

1 2 3 4 5 6 M7 Mg Mg
<ay(8)ay(-4)> 9 3 2 2 8 8 4 0 0 o0
<a, (0)a, (-4)> 3 3 3 0 5 2 52 -9 -18 6
<a,, (8)a,, (-4)> 3 3 0 -3 4. 7 -4 -12 -3 -6
<b(0)b,(-4)> 1 9 o0 -9 12 21 -12 -36 -9 36
<b,,(0)by, (-4)> 1 9 -3 -6 13 16 -10 -33 -12 6
<b,,(8)b, (-4)> 9 3 2 2. 8 8 4 0 0 0
<b, (8)b, (-4)> 1 9 -12 3 16 1 -4 -24 -69 -30
<b, (O)a (-#)> J3/6 0 -23 23 16 -80 32 -72 -120 -12

Expectation values of the coefficients are given by

—_ [ my + m2(cosﬂ+cos¢) + m3(cos20+0052¢) + m, cosfcosé+

315 4

m_cos2fcos2¢ + m6(cosacos2¢+cos¢c0520) + m7sinﬂsin¢

5

m,sin2fsin2¢ + m9(sin0sin2¢+sin20sin¢) ]

8

Correlation coefficients not listed are zero except
<a; (0)a) (-¢)> = <a; (0a, (-4)>;  <b; (O)b; (-$)> = <b, (6)by, (-¢)>

<a;_(9)b) (-9)> = - <a; (O)b) (-9)> <ay (Day (-)> = <ay (H)ay, (-$)>

compared to 60% starting from a high field quadrupolar ordered state

and suddenly shutting off and on the external field). Figures 6.8-6.10
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give some experimental data obtained by the (§, 2x-f) sequence
described above. Figure 6.8 is a rather complete set of experiments on
DMB as a function of #. As predicted in Figure 6.6, the intensity of
the v, line approaches its maximum intensity very much more rapidly
than the v_ or vy lines at the same site. For <n/2, the agreement is
qualitatively good. At larger flip angles, however, phase distortions
appear in the sbectrum which are not predicted by the theoretical
treatment, and which are exacerbated as § approaches .

The spectra of the -CD3 group are quite complex. In this very
strongly coupled spin system, it is not surprising that a treatment
based on the assumption of an isolated spin has little predictive
quality. Overall, the signal-to-noise ratio in this two-pulse
experiment appears not very different from the signal-to-noise ratio of
the experiment described in Chapter III. It is surprising, and may
provide some explanation for why the model calculations fail to
reproduce the observéd spectra, that the signal intensity at the ring
sites is somewhat higher than in the direct, sudden-switching
experiments of all previous chapters. This is almost certainly a
signal that homonuclear level-crossings during the demagnetization
transfer order back and forth between the rapidly-relaxing methyl group
deuterons and their more sluggish ring-site neighbors. In the presence
of such cross-relaxation during the demagnetization-remagnetization
sequence, and because the extent of cross-relaxation is almost
certainly orientation dependent, the calculations of Equations (6.28)-
(6.43) cannot be expected to correspond too closely to experimental

reality.



Figure 6.8. Sequence of two-pulse 2p NQR spectra of DMB as a function
of flip angle # in (8, 2x - #) sequence. a). ¢ = 30°%; b). 6 = 45°;

c). § =75% d). § =90°% e). 6 = 120°; £). § = 135°; g). 6 = 150°;

h). § = 180°. For small flip angles, the intensities of the ring sites
lines follow roughly the predictions of Figure 6.6 but for larger flip
angles the agreement is less good. Most spectra are a the sum over a
pair of zero field FID's with each setting of the flip angle, repeated

at 7.5 s intervals for a total of 512 points separated by 3 ps in t;.
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Figure 6.9 shows two-pulse zero field NQR spectra of
perdeuterated DMN. Compared to the spectrum of Figure 5.10, the signal
intensity from the -CDy group is greatly depressed. This is almost
certainly due to low field relaxation. In order to better satisfy thé
conditions for adiabaticity, the decay of the field from ~100 gauss to
zero was purposely slowed form ~10ms to ~40ms. During this longer time
in applied fields no larger than the local fields, magnetization (or
whatever type of order it corresponds to at low field) stored in the
-CD3 group in high field largely disappears. The low field Ty is
~25-40 ms. As in the spectré of DMB, the high frequency v, lines grow
in quite rapidly while the lower frequency u; and vy lines reach the
full intensity only for much longer pulses; For long pulses (#~n) some
of the high frequency lines invert, while others seem unaffected in
intensity over a broad range of flip angles. The large § beﬁavior is
very different from that of either the theory or DMB.

Finally, in Figure 6.10 I show two two-pulse spectra of
perdeuterated malonic acid (CD2(COOD)2). In malonic acid, there
appears to be little of the distortion or line inversion observed in
either DMB or DMN for large flip angles. Splittings are observed in
nearly every high frequency line. As there are only four distinct
deuterium quadrupolar coupling constants in malonic acid129 these
splittings are almost certainly due to dipole-dipole couplings between
sites which have not been incorporated into the model for the
intensities.

4, Summary
Summarizing the results of this discursion into the land of the

spin-1: experiments using pulsed dc fields to coherently excite



Figure 6.9. Sequence of two-pulse 2y NQR épectra of DMN as a function
of flip angle 4 in (4, 2n - #) sequence. To better satisfy the
conditions for applicability of the adiabatic approximation, the

. transition frdm ~100 gauss to zero field was slowed to ~40 ms. The low
field relaxation time of the -CD3 group is apparently rather shorter
than the 80 ms it takes to demagnetize from and remagnetize to 100
gauss as almost no -CDq signal is observed. a). § = 45°: b). 8 = 60°;
c). § =80°% d). § = 130°% e). § = 150°; £). 180°. Some of the
features of the qualitative pulse-length behavior of DMB are repeated
in this spectrum but the response to the two-pulse sequence seems

highly system-dependent.
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Figure 6.10. Zero field 2D NQR of perdeuterated malonic acid

(CD2(COOD)2) acquired by the two-pulse experiment for a). § =
180°;

b). 8 = 90°. Each of the lines is split by dipole-dipole
couplings. . 7

The flip angle dependence of the lines for § = 180° is very
different from either that of Figure 6.8 or 6.9.
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demagnetized spin systems are feasible, and for deuterated systems
these pulsed experiments result in signal-to-noise ratios not very
different from those observed in the more traditional experiment.
Exact modeling of intensities appears difficult, presumably because the
dynamics of the demagnetization and remagnetization are quite
complicated. Nevertheless, as long as only quadrupolar couplings are
desired there is no strong objection to a technique capable of
uncovering frequencies only. For systems characterized by véry
different T, spin-lattice relaxation times or where the high field
detection sequence is more sensitive to some-sites than others, the
level-crossings which complicate the exact intensity calculation may
result in higher sensitivity in the two-pulse experiment than would be
observed in zero field NMR experiments which use suddenly switched
fields to develop coherence. Finally, the two-pulse experiment (and
variants thereof, some of which follow directly) may be technically
simpler to execute. Whereas the experiment of Chapter III requires

that a large rapidly switchable field B be applied to the sample for

int
times ~ ms (see Chapter VIII), in the two-pulse experiment fields large
compared to thellocal field need only be applied for times ~ ps. This
may significantly simplify the design of the necessary hardware. />
For larger spin systems similar calculations are possible and may
be most simply performed following the general outline of this section.
For large I systems, or more complicated pulse sequences than the
examples of this section, experience leads me to believe that paﬁer and
pencil calculations have only a small chance of fortuitously converging

on correct answers in a finite amount of time. Brute force numerical

integration over a powder distribution is an idea I find aesthetically
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displeasing as well as expensive. These more complicated experiments
will almost certainly benefit from the use of advanced artificial
intelligence routines like Macsyma or SMP. But where the spin system
is prepared by demagnetization to zero field, I believe it Qill be a
rare case when calculations can accurately reproduce experimental
intensities. 1In cyclic sequences, an analysis exploiting the machinery

2,8,130 ;4 highly to be recommended.

of average Hamiltonian theory
One might question the wisdom of worrying in great detail about an
experiment whose interpretation is difficult and which seems to provide
new information in only a limited number ‘of experimental cases,
particularly when zero field studies using the idea of suddenly
switched fields prvovides much cleaner experimental results. 1In the

next section, I will discuss some of the motivation for developing this

new technique.

C. Indirect Detection

During the course of some studies of 14 zero field NMR, we
investigated the spectrum of lauric acid as a function of the 1y.2p
ratio in randomly deuterated samples (see Figure 4.21). During one of
these experiments a puzzling set of lines were observed (Figure 6.11).
In addition to the normal broad spectrum centered about zero frequency,
some relatively sharper lines at frequencies ~35 kHz and as high as
~120 kHz were observed. These line clearly fall outside the range of
normal lH-lH dipole-dipole couplings and were remarkably narrow by the
standards of zero field NMR. Some time later, when the 2D NQR spectrum

of highly deuterated lauric acid was measured (Figure 5.11) the
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Lauric Acid
~7% H

Frequency (kHz)

Figure 6.11. Indirectly detected 2D NQR

spectrum of lauric acid is randomly deuterated

XBL 857-8936

sample. This is the same sample whose
spectrum was shown in Figure 4.21. It is
unclear what experimental parameters differed
so that the 2D spectrum might be so clearly

detected from the lH spectrum.
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identity of these lines became clear; the 2D NQR spectral frequencies
were indirectly observed through the residual ly spins; Level
crossings between 2D and 1H‘are not expected to occur in fields as
large as 100 gauss, the nominal intermediate field for 1H zero field
NMR experiments. Soon thereafter these lines disappeared and at the
time no attempt was made to recover them.

As was outlined in Chapter II, extremely high sensitivity
measurements of zero field NQR are possible when level crossings
between spin-1/2 and quadrupolar spin systems can be used to transfer
polarization to the quadfupolar nuclei during the demagnetization, and
information imprinted in the zero field period can then be detected by
observing the effect of the reverse prodessl One might wonder whether
it is possible to exploit level crossings (where they éxist) to enhance
the sensitivity of time domain zero field experiments where direct
detection experiments are insufficiently sensitive. Low sensitivity
may be due to a low equilibrium value of the Curie constant, because
the high field T; is inconveniently long, the low field T, is too
short, or because the high field spectrum is difficult to observe with
high sensitivity.

In the previous section examples of polarization transfer between
inequivalent quadrupolar nuclei were presented. Level crossings in
homonuclear systems probably occur only for specific orientations and
values of the quadrupolar tensors involved, and there need be no field
where the splittings between energy levels of neighboring nuclei are
matched and polarization transfer is allowed. At high field, the
difference in quadrupolar couplings slow cross relaxation between

nuclei with different local quadrupolar couplings. In zero field, this
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quenching effect is exacerbated because there are mno diagonal elements
of the dipole-dipole coupling between inequivalent 2p nuclei.66
Nonetheless, significant signal enhancement at sites with long T;'s due
to the transfer of polarization between homonuclear 2p spin sites in
perdeuterated spin systems has been observed.

In mixed 14.-2p systems, ievel crossings certainly occur when the
sample is demagnetized. But tﬁe simple argument of Chapter II probably
does not apply to these systems. Where the splittings between
quadrupolar energy levels are as small as in 2D the level crossings do
not occur in the simple sequénce described in Chapter II. The 1y
dipolar bath is sufficiently broad so that all quadrupolar energy
splittings may simultaneously be resonant with some energy-conserving

1

spin-flip in the “H bath. One possible level-crossing scheme is shown

in Figure 6.12. The levels connected by the v, and v_ lines are

+
simultaneously matched to tha Zeeman-split spin-1/2 levels to within
the energy spread of the dipolar bath. As long as H; > Hp, the dipolar
and Zeeman baths may have very different spin temperatures and the ‘
demagnetized Zeeman reservoir is much colder. Both v and v_ lines
equilibrate to the 14 Zeeman temperature. This establishes a state of
pure quadrupolar order in the 2y spins. If the ratio of 2y to ly is
low, then the amount of quadrupolar order is nearly independent of the
size of the quadrupolar coupling constant. If significant warming of

the 1

H bath occurs, successive level crossings transfer less order to
sites with smaller couplings. At very low fields H, ~ Hp the vj
splitting becomes resonant with the pure dipolar bath and may be

further cooled. This establishes eta order consistent with the size of

the vy splitting and the extent to which polarization remains in the
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Figure 6.12. Level crossing sequence for 14.2p system of coupled
1

spins. The “H energy levels are broadened by the homonuclear dipole-
dipole couplings. The 2p spins are nearly in their zero field energy
levels. If n is small, then transitions which pumb pure quadrupolar
order (|p> - |r> and |q> -+ |r> are simultaneously allowed to within the
dipolar linewidth of the Zeeman levels. Eta order may also be pumped
by the |p> - |q> transition, but in moderately high fields the Zeeman
spin temperature after demagnetiation is much colder than the dipolar
spin temperature, so little eta order is prepared. Only at low fields

where the H dipolar and Zeeman levels merge can significant amounts of

eta order be prepared via level crossings.
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dipolar bath. The relative amounts of quadrupolar and eta order depend

on concentration and the size of 5. In systems with relatively few Zp
nuclei and small asymmetry parameters this may well correspond very
nearly to a state of spin temperature, where

D

p (0) =H (6.49)

Q

Where n is small, this may not be very different from pure quadrupolar
order.

The excitation of the spins proceeds as above. A ¢ pulse applied
to the sample transforms some of the diagpnal order in p into
coherences. The density operator for the sample as a whole corresponds
to separate contributions from pD and pH, which describes the 1H bath.
A § pulse applied to the 2p spins is a 6 pulse applied to the 1y
spins, where

o = 6 Gy /vy (6.50)

Because the flip angles differ even for the same applied field and
pulse length, the evolution of different types of nuclei can be
separated out based on the selectivity of the applied dc pulses.62 At
the end of tq, a second pulse stores evolved order. Remagnetization
through the level crossing region encodes some of the information about
the zero field evolution frequencies in the 14 bath for detection
through the amplitude of the high field 1§ free induction decay.

This selectivity is an important advantage in any experiment
where the zero field frequencies of the "interesting" spins (2D) are
mapped out through its effect on the "uninteresting" spins (1H). If

the H spins evolve during t;, then the transfer of polarization back
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from 2D to Iy during remagnetization will depend not only on the
evolution of the 2D spins in zero field but also on the evolution of
the lH spins. More formally, this implies that the observable in aﬁy
d;nsity matrix calculation is changing with tj. This will certainly
distort the signal function G(tl). If, however, 0' = 2nn, then the 1H
evolution is suppressed and this distortion is minimized. (In some
systems, it might prove more sensitive to initially destroy all ly
order before t; by applying a sequence of § = 2nm pulses. Then only
order which is developed after polarization transfer back from the
colder 2D spins is observed in high field.)-

Initial work exploiting time domain level-crossing spectroscopy
confirms the basic principles discussed in this section.62 Both
transfers of order, during the demagnetization and remagnetization, are
highly dependent on experimental parameters and no simple model for the
intensities appear to have much predictive poﬁer. While some amplitude
and/or phase distortions appear in the spectra, the theoretical
difficulties associated with a complete and convincing analysis do not
preclude the extraction of useful information from systems which are

not amenable to techniques which rely on direct detection.

D. Zero Field-Zero Field Correlation Experiments

Among the most powerful of modern NMR techniques are the two-
dimensional correlation experiments; i.e. experiments where the
spectrum is observed as a function of two independent time variables
(see Section I.B.l.a) in order to uncover the correlations between the

18

evolution frequencies in the two time domains. Many examples of
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experiments applicable to weakly coupled liquids exist. These include
COSY,131 which maps out through-bond (J) coupling networks, and
NOESYL32 which identifies through-space (dipole-dipole) couplings.
Solid state analogs of these experiments are rare. My goal is to
descibe such experiments for use in the structural analysis of complex
systems of solid states spin systems in zero applied field. As usual,
I focus on techniques applicable to the case of spin-1.

1. Correlation between Zero Field Lines

Figure 6.13a shows a two-dimensional zero field NMR experiment
which correlates between lines arising from a single type of 2p site.
The spins are brought to an intermediate field which is suddenly turned
off. Evolution continues for a time ty. At t=1t), a short pulse (for
simplicity, aligned along the laboratory z-axis) is applied. Then the
spins are allowed to evolve for a time t,. At the end of this time
period, the intermediate field is suddenly feapplied and the sample
transported to high field for detection.  The two time intervals are
incremented independently, and a signal function G(tl,ﬁ,tz) is measured
in high field. The # pulse transfers coherence between different lines
in the three-level spin-1l system. Fourier transformation with respect
to both t, and ty shows the correlations between, for example, the v+
and v_ lines of a single 2p site. (In the presence of couplings to
other sites, correlations to other coupled spins may also be observed.
I concentrate instead on cases where individual lines can be associated
with individual sites and the couplings between sites are negligible.)

As usual, the problem is to calculate



Figure 6.13. Two dimensional zero field-zero field correlation

experiments. a). Sample is demagnetized to B which is suddenly

int®
switched off. Evolution under the zero field duadrupolar Hamiltonian
occurs for a time ty. Then the intermediate field is pulsed on again.
For short pulses, the field can be considered to be a rotation in spin
space, and should reveal correlations between v, v_, and v, lines at
the same site. For longer pulses, coherence thch does not correspond
to magnetization decéys away. If the field pulse is long, spin
diffusion between sites may occur. B;, . is suddenly switched off and
on again, and t, is encoded with new frequency information. b).
Similar to a). except that the long field pulse is preceded by a short
pulse to store coherence as population differences. Slow
remagnetization to By, . and demagnetization back to zero field
guarantees that if there is a field where spin diffusion between 2pr g

is rapid, it can occur. A second pulse initiates t,.

248
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G(tl,e,t2) = Tr [Isz(tl,ﬂ,tZ)] (6.51)
with

. -1 . . -1
p(tl,ﬁ,tz) = Rexp(-lth)R exp(-lﬂIz)Rexp(-lHtl)R IzL

Rexp(thl)R_lexp(iOIz)Rexp(thz)R-l (6.52)

By judicious rearrangement of Equation (6.51) and (6.52), G is

rewritten in a form much simplified for calculation;

. -1 . -1
G(tl,a,tz) = Tr[{Rexp(1Ht2)R IzLRexP(-letZ)R } (6.53)

. . -1 . -1 .
{exp(-1olz)exp(-1Ht1)R IZLRexp(lﬂtl)R exp(lolz)} ]

Tr [IZL(-tZ, 0) IzL(tl’ 6)] (6.54)

The advantage of rewriting Equation (6.51) in the form of Equation
(6.53) is that IzL(t,O) is given in Equation (3.58). What remains is
to apply a pulse to IzL('tZ’o)' take the trace, and integrate over the

assumed powder distribution. In terms of the a; coefficients defined

in Equation (3.59), the rotated form IzL(t, 6) is

exp(1012)IZL(t)exp(-1012)=(a1cos0-a251n0)IX+(azcoso+alsln0)Iy (6.55)

+ a sin&)U1++ (a6cose+a 51n0)U1_

6

Iz+ a,U.+ (ascosa-a 5

3 470

+ (a7c0520+a8sin20)U2+ + (a8c052€—a sin20)U2_

7

where all the coefficients are time dependent. Taking the trace as

indicated in Equation (6.55) and integrating over P(Q),
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G(t:l,e,tz):== T%g{{j§é21+14cosﬂ) Kjk,jk - (3+10cosf+22cosb) ij,jk ]
+[j#k,bémi,:j#l’k?ém(7-7cos0)l(jk’1m + 3(l+cosf-2cos28) ij,lm]} (6.56)
where
Kjk,lm = coswjktlcoswlmt2 (6.57)
and
ij,lm = sinwjktlsinwlmt2 (6.58)

and the indices run from 1 to 3. Maximum intensity is transformed into
correlations between peaks within a manifold (as opposed to the
redundant diagonal peaks w; = wy which tell.nothing about the
correlations) for § = n. This experiment (or close relatives which
develop polarization at many sites by starting.frdm a demagnetized
state) should assist in the interpretation of zero field spectra where
the one-dimensional spectrum is too cluttered with overlapping lines to
provide for an unambiguous assignment of the full quadrupolar tensor.

A similar experimental sequence would be analogous to a zero field COSY
experiment, where thé quadrupolar couplings identify sites while the
dipole-dipole couplings give the correlations between sites. The
transfer of coherence between coupled spins occurs only on the time
scale of spin diffusion which may be quite slow for inequivalent sites
in zero field.66:8%4 COSY-type experiments will probably show few
cross-correlations other than those between equivalent sites.

2. Cross Relaxation Through Dipole-Dipole Couplings

Cross relaxation between dipole-dipole coupled deuterons occurs

at a rate comparable to the inverse of the coupling constant wp only if
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the quadruéolar plus Zeeman energies of neighboring deuterons are
closely matched. Therefore, even in the best of circumstances roughly
500 ps must pass before magnetization originally localized on one spin
might reasonably be expected to appear at a second, and perhaps much
longer in zero field. As 500 us is roughly equal to the inverse of the
average zero field linewidth, coherence transfer experiments may never
be capable of revealing the spin-spin correlations between 2D in zero
field. The time domain analog of the "double transition" 2p NQR

118 would be a "multiple quantum" experiment which, in

experiments
analogy to high field experiﬁents, would require both a preparation and
mixing period again comparable to the inverse of the dipole couplings.

133 can be developed for spins in

Unless time-reversible pulse sequences
zero field, multiple quantum experiments suffer from the same problem;
the multiple spin-correlations grow in at a rate comparable to the
decay of the observable. In fact, they may be one and the same
process. |

A more generally applicable approach is indicated in the
sequences of Figure 6.13. As the flip angle in Equations (6.51-57)
becomes large (>>2n), transverse magnetization or other coherence (i.e.
order in the density matrix p which does not commute with IjL’ where j
is the axis along which the field pulse is applied) will decay in a
time given roughly by the inverse of the quadrupole coupling constant.
For pulses long compared to the inverse of the quadrupolar frequencies,
the evolution under the truncated quadrupolar Hamiltonian cannot be
ignored, and the frequency of evolution varies from orientation to

orientation over the sample. (In fact, the sample is in high field

with all the associated consequences.) For long pulses and where no
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134 are applied the norm

pulse sequences designed to elicit spin echoes
of p decreases with time. In return for this loss of signal power,
some portion of p is diagonal in the high field basis set and
disappears only with a time constant Ty, which is generally many
milliseconds long and may be seconds long. If spin diffusion occurs
during this rather longer period of time, and the field is again
suddenly switched off and on again, the signal G(ty,ty) will be
imprinted with frequency information from both sites.

One serious objection to this experiment has already been
discussed. Spin diffusion between inequivalent sites is fast only at
specific values of the externally appliéd field which are almost
certainly orientation dependent. Then unleéé by happenstance the
intermediate field is one generally good value little transfer of
magnetization will occur except within those spins systems which are
strongly coupled, anyway.

The sequence of Figure 6.13b should prove vastly superior. it
takes advantage of the fact that during an "adiabatic" change of the
field one necessarily passes through whatever value of the field is
optimal for spin diffusion between neighbors independent of orientation
unless no gobd value exists. Order is stored in eigenstates of the
zero field Hamiltonian (e.g. as second rank tensor operators
proportional to Uy or Uy, in a spin-1 system) by a short, strong dc
pulse. This order is again characterized by a decay constant
proportional to Ty. By slowly restoring the intermediate field,
quadrupolar and eta order stored by the pulse is conserved and slowly
transformed into Zeeman and quadrupolar order appropriate to high

field. All values of the field where spin diffusion is likely to be
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efficient are sampled. The evolution'period t, can then be initiated
either by demagnetization followed by a short pulse, or by sudden
switching of the intermediate field. Finally, t, is ended and the
system returned to high field for detection.

Numerous other variations on these simple correlation experiments
which take advantage of incoherent, NOESY-like spin diffusion are

possible.
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VII. Considerations of Symmetry

In this chapter I.address some rather obscure but interesting
problems associated with the symmetry properties of the zero field
Hamiltonian (H). An understanding of these properties is useful in
explaining spectra of systems of coupled nuclear spins in zero applied
field. Predictions of such gross spectral features as the numbers of
allowed transitions (which was treated iﬁ a fairly general fashion in
Chapter IV) become exact only if the symmetries of H are properly
incorporated. Furthermore, this understanding of the limits nature has
set may provide a basis for a reasoned evaluation of the usefulness of
complicated pﬁlse sequences designed to.simplify the spectra of spin
systems in zero field.

In Chapter I, the general approach to problems of high field NMR
was presented. Formally:

1. An axis system is established fixed in the laboratory frame

and defined by the direction of the applied magnetic field.

Conventionally, the z-axis is chosen parallel to the applied

field.

2. The elements of the spin Hamiltonian are organized. As the

Zeeman interaction, Hy, is much larger than the local

Hamiltonians a basis of states is chosen which diagonalizes Hy.

3. The internal Hamiltonians, Hy,c» are expressed in the basis

set defined in step 2 above. To first order in perturbation

theory, only the truncated (diagonal) components of the local

fields are observed. This is treated formally by entering a

rotating reference frame where the orientation of the spin
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reference frame is continuously changing with respect to the
fixed spatial frame of reference. Only the value of the internal
Hamiltonians averaged over the period of the rotation (i.e. at
the windows where the spin and spatial reference frames coincide)
is observed.
Selection rules are established based on the symmetry operations of the
Hamiltonian H = H, + Hy, .. Because the spin reference frame is rapidly
rotating about its and the spatial frame'’s z-axis, all rotations about
that axis commute with H and are symmetry operations of H. The
projection of the angular momentum along the z-axis, <I >, is quantized
and transitions between states are allowed under dipole selection rules

(i.e. the application of an oscillating rf fieid) only if

- = = +
<Iz>f <Iz>i Am 1 (7.1)

where f labels the final state and i the initial state. Further
averaging may take place in the spatial coordinates. In simple cases
(e.g. MASS35) this can be treated by entering a second rotating frame
which relates the axis of spatial rotation of the sample to the
laboratory frame where measurements are made. A spatially rotating
frame was also used in the analysis of the zero field NMR spectrum of
the methyl group (Section IV.A.2).

Other symmetries of H (permutations of "identical" nuclei, i.e.
nuclei with identical Larmor frequencies and the same set of couplings
to other nuclei) may provide further selection rules. Where these
additional selection rules exist they assist in the assignment of lines
135

and the analysis of complex spectra.

In this chapter, I present a related approach to an understanding
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of the use of symmetry characteristics in the analysis of zero field
NMR spectra. Formally:

1. An axis system is established fixed in a molecular coordinate

system such that the Hamiltonian for all similar spin systems

share an identical description independent of orientation.

2. The spin Hamiltonian is expanded in a basis set of spin

operators referenced to this fixed spatial system and

parameterized by the spatial variables. In the:absence of

motion, spin and spatial frames coincide.
In the absence of rapid rotation about a molecular axis (again as in
-CH3) there need be no axis along which any component of the angular
momentum is quantized. If <Ij> is not a good quantum number then there
exists no selection rule for Am analogous to that of Equation (7.1)ﬂ
If there are selection rules they are imposed by other symmetry
operations. These selection rules, where they exist, are determined by
the set of operators which permute identical nuclei (again, spins which
share the same set of coupling constants to all other spins).

In analogy to the analysis of symmetry constraints in high field
(and because it is difficult to derive the effect of permutations on
spinors), the set of permutations of identical spins will be assumed
isomorphic to a set of symmetry operations comprised of rotations,
inversions and reflections which act upon the spin degrees of freedom
only. Symmetry operations of H are those which take the Hamiltonian (a
contraction of spin and spatial degrees of freedom) and transform it
into an identical Hamiltonian except for the possible permutation of
spin labels between identical spins. The spin-space rotations which

commute with H can be thought of (in homonuclear spins systems) as
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corresponding to a set of dc pulses which (if applied in the molecular
frame) would leave the Hamiltonian (and thus the density operator p)
unchanged.

Application of a symmetry operation to an eigenstate ¥ effects
two distinct types of changes. First is a permutation of spin labels
consistent with the interchange of symmetry-related spins where the
spin reference frame is reoriented with respect to the spatial
coordinate system. Second is the alteration of 3 because the spinors
themselves (the single-spin bras or kets) are transformed under
rotations and reflections. The first step is essen?ially the standard

136 The second is unique to problems

process of ordinary group theory.
of spins in zero applied field. Section A is entirely devoted to the
clarification of this second effect.

It may seem strange that the symmetry operations are defined with
respect to the transformation of the spin variables alone. Yet this
must be the proper perspective. Simultaneous transformation of both
spatial and spin variables through the same coordinate transformation
yields an equivalent Hamiltonian with identical eigenvalues independent
of the transformation as H is merely reexpressed in a different
reference system. While the invariance of zero field Hamiltonians to
coordinate transformations is the raison d'etre of zero field NMR, the
simultaneous transformation of spin and spatial frames in the sense of
Equation (1.14) is uninteresting.

The goal of this chapter is to identify and characterize the
symmetry operations characteristic of the zero field Hamiltonian and to

describe their influence on the observable, the zero field spectrum.

In the presence of molecular motion, the spatial degrees of freedom
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become time-dependent and the Hamiltonian again separates into two
reference frames which only intermittently coincide. Then the
arguments and conclusions of this chapter require significant
modification.

In the first section which follows, the types of symmetry
operations are summarized and rules are established to describe their
effect on eigenstates. In the second section, I present several
illustrative examples which demonstrate the use of these rules in the
classification of zero field Hamiltonians and the prediction of zero

field spectra.

A. Formal Aspects

1. Symmetry Operations

An operator £ is a symmetry operator for the Hamiltonian H if

g'lng = H (7.2)

If £ is a symmetry operation, then for |¢j> an eigenstate of H

$I¢j> = a |yp> (7.3)

where |a|2 =1 and if j = k then |¢j> and |¢k> are degenerate.

2. Operations in Spin Space

The set of possible symmetry operations for isolated spin systems
are described in standard texts on the theory of point groups.136’137
These are: rotations about a fixed axis, reflections in a plane,

simultaneous inversion of all coordinates through the origin of the

reference frame, and the improper rotations. Following standard
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notation, the symmetry operations are represented by the symbols C, o,
i, and S,. Due to an unavoidable overlap of notation, o is used in
other chapters to represent the chemical shift. 1In this chapter the
chemical shift will not appear and some confusion is avoided. The
symbol i, however, wiil be used to represent both the inversion

1/2

operation and to represent (-1) Caveat emptor!

Products of only two operations generate both others. I choose
to treat C, and o as the fundamental operations. The form of these
symmetry operations can be derived from the requirement that all
observables (e.g. angular momenta) are unaffected by the spinor
behavior of the eigenstates, and therefore spin and spatial angular
momenta (which as operators correspond to obsefvables) must transform
identically under any of the operations of the group.

a. Rotations about a Fixed Axis

Rotations about a fixed axis are described by the Euler angles of
Chapter I and the various relations summarized in Equation (1.25). A

an symmetry operation is equivalent to a rotation of 2x/n about the j

axis, and

-1 .
CZjIkCZj = - Ik if § = k

and any representation of the C,; operation must be consistent with

J

understanding. For j = x, y, or z the rotation operators for spins-1/2

are

rofe-

_ . _ . ]
Rj(¢) = exp(1¢Ij) = cos + 1sj sin 5 (7.5)

where the Sj are the Pauli spin matrices. Therefore, for j = x, y, or
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z, C2j = iSj.

More generally the spinor transformation associated with a an
operation is the product of rotations about the y and z axes and is
described by a sequence of transformations of the form of

Equation (7.5). This net transformation is precisely equivalent to a
Wigner rotation matrix. Rotations about the z-axis through ¢ append a
phase factor exp(i¢/2) for each |a> spinor and exp(-i¢/2) for each-|ﬁ>
spinor. The net effect on a typical wavefunction [¢> = |a1>|ﬂ2>...lan>
is to multiply it by the product of the phase factors for each of the
individual spinors.

Rotations about the x- or y-axes additionally may change the
projection of the spin angular momentum alohg the z-axis. Under a C2y
rotation all spinors in a spin-1/2 system are transformed from
|a> - -|ﬂ> and |ﬂ> - |a>. Applied to a system of n identical spins in
a plane, the an operation interchanges the spin labels referenced to
the fixed spatialbaxes of all spins not on the axis of rotation (e.g.
takes the spin initially labeled 1 into 2, 2 into 3, ..., and n into

1). Therefore, the net effect of a C,, operation on four identical

spins in the arrangement of a square is

szlaﬂaa> = - Iaaaﬂ> (7.6)

In particular a 2n rotation about any axis transforms a spin-1/2
spinor into its negative. The eigenstates of H are products of the
spinors describing each individual spin. In systems of odd numbers of
spins-1/2 a 27 rotation and the identity operation, E, are not
equivalent. A 27 rotation corresponds instead to the symmetry

operation denoted E where B2 = E and, for all &, B¢ = -€E. A 4n



262

rotation transforms a sﬁinor into itself and is equivalent to E.
Because 27 and 4r rotations are distinct symmetry operations, odd
numbers of half-integer spin nuclei can only be treated using the
formalism of the double groups.138’139 In the double group
representations, the order of all classes of rotations is doubled (i.e.
only after 2n applications of a C, operation does the system return to
its original state).

b. Reflections Through a Plane

The spin-space reflection operators are required to be similar in
effect to to the operators which generate the improper rotations on
spatial angular momenta. Where 93 is a symmetry plane perpendicular to

the j axis,

-1 .
aj Ikaj - Ik if j=k
- Ik if j =k _ (7.7)
By comparison to Equation (7.4) the spin-space component of 93 is
o, = EC,, = ¢} - .is (7.8)
J 2] 2] 3 '

(The equivalence is Equation (7.8) is not meant to suggest that Cé} and

oy are identical operations. These two operations act similarly on the
spinors themselves; this is, however, only the second of the
consequences of the symmetry operation. They differ with respect to
the relationship between the transformed spin and spatial frames.) The
operation of spin reflection interchanges spin labels for spins which
do not lie in the plane of reflection, turn |a> into |ﬁ> and vice versa

if j = z, and appends phase factors as derived from Equation (7.8).

Applied to the same four-spin wavefunction as before, and where z lies
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in the plane of the square,
ozlaﬂaa> = - |afax> - (7.9)
c. Inversion

The inversion operator, represented by i, is constructed by a

succession of improper rotations

i = o 00 = - 13 s s s
Xy 2z Xy z
- - i“sﬁ - (7.10)

Under inversion, all coordinate are interchanged with their negative
and all spinors are multiplied by -1. For even numbers of spins, the
inversion operation merely interchanges labels on spins related by the
inversion; for odd numbers, also multiplies all wavefunctions by 2=.

Applied to the same four-spin eigenstate
i laﬂaa> = Iaaaﬂ> ' (7.1D)

d. Improper Rotation Axis

The composite operations S, are derived by applying sequentially

the component symmetry operations, and

Szzlaﬂaa> = azczzlaﬂaa> = - azlaaaﬂ> = |acaB> (7.12)

The S, operation is identical to the inversion operation. More

generally Snj aanj.

3. Operations in Time

In the absence of an external field the zero field Hamiltonians
of Chapter I exhibit time reversal symmetry. Because each element of
the Hamiltonian contains only products of pairs of angular momentum

operators, time reversal (which corresponds to taking all velocities
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and angular momenta into their negative) is an explicit symmetry
operation of H. While the fundamental properties of the time reversal

. . . .. 104,105 . .
operator T are explained in detail elsewhere, I provide a brief
review here.

The relation which serves to define T is
T|#¥> = exp(iHt)Texp(iHt)|y> (7.13)

In words, applying the operator T to an eigenstate |¢> leaves it in the
same state as if the eigenstate evolved under the Hamiltonian H for a
time t, the time reversal operator is applied, and evolution continues
for a time t. An equivalent formulation islgiven in the operator

equations 1
exp(-iHt) = T “exp(iHt)T (7.14)

or
. -1,.
-iHt = T “(iHU)T . (7.15)

The solutions to Equation (7.15) are constrained by the requirements

that
[T, H] = 0 | (7.16)
because T is a symmetry operation of H and
[T, t] = 0 (7.17)
because the time (t) enters the problem only parametrically. Then
iT = - Ti ' (7.18)

and

*
Tlay> = a T|y> (7.19)
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In analogy to spatial angular momenta (which are the vector cross
product of direction vector and a velocity, and therefore reverse sign
under time reversal), it is further required that all spin angular

momenta anticommute with T; that is,
TI,T = -1 (7.20)

Traditionally, T is factored into two components;
T = 6K (7.21)

where K is the operation of complex conjugation, and 8 is chosen so

that T satisfies Equation (7.17). Then

- e17el .1, (7.22)
j j

1.-1

@ KI.K e
j

Choosing the Pauli representation for the spin-1/2 particle, Equation

(7.18) suggests

' 0 -i
@ = a sy = a[ i 0 ] (7.23)

and the proportionality constant a is conventionally chosen to equal 1.

For a spin-1/2 particle,

2 0 -1 0 -i
T = BK®O®K = [ i 0 ] K [ i 0 ] K
0 -i 0 i -1 0 =
- [ i 0 ][ i 0 ] - [ 0o -1 ] - E (7.24)
and for N coupled spins-1/2
N
T = @I T, (7.25)
=1

Since T is a symmetry operation of the Hamiltonian H, for each |¢> an
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eigenstate of H, T|¢> is also an eigenstate. But

<p|Ty> = <T¢|T2¢>*

- <t?y|TP> (7.26)

Two cases need be considered:
1. T2 = -1 (i.e. an odd number of half-integer spin nuclei).

Then
<p|Ty> = -<p]Ty> = O. (7.27)

|¢> and |T¢> are different, and necessarily degenerate,
eigenstates of H. This is known as Kramer's degeneracy. For
spin systems which exhibit Kramer'’'s degeneracy, the standard
point groups covered in most texts on gréup theory are
inadequate. The less familiar double group representations,
which incorporate the double-valued nature of the half-integral
spins, are required.139

2. 12 -1 (i.e. an even number of half-integral spins, or only
integer spins). Then T introduces no necessary degeneracy. Its

existence, however, does lead to other conclusions; to wit,

<¢|1j|¢> = - <¢|T'11jT|¢> = -<T¢|Ij|T¢>

= - <¢|Ij|¢> = 0 (7.28)

and the expectation values of all angular momentum operators are
- quenched for nondegenerate eigenstates of the zero field

Hamiltonian. 1In the presence of degeneracies mandated by other

symmetries, the expectation values of I. summed over all

J

degenerate states must vanish.
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B. Examples

1. Two Coupled Spin-1/2 Nuclei

a. Identical Pair

A convenient choice of reference system is to align the
internuclear vector with the molecular z axis. Independent of the
identity of the two spins, the zero field Hamiltonian has the symmetry
of the point group D, . As the number of spins is even, there is no
need to resort to the double group representations. Based on the
discussion in the previous section of the’point group operations, the
transformation table for representative operations in each class of the

point group D, is given in Table 7.1, below.

Table 7.1
Operations of the group Dmh
th E ZCi cee @O i | 282 ce wcz
ao aa exp(i¢laa ... -B8 aa -exp(igdl)aa ... -BB
of af af v aff  Pa Ba e Ba
Pa Ba Ba e fa af aff e af|
BB BB exp(-ig)pp ... -aa BB -exp(-14)BB ... -oc
zx 4 2+2cos¢ e 2 2 -2cos¢ R 0

Using the grand orthogonality theorem, the eigenstates of H transform
+ ot . .

as the Eg, Z, and Hg representations of the group D, . Where I' is the

representation, selection rules are governed by the requirement that

for initial state y;, final state ¥, and transition operator T the

product

r x T x T (7.29)
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contains the totally symmetric representation (generally labeled A; but
in this group Zg).

the transition operators whose selection rules are required are

For the sudden switching experiment of Chapter III,

proportional to the angular momentum operators. I, and Iy transform as

I_ and connect the =V representation to the degenerate II

g g g
representation (that is, the m = 0 state of the triplet manifold to the

pair of triplet states with |m| =1). I , which transforms according

z!
g’

one to another. None of these operators comnects the ungerade

to the representation II_, connects the degenerate pair of eigenstates
(antisymmetric) representations to the gerade (symmetric)
representations. Therefore the observed spectrum is a single line at
zero frequency and a pair symmetrically placed . about zero.

b. Heteronuclear Pair

The same group classification applies, because for two dipole-
coupled spins H is the same (as usual, to within a scaling constant)
independent of whether the spins are identical. The four eigenstates
of the heteronuclear pair transform as the same set of irreducible
representations as the eigenstates of the homonuclear pair. The
transition moment operators, T, differ because the initial condition
does. As was previously discussed in Chapter III, the initial
condition is the sum of a symmetric first rank tensor (the high field
operator Iz + SZ) and an antisymmetric first rank tensor (Iz - Sz).
The molecular frame tensors derived from the symmetric combination
transform as the normal angular momenta‘described above. Molecular
frame tensors derived from the second term are of opposite symmetry
with respect to all the symmetry operations which exchange spin labels.

They belong only to the ungerade representations of the group, and
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transform as £, and I[,. These operators connect the ungerade to gerade
states (i.e. the singlet to the triplet). Spectra of the two spin
system in.ﬂ-Ca(H13COO)2 which demonstrate these selection rules are
shown in Figure 7.1. The full complement of six allowed pairs of lines
predicted by Equation (4.22) might only be observed if the cylindrical
symmetry of H were broken, e.g. by an asymmetric dipolar tensor, in
addition to both the symmetric and antisymmetric components in the

initially prepared density operator.

2. Four Spin Systems
a. The sguare

The simplest arrangement of four identical spins is in the
spatial arrangement of a square. The group of symmetry operations is
Dsy- As the number of spin-1/2 nuclei is even, the double group is not
needed. Furthermore, only classification according to the group D, is
necessary, as D,y is a product group. The effect of the additional
operation o}, (where the local reference frame is chosen so that the
square lies flat in the x-y plane) is to transform a state into itself
(if there are an even number of spins up) or its negative (if there are
an odd number of spins up). To save space, only transformation rules
for the combined spin and space symmetry operations are given rather
than the complete correlation table. Furthermore, only a single
specific operation from each class is treated. Operations are

represented in the shorthand notation
§(1234) = (WXYZ) (7.30)

to indicate that after the operation, spin W is in the position in the

spatial reference frame that 1 previously occupied, X where 2 was, and
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Figure 7.1 Zero field NMR spectra of two-coupled spin-1/2 nuclei.
At the top, iInitial condition corresponding to equal magnetizatioh
at two sites (the pure symmetric operator); in the middle, at one
site only (equal amounts of symmetric aﬁd antisymmetric transition
moment operators); at the bottom, equal and opposite amounts of
magnetization at the two sites (only the antisymmetric operator).
At left, theoretial stick spectra and broadened spectra; at right,
experimental spectra. The number of observed lines follows the

argument in the text.
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so on. Furthermore, W = 2 implies that, as a result of the operation,
the spinor originally located at 2 has flipped from |a> to |B> or vice
versa. Finally, phase factors are given as multiplicative constants
preceding the resultant. In this form, and with m = 2 Izj in the
initial state, Table 7.2 gives the transformations of |¢> for a typical
element in each class of D,. D,y is the product of D, and the
reflection through the plane containing these spins. The latter takes
states with m odd ihto their negative and has no effect on states with
m even. Odd m states belong only to the ungerade representations of
the group and even m states only to the gerade representations.
(Beware! This is an unconventional definition of the product group,
D4yp- In most applications D,y is given as the product of D, and the
inversion operator, i. The product groups are identical but the
notation is not. One-dimensional representations are identical, but

two dimensional representations gerade referenced to the oy, are

ungerade referenced to i, and vice versa.) Using these rules and the

Table 7.2
Operations of the Group D4h
o . 2 ’ re
peration: E C4z C4z C2 C2

Resultant: | (1234) | (1)™(4123) | (-1)™(3412) | (-1)™(3143) | ¢ O™ 1/4) (3514,

results of Table 7.2, the sum of the characters, x, for the gerade

(even m) and ungerade (odd m) representations separately is
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2 ’ e
E 20, C,, 26, 26,
= x, 8 -2 4 4 0 (7.31)
2 x, 8 0 0 0 0

The eigenstates partition into the representations

2Alg + 3Blg + Bzg + Eg + Alu + A2u + Blu + 132u + 2Eu (7.32)

I, belongsvto the irreducible representation A2g’ and (I, Iy) to E,
(again, referenced to the op operation and not i); Summarizing the
allowed transitions, (I, Iy) couple the degenerate E representations
to all one-dimensional states with the opposite u-g symmetry for a
total of 16 pairs of lines. I, connects E - E; Ay + Ay, and By » B, if
both initial and final states have the same u-g symmetry. In the
gerade manifold, I, is responsible for 3 pairs of lines and a singlet
at zero frequency; in the ungerade manifold, fbr an additional 3 pairs
and a singlet at zero frequency. The spectrum is predicted to consist
of 22 pairs of lines and a singlet at zero frequency. Computer
simulation reveals 21 pairs and a singlet, and is illustrated in the
simulation in Figure 7.2a. In small systems of spins, it is not
unusual for some transition frequencies to be accidentally degenerate
and coincide.

b. The Rectangle

Starting from the analysis of the symmetry properties of four
spins arranged in a square makes other four spins systems easier. In
the rectangular array of four spins the appropriate point group (Djy)
is a subgroup of D,; and contains only eight one-dimensional

representations. Correlations between the representations of D, and



Figure 7.2 Theoretical stick spectra simulations for identical four
spins in the configuration corresponding to a). a square; b). a
rectangle; c). a general, asymmetric grouping. Although some allowed
lines have very low intensity, the number of allowed pairs follows
closely the predictions of the argument in the text (respectively 22

pairs, 46 pairs, and 120 pairs).
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its subgroup Doy, are given in Table 7.3. (where gerade states correlate

only to gerade and ungerade to ungerade) 137

Table 7.3

Correlations Between D4h and D2h

Class in D4h Bl,A1 BZ’AZ E

Class in D2h A B1 BZ’BS
and the_;tates partition into the classes

5Ag + Blg + Bzg + B3g + 2Au + ZBlu + 2B2u + 2B3‘_l (7.33)
Selection rules ca#;be summarized as:
Operator I, l Iy ' I

(7.34)
Correlations (A*Bl),(Bz4B3)| (A*Bz),(Bl*B3)| (A4B3),(B1*B2)

where, in my unconventional group notation, (again, g and u are defined

with respect to the o, operation and not the inversion center) Ix and

z

Iy belong to the ungerade representations and connect u»g and g-+u, and

I, is gerade and connects u+u and g+g. Each ungerade operator

transition operator is responsible for 16 pairs of lines, and I,
contributes 14 more. Computer simulaéions agree with these
predictions. The spectrum of a rectangular array of four spins is
shown in Figure 7.2b. Most of the predicted lines are observed. Some
lines have very low intensities, and others overlap (within the
resolution of the plot) or coincide so the full comﬁlement.of lines is

not observed in the simulation.

c. General Four-Spin Systems

Finally, Figure 7.2c shows the spectrum of a four spin system
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with no symmetry. Equation (4.22) predicts 120 pairs of lines. The
number of lines which appear in the computer simulation is exactly 120
pairs. The experimental spectra of Figures 4.11 and 4.15 with
experimentally achievable linewidths show little structure due to
isolated lines.

3. Three Spins 1/2

The highest symmetry in three spin systems is the arrangement
corresponding to the spatial arrangement of an equilateral triangle.
where all internuclear distance (and therefore coupling constants) are
alike in homonucleér spin syétems. Naively we would classify this
group this set as belonging to the symmetry group D3, . Because T2 = -1
for odd numbers of spins-1/2, a 2n rotation does mnot correspond to the
identity operation and the number of operations in the point group is
twice as large as are in Dgp (consisting of E times all of the normal
point group operations). The double group is hot, however, a product
group in that the new classes and representations are not direct
products of the new operation E with all of the previous operations.
For Déh the chafacter table for the double group representations is

given in Table 7.4.13% In the notation introduced above, the effect of

Table 7.4
!
Extra Characters of the Double Group Representations for D3h
E E 2C3 203 3Cé,3Cé %%, 283 283 3av,3aV
rtl2 2 1 0 0 3 -3 0
r’lo2 2 1 0 0 3 3 0
rPl2 -2 2 2 0 0 o o 0

the symmetry operations (only for one member in each class and only for
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unbarred operations, as the barred operations are identical except for
a factor of -1) is given in Table 7.5. Summing over the characters,
the grand orthogonality theorem predicts that the eigenstates partition

into the classes

or3 + 1t 4+ r? (7.35)

The angular momentum operators, like all observables, must belong to
the single valued representations (otherwise, observables would exhibit
spinor behavior directly). I, belongs to Aé and (Ix’Iy) to-E". Given
these transition operators, eigenstates are coupled if they belong to
representations for Fj -+ Pj, and Pl, F2 -+ F3. Transitions between Fl
and F2 are forbidden. This corresponds to a total of five pairs of
lines and a singlet at zero frequency. An example is shown in Figure

7.3a which is a computer simulation of the spectrum of three Iy spins

in the configuration of an equilateral triangle.

Table 7.5
Operations of the Double Group D;h
E C3z | 02 ah | S3 av
123y [23™/3 312y | -1y (133) | (-1) ™(i33) [ /3 312y | (1) 2™ L (133)

In three-spin systems of lower symmetry, it is simple to derive
the appropriate representations by working with the appropriate
subgroups of Déh in the same manner used in the comparison of the three
four-spin systems in the Brevious subsection. First the equilateral

triangle is transformed into an isosceles triangle by moving spin 3
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Figure 7.3 Simulated stick spectra for 3 identical spins in the
configuration corresponding to a). an equilateral triangle; b). an
isosceles triangle; c). a scalene triangle. 1In a). only 5 ‘pairs
are observed; in b). a sixth pair appears but with very low

intensity. In c). the intensity of the new pair is somewhat
larger.
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along the perpendicular bisector of ry,. The C3 and S5 symmetry axes
are lost, as well as 2 each of the C, and o}, operations. The remaining
classes of double group operations are E, E, (02,62}, {av, év}, and
{0;, &;} and the group is Cév (after a slight redefinition of axes;
previously, the z axis was chosen along the C5 axis; here, it lies
along the perpendicular bisector of rq,. Only one spinor
representation of the double group exists and all eigenstates fall into
this one class. Transitions are allowed between all four degenerate
pairs and also between pairs of degenerate states. Thué, six pairs of
lines and a singlet are predicted, and are shown in the simulation of
Figure 7.3b.

This is,.in fact, the maximum number of lines aliowed for a three
spin system and the number predicted in Equation (4.22). The scalene
triangle (no symmetry elements except for the necessary inversion plane
corresponding to the plane defined by the three nuclear sites) belongs
to the double group C; with operations E,E, o, and ¢. There are two
spinor representations. Each is one-dimensional but the two
representations are degenerate according to the conditions of the

105 All transitions are allowed and the maximum

Frobenius-Schur test.
of six pairs and a singlet at zero frequency are again observed

(Figure 7.3c).

4, Heteronuclear Spins

As 1 mentioned near the beginning of this chapter identical spins
are those which share identical sets of coupling constants to all other
spins. In a two-spin system, spins are identical independent of their
precise nature as the system supports only one coupling constant. In

larger spin systems, this need not be so. Figure 7.4 compares the
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Figure 7.4 Simulations for three spin groupings in equilateral

triangle. a). 1Identical spins; and b). One heteronuclear spin
(i.e. different y) and two identical spins. b). shows the number
of lines predicted for the asymmetric systems.

280



281

computer-simulated spectra for the array of three identical spins in
the configuration corresponding to an equilateral triangle as discussed
above to the spectrum of a heteronuclear I,S triplet with the same
geometric configuration. Figure 7.4b clearly shows all six pairs of
allowed lines. The symmetry is determined not by the spatial
orientation, but by the coupling constants. In homonuclear spin
systems only these parameters are proportional to one another. This
correspondance between the coupling constants and the geometrical form
is convenient as it affords a simple treatment of the symmetry
operations based on the isomorphism between the permutations of spins
and the exchange of spatial positions. Where this isomorphism no

longer holds, it is not obvious how best to proceed.
C. Conclusions

The techniques of this chapter can be extended to cover systems
of coupled quadrupolar spins (I = 1). Because the quadrupolar
interaction dominates the spectrum and the dipole-dipole coupling is
usually only a small perturbations, these methods will rarely be
necessary or even particularly useful. But for coupled spins-1/2 in
zero field, the symmetry‘properties are the only source of selection
rules and may have a marked simplifying effect on the zero field
spectrum. It is straightforward to extend the principles discussed in

this chapter to higher rank operator initial conditions.



282

VIII. Experimental Details

This chapter summarizes the design criteria and the experimental
apparatus used in field cycling Fourier transform zero field NMR and
NQR experiments. A more complete technical description is given
elsewhere.75 First, I describe the general experimental approach to
the creation of the zero field region. Second, I provide a brief
overview of the solid state high field NMR spectrometer used in the
polarization and detection periods. Zero field NMR experiments have
been performed on two very similar machines in the Pines laboratory.
Most of the work presented in this thesis was executed on the S
spectrometer, and some machine-specific characteristics are mentioned.
Finally, I conclude with some thoughts on alternative solutions to the

problem of high sensitivity zero field magnetic resonance.

A. Zero Field Region

The distinctive aspect of the field cycling scheme described in
Chapter III is that the evolution of coherence is initiated and
terminated by the sudden removal and reapplication, respectively, of a
large static field. Chapter VI introduced the possibility of zero
field nuclear resonance with demagnetization to zero field and where
short, strong DC field pulses initiate evolution. Instrumentation
requirements are similar for these two experiments. For concreteness,
I specialize the discussion to systems of dipole-dipole coupled spins
where an intermediate field of 100 gauss is sufficient, and to

experiments where the field is suddenly switched off and on. Identical
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hardware with only modest modifications serves to provide the larger
intermediate field required in NQR or where pulsed fields are useful.

1. Timing Considerations

There are two practical criteria for the measurement of zero
field NMR signals by the general scheme of Figure 3.1. First, the
field cycle must be sufficiently rapid that magnetization created in
the high field polarization phase survives to be observed in the
detection phase; therefore, the total cycle time (rc) can be no longer
than the high field T;. In many samples, low field T;'s are
significantly shorter than high field T;’s and zero field signal may

'not be observed-even if r_, is much shorter than the high field T;.

c
Second, the actual switching period between the high field condition
(HZ>>Hloc) to the low field condition (HZ<<Hloc) must occur
sufficiently rapidly so that coherence does not decay. This coherence
is precisely thosg terms in p which become‘time-dependent as a
consequence of the switching itself. The switching time, 7, should be
much shorter than T,, the coherence lifetime. If the spectrum contains
no resolved lines then its spectral width is characterized by the

square root of its second moment, and Mél/z

172

< Ty. A stringent

Then negligible evolution

criterion is therefore that 7_ << Mé

S

occurs under H;, . during the switching off and on of the fields.

Instantaneous switching in the sense of the sudden approximation64

would require that r, << 1/wg, where wjy is the Larmor frequency in the

s
intermediate field. Larmor precession during the field transient does

not destroy coherence and should be of little consequence.

2. Field Cycling

As zero field frequencies range from 1 Hz to 1 GHz, no single
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technique is universally applicable. For nuclear spin systems where
the zero field frequencies are much larger than ~1 MHz, pure NQR is
sufficiently sensitive. As described in Chapter II, field cycling
techniques are normally required only at lower frequencies or where the
concentration of the interesting spins is low. In our work, we have
concentrated on spin systems where the natural frequencies are < 1 MHz,
and 7, = 1 ps is adequate. While switching of small electromagnets on
this time-scale is feasib1e53a’74, it is difficult to turn off and on
the large fields (> 1 Tesla) routinely used to prepare and detect
magnetization in NMR spectrdmeters in such short times. Neither is it
necessary to do so. Just as two separate timing criteria govern the
successful execution of the experiment, the field can be brought from a
large value to zero in two separate stages.

The field cycle is illustrated in Figure 8.1 and will be
described using the notation of that figure. In the first stage, the
sample is removed froﬁ the polarizing magnet (Bj,) by mechanical means
and the applied field is lowered from the large value appropriate for
polarizing the spins to an intermediate value (100 gauss) which can be
easily switched. 1In the second stage, this intermediate field is
quenched. The first stage need only be completed in a time ~T; which
may be as.long as minutes. It is conveniently accomplished by
mechanical shuttling of the sample from the bore of the main magnet B
to a point ~75 cm below the center of By and where the fringe field due
to By is ~100 gauss. Because of the stresses involved in repeated
acceleration and decelaration, the sample must be contained in a
shatter-resistant container. Kel-f and nylon cylinders have the

appropriate tensile qualities. The second stage must be completed in



Figure 8.1 Diagram of the field cycling apparatus and the timing
sequence of the pulsed fields. B, is the superconducting solenoid
where the polarization and detection periods occur; By and B, are
switchable electromagnets positioned ~75 cm beneath the bore of B,. A
glass tube encloses the sample and guides it between the high and low
field regions. As the sample is removed from By it travels in the
fringe field of By to a field of 100 gauss. Both electromagnets are
switched on; B, rapidly causes the field to nearly double, and B4
slowly compensates for the fringe field due to B,. Then B, is rapidly
switched off and the evolution period t; is initiated. When By is
turned back on t] is ended. B, is turned off, then B, and the sample

returned to high field.
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the shorter period, rg.

3. Area of Zero Field

Below the main solenoid By lies the zero field region. A pair of
electromagnets (By and B,) are wound which provide a means for applying
time-varying fields to the sample. The overall goal is to provide a
mechanism for suddenly switching off the residual field at the sample
which still arises primarily from the fringe field due to By. In
principle, a single precisely-wound magnet coil might be designed to
simultaneously compensate for the residual magnetic field over the
volume of the sample and afford rapid sw;tchability. In practice, such
a unified approach imposes intolerable design requirements and we have
chosen to separate out the two functions. B; (in conjunction with a
number of unswitched shim coils) is designed to accurately negate the
fringe fields and produce a sizeable volume of zero or near-zero field.
This coil is referred to as the bucking coil. B, is a small, low-
homogeneity coil which just barely encloses the sample volume and is
called the switching coil. It is designed to be rapidly switched on
and off, and is the source of the "suddenness" in the experiment. This
two-coil arrangement poses one complication. By nulls the fringe
fields over a large volume of space. Were it energized continuously,
the sample would pass through a field-free region during transit and
before feeling the effects of the switching coil. Therefore By as well
as B, must be switched. This insures that the sample always remains in
a large applied field until B, is shut off. The complete field cycle
is shown in Figure 8.1.

Adiabatic field cycles can be executed by merely reversing the

sequence of low field pulsed fields. After mechanical translation of
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the sample, By is turned on and the field slowly (~ ms) is reduced from
100 gauss to zero. Then a short pulse can be applied through B, to
initiate csherence or store evolved order. In pulsed experiments, By
may be replaced with a more homogeneous small solenoid. |

If the intermediate field does not satisfy the high field
condition, then order in the intermediate field will be some linear
combination of Zeeman (high field) order and dipolar or quadrupolar
(zero field) order. When the applied field is switched off, only the
Zeeman order evolves. No new frequencies can be observed because the
Hamiltonian supporté no others. The overall intensity of the spectrum,
and therefore signal-to-noise ratio, will be diminished and relative
intensities may be distorted. But no frequency distortion will be
observed. |

4, Details of the Field Cycle

The complete field cycle is composed ofﬁthe following sfeps:

1. The sample.is polarized for a time ~T; in the high field Bj.
2. A three-way gas valve is switched. Negative pressure applied
to the bottom of the glass tube which contains the sample holder
causes the sample to move from the bore of the magnet into
position in the zero field region. Throughout the transit period
(~150 ms), the sample resides in the fringe field due to By which
is always greater than 100 gauss. Marginally faster transport is
possible (at the expense of significantly more broken glass and
frayed graduate student nerves).

3. Both coils (switching and bucking) are simultaneously
energized. The switching coil B, adds a field equal and parallel

to the fringe field of By and the applied field rapidly (~300 ns)
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approaches ~200 gauss. B; energizes more slowly (~10 ms) aﬁd the

applied field slowly falls back to the field of B, alone. If at

all times the applied fields are large compared to the local

fields, these additional transients have no effect on the stored

nuclear magnetization.

4. The switching coil By is quenched. Zero field evolution is

initiated. At a time t;, the switching coil is reenergized. The

evolved magnetization is stored.

5. The bucking coil is swifched off. The field gradually

increases.

6. The three-way gas valve is switched. Pressure applied at the

sample returns it to high field.

7. The amplitude of the evolved magnetization is sampled.
Each time steps (l-7) are executed, a single value of the zero field
free induction decay is measured. The entire evolution and decay 1is
mapped out by incrementing the time interval t; from zero to some value
where no further evolution is observed. Nngist's theorem states that
any waveform must be sampled at least twice per cycle if aliasing of
frequencies is to be avoided. The highest frequencies which appear in
the zero field spectrum are no smaller than the highest frequencies
observed in the high field spectrum. This determines the proper value
of the t; increment. In many dipolar coupled systems, sampling
increments of 4-10 us are adequate (giving bandwidths from *50 to *125
kHz). NQR studies frequently require larger bandwidths and t;
increments of 3 us or less are common. Figure 8.2 shows a typical zero
field NQR 2D free induction decay G(tl)vfor perdeuterated 1,4-

dimethoxybenzene detected by the point-by-point experimental procedure
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2p ZERO FIELD NQR
POLYCRYSTALLINE DIMETHOXYBENZENE

Time (ms)

M_'

| | l

50 100 150
Frequency (kHz)
Figure 8.2 2y, NQR free induction decay (the signal function G(tq)

from polycrystalline perdeuterated dimethoxybenzene and the

associated spectrum, f(w).
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described above. Below is its Fourier transform, the zero field
spectrun f(w).

5. Zero Field Homogeneity

The homogeneity of the zero field region is determined by the
care with which the bucking coil is wound and the shim coil currents
are adjusted. Residual fields no larger than .1 gauss can be measured
using only a commercial gaussmeter as probe. Because small fields are
truncated by the larger local fields (see Section III.D) it is rare
that much finer adjustment is necessary. Where necessary, further
improvements can be mede'by iteratively shimming on the zero field NMR

signal in liquid samples.

B. High Field NMR Spectrometer

The high field portions of our experiments take place in a

homebuilt solid state NMR spectrometer documented more fully

140 The nominal field strength of the superconducting

1

elsewhere.
solenoid is 42 kgauss (4.2 Tesla) corresponding to a "H resonance
frequency of 185.03 MHz. Without room temperature shims, the
homogeneity of the field is ~1 ppm over 1 cm3. The field is extremely
stable and no lock is necessary. A homebuilt microprocessor-based

141 controls all aspects of spectrometer operation

programmable pulser
and executes all timing-critical operations. It is based on a 10 MHz
clock and the shortest time increments available are 100 ns. A total
" of 20 logic outputs are available to control the output of rf pulses

(two sets of six gates each), trigger auxiliary devices (e.g. the

three-way air valve and current pulsers), and initiate digitization of
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the data.

1. Transmitter Section

The transmitter section is designed to provide spectrally pure rf
pulses at high power levels and over a broad range of frequencies. Its
heterodyne design affords maximum convenience in changing the frequency
of the rf pulses delivered to the probe. The local oscillator (lo)
frequency is 30 MHz. Four phases of 30 MHz rf sét 90° apart are
available. The Larmor frequency is produced by mixing the lo with the
intermediate frequency (if) derived from a highly stable frequency
synthesizer. 1In high field experiments on ZD, the Larmor frequency
(28.4 MHz) is uncomfortably close to the lo frequency and no
heterodyning is performed. Instead, four phases of 28.4 MHz rf are
produced directly. Finally, the filtered Larmor frequency is delivered
to final stage amplifiers which are capable of delivering more than 100
watts of rf power at the 1H, 7Li, and 31P_Larﬁlor frequencies, and more
than 1000 watts at the 13C, 2D, and 27Al Larmor frequencies.

All probes used in the experiments described in Chapters III-VI
are home-built and employ a gapped-solenoid resonator in series with
high power capacitors. The gapped-solenoid design suffers from a
relatively poor filling factor and lowered sensitivity, but was deemed
‘necessary to afford access to the probe from below. When air pressure
is applied from below, the sample is held snugly in place within the rf
coil by a Kel-f plastic stop. With the rf pulse powers provided by the
final stage amplifiers, rf fields larger than 50 kHz (n/2 pulse < 5 us)
can be applied at the Larmor frequency of any of the nuclei listed
above.

2. Receiver Section
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After the application of a strong (= 100 watt) rf pulse, the
receiver and tank circuit appear to recover fully in ~20 us. The
receiver section has an overall noise figure of 3 dB or better at all
frequencies of interest. Over most of the Larmor frequencies of
interest, the receiver is based on a phase-sensitive superheterodyne
detector which mixes the rf down successively to 30 MHz and finally to
audio frequencies. The audio frequency signal is equivalent to the
rotating frame signal. Under control of the pulse programmer, the
spectrometer data acquisition system is instructed to sample each phase
of the audio-frequency signal. As it is-acquired, two 10-bit data
words are delivered to the spectrometer’s minicomputer (a Data General
NOVA model). Data acquisition rates are limited by the rate of direct
memory transfer. Typical maximum transfer rates are ~200
kilosamples/second, and as many as 2048 complex data points may be
sampled in a single pass.

3. High Field Detection Sequences

The importance of efficient high field detection sequences cannot
be overemphasized! Because the zero field signal is observed with no
better signal-to-noise ratio than that of the high field signal,
improvements in overall experimental performance come most quickly with
improvements in the high field detection sequence. Because the
experiments can be rather lengthy and demanding of the spectrometer, it
is also essential that the detection sequence be phase-cycled. The
output from some of the very high-power amplifiers seem temperature-
sensitive. Zero field free induction decays in deuterated samples
which require overnight runs inevitably exhibited very low-frequency

drift which could be largely suppressed by adding together only a pair
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of decays with properly cycled detection sequences.

In the discussions of Chapters III-VI the details of the high
field detection sequence were ignored. Tacitly, I assumed that the
amplitude of the evolved magnetization could be sampled directly. In
practice, any detection sequence must transfer longitudinal
magnetization into transverse magnetization which can be measured. If
the entire high field signal is sampled and digitized, then the
resulting signal function is a two-dimensional data set G(ty,tp) where
ty is the zero field interval and t, is the high field interval.

This general class of'experiment is shown in Figure 8.3. The
simplest detection sequence is to apply a single rf pulse to the sample
and immediately begin sampling the transverse ﬁagnetization. Because
the high field signal may decay significantly during the recovery time
of the receiver it is preferable to record the amplitude of the signal
after a solid echo sequence.142 In rigid quadrupolar I = 1 systems the
solid echo accurately reproduces the free induction decay. 1In dipole-
dipole coupled systems, the solid echo is not equivalent to the free
induction signal following a pulse and the spectrum is distorted.
Two-dimensional Fourier transformation results in a two-dimensional
spectrum f(wy, wy) where the projections along the w; and wy axes
correspond to each of the one-dimensional spectra and the cross-peaks
in the two-dimensional plane indicate the correlations between the two
frequency domains. Figure 8.4 is such a two-dimensional zero fieldj
high field correlation spectrum. It shows the zero field NMR spectrum
of Ba(Cl03),:-Hy0. In the zero field domain the triplet of lines
introduced in Figure 3.3 reappears. In the high field domain, the

classic Pake powder pattern is observed. Lines which appear at zero
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Figure 8.3 Two dimensional zero field-high field correlation
experiment. After the sample is returned to Bj, its high field free
induction decay is measured after a resoﬁant rf pulse. Fourier
transformation of G(tl, t2) with respect to both ty and ty produces the

two dimensional spectrum f(wl, w2).

Figure 8.4 Two dimensional zero field-high field correlation
spectrum of polycrystalline Ba(ClO3)2-H20. For each of 64 values of
ty, the zero field interval, the high field signal after a solid echo
is accumulated and stored. A double real Fourier transformation is
applied to the signal function G(tl’tz)' At the left and at top are
the projections of the zero and high field spectra. In the center, the
correlations between the two frequency domains. Signals which appear
at zero frequency in the w; domain correlate most strongly with signals
from orientations of the two-spin system which are nearly at the edges
of the high field powder pattern. Zero field signals which appear at
+42 kHz correlate to orientations which appear near the peaks of the

high field powder pattern.
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frequency in the wy (zero field) dimension correlate most strongly to
the highest frequency components of the wy (high field) dimension (i.e.
those portions of the powder which are least truncated by the Zeeman
field), and vice versa. This agrees with the treatment of the zero
field intensities given in Chapter III and contains essentially the
same information as the single-crystal high field-zero field
experiments in Figure 3.2.

As the motivation for performing the zero field experiment is
that the high field dipolar and quadrupolar powder patterns are broad,
often featureless, and largély devoid of useful information it will
rarely prove interesting to accumulate a normal high field free
induction decay in t,. As long as the same Hamiltonians govern the
dynamics of both t1 and ty, wy contains the same information as w1
except at significantly lower resolution. Two options, then, are
available: first, the high field evolution caﬁ be.made.more interesting
by selectively averaging away the second-rank tensor interactions,2’8
or second, information about the high field evolution can be sacrificed
in order to maximize the sensitivity with which the zero field signals
are mapped out. Almost without exception, we have chosen this latter
alternative. By applying a simple sequence of a large number of
closely-spaced pulses, evolution under the high-field Hamiltonians can
be eliminated and the transverse magnetization observed to decay with a
time constant more nearly that characteristic of high field T;'s than
of high field Ty's. Using pulsed spin-lock143 detection sequences in
ty), the signal can be sampled repeatedly at very nearly its initial
value. Integrating over the signal sampled in the windows of the

detection sequence results in large gains (anywhere from 5-50) in the
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signal-to-noise ratio of the zero field experiment. Detection
sequences used in the high-field observation of zero field NMR are
summarized in Figure 8.5.

In many systems, spin-lock detection sequences may not be
possible to execute. Transverse magnetization cannot be preserved
longer than the time constant known as Tlp’21 Tlp is short for systems
where the local Hamiltonian is time-dependent (i.e. motionally
averaged). Heteronuclear dipole-dipole couplings (e.g. in organic
solids where the lH nuclei are dilute in 2D) seem not to be efficiently
averaged away by the spin-lcoking sequence. No sequences seem
available which significantly extend the decay time of half-integer
quadrupolar nﬁclei where only the central transition is observed. In
these systems, the inefficiency of the high field detection sequence
may severely limit the sensitivity of the zero field method, and argues
strongly for the continued development of fhe time domain indirect
detection methods briefly explored in Chapter VI.62 Zero field NQR
studies are particularly hampered by the difficulty of designing
efficient high field detection sequences.

Ideally, one would like to incorporate high resolution chemical
shift measurements in the high field time-interval t, to provide
correlations between the geometric factors derived from the dipolar
spectra in wy with site identification via chemical shifts in w, by
magic angle spinning. Practical considerations make such an experiment
difficult. Rotation about a laboratory-fixed axis during the zero
field interval reintroduces powder broadening even in zero field (see
Appendix B). High speed spinning inserts (= 3 kHz) are not readily

started and stopped. In homonuclear spin systems, one can compensate
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Figure 8.5 Pulse sequences for use in zero field NMR experiments.

| a). 90° pulse initiates evolution. The high field free induction
decay is sampled as soon as possible after the pulse.

b). Solid echo sequence. The second pulse causes the magnetization to
refocus and form an echo. This allows for the magnetization to be
sampled many ps after the pulse and alleviates experimental
difficulties associated with the dead time of the receiver.

c¢). Multiple pulse sequence (WAHUHA). Sampling in the windows after
every fourth pulse yields the high field chemical shift spectrum.

d). Pulsed spin locking (or multiple echoes). After each pulse, the
magnetization can be sampled. For dipole-dipole coupled spin systems,
§ = 45° minimizes the decay. For quadrupolar systems § is chosen

empirically; in 2p NQR, 6 ~ 80° often appears optimal.
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for the spinning by cycling not to zero field but to some small field
whose amplitude and direction ére precisely adjusted to null the
effects of the spatial rotation. No such adjustment can be made in
heteronuclear spin systems where magic angle spinning iﬁ combination
with high power heteronuclear decoupling proves most powerful. Magic

144

angle hopping in t, may prove more feasible.

C. Extensions and Improvements

1. Electronically Switched Main Coil

' For systems whose T{'s are so short that all prepared
magnetization disappears during the mechanical shuttling between high
and intermediate fields, the entire field cycle may be executed in a
sequence of two electronic steps. Variable field Ty spectrometers145
are designed to allow for rapid (~ms) variations of large fields (~1
Tesla). In other applications, the feasibility of rapid switching of
extremely large fields (~40 T in ~5 ms) has been demonstrated. 146
While the initial polarization amplitude and the detection sensitivity
may suffer due to the lower values of B,, for samples with short T;'s
the decrease in cycle time should more than compensate for the smaller

signals predicted if T; were sufficiently long.

2. Direct Detection in Zero Field

One of the most exciting and promising of new technological
advances in the sensitive detection of low frequency rf signals is the
dc SQUID (Superconducting QUantum Interference Device). It is an
ultra-low noise rf flux detector (where normal Faraday-law detectors

are sensitive to the derivative of the flux). As such, it is equally
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sensitive over a broad range of rf frequencies. Recent experiments
have demonstrated its sensitivity in the detection of fluctuations in

147

the macroscopic polarization of an ensemble of nuclear spins and

other experiments have demonstrated its sensitivity in the direct
observation of oscillating magnetizations in zero fiela®8 and even to
the very lowest frequencies.ag’ SQUID detectors in a zero field
spectrometer would make realistic the direct observation of signals at
the low frequencies characteristic of the local fields themselves.
Their high sensitivity may even alleviate the need for a large
polarizing field. Use of SQUIDs to sample the evolving signal directly
in zero field-zero field correlation experiments (see Section VI.C)
will turn three-dimensional (and therefore often intolerably long)

investigations into more routine two-dimensional work.



304

Appendix A

In this appendix I treat the case where the high field spectrum
is sufficiently broad that pulsed NMR techniques are incapable of
exciting and detecting the signal from the entire high field powder
pattern, but where some portion of the high field spectrum is uniformly

observed. These conditions are fulfilled if

2 2
_3e qQ _ 3 e“qQ .2
2IEL-D 0“1 7 Tey @D (a.1)

that is, the first order quédrupolar shifts are larger than the rf
field which is larger than the second order shifts. This is commonly
the case for half-integral quadrupolar nuclei, where the central
transition between the high field eigenstates |1/2> and |-1/2> is
unshifted to first order by the quadrupolar coupling, and the only
significant signal after a resonant rf pulse ;f realistic strength
arises from the coherence between these two levels.

The approach in this appendix is to repeat the calculation of
Section III.B but to use as the observable not I, ; but instead the

actual observable

-1/2 » 1/2)

L (A.2)

2= I(
X

i.e. transverse magnetization corresponding only to coherence between
these two levels. For small flip angles, it has been shown that the
excitation of this coherence is independent of the orientation of the

particular crystallite in any lab-based frame.1*? Then
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G(t =Tr [ £ exp(-iﬂIy)p(tl)exp(iﬂly)] (A.3)

1)
where the evolved longitudinal order stored in p(tl) is transformed

into an observable by an rf pulse of # radians about the y-axis. For

the initial density operator p(0) = 1,1,

G(t =Tr [ X exp(-iﬂIy)IzLexp(iHIy)] . (A.4)

1)
It will be convenient to express all operators in a spherical tensor

basis set. In the lab frame,

I+1/2 j i
£ = = a ( T-lL - T1L ) (A.5)
n=1
where j = 2n-1, and
1
IzL = T0L (A.6)
and
I _(t,)) = T1 (t,) = exp(-iHt) T1 exp (iHt) (A.7)
zL'"1 oLt"1) T °©XP oL **P :

It will also prove convenient to permute the operators in Equation
(A.3) so that the rf excitation is formally applied to the observed

operator, which is orientation independent, rather than the evolved

42

operator, where its effects are strongly orientation-dependent™  and

G(tl) =Tr | exp(i&IyL)zexp(-iﬂlyL) TéL(tl)] (A.8)

Focusing on the transformed operator

I+1/2 iy ; j
exp(101 )fexp(-101 1) = % a 3[4 () - &) (D] Ty

Py

n=1 m=-j
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I+1/2 j . j
= 2 a I .dm_l(ﬂ) T L (A.9)
n=1 m=-j

Because the evolved operator I,;(t;) corresponds to longitudinal order,
only terms in the sum of Equation (A.9) where m = O can contribute to

the trace of Equation (A.8). Defining

- J
bn 2an d0_1(0) (A.10)
and
' 1 I+1/2 j
G(tl) = Tr | {TOL(tl)}{ nil bn TOL}] (A.11)

Equation (A.1ll) is most readily evaluated in tﬁe molecular frame where
the Hamiltonian is homogeneous. The laboratory and molecular frames
are related by a coordinated transformation R(Q). The signal function
is calculated for a single orientation 0 and iﬁtegrated over a powder

distribution function (all Q equally probable), and

' Q
G(t )= e (t;) do
I+1/2 3 -1 1 -1
= [ Tr [R{ nfl bn TOL)R exp(-lHMtl)R TR exp(-lHMtl)]
I+1/2 j j i 1 1 1
=[Tr [ = b T D ()T exp(-il £ ) (S D, ()T )exp(iH t,)]dd
n=1 Kk=-j =1
1+1/2 j j 3 3 ;o1
= Z b /] = Z D (@) Dpy(@) Tr [ T T, (t))] do (A.12)

n=1 k=-j k=-j
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The only angular dependence in Equation (A.12) lies in the rotation
matrices (because it has been assumed that the detected operator can be
uniformly excited). Using the well-known rotation matrix properties

exploited in Chapter VI, 7

3* _ pyk-a pd
Dkq (-1 D-k-q (A.13)
and
Jr* J
J Dyso. (@) Dy (@) d 1
q q - = §..,6..,6 , (A.14)
J daa 2j+1  "jj’' kk’' qq
the normalized, integrated signal intensity is
1+1/2 i 1 D;]c:;(ﬂ) D&o('o) 4o 5 |
G(ty) = 2 bn{ p> . = T aa Tr [TNM TkM(tl)]]
n=1 k=-j k=-1
1 K
- &2Y) 1 .1
- b, = 3 Tr [T T (ty)]
k=-1
1
= -3—b1 [IxMIXM(tl) + IyMIyM(tl) + IzMIzM(tl)] (A.15)

All other terms have zero integrated intensity due to the orthogonality
condition Equation (A.1l4). The signal detected in high field is
identical to that observed if the entire powder pattern were observed

to within a scaling constant

3 .
b]_ = mSlnﬂ (A.16)

For large flip angles #, the details of the excitation and
detection period ty become important because the amount of the operator

I,1(tq) transformed into an observable transverse magnetization becomes
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orientation dependent. 1In this case the integration‘in Equation (A.15)
includes an additional Q dependence in the detected operator. Both the
effective nutation frequency under the influence of an aéplied rf field
and the subsequent signal amplitude of the central transition depend on
the magnitude of the high field wvalue of the quadrupolar coupling and
therefore on 0.%2 Only for small flip angle excitation is uniform
excitation of the central transition possible. Quantifying this last
statement, field cycling zero field spectra of half-integral
quadrupolar nuclei can be observed without intensity distortion if the

high field signal is measured immediately after a 6 pulse for

T
‘YBrfT = /] < m , (A.17)

where 7 is the length of the applied pulse and B ¢ the strength of the

rf field, 149



Appendix B

Where molecules or portions of moiecules are non-rigid, the spin
Hamiltonians described in Chapter I are insufficient to provide a
complete description of the spectral features observed in NMR
experiments. In the presence of motion, the spatial terms in these
Hamiltonians become time-dependent and only a motionally averaged
tensor is observed. This fact is well known from high field studies,
and is the basis for lineshape studies of chemical exchange in

150 151. For motions

solution and studies of restricted mot;on in solids
which are either fast or slow (as compared to the strength of the
interaction being observed) it is easy to predict the result: fast
motions yield zero field spectra with sharp lines at the time-averaged
value of the tensor, while very slow motions show up as discrete zero
field lines at each possible value of the tensor. The intermediate
case (motion or exchange at rates comparable to the magnitude of the
NMR Hamiltonian) affects the lineshapes, and a detailed analysis is
required to solve the problem completely. Methods applicable to high
field NMR are well known, and are presented by others in detail
elsewhere. Some consideration has been given to the intermediate
regime in pure NQR152. In this appendix, I present an approach to the
analysis of a few representative cases in the fast motion limit wherela
simple solution is available and which are relevant to the experimental
results of the main portion of this thesis. The treatment in this

95 11

section closely follows the results of Bayer, and

122

Abragam,
Barnes. In the intermediate motion limit, the prediction of

spectral features is considerably more complicated.153’154
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Where rapid motion occurs about a single axis its effects can be
simply incorporated into the expressions for the NMR and NQR
Hamiltonians. As a model for these concepts I consider an axially
symmetric quadrupolar Hamiltonian where the magnitude of the
quadrupolar tensor V is unchanged during the motion. A formally
equivalent example is the dipolar coupling between two spin-1/2 nuclei.

Four categories of motion are treated. Three occur in a
molecular frame: rapid, isotropic rotation about an axis; two-fold
jumps: and small librational modes. The last takes place in a lab
frame: physical rotation of the sample. 1 start with a common approach
to these types of motion. First, the static Hamiltonian is transformed
from its principal axis system (xyz) to a frame where the motion is
described more simply (XYZ). For clarity, I assume this transformation
can be accomplished by a single rotation by a § degrees about the Y
axis. In this new frame, the expanded form of‘the quadrupolar

Hamiltonian (Equation (1.54) (where n = 0) is

2
2 3cos“4-1,.3 , 2 2
H. = -A[{3IZ-I(I+1)}(_—_7T———)+ZSln 0(1+

Q +I_)-3sin€cos0(1 I+I,I.,)](B.1)

XZ 77X

For rapid motion, the time average of this Hamiltonian is responsible
for the observed features. It will be analyzed for each of the four

motional models.

A. Rotations about a Molecular Axis

Allowing the molecule or molecular unit to undergo rapid rotation
about the new Z axis introduces a time dependence into HQ (or HD). As

the rotation frequency is assumed large compared to our Hamiltonian,
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what is actually observed is HQ averaged over a rotational cycle.
Entering an interaction frame which follows the motion of the spatial

angular momentum, Jgz, at a frequency w

ﬁQ(c) = <exp(-inzt)HQexp(inzt)> (B.2)

Only the first term in Equation (B.l) is time independent. All other
terms have zero time average over a rotational cycle. The averaged

Hamiltonian which gives rise to the observed spectrum is then

2
- 3cos“ -1 2
HQ = - A Q———TT——ﬁ (3IZ ,- I(I+1)) (B.3)

and the averaged Hamiltonian retains the axial symmetry of the static
Hamiltonian with an effective quadrupolar tensor scaled by
(3c0520-1)/2. If the local environment of the quadrupole varies during
a rotational period, and therefore the instantaneous value of the
quadrupolar tensor takes on different values during that period, the
averaged tensor néed not be axially symmetric.45

Similar effects of motional averaging are required in zero field
NMR studies of dipolar systems undergoing rapid reorientation. For
many coupled spins computer simulations are required. DBZINT.FOR is
designed to simulate systems with a single axis of rotation. Two
common examples of rapidly reorienting systems in the solid state are
methyl groups and benzene, which spins rapidly about its hexad axis.
Figure B.1 compares simulated zero field and high field spectra of
isolated groupings of these two spin systems. Averaging any rigid
structure over a classical rotation about a molecule-fixed axis results
in a zero field Hamiltonian isomorphic with a high field Hamiltonian

with all the molecular rotation axes aligned along the field. The fast
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Figure B.1 High field and zero field NMR simulations for static
and rapidly spinning -CHj groups and benzene rings, showing the

effects of motional averaging on pure dipolar spectra.
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molecular rotation performs the same truncation of terms as a large

Zeeman energy.

B. Discrete Jumps

For jumps about the Z axis through discrete angles, the
instantaneous electric field gradient tensor is calculated for each
discrete orientation and a time-weighted average derived by summing

91,93 For a two site jump (as executed

over all allowed orientations.
by D,0 in many inorganic.crystals'at highftemperaturegl) I assume the
individual sites have identical tensors related by a symmetry plane.
The (XYZ) reference frame is chosen so that the Z-axis is along a
vector which bisects the D-0-D bond angle, 24, and lies in the plane
defined by the three nuclei. The first site is related to this frame
via a rotation about the Y-axis of #§ degreés (RY(O)); the second, via

Ry(-6). Time averaging Equation (B.l) is equivalent to taking the

average value of these two tensors;

2
1 2 3cos -1 3.2 2 2
H, = —2--(HQl + HQZ) = -A[(3IZM-I(I+1))(————E———O + z5in 0(I+M+I_M)](B.4)

Even if the tensors of the static sites are equivalent and axially
symmetric, the coefficient of the term (IEM + I?M) in the averaged
tensor need not vanish and thé motion appears to shrink the norm of HQ.
Depending on #, and the number of sites. the jumping motion also may
introduce a marked departure from axial symmetry. (For specific values
of 8§, the axis system in the new frame may need to be relabeled to
conform with the conventional notation of Equation (1.57).) 1In a two

site jump where 24 ~ 109.5° (the tetrahedral angle), n ~ 1.
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C. Torsion and Small Librations

As a finallsimple example of molecular motion in zero field, we
consider the effect of small amplitude torsional or librational
modes.?® These are modeled by allowing Z to represent the equilibrium
or average orientation of the ﬁensor, and introducing small rotations
about the y axis of § radians. For small § and to lowest non-vanishing

order in # we can expand Equation (B.l) in powers of 6 as

H(t) = - A[(1 30 GIZ-1(1+1)) + 20212412y - 36(T. 1.+ I.1.)](B.5)
Q A AN 70 (T (I 1,10 1(B.

Averaging over 4 to get the time-averaged Hamiltonian, ﬁQ, for harmonic

modes this last term disappears and ﬁQ can be rewritten as

2 I
= kY] 2 ' 3 2 2 2
HQ = - A[(1 -_—5—0(312 - I(I+1)) + Z-ﬂ (I+ + I_)] (B.6)
where
02 = <02(t)> (B.7)

This corresponds to a scaled quadrupolar coupling consfant and an
asymmetry parameter of g = 3<02>/2. By a similar treatment, dipolar
tensors can develop an asymmefry.92 In two-spin heteronuclear spin-1/2
systems with such an asymmetric dipolar tensor (and therefore no
degenerate energy levels) all 12 lines predicted by Equation (4.22)
should be observed.

For each of these molecular frame motions, the averaged tensor
may have different value and symmetry than the static tensor. Under

any of these types of motion the Hamiltonian remains homogeneous, if
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all sites or crystallites undergo the same type of motion independent
of their orientation in the lab frame. As long as the motion is rapid,
spectra of the motionally averaged systems retain the sharp features of
zero field NMR of static samples; no broadening is introduced unless
the motional behavior is itself inhomogeneous over the sample. This is
similar to the case of high field single crystal NMR. The Hamiltonian
at equivalent orientations is truncated by the field but the spectrum

remains sharp because all sites are truncated identically.

D. Sample Rotation

As a final example of the effects of motion on zero field
spectra, we consider the effects of bulk sample rotation on zero field
spectra. This type of motion differs from those described above in
that the axis of rotation differs for eachncrystallite orientation in a
fixed lab-based ffame of reference. Proceeding as above, H is
transformed into a lab based frame (XYZ) as in Equation (B.l), where
the angle f is now orientation dependent. For fast rotation and only
homonuclear couplings, the averaging in Equation (B.2) is formally
equivalent to entering the rotating frame of high field NMR studies;

this is a consequence of Larmor’s theorem, and

2
- 3cosT6-1 2
HQ = - A(—-——E————-)(3IZ - I(1I+1)) (B.8)

where § is now referenced to a laboratory frame. With sufficiently
fast sample rotation the zero field spectrum of an isolated deuteron or
two spin-1/2 system will broaden into a Pake pattern exactly as if it

were in a large externally applied field. For most systems, practical
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sample rotation rates will be too slow for this simple treatment to
apply. The primary effect of the rotation will be to cause some
broadening in the observed line features. A combination of sample
spinning at frequency w, and a magnetic field B such that w = 7jB will
produce an untruncated Hamiltonian Hp or Hq, and thus a normal zero

field spectrum, in rough analogy to the cancellation of nutation and

sample rotation in high field.
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Appendix C

Source Listings of Zero, Low, and High Field Dipole-dipole simulation

programs DBZINT.FOR, HETZF.FOR, LOFIELD.FOR, and PAT6.FOR



™ YN

10
501

AR AN

502

503

505

progras dbzint

cosputes intensities for the dz/th field-cycling experiaent on
coupled proton systeas
this one is set up to generate spectra to dbz's specifications

dimension numb(2,64) 15t (2,44} ,isp(b),coors(s,3) ,dd(15) theta(ls)
disension phi(15),vv(4096) ,pp(4096) ,0(64) ,55(1024) ;vr (3024) ,i$1ip(2)

complex h{4094) ,u(4098) ,xx (4096} ,yy (4096} ,22 (4095) ,wvec(64)
characterséd title

coeson/et/ title,e

connon n,nst,lst

equivalence (h(l),xx{1})

indxii,j)= (j-1) ¢ nst + i

kfunk(i1,i2)=(28n - i1)&6it - 1H/2 - §1 + {2

dconst=120.067

pi=f.0 ¢ atan(1.0)

rad37=180. / pi

np=1024

type 501 .

torsat ("1°,//," enter the type of systes :',/,5x,'0 = general’
/,5%,"1 = two flipping water molecules’,/,5x,
‘2 = a planar polygon of spins '4$)

accept #,isys

iflisys .eq. 1) go to 30
questions for the general and planar-polygon cases .....

type 502
forsat{//," how sany spins ? (.1t. 7) *,$)
accept #,n

iflisys .eq. 2) qo to 13

type 503

foreat{///," enter the x, y, and z coordinates of each nucleus

“tin Angstroas) :',/)

do 12 i={,n

type 504,i

forsat{5x, ‘nucleus ",i1," : ",$)
accept # {coorsii,j), j=1,3}
continue

go to 18
type 505
forsat(//, enter the nearest-neighbor separation in Angs. :

accept #,side

rr=side / (2 & sin(pi/n)}

1)

)

318
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angle=0.0
dangle=2#pi/n

do 16 i=1n
coors{i,t}=rr # cos(angle)
coors{i,2)=rr & sinlangle)
coors{i,3)=0.0

14 angle=angle + dangle

18 k=0
do 20 i=1,n-1
do 20 j=it+i,n
k=k+{
xxx=caorsfj, 1) - coorsii,t)
yyy=coors{j,2} - coorsii,2)
2zz=coors(j,3} - coorsii,3)
rrr=sqrtixxaixxx + yyydyyy + 222%222)
dd(k)=dconst / rrr#e]
costh=zzz / rrr
sinth=sqrii{xxx#xxx + yyydyyy) / rrr
thetalk)=sign{pi/2,sinth)
if{costh .ne. 0.0) thetalk)=atan2(sinth,costh)
phi (k)=sign{pi/2,xxx)
ifixxx .ne. 0.0) philk)=atan2(yyy,xxx)
20 continue

print 501
print 402, isys
print 702, n
702 foraat(//,i4," SPINS .....")
itlisys .eq. 0) go to 22
print 703, side
705 tormat(//," enter the nearest-neighbor separation in Angs. : °,
.3
n print 503
do 25 i=1,n
print 708, i,{coors(i,j}, i=1,3}
708 toraat{/,3x, 'nucleus ‘,it," ¢ " ,3$10.3)

25 continue
4
go to 35
c
3
< questions for two flipping waters .....
C
4
30 type 511

511 tormat{///," NOTE : water-i is located at the origin with its',
1/, H-H vector along the z-axis.’)

4
type 312

512 tormat(//," enter the intramolecular H-H distance in Angs. : ',$)
accept #,rhh

4
type 513

513 format{/,” enter the inter-water separation in Angs. : *,§)
accept #,rws ’

c

type 514
514 tormatt/," enter polar angles theta and phi (in degs.) describing’,
L /," the position of water-2 relative to water-1: °,$)
accept #,thetaw,phiw
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58

5

—

9

35
335

573

520

336

type 513

format(/,’ enter polar angles theta and phi (in degs.) describing’,

/" the orientation of the H-H vector in water-2 : *,$)
accept ¥, theta2,phi2

n=4

dd(1)=dconst / rhh#sJ
dd(2)=dconst / ruwksl
dd(3)=dd(2)
dd (4)=dd(2)
dd15)=dd({2)
dd (&) =dd (1)

theta(1)=0,0
theta(2)=thetaw / radd7
theta(3)=theta(2)
theta(4)=theta(2)
theta(S)=theta(2)
theta(s)=theta2 / rad57

phi (1)=0.0

phi (2)=phiw / rad37
phi {3} =phi (2)

phi (4)=phi (2)

phi (3) =phi {2}

phi (6)=phi2 / radS7

print 501

print 602, isys
print 5l

print 512

print 318, rhh
foreat (£10.3)
print 513

print 518, ruw
print 514
hetaw,phiw
forsat(210.3)
print 313

print 519, theta2,phi2

type 333

format(//," is there rapid sotion around the z axis ?',/,
* {0=no,t=yes) ',$)

accept #,imot

type 373
foraat(’ for no visual output of matrices, enter -1 here ')
accept #,aview

type 520

foreat{//," in which “spec” file should data be stashed ?',
/" (for no spectrua storage, enter -1) °,$}

accept ¢,if]

itlisot .ne. 0) print 536
format(//," THERE BE RAPID MOTION AROUND THE 1 AXIS, MATEY')

320
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print 520
print 602, ifl

nst=244n

nai=n-1

npi=nti

ncp=n # nel / 2

do 38 k=1,ncp
18 dd{k)=ddik) / 4

generate and arrange the spin-product states .....

n N NN

call nussort(nusb,n,nst)

(el

k=0
do 43 js=1,npl
is=npt - js
do 40 j=1,nst
if(nusb(2,j} .ne. is) go to 40
k=k+1
Ist(1,k)=nusb(t,j)
1st(2,ki=ig
40 continue
4 continue

set up the untruncated dipolar Hasiltonian .....

noaon

do 100 »={,nst
do 100 1=1,a
Ia=indx{l,n)
h{la)=0.0

if{l .ne. &) go to &0
< diagonal *A* teras ....

ask={

do 50 k=1,n

isplkl=-1

if{{lst(1,1) .and. ask) .ne. 0} isptk)=t
30 ask=ask + ask

[a]

kk=0

de 35 i=t,nm!

do 33 j=i+l,n

kk=kk+1

costh=cos(theta(kk)}

p2=3scosthicosth - ¢

hila)=h(lm) - ddikk) * p2 ¥ isp(j) ¥ ispli)
35 continue

90 to 100

off-diagonal teras ...

60 =l

jsp=0

ssk=1

do 75 k={,n

it{(lst{1,1) .and. msk) - (ist(f e} .and. wsk})} 70,75,70
70 jsp=isp + |
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81

82
B4

A —Mn" "N

110

2

322

iflip(ju)=k
jw=2
ssk=ask + msk

if{jsp .gt. 2) go to 95
ifljsp .eq. 1) go
kd=kfunkliflipt1),iflip(2))

if(1st(2,1) .ne. Lsti2,a)) go to 78

*B® flip-flop teras ....
costh=cos (theta(kd)!}
hila)=ddikd) # (3#costhécosth -
go to 95

"E" teres ....

iflisot .ne. 0) go to 93
sinth2=sin{thetalkd)) #¢ 2

hila)= -dd{kd) # 3 # sinth2 ¢ cexplcapix(0.0,-2%phi (kd}})

go to 99
*C" terass ....

iflisot .ne. 0} go to 95
kfl=iflip(1)

ask=1

do 85 k=1,n

iflk-kf1) 81,85,82
kd=ktunk(k kfl)

go to B4

kd=kfunk(kfl,k)

1)

sincos=3 + sin(theta(kd)) # cos(theta(kd))

kspin=-1

ifl(1st(1,1) .and. ask) .ne. 0) kspin=i

h{ls)=h(la) - dd{kd) # kspin % sincos # cexp{caplx{0.0,-phi{kd}})

ask=ask + ask

sl=indx (s, 1}
hial)=conjgth(la)}

continue

ifin .gt. 4 .or. avien .1t. 0) go to 105

title=" THE HAMILTONIAN ..... !
call hardball th,0}

now diagonalize the sucker .....
tall heigen(h,u,nst}

do 110 i=],nst
ii=indx(i,i)
efid=real (h(ii))

print 521

forsat('1’,//," ENERGIES IN KHZ
print 522, {eli}), i=1,nst}
foraat (15.4)

322
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ifin .gt. 4 .or. mview ,1t. 0} go to 120
title="EIGENVECTORS .....~
catl hardball (u,-1)

generate Ix, Iy, and Iz in the spin-product basis .....

—_—nn N

20 do 150 i=1,nst
do 150 j=1,nst
ij=indx(i,j)
xx{ij)=0.0
yylij)=0.0
221ij)=0.0
ifi .ne. j) go to 130

2zliji=lst(2,i) - n/2.0
90 to 150

130 if{iabs(lst(2,i} - 1st(2,j}} .ne. 1) go to 150
ksp=0 ’
ask=1
do 140 k={,n
it{(lst(t,i) .and. ask) .eq. {1st{1,j! .and. msk}) go to 140
ksp=ksp + 1
140 ask=ask + sk

iflksp .ne. 1) xx(ij}=0.3
iftj .gt. i) yy(ij)=ceplx(0.0,-0.5)
itli .gt. 3) yy(ij)=ceplx(0.0,0,5)

-—r

30 continue

convert Ix, Iy, and Iz to the basis set of the full dipolar Hamiltonian

n NN~

call uamufu,xx,nst,wvec)
call uasulu,yy,nst, wvec)
catl uasulu,2z,nst,wvec)

it{n .gt. 4 .or. aview .lt. 0} go to 160
title="Ix in the dipolar basis ..... )
call hargball (xx,1)

title="ly in the dipolar basis ..... )
call hardball (yy,1)

title='Iz in the dipolar basis ..... '
call hardball(zz,t)

calculate frequencies and intensities .....

—_m .

&0 dink=0.0001
pl=n # 2.#4(n-2)

k=0

do 180 i=1,nst

do 180 j=!,nst

ijsindx (i, )

ji=indx (j,i)

vyv=elj) - eli)

ppp=real { xxlijlexx()i) + yylijayy(ji) ¢ zzlijiezz(3i) ) / 3
it{ppp .1t. dink) go to 180



200

334

532

n N N

210

220

(e I ]

530

531
23

333

i

k=k+]

iftk .eq. 4097) go to 190
yvik)=vvv

ppik)=ppp/p0

continue

sort frequencies and intensities ..

iover=0

ifik .gt. 4096) iover=1
kaax=ain0(k,4094)

do 200 i={,kmax-1

do 200 j=i+i,kmax

iflyvlj) .ge. vvii)) go to 200
call switchivvii),wij)}

call switch(ppli),pp(3))
continue

vwide = 2,0%(abs(vvil)))
type 534, vwide

forsat(’ Full scale width of spectrus is

type 332

forsat(’ How big should the spectrus we duap into be ?2°)

accept #, v2max

it (vwide .ge. v2max) v2aax = 1.2%vmide

generate a spectrus .....

dv=1024, / v2max
hzppt=1000. /dv
vaax=vy2sax/2.0

do 210 i=l,np
55{i)=0.0

do 220 k=1, kmax

1v=313 + nint{yvik)#dv}

if (iv .eq. 1023) go to 220
sslivi=ss{iv) + p vriivi=vvik)
continue

output results .....

print 530

format('1’,//,10x, trequency (kHz) ', bx, intensity’ éx,
‘point ¥/, 10x 150" =" 6x,9¢"-) 4%, 70" =", 1)

k=0

do 230 iv=1,np

ittssliv) .1t. dink} go to 230
k=k+1

print 331, k,vr{iv),sstiv), iv
format (i4,418.4,418.6,i11)
tontinue

iftiover .eq. 1) print 533

toreat(///," NOTE : there are over 4094 allowed transitions —- °
‘lines sissing in the table and in the plot’)

F10.4," ¥z

324



LT T I T |

B I e B N 2 B a2 ]

10
c

101

102
<

subroutine suitch%i.b)
c=a

a=b

=C

return

end

subroutine hardball (p,ibasis)
displays complex matrices (up to 16x14) on one page

ibasis=0 : spin-product basis
ibasis=l : aother
ibasis=-1 : half and halé

cosplex p(256)

disension aagtib),iph(14),ist(2,14),idp(4,18),e(1b)
character#éd title

cosaon/et/ title,e

cosmon n,nst,lst

indx (i, j)={j-1)#nst + i

pi=4.0¢atan(1.0}

rad37=180 / pi

do 10 k=1,4
do 10 j=1,14
idplk,j1='

print 10t, title
format('1",//,5x,b64a)
print 102

tormat(//)

sis .eq. 1) go to 20

"N N

12

set up +'s and -'s to describe direct product states

ask=pst / 2

do 15 k=l,n

do. 14 j=1,nst

itllst(l,3) .and. ask} 12,13,12
idplk,j)=1h+

325
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14

105

20
106

Sﬂnﬂﬂn

N
—
~

31
32

34

35

40

114

15

116

30

go to 14

idptk,j)=th-

cantinue

ask=ask / 2

continue

if{ibasis .eq. 0) print 105, ({idpik,j), k=1,4}, j=i,nst)
foraat{lix,16¢" {" ,4al,">'))

iflibasis .ne. 0) print 106, (e(j}, j=1,nst)
format {11x,16¢7.2}

calculate phase and sagnitude for each matrix eleaent, then print....

print 112
forsat (1x,130{1h-})

do 50 i=i,nst

do 40 j=1,nst

ij=indx(i,j)

xx=real (p(ij))

yy=aimagqlplij))

r2=cabs(p(ij})

if{zz .1t. 0.0001) go to 35

ifixe) 34,31,34

iflyy) 33,32,32

iph(j)=90

go to 40

iph(j)=-90

go to 40

ph=atan2(yy,xx) # rad§7

iph(j)=ph + sign(0.3,ph)

go to 40

iph(j)=0

»ag(j)=1000. # zz + sign(0.5,22)
iflibasis .le. 0) print 114, (idplk,i), k=1,4) (mag(j), j=1,nst}
format(th0," <’ 4a1,"1"16i7)
iflibasis .eg. 1) print 113, eli),(maglj}, j=1,nst)
tormat{1h0,£7.2," 1',16i7)

print 116, (iph(j), i=1,nst)
forsat(10x,16i7)

cantinue

return
end
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10
501

[l

L s el ala)

302

514

503

15
35

327

prograa HETIF

computes intensities for the dz/tb field-cycling experiaent on
coupled proton systess with one spin allowed to be a heteronucleus

dimension nusb(2,64),1st12,64) isp(6),coors(s,3),dd(15),theta(15) .
dimension phi(15),vv(400) ,pp(600),e(64} 55110011 ,vr(1001),iflip(2)
coaplex h{4094),u(4096) ,xx (4096) ,yy (4098) ,22 {4096} ,wvec (64)

complex xx1,yyl,zzl, xd(40956), yd(4094), 2d(4094)

equivalence (hit) xx(]))

indx{i,j)= (j-1) € nst ¢ |
kfunk(i1,i2)=(28n ~ i1)e(il - 1}/2 - i1 + 12
dconst=120,067

pi=4,0 ¥ atan(1.0}
rad57=180, / pi

np=1001

type 50t -

foreat("1",//," enter the type of systes :',/,5x,'0 = general”,
/5%, ‘2 = a planar polyqon of spins "4

accept #,isys

iflisys .eq. 1) go to 10

questions for the general and planar-polygon cases .....
type 502

format{//," how many spins 7 (.1t. 7} ' )

accept #,n

type SH4

torsat(//," enter the gassa of the heteronuke (spin 1} : *,$)
accept #, grat

t4(isys .eq. 2) go to 15

type 303
toraat{///," enter the x, y, and z coordinates of each nucleus °,
“(in Angstroms) :°,/}

do 12 i=1,n

type S04,i

torsat (3x, ‘nucleus “,il," : ',$)
accept &, (coorsti,j), j=1,3)
continue

go to 18

type 505
torsat{//," enter the nearest-neighbor separatien in Angs. : ' $)
accept ¢, side

rr=side / {2 ¢ sinfpi/n))
angle=0.0
danqle=2¢pi/n
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513

“do 16 i=1,n

coorsli,ll=rr ¢ cos(angle}
coors(i,2)=rr ¢ sin(angle)
coors(i,31=0.0
angle=angle + dangle

k=0

do 20 i=1,n-1

do 20 j=i+l,n

k=k+1

xxx=coors{j, 1} - coorsii,!)
yyy=coors{j,2] - coorsii,2)
2zz=coorstj,3) - coorsii,3)

rere=sqrt (xaxdxxx + yyydyyy + 2224222)
ddik)=dconst / rrresd )

it (i .eq. 1) dd(k) = dd{k)#grat
costh=22z / rrr

sinth=sqrt {xxx#xex + yyydyyy) / rrr
theta(k)=sign{pi/2,sinth)

if{costh .ne. 0.0) theta{k)=atan2{sinth,costhi
phitk)=sign{pi/2,xxx)

tHxxx .ne. 0.0) philk)=atan2{yyy,xx)
continue

print 501

print 602, isys

print 502

print 602, n

tflisys .eq. 0) go to 22
print 505 )

print 518, side

print 503

do 25 i=1,n

print 504, i

print 508, (ceors(i,j}, §=1,3)
foraat (3¢9.3)

continue

go to 35
foreat (£10.3)

type 513

formatt//,” is there rapid aoticn around the z axis 2,
/" (0=no,l=yes) ',§}

accept ¢, imot

type 520 .

tormat{//, in which “spec* file should data be stashed ',
{," {tor no spectrue storage, enter -1) " $)

accept #,1¢]

print 520
print 602, itt

nst=2¢4n
nal=n-{
npl=n¢g

nepsn ¢ nal /2

328
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do 38 k=1,ncp
18 ddiki=ddik) / 4

generate and arrange the spin-product states .....

NN A~

call nuasort (nuab,n,nst)

k=0
do 43 js=i,npl
is=npl - js
do 40 j=1,nst
if{nuab(2,j} .ne. is) go to 40
k=k+1
st (1,k)=nusb(1,))
Ist(2,k)=is
40 continue
45 continue

set up the untruncated dipolar Hamiltonian .....

" AAnN

do 100 e=1,nst
do 100 1=1,a
le=indx (1,8}
h(la}=0.0

i#{1 .ne. 8} go to &0
< diagonal "R* terss ....

ask=1

da 50 k=t,n

isplk}=-1

if{(tst (1,1} ,and. msk) .ne. ) isplki=t
ask=ask + msk )

~ e

kk=0

do 35 1=1,nst

do 33 j=i+l,n

kk=kk+1

costh=cos (theta(kk}}

p2=3#costhecosth - 1

hila)=h(la) - ddikk) ¢ p2 ¢ isp(j) & ispli)
continue

go to 100

wn
cn

off-diagonal teras ....

e a i)

60 =l

jsp=Q

ssko 75 k=1,n

1§ (sttt} ,and. esk) - (Istil,e) .and. ask)) 16,75,70
70 15p=jsp ¢ 1

1élip{jwd=k

=2
75 ask=msk + ask

itijsp .gt. 2) go to 95
14jsp .eq. 1} go to 8¢
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kd=kfunk (iflip(1),i41ip(2))
1$#(1st (2,1} .ne. lsti2,a)} go ta 78

4
4 “B° flip-flap teras ....
4
costh=cos(theta(kd))
hila)=dd(kd) ¢ (Jecosthecasth - 1)
go to 95
4
4 °E" terss ....

c
8 tf (isot .eq. 1) go to 95

sinth2=sin(theta(kd)) #+ 2

hila)= -ddikd) # 3 € sinth2 ¢ cexplcaplx{0.0,-24phi (kd}))

go to 93
c
< *C" teras ...,
4

80 i (imot .eq. 1} go to 95
kfl=iflip(l)
ask=1
do 85 k=1,n
if{k-kt1) 81,85,82
8t kd=kfunkik, kil)
go to B4
82 kd=kfunk (kil,k)
84 sincos=3 ¢ sin{theta(kd)) & cos(theta(kd))
kspin=-1
itt{lst(1,1} .and. esk! .ne. 0) kspin=1
h(la)=h{la) - dd(kd) * kspin # sincos + cexp(caplx(0.0,-phi(kd}})

83 ask=msk + ask

4

4

95 sl=indx (s,!}
h(al)=conjg(h(le)}

4

100 continue

C

4

t now diagonalize the sucker .....

4
tall heigen(h,u,nst)

4

do 110 1=1,nst
1i=indx{i,i}
110 elidzreal (h(iir}

print 521

521 foreat(/////," ENERGIES IN KHI .....",//)
print 522, {efi}, i=1l,nst)

522 foreat{f15.4)

generate Ix, Iv, and lz in the spin-product basis .....

A AN A

do 150 1=1,nst
do 130 j=1,nst
1)=indx (1, )}
xx{i))=0.0
yyliy)=0.0
12{ij}=0.¢
xd1ij1=0.0
ydi{131=0.0
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2di1j1=0.0
kk=0
tfli .ne. j) go to 130
4 now calculate Sz eatrix(zd} and 1z + gratiSz (2z)

izax=eod({lst(1,i),2)
jrax=1sti2,i} - izax
7d{1j1=0.5 # grate{2eizax - 1)
zlijl=jzas-(n-11/2.0 + 2dtij)
go to 130

130 ifliabs(lst(2,1) - 1st(2,)3)) .ne. 1) go to 1sp=0
ask=1
do 140 k=1,n
ifist{l,i) .and. esk} .eq. (1st(1,j) .and. ask)) go to 140
kk=k
ksp=ksp + 1
140 ask=esk + #sk

iflksp .ne. 1) go to 150

1ax=0.5

it (kk .eq. 1} zax=grat/2

1x (i j)=zax

ifly .qt. 1) yy(ij)=caplx(0.0,-zax)
i gt §) yylij)=ceplx(0.0,zax)
it (kk .ne. 1) go to 150

xdiijl=zax

tf (. gt. i) ydiijl=caplx(0.0,-2ax)
it (5. 1t 1) ydlij)=caplx (0,0,zax)

150 continue

convert Ix, ly, and 1z to the basis set of the full dipolar Hamiltonian

n A" oA

call vamuly,xx,nst, wvec}
call uasulu,yy,nst,wvec)
call uvamufu,2z,nst, uvec)
call vasulu,xd,nst,wvec)
call uasu(e,yd,nst, wvec)
call vaaulu,z2d,nst wvec)

talculate frequencies and intensities .....

AN AN

dink=0.0001
tf (ifl .gt. 0) cal! defile( 'spec’,ifl,0)
do 235 irep=t,2
4 loop over detection by the heteronucleus and the abundant spin

iflirep .eq. [) p0=3 # grat ¢ grat ¢ 2.+¢(n-2
1flirep .eq. 2) p0=3 & (n-1) ¢ 2.%%(n-2}

k=0

do 180 i=!,nst
do 180 j=t,nst
1)=indx (i, j)
Jjr=indx (g1}
vyv=e(jl - eli}
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175

180

190

219

350

a M oN o

.3

!

wxl,yyl, 2zl contain the detection matrices. first tise thru, we
assume the detection is via grate(Sx,Sy,Sz); next tiee around,
via {Ix,ly, 1z} :

xxi=xd(ji}

yyl=yd{ji)

zi=2d(ji)

if (irep .eq. !} go to 175
xxl=xx{ji}-xd(ji)
yylsyy (i) -yd(ji)
rzf=rz(ji)-zd (i)

ppp=real { xx(ijlexxt + yy(ijleyyl ¢ zz€ijlezzt ) / p0
i1flabsippp) .1t. dink) go to 180
k=k+i

itk .eq. 601) go to 130
vvik)=yyy

ppik)=ppp
continue

sort trequencies and intensit
iover=Q

1#(k .qt. 600) iover=1
kaax=ain0(k, 600}

do 200 i=1 kmax-1

do 200 j=i+! kmax

tflvv(j) .qe. vvii)} go to 200
call switchivvii),vvij))

call switchippti},ppiy))
continue

generate a spectrus .....

vaax=asaxi{1.2 ¢ abs(vv(l}) dink}
dv=300 / vaax
hzppt=2 ¢ vmax

do 210 i=t,np
s5{1)=0.0

do 220 k=1,kmax

1v=501 + nint{vvik) # dv)

sslivl=ss{iv) + ppik)

vrfiv)=yvik)

continue

it (irep .eq. 2} go to 223

print 530, grat

tormati//, ' the heteronucleus nas a gasea = ', 6.4}
1t {ieot .eq. 1) print 555

tormat(//, ' spectrua calculated assueing rapid rotation about z °

output rescits .....

grint 52

foraat("1°,:/,10x, frequency {khz}',bx, intensity ,éx,
point &°,5%,in S spin spectrua’,/,10x, 150 -"),bx,
0 =) ,b6%, 717" 1)

30 to 225

print 530

format(//,10x, frequency (kHz) ,bx, intensity’ ox,
‘paint &7, 10x, 150 -7 6x 90 ") bx, T0-")

332
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240
339

k=0
do 230 1v=1l,np

ifabs(ssliv)) ,1t. dink) go to 230

k=k+1

print 531, k,vriiv),sslivl,iv
format(i4,418.4,418.6,i11)

continue

tt(iover .eq. 1) print 533
toraat(//{," NOTE : there are over 600 allowed transitions -- °
‘lines missing in the table and in the plot’}

iflifl .1t. 0) go to 235

vainz-veax

print 335, vain,veax,hzppt
tormat{///,3x, spectral range : ' ,§10.4," kHz to °
Sx, (",§9.4," Hz per point) ")

write(1,602) np
write(1,603) hzppt

write(1,603) (ss(i), i=1,np)

continue

close(unit=01)

type 339

tormat(///," another systea 7?7 (0=no,l=yes) °

accept #,ian

.ne. 0) go to 10

C

540
4
4
602
603
c

A T e T o T |

print 540
format('1",//)

foraat{is)
torsat(eld.4)

end

subroutine switch(a,b)
c=a

a=h

b=c

return

end

333
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598

progras lofield

cosputes 1ntensities for a genera) powder pattern of

coupled protons (up to 4)

tn a seall applied dc field in non-rotating fraee

otherwise, this one is exactly like patd

this one 1s set up to generate spectra to dbz's specifications

dimension nusb(2,16),1st(2,16},isp(4}, coorsi4,3)
disension dd(b),theta(b},iflip(2)

dieension phi(4),e(16),55(1024)

coaplex h01256) ,h(236} ,ul256) ,xx(254) ,yy0(256)
cosplex xx0(256),yy(256) ,22(256) ,wvec (14), 2z0(254)
character#13 gname

charactertbd title

cosson/et/ title,e

cosmon nynst,lst

tadx (i, )= {j-1) ¢ nst + |

ktunk (10,12)=2¢n - i1)e0il - 13/2 - 41 + 2

dconst=120.067

pi=4.0 ¢ atan(t.0)

rad37=180. / pi

bad = 0.

np=1024

inftialize the spectrus satrix ss
do 1533 j=1,np

ssij) = 0.0

set up the spectral width as 250 kHz full width centered about
point 513

v2sax = 230,
hzppt =.125./511.
veax = 125,

bad holds all the intensity that +all outside of the chosen band
width for our spectrus

bad = 0.

type 501

forsat{"t",//," enter the type of systee :",/,5x, 0 = general’,
/,9x, 'l = a planar polygon of spins W4

accept ¢,15ys

questions for the general and planar-polygon cases .....

type 202
toreat{//," how many spins ? (.le. &} " §)
accept +.n

8 L LBt 2) Lor. (n .qt. 61) go to 4477

type 598

foreat (" how sany steps along beta 1n interval 0-90 2 )
accept +, a2

type 598

334
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354

356

303

335

forsat{’ and how many along the equator ? °}
accept ¢, n2

type 354
forsat(’ enter the value of the static field in kHz ")
accept +, f1d

type 534
forsat (" enter the angle omega between lab z-axis and residual

1 tield : '}

accept +, omega
ose2 = osega/rad5?
cos = cos{one2)
som = sin(ome2)

1tlisys .eq. {) go to {5
type 503

forsat{///," enter the x, y, and z coordinates of each nucleus °
“{in Angstroasi :°,/)

A

do 12 i=1,n

type 304,i

foreat (3x, ‘nucleus ",il," 3 %)
accept #,(coors(i,j), j=1,3)
continue

go to 18

type 505

foraati//,’ enter the nearest-neighbor separation in Angs. : ',$)
accept #,side

rr=side / (2 # sin{pi/n})
angle=0.0
dangle=2#pi/n

do 6 i=i,n

coors(i,l}=rr # costangle)
coors{i,2)=rr % sin(anglel
coors{i,31=0.0

_angle=angle + dangle

k=0

do 20 i=1,n-!

do 20 j=i+l,n

k=k+t

kxx=coors(j, 1} - coorsti,!)
yyy=coorstj,2) - coorsii,2)
r22=coors(j,3) - coorsii,3)
rrezsqri{xxx#xxx + yyy#yyy + 227¢227)
dd{k)=dconst / rrresd

costh=zzz / rer

sinth=sqrt (xxx#xxx + yyytyyy) / rrr
thetaik)=sign(pi/2,sinth)

tiicosth .ne. 0.0) thetalk)=atan2(sinth, costn}
phi(ki=sign(pt/2,xxx}

1 lxxx .ne, 0.0} prilk)=atanliyyy,xxx}
continue
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print 501
print 632, isys
print 702, n

702 toreat (// 14,  SPINS ..... ')
14 (isys .eq. 0) go to 22
print 703, side

705 foraat{//," enter the nearest-neighbor separation in Angs. : °,
t 9.3
22 print 303
da 25 1=1,n

print 708, i,(coorsii,j), j=1,3)
708 foreat{/,5x, nucleus ',il," : °,3110.3)

25 continue
<
type 520
520 tormat{’ enter file name for spectrum dusp’ /,

1’ for no spec spectrua storage, enter -1 ')
accept 5202, jnp, gnase(l:jnp}
5202 toreatig,a) )
if (gnase(1:2} .eq. "-1" ) if} = -1

it Gifl .ne. -1) then

print 520
print 5202, jnp, gnase(l:inp)

&

else

end if

nst=2¢4n
nrl=n-1

npl=nti

ncpsn # nel /2

38 dd{k)=dd(k} / 4

4
4
t generate and arrange the spin-product states .....
C
call nussort(numb,n,nst}
<
k=0
do 45 js=1,npl
is=npl - js
do 40 j=1,nst
1#{nuab(2,j) .ne. 15} go to 4¢
k=k+1
Est (1, k)=nuab(i, j}
Ist(2,k)=1s
40 continue
45 continue
4
4 set up the untruncated dipolar Hasiltonian .....
4 store 1t in aatrix ho
4 matrix h will represent the cosbined dipolar + leesan Haailtonians
4

do 100 a=1,nst
do 00 1=1,a
la=indx (1,e)
hoiln)=0.0



70

15

80

Bt

87
B4

14t} .ne. sl go to 60

diagonal “A° teres ....

esk=1
do 30 k=1,n
isp(k)=-1

v lst(l, 1) .and. ask) .ne. 0) ispik)={
nsk=ask + msk

kk=0

do 35 i=1,natl

4o 35 j=i+l,n

kk=kk+1

costh=cos (theta!kk))

p2=3#costh#costh - |

hO(lal=h0(le) - ddikk) ¢ p2 & isp(j} * isp(j)
continue

qo to 100

off-diagonal teras ....

JLE

isp=0

ask=1

do 73 k=l,n

st (1,1) .and. esk) - (Ist(f,m) .and. aski) 70,75,70
jsp=isp ¢+ 1

iflip(jm)=k

jw=2

ask=ask + ssk

ifljsp .gt. 2} go to 95
it(jsp .eq. 1} go to 80

kd=kfunk (iflip(1),i4lip(2))
iftlst(2,1) .ne. ist{2,a)} go ta 78

‘B* flip-tlop teras ....

costh=cos (theta(kd))
hOtlai=dd{kd) # (3#costhtcaosth - 1)
go te 95

“E" teras ....

sinth2=sin{theta(kd)) #¢ 2
hO{lal= -dd(kd} # 3 ¢ sinth2 # cexplcaplx(0.0,-2%phi lkd}))
g0 te 95

*C* terms ....

kfl=tflip(1)

[HO

do 85 k=1,n

if{k-kfl) B1,85,82

kd=kfunk (k,kf1)

go to 84

kd=ktunk tkfl, k)

sincos=] ¢ sinithetahetalkd))

kspin=-1

1i0{lst (1,1} .and, ask) .ne. O} kspin=t
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130
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150
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338

hO(lal=h0(la) - &d(kdlfkspintsincusﬁcelp(Clplx(0.0,-phx(kdll)
ask=ask + esk

al=indz(a,l}
hO(ali=conjq(h0(le)!

continue

generate Ix, Iy, or 1z in the spin-product basis .....
calculate the value of the zeeman field when rotated intc the
solecular frame of reference

do 1500 i=t,nst

do 1300 j=1,nst
ij=indxli,j)

xx {ij1=0,0

yy(ij)=0.0

22(1)1=0.0

if(i .ne. j) go to 130

1z{i})=1st(2,i) - n/2.0
go to 150

ifliabs(lst (2,1} - 1st(2,j)) .ne. 1) qo to 150

ksp=0

ask=1

do 140 k=t,n

tE(€lst (1,11 .and. msk} .eq. (1st(1,}) .and. ssk)) go to 140
ksp=ksp + |

ask=ask + ask -

if{ksp .ne. 1} go to 150
xx{1§1=9.3

ifly .gt. i) yy{iji=caplx(0,0,-0.5}
it gt §) yy(iji=ceplx(0,0,0.9)

continue
centinue

now add in a zeeman ters for the rotated field, that is,

the field vector now expressed in the molecular frase

the truncation is now done numerically, because the coefficient
applied to the field is much larger than the unit of the dipclar
couplings

the coetficients on each part of the field represent the effect
of having rotated it through (gamsa, betal in the 2 angles

now toop over orientations of the values of gamsa and cestbeta)
for each field orientation, calculate states ang energies

tinc = 2./4loat(a2-1)
ginc = pi/floatin2-1y
do 2700 ol = 1,82

ioop ever values of costbeta) fros -1 to |

¢l = -1, ¢ fincefloat(al-1)
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beta = acosicl)
4 loop over values of gassa froa 0 to p:

2 do 2600 11 = {,n2
Hloat(lt-1ginc
sl = sin{betal
€2 = cos{qgaeea)
s2 = sinigasea)

sls2 = si#s2
sic2 = sl
clc2 = clec2
cls2 = cles2

do 444 i = ,nst

do 444 j = 1,nst

ij = inde(i, )}

220€i)) = (-1.eslc2exx (3} + sis2eyylij) + clezziij))

4 while we're looping, set up Ix, ly (lab-based) in the molecular frase

yyOUij) = s2#xx(ij) + ¢2eyydij)
xx04i)) = cle2mxx(ij) + stbzzlij) - cls2eyy(ij)

hi1)) = hO(ij) ¢+ f1de(z20(ij)4comexx0(i))+¢som)

444 continue

4

C

4 now diagonalize the sucker .....

call heigen(h,u,nst)

do 110 i={,nst

ii=indx{i,1}

elil = real (h(ii)}
110 cortinue

c
4 convert lab based 1z to the basis set of the complete Hamiltonian
4
call vaaufu,220,nst, wvec)
c
4 calculate frequencies and intensities .....
4
pO=n & 2. #¢(n-2}
4

da 180 i=1,nst

do 180 j=t,nst

vwy = 0,

1)=indx {1, )

jizindx{j, )

vyvzeljl - etid

ppp=real (zz0(jitezz0ts )}

stot = vvv/hzppt

1kl = nintislot) + 513

1 (k) .ge. 1) .and. +gkd Lle. L024)) go to 170§

bad = bad ¢ ppp/pu

go to 184
1705 ssiikl) = ssiykl) + ppp/pd
130 continue



2600

2700

240
539

540

602
603

[N B o B N o ]

continue

continue

output results .....

vain=-veax
print 335, vain,veax,hzppt

toraat(///,3x, spectral range ¢ ',10.4," kHz to ",f10.4,"

3%y 7, 49,4, Hz per point) )

it {14l .ne. -1) then

apen{unit=1, name=gname(l:jnpl, status = ‘new’)
writell,602) np

write(1,603) hzppt )

write(1,603) (ss{i), i=1,np}

closelunit=01)

else
end if

type 339

torsat(///," another systea ?? (0=no,l=zyes) ',$)
accept & ian

if{ian .ne. 0} go to print 540

torsat (1" ,//)

format{ib)
foraat(eld.s)

end

subroutine switchia,b)
c=a

a=h

b=¢

return

end
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progras paté

cosputes intensities for a general powder pattern of

coupled protons (up to &)

this one is set up to generate spectra to dbz's specifications
third attespt at calculating powders; 10/12/84

designed to be compiled with iasl routines eigch et al

disension nuab(2,641,1st(2,64),isptd), coors(s,3)
disension dd(15),theta(15),iflip(2)

disension phi (15} ,e(b4),55(1024)

cosplex h0(4096) ,h(4096) ,u(4096) ,xx (4098)

complex xx0(4096},yy(4096) ,22 (4098} ,uvec (64)

real work (192}

character#bd title

coason/et/ title,e

conson n,nst,lst

indx{i j)= (j-1) ¢ nst + |

kfunk (11,12)=(2800 - i) 801 - 1/2 - i1 + i2

dconst=120.067

pi=4.0 ¢ atan(1.0}

rad57=180. / pi

bad = 0.

np=1024

initialize the spectrua satrix ss
do 1553 j=i,np

sst)) = 0.0

set up the spectral width as 250 kHz full width centered about
point 513

vZmax = 250.
hzppt = 125./511.
vaax = 1235,

bad holds all the intensity that fall ocutside of the chosen band

width for our spectrus

bad = 0.

type 501
format('1",//," enter the type of systea :’,/,5x,’0 = general’,
1,5ty ‘1 = a planar polygon of spins o $)

accept #,isys

questions for the general and planar-polygon cases ,....

type 502
format(//," how many spins ? {.le. &) ' $)
accept ¢n

it (in .1, 2) .or. (n .gt. &) go to 4477

type 598

forsat (' how sany steps along beta in interval 0-90 7" )
accept ¢, a2

type 59
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S04

12

15
305

20

702

708
2

format(’ and how sany along the equator ? ')
accept 4, n2

if(isys .eq. 1) go to 15

type 303

toraat(///," enter the x, y, and z coordinites of each nucleus

“{in Angstroas) :°,/)

do 12 i=1,n

type 504,i

format(3x, ‘nucleus *,if," : ' $)
accept #,{coorsti,j), j=1,3)
continue

go to 18

type 505

foreat(//," enter the nearest-neighbor separation in Angs.

accept #,side

rrsside / (2 ¢ sinlpi/n))
angle=0.0
dangle=2¢pi/n

do 16 i=1,n

coors(i,i)=rr # coslangle}
coorsli,2)=rr ¢ sin(angle)
coors{i,31=0.0
angle=angle + dangle

k=0

do 20 i=1,n-1

do 20 j=i+f,n

k=k+1

xxx=caors{j, 1) - coorsti,!)
yyy=coors(j,2) - coors(i,2)
122=coors(j,3) - coors(i,3)
rrr=sqri{xxx#xxx + yyytyyy + z22#222)
dd(k}=dconst / rrreed

costh=zz2 / rrr

sinth=sqrt (xxx#xxx + yyytyyy) / rre
theta(k)=sign(pi/2,sinth)

iflcosth .ne. 0.0) thetaik)=atan2(sinth,costh}
phi (k)=sign{pi/2,xxx)

téixxx .ne. 0.0) philk)=atan2(yyy,xxx)
continue

print 301

print 602, isys

print 702, n

formati// i4," SPINS .....")
iflisys .eq. 0) go to 22
print 705, side

formati//," enter the nearest-neighbor separation in Angs.

£9.3)
print 503
do 25 i=1,n
print 708, 1,(coors{i,j), j=1,3
foraat(/ Sx, ‘nucleus ",il," : °,3610.3)
continue

1

4§
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type 520
520 torsat{//," in which "spec® file should data be stashed 7,
L f," (for no spectrus storage, enter -11 ' $)
accept ¢,1¢]

[4
print 520
print 602, ifi

4
nst=2#4n
nat=n-1
npi=n+l

ncp=n * naj / 2
do 38 k=1,ncp
38 dd(k)=dd(k) / 4

generate and arrange the spin-product states .....

(o B I = ]

call nussort (nuab,n,nst) .

k=0
do 45 js=1,npl
is=npl - js
do 40 j=1,nst
if{numb(2,j} .ne. is) go to 40
k=k+]
Ist(1,k)=nusb(1,j}
1st(2,ki=is
40 continue
45 continue

set up the untruncated dipolar Hasmiltonian .....
store it in satrix ho
satrix h wille cosbined dipolar + leesan Hasmiltonians

AN AN

do 100 #=1,nst
do 100 i=1,a
la=indx (1,a)
h0ila)=0.0

t#(l .ne, al go to 40
4 diagonal *A* terss ....

#sk=1

do 30 k=t,n

isplk)=-1

tH{{lst(1,1} .and. ask) .ne. 0} isp(ki=l
50 ask=nsk + ask

kk=0

do 55 i=1,nal

do 35 j=itt,n

kk=kk+1

costh=cos (thetatkk))

p2=3#costhecosth - 1

hO(lai=hO(lm) - dd(kk} ¢ p2 * isp(j) # ispii}
N continue
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go to 100
c
<
[4 ofé-diagonal terss ...,
[4
60 ju=1
isp=0
ssk=1
do 75 k=1,n
tftllst(t,1) .and. esk) - (Ist{1,s) .and. ask)) 70,75,70
70 jspaisp + 1
iflip(jw=k
jw=2
75 ask=ask + sk
4
if{jsp .gqt. 2} go to 95
if(jsp .eq. 1} qo ta 80
4
kd=kfunk{itlip{1),iflip(2})
if(lst(2,1) .ae. 1st{2,a)) go to 78
4
c “B* flip-flop teras ....
4
costh=caos{theta(kd)!}
hO{lai=dd(kd) # (3*costhscosth - 1}
90 to 95
[4 "t" terss ....

8 sinth2=sin{thetatkd}) & 2
hO(lal= -dd(kd) + 3 ¢ sinth2 # cexp(caplx(0.0,-2%phi (kd}))

go to 95
[4
[4 *C" teras ....
4 .
80 kfl=iflip(1)
ssk=1
do 83 k=1,n

it{k-k¢l) B1,85,82
81 kd=kfunk{k kf1)

go to B4

82 kd=kfunk {kf1,k}

84 sincos=3 # sin{thetalkd)) # cos(theta(kd))
kspin=-1

if((st(1,1} .and. ask) .ne. 0) kspin=|{
hO(1e)=h0(1a) - dd{kd)*kspin#sincosscexpicaplx{0.0,-philkd)))

85 ask=ask + ask
4
C
95 el = indx(a,l)
ho(al) = conjg(hO(ia})
100 continue
4
C
C
4 generate Ix, ly, or Iz in the spin-product basis .....
[4 calculate the value of the zeeman field when rotated ints the
C. eolecular frame of reference

do 1500 i=1,nst
do 1500 j=1,nst
1,1}



130

140

150

1500

e s e =]

32
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xx{i1j)=0.0
yy{ij)=0.0
2241 §1=0.0
it(i .ne. j) go to 130

12 j)=lst(2,i) - /2.0
go ta 150

ifliabs(Ist(2,i) - Ist(2,j)) .ne. 1) go to 150

ksp=0

ask={

do 140 k=i,n

itllst(4,i) .and. ask} .eq. (Ist(i,j) .and. ask)) go to 140
ksp=ksp + 1

askzask + ask

if{ksp .ne. 1) go to 150

xx{ij1=0.3

it (j .gt. i) yylijl=ceplx{0.0,-0.5)
it (i .qt. §) yy(ij)=ceplx(0.0,0.5)
continue

continue

now add in a zeesan ters for the rotated field, that is,

the field vector now expressed in the sglecular frase

the truncation is now done nuserically, because the coefficient
applied to the field is such larger than the unit of the dipolar
couplings

the coefficients on each part of the field represent the effect
of having ratated it through (gamsa, beta) in the 2 angles

now loop over orientations of the values of gamsa and cos(beta)
for each field orientation, calculate states and energies

finc = 2./float (a2-1)

ginc = pi/float(n2-1)
do 2700 of = t,a2

loop over values of cos(beta) fros -1 to 1

cl = -1, ¢ fincefloat (at-{)
beta = acos(ct)

toop over values of gaasa fros 0 to pi
do 2600 11 = 1,n2

gassa = float(l1-1)4qinc
sl = sin(beta)

€2 = cosigassa)
s2 = sin{gaama}
sis2 = 51452
slc2 = slac2
cle2 = clec2
cis2 = cles2

do 444 i = 1,nst

do 444 § = 1,nst

ij = indeti,j

h(ij) = hOGijh + 10000 #(-1.0sic2exx(ij} + sis2éyylij) + clezz(ij))



444

n

1705
180

2500

2700

240
339

while we're looping, set up Ix (lab-based) in the solecular frase

xx0(i ) = cle2exx (ij) + slezzlij) - cls20yy(ib
;ontinue

now diagonalize the sucker .....

cst,11,e,u,nst work,ier)

if (ier .ne. 0) type §77, ier
format (" eigch error code = °, ié)

_canvert Ix to the basis set of the cosplete Hamiltonian

call matraml{u,xx0,nst wvec)

call matal (xx0,u,nst,wvec)

calculate frequencies and intensities .....
p0=n & 2,##(n-2}

do 180 i=1,nst

do 180 j=1,nst

vy = 0.

1) = indx(i,§)

ji = indxdj,i)

ppp= xx0{ij}#xx0(ji)

it (abs(ppp) .le. l.e-4) go to 1BO
vvvi=zelj) - e(il

if (vyvi Lgt. 0.0} vwy = vyvi - 10000,
if (vvvi J1t. 0.0 vyv = wyvi ¢ 10000,
slot = vvv/hzppt

jkl = nint{slot} + 511

if (43k1 .ge. 1) .and. (jk] .le. 1024)) go to 1705
bad = bad + ppp/p0

go to 180

ss{jkl) = sstjkl) + ppp/p0

continue .

continue

continue

output results .....

vains=-vaax
print 335, vain,veax,h2ppt

format(///,3x, ‘spectral range : *,€10.4," kHz to ',§10.4,"

Sx, {7, 49.4," Hz per point}’)

call defile( 'spec’,if1,0)
write{1,602) np

write(1,603} hzppt
write(1,603) (ssii), i=1,np)
close{unit=01)

type 539
foreat(///," another systea 77 (0=no,l=yes) ' $)
accept #,ian

e,

346



iflian .ne. 0) go ta 10
print 540
format{’1’,//}
foreatiis}

format{e1d4.4)

end
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