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Abstract: The heart has two intrinsic mechanisms to enhance contractile strength that compensate for
increased mechanical load to help maintain cardiac output. When vascular resistance increases the
ventricular chamber initially expands causing an immediate length-dependent increase of contraction
force via the Frank-Starling mechanism. Additionally, the stress-dependent Anrep effect slowly
increases contraction force that results in the recovery of the chamber volume towards its initial
state. The Anrep effect poses a paradox: how can the cardiomyocyte maintain higher contractility
even after the cell length has recovered its initial length? Here we propose a surface mechanosensor
model that enables the cardiomyocyte to sense different mechanical stresses at the same mechanical
strain. The cell-surface mechanosensor is coupled to a mechano-chemo-transduction feedback
mechanism involving three elements: surface mechanosensor strain, intracellular Ca2+ transient,
and cell strain. We show that in this simple yet general system, contractility autoregulation naturally
emerges, enabling the cardiomyocyte to maintain contraction amplitude despite changes in a range
of afterloads. These nontrivial model predictions have been experimentally confirmed. Hence, this
model provides a new conceptual framework for understanding the contractility autoregulation in
cardiomyocytes, which contributes to the heart’s intrinsic adaptivity to mechanical load changes in
health and diseases.

Keywords: autoregulation; contractility; cardiomyocyte; Anrep effect; mathematical analysis; mathe-
matical model; mechano-chemo-transduction

1. Introduction

Ernest H. Starling found through a series of brilliant experiments that “the mechanical
energy set free on passage from the resting to the contracted state of contraction depends
on . . . the length of the muscle fiber [1] p. 472.” He recognized that this relationship
was so important that he called it the “law of the heart”. Implicit in this law is that the
force of contraction is a single-valued function of the muscle length as shown in Figure 1
adapted from Allen and Kurihara’s experiment on trabeculae [2]. Starling’s law of the
heart is a foundation stone of cardiac physiology and it underpins our understanding of
heart function in both normal and diseased states [3]. But even as Starling was doing his
experiments, Gleb von Anrep’s experiments showed that muscle fiber length was not the
sole determinant of contractile force. Anrep found that increasing the arterial resistance
caused an initial increase in the diastolic and systolic volumes of the heart but after a few
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minutes the heart returned to near its initial volumes indicating that the heart was able to
maintain an increased level of contraction force at a smaller fiber length despite the high
arterial resistance [4].
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Figure 1. Load-adaptation property of cardiac muscle. Black curve shows the relationship between
length of a fiber in the heart and force generated by Frank-Starling (F-S) mechanism. Sudden
increase of outflow resistance causes an initial diastolic fiber length increase from Lo to L∗ and
concomitant contractile force increase from F(a) to F(b) by the F-S mechanism. For the experiments
of Cingolani et al. [5] the chamber volume returns to the original volume (muscle length L0) but the
contractile force must be F(c) = F(b). The adaptive force ∆F (green double-headed arrow) is the
force needed to account for the Anrep effect. F-S curve redrawn from Allen and Kurihara [2].

Work by Rosenblueth et al. [6], Clancy et al. [7], and Klautz et al. [8] have confirmed
Anrep’s finding that upon an increase of vascular resistance, the end-diastolic volume (EDV,
a measure of relaxed muscle fiber length) shows an initial transient increase that gradually
diminishes despite the continued higher outflow resistance. Indeed, Sarnoff et al. [9] in
1960 and O. Cingolani et al. [5] in 2011 have shown that the EDV can return the very same
value the heart had before the outflow resistance increased.

We have illustrated the trajectory of the response of the heart to an increase of outflow
resistance on Figure 1, associating fiber length L with left ventricular (LV) volume at
diastole and fiber tension F at systole with peak LV pressure. Suppose that before the
outflow resistance is increased the fiber length at end-diastole is Lo. When the outflow
resistance is increased there is an initial increase in the end-diastolic fiber length to L∗ (path
A marked by the heavy yellow arrow). The increase in fiber length results in a greater
contraction force F(b) as indicated on Allen & Kurihara’s Frank-Starling (F-S) curve. This
force F(b) is needed to overcome the increased outflow resistance.

As Anrep and others observed end-diastolic LV volume decreases over time even
though the outflow resistance remained elevated. The trajectory of the EDV during this
phase is along path B in Figure 1. This path is horizontal because the larger contraction force
F(b) must be maintained to eject blood against the maintained higher outflow resistance.
When the heart reaches a steady state (ss) the fiber length is Lss. In Sarnoff et al.’s and
O. Cingolani et al.’s experiments the steady-state fiber length equals the original length,
Lss = Lo. Because the outflow resistance remains high, the force of contraction at the steady
state must be F(c) = F(b).

Regardless of the value of Lss, it is clear from Figure 1 that cardiac muscle is able to
generate different forces, F(a) and F(c), at the same fiber length L0 (green arrow). Extrinsic
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signals such as pH [10], glucagon [11,12], and most prominently, β-adrenergic signals can
increase contractility at a given fiber length. These signals operate in the intact animal to
regulate cardiac output. But studies in isolated hearts [13], muscle strips [14,15], and single
isolated myocytes [16,17] show that heart muscle cells have the intrinsic ability to generate
different forces at a fixed fiber length. We call this ability the “intrinsic load-adaptation” of
cardiomyocytes.

Intrinsic load-adaptation is paradoxical. How can a higher contraction force be
maintained even when the muscle length has recovered its original length? Because at
the steady state length Lss the heart can generate (at least) two different forces, causality
requires that the muscle be in different states distinguished by at least two different
state variables. According to Starling’s law of the heart one state variable is the muscle
fiber length, or more precisely, the fractional change in length or strain. What is the
second state variable that enables the myocyte to maintain increased contraction force after
the sarcomere length returned to its previous state? What keeps the Anrep mechanism
active/activated at ventricular volume that previously generated less force?

We hypothesize that the second state variable is the mechanical stress imposed on the
cardiomyocyte. We made this choice because wall stress of the heart normally increases
with outflow resistance. What mechanisms enable the myocyte to sense different stresses
at the same strain (e.g., points a and c) and to respond to these different stresses?

One possible mechanism is having a mechanosensor, conceptualized as a spring,
within the myocyte and oriented parallel to the axis of contraction. This mechanosensor is
shown as the blue circle in Figure 2. In order for the myocyte to differentiate the stresses at
points a and c in Figure 1 where the fiber lengths are almost identical, the mechanosensor
has to be coupled to a high-sensitivity mechanotransducer that can respond to small
changes in mechanosensor strain. (This is analogous to the synthetic mechanosensor used
in electronic kitchen scales.) This class of mechanosensor is studied another paper from
our group (Kazemi-Lari, Shaw, Wineman, Shimkunas, Jian, Hegyi, Izu, and Chen-Izu,
in review).

In this paper we focus on a mechanism in which the mechanosensor lies on the
surface of the myocyte. This mechanosensor is shown by the red circle/ellipses in Figure 2.
We couple the surface mechanosensor model to a simple, yet general, mechano-chemo-
transduction (MCT) mechanism.

Figure 2. Conceptual ideas underlying the relationship between cell shortening (cell strain ε) and
surface mechanosensor strain (ξ) during contraction in Tyrode’s solution (top panel) or in the gel
(bottom panel). The red circles and ellipses are the surface mechanosensors; blue circle/ellipse is the
internal mechanosensor.
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A key result of this paper is the mathematical proof that autoregulation of contraction
amplitude is an inherent property of this coupled mechanosensor—MCT system. This
means that within a range of increasing mechanical loading, the system can maintain an
approximately constant contraction amplitude. The coupled mechanosensor—MCT model
makes some counterintuitive predictions that we confirmed experimentally. The ability of
the model to qualitatively predict counterintuitive behavior bolsters our confidence in the
framework model for mechanosensing and mechanotransduction.

2. Model Description and Results
2.1. Conceptual and Mathematical Models

In the heart, the primary force, or stress (force/area) occurs along the longitudinal axis
of each myocyte to change the LV volume and eject blood, but secondary 3-dimensional
(3-D) stresses also occur. These secondary stresses, involving transverse compression and
shear stress, arise for several reasons: (1) the complex shape of the LV, (2) the nonuniform
orientation of myocytes across the myocardium wall, (3) blood pressure that creates trans-
verse normal stress at the endocardium, (4) constraint imposed by the pericardium at the
epicardium, and (5) other heterogeneities within the myocardium such as the extracellular
matrix, coronaries, irregular myocyte shapes, and intermyocyte misalignment. Shearing
and transverse stresses can also be generated if adjacent myocytes contract to different
extents or at different times.

The Cell-in-Gel system [16] was developed to approximate the stresses experienced by
a cardiomyocyte in the working myocardium. In the Cell-in-Gel system, cardiomyocytes
are embedded in a viscoelastic gel matrix made of crosslinked polyvinyl alcohol (PVA).
The viscous and elastic properties of the gel matrix is tuned by changing the PVA to
crosslinker ratio [17]. When the embedded myocyte contracts against the viscoelastic gel,
the myocyte experiences 3-D mechanical stresses, namely longitudinal, tensile, transverse
compressive, and shear stresses [16,18,19]. As a myocyte contracts along its long axis, it
expands in the transverse (perpendicular) directions because the volume of a myocyte
is constant. Previous mathematical models for studying the effect of mechanical load on
cardiomyocyte have considered only the longitudinal stress acting on the two ends of the
cell (e.g., [20,21]). Now we also consider the transverse and shearing stresses acting on
surface mechanosensors.

Figure 2 illustrates our hypothesis of how surface mechanosensors (red circles/ellipses)
behave when the myocyte contracts in-solution (top panel) vs. in-gel (bottom panel). When
the myocyte contracts in solution, the solution presents almost no mechanical resistance
so the surface mechanosensors are not deformed as the myocyte expands transversely.
However, when the myocyte contracts in situ or in-gel, the viscoelastic gel imposes me-
chanical resistance that stretches, compresses, and shears the surface mechanosensors.
Thus cell-surface mechanosensors are subjected to the stress (force per unit area) from
mechanical load.

Figure 2 shows intuitively why the surface mechanosensor strain increases with
increasing gel stiffness for any given cell strain. The horizontal axis is the cell strain or
fractional shortening defined as ε =

(
L0 − L

)
/L0, where L0 is the cell’s resting length

and L is the length during contraction. Because we are only dealing with contraction our
definition of cell strain flips the sign from the usual definition of strain just to avoid the
inconvenience of always writing a minus sign. The surface mechanosensor strain ξ is
defined in a similar way as the relative change in surface mechanosensor length. Note
that while cell strain is routinely measured, the surface mechanosensor strain has not been
directly measured experimentally.

The key ideas of our model are depicted in Figure 3. The relationships between cell
strain (ε), surface mechanosensor strain (ξ), and gel stiffness (K), qualitatively described
in Figure 2, are captured in the plots of ξ vs. ε in Figure 3A. In the limit of zero gel
stiffness—achieved when myocytes contract in Tyrode’s solution—mechanosensor strain is
unchanged regardless of cell strain. This case is represented by the dashed red horizontal
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line. As a larger gel stiffness is used, the ξ–ε curve rotates counterclockwise, so for a given
cell strain (vertical dashed line) the surface mechanosensor strain will be smaller in the soft
gel (lower horizontal dashed line) than in the stiff gel (upper dashed line).

The relationships shown in Figure 3A are expressed in Equation (1) (see below). α(K)
is the slope of the ε–ξ curve. The zero lower bound on α would occur when the myocyte
contracts in Tyrode’s solution. The counterclockwise rotation of the ε–ξ line in Figure 3A is
assured by the derivative α′(K) being positive. (The prime symbol ′ indicates differentiation
with respect to the argument in the parentheses.) This inequality means that the surface
mechanosensor strain is larger in a stiffer gel than in a softer gel (or Tyrode’s solution) for a
given cell strain ε.

The idea embodied in Figure 3A is the defining element in our model for explaining
the origin of the intrinsic load-adaptation property of cardiomyocytes. The fact that there is
no single relationship between cell strain and sensor strain but a continuum of relationships
parameterized by the gel stiffness provides a mechanism that enables cardiomyocytes to
sense different stresses at the same strain.
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Figure 3. Graphical representation of key ideas of the model. (A) Shows that surface mechanosensor
strain ξ increases with cell strain ε and gel stiffness K. In Tyrode’s solution (K = 0, thick, dashed
horizontal red line) the mechanosensor strain is zero regardless of cell strain. (B) Shows that at a
fixed Ca2+ transient (CaT) amplitude, cell strain decreases as the gel gets stiffer. (C) Represents
our hypothesis that the CaT amplitude increases as the surface mechanosensor strain increases.
(D) Shows the nonmonotonic relationship between CaT and gel stiffness arising from the reciprocal
relationship between cell strain and surface mechanosensor strain with gel stiffness. (E) Shows how
gel stiffness, sensor strain, and CaT affect cell contraction.

To further develop the model we need a relationship between the surface mechanosensor
strain, ξ, and the Ca2+ transient (CaT) amplitude designated in the model by C. Based on our
previous experimental work [16] on mouse cardiomyocytes and more recent experiments on
rabbit cardiomyocytes [17] we propose that C is an increasing function of ξ; this relationship
is represented by the positive derivative of φ(ξ) in (3) and qualitatively in Figure 3C. The
upper bound of M on φ is expected by common sense (Ca2+ transients must be finite) and
is necessary mathematically to keep the system bounded. For our mathematical proofs (see
Appendix A) we require that all functions have continuous first derivatives.

To derive a relationship between cell strain and gel stiffness, it is reasonable to assume
that, for a given amount of Ca2+ release from the sarcoplasmic reticulum, contraction
decreases as gel stiffness increases. This assumption is shown qualitatively by the down-
ward slope of the K–ε line in Figure 3B. Equation (2) defines the relationship between the
magnitude of the Ca2+ transient, C, the gel stiffness, and cell contraction strain ε. γ(K)
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relates the cell strain to CaT. Contraction is determined by the force generated by the
myocyte minus the resistive force of the gel. The model does not have a variable for force
generation but we assume a monotonic relationship between force generation and C based
on the works of [22,23].

We require γ(K) to be non-negative so that cell strain increases with increasing CaT.
Its derivative with respect to K is negative which means that, for a given CaT, the cell
contraction is less for greater gel stiffness.

Figure 3E summarizes the interactions between gel stiffness, surface mechanosensor
strain, CaT, and cell strain. An increase in gel stiffness increases sensor strain (panel A,
red arrow) for a given magnitude of cell contraction, which increases the CaT (C, blue
arrow) that increases contraction (purple arrow). On the other hand, an increase in the gel
stiffness decreases cell strain (B, green arrow). Thus a change in stiffness has opposing
effects that results in a bell-shaped relationship between CaT and gel stiffness (Figure 3D).
The Biphasic Theorem (proven in the Appendix A) shows that the bell-shaped relationship
between C and K holds provided the feedback gain (explained below) is large enough.

Equations (1)–(3) comprises our abstract model for mechanosensing in cardiomyocytes.

ξ = α(K)ε, α(K) ≥ 0 and α(K)′ > 0 (1)

ε = γ(K)C, γ(K) ≥ 0 and γ(K)′ < 0 (2)

C = φ(ξ), 0 < φ(ξ) ≤ M and φ′(ξ) > 0. (3)

These equations describe how the cardiomyocyte senses mechanical forces (Equation (1)),
transduces the forces to chemical signals that control the Ca2+ transient amplitude
(Equation (3)), and generate contraction (Equation (2)). Accordingly, we call this set
of 3 equations the abstract model of mechano-chemo-transduction or MCT model.

Iterative maps. Our model for mechanosensing and transduction to a Ca2+ signal
represented by Equations (1)–(3) is, of course, far too simple to describe the detailed
temporal dynamics of Ca2+ and contraction. Instead, these equations should be thought of
as representing the peak values of each dynamical variable from beat to beat. Despite the
simplicity of the model it is rich enough to show the evolution of the mechanosensor strain
(ξ), Ca2+ transient (C), and cell strain (ε) by iterative maps of Equation (1).

Assume that the initial (labeled with subscript 0) contraction is ε0 then the sensor
strain, CaT, and next contraction will be (subscript 1)

ξ1 = αε0 , C1 = φ(ξ1) = φ(αε0) ≡ φ0 , ε1 = γC1 = γφ0. (4)

Because it is understood that α and γ depend on a fixed K, we drop K from the
notation. The next iteration gives

ξ2 = αε1 = αγφ0 , C2 = φ(ξ2) = φ
(
αγφ0

)
, ε2 = γC2 = γφ

[
φ
(
αγφ0

)]
(5)

The quantity αγφ(·) recurs often so define Φ = αγφ and Φ0 = αγφ0. In general, the
variables on the n-th iteration are

ξn = Φ
(
Φ
(
· · ·Φ(Φ0

))︸ ︷︷ ︸
n−2

≡ Φn−2(Φ0
)

(6)

Cn = φ
(

Φ
(
Φ
(
· · ·Φ(Φ0

)︸ ︷︷ ︸
n−2

)
= φ

(
Φn−2(Φ0

))
(7)

εn = γ(K)φ
(

Φ
(
Φ
(
· · ·Φ(Φ0

))︸ ︷︷ ︸
n−2

)
= γ(K)φ

(
Φn−2(Φ0

))
(8)

Boundedness on φ (Equation (3)) ensures boundedness on ξn, Cn, and εn. Iterative
evolution of C and ε are shown in Figure 4A,B.
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Figure 4. Predicted Ca2+ transient amplitude and cell strain dependence on gel stiffness. (A) Shows
the time evolution of CaT for values of K indicated in the legend. (B) Time evolution of cell strain start-
ing at a value of ε0 = 0.05. Curve labels as in (A). (C) Gel stiffness dependence of steady state values
of CaT for different MCT amplifications set by values of C given in the legend of panel (D). (D) Sim-
ilar to panel (C) but cell strains are shown. Simulation parameters: K∞ = 5 , Kc = 0.5 , Kg = 1.2,
ε0 = 0.05 , C = 5 (except as noted), δ = 0.1, α0 = 1 , nc = 2 , C0 = 0.25.

The usefulness of writing the model in an abstract form. Equations (1)–(3) comprise an
abstract model in the sense that we do not specify the form of α, γ, and φ except for bound-
edness conditions and signs of derivatives. The value of such an abstract representation
is that the derived results are not wedded to any particular representation of these three
functions out of an infinitude of possibilities. In the Appendix A we show that all functions
that satisfy the conditions of Equations (1)–(3) have the following properties: (a) Iterative
maps of these functions always converge and the convergence is monotonic. (b) An in-
crease in contraction always produces an increase in CaT that, in turn, causes an increase
in contraction. In other words, the system represented by Equations (1)–(3) is regenerative
but, because of the convergence property, is stable. (c) The response of the system is not
instantaneous like the Frank-Starling mechanism. Instead, like the Anrep effect, the system
takes time to reach a steady state. (d) Autoregulation of contractility occurs provided φ′(ξ)
is large enough.

2.2. Further Insights from a Specific Example

The results in the Appendix A are universal but abstruse. Further insights come by
choosing specific functional representations of α, γ, and φ that satisfy the conditions of
Equations (1)–(3). Equations (9)–(11) comprise one such representation. We chose these
forms because they satisfy the conditions of Equations (1)–(3) and because they are simple
and intuitively reasonable.

α(K) = α0
K

Kg + K
, α0 ≥ 0 (9)

γ(K) = δ · (K∞ − K) (10)

φ(ξ) = C0 +
Cξnc

Knc
c + ξnc

, nc > 0 (11)

We used these equations in the iterative map, Equations (6)–(8). Figure 4A,B show
the evolution of CaT and cell strain, respectively, for selected values of gel stiffness K
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ranging from very soft (K = 0.5) to very stiff (K = 4). As predicted by Theorem A1 in
the Appendix A, Ci and εi evolve monotonically to steady state values for a given K. An
important feature shown by these curves is that the steady state values of C first increase
then decrease as gel stiffness increases. For example, the steady state value of C is about
0.27 for K = 0.5 (blue circles) but increase to about 0.31 when K is increased to 1.0 (green
open squares). This increase in CaT is sufficient to maintain the contraction amplitude ε
(Figure 4B) the same despite the greater mechanical load the cell must work against. But a
further stiffening of the gel to K = 3 (magenta left-triangles) results in the decrease of C to
about 0.27 and ε to about 0.05. When K is 1.0 (green open squares) or 2.2 (gray asterisks),
the steady state CaT happen to be about the same (the two C curves overlap) but the strain
curves are clearly separated. This makes sense because for the same CaT, the cell will
contract less in a stiffer environment.

The biphasic behavior of the steady state C and ε values are more clearly seen in
the summary plot of Figure 4C,D. The prediction that a cell will contract at a constant
amplitude despite a stiffer gel seemed counterintuitive.

2.3. Experimental Test of Biphasic Prediction

To test the model prediction we generated gels with varying viscoelastic properties by
changing the ratio of boronate crosslinker to PVA. For each crosslinker—PVA combination
we measured the storage G′ (∼elasticity) and loss G′′ (∼viscosity) moduli from which the
instantaneous elastic shear modulus G0 was calculated [17] and Kazemi-Lari et al. [24].
Cardiomyocytes from the left ventricle of rabbits were embedded in gels with varying
crosslinker concentrations and electrically stimulated to contract. Fura-2 fluorescence
ratio (a measure of CaT) and fractional shortening were measured as described in our
experimental paper [16]. The experimental results shown in Figure 5B are taken from our
paper [17], which provide the experimental protocols.

These experimental data bear striking similarity to the model predictions in Figure 5A.
First, notice that in both the model and experiments, as the gel stiffens (increasing K
and G0), CaT (red circles) initially rises then falls. Second, for a range of gel stiffness,
myocyte contraction (blue squares) remains relatively constant (blue double-headed ar-
rows) despite the increased mechanical loading. The existence of this region, called the
autoregulatory zone, is guaranteed by Theorem A2 (Appendix A). Third, as the gel stiffness
increases beyond this autoregulatory zone (∼10 kPa) both CaT and fractional shortening
decrease precipitously.

Figure 5. Comparison of model predictions and experimental measurements. (A) consolidates the
steady state CaT (red circles) and cell strain (blue squares) dependence on stiffness K from Figure 4C,D
(C = 5.0). (B) shows the dependencies of the steady state CaT indexed by the fura-2 ratio (red open
circles) and steady state contraction amplitude measured by the fractional shortening (blue open
squares) on the instantaneous shear modulus G0. We say that autoregulation (blue double-headed
arrow) occurs in the range of K or G0 where cell strain is approximately constant.

It is important to keep in mind that the experiments (Figure 5B) were done after the
counterintuitive modeling predictions were made. The striking similarity between the
predicted and measured CaT and cell contraction curves gives us confidence that our
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conceptual idea for how mechanical load is being sensed by the cardiomyocyte (Figure 2)
is fundamentally sound.

3. Discussion
3.1. Experimental Underpinnings for the MCT Model

We developed the model in this paper to account for two contrasting sets of results
from our experiments done in the Cell-in-Gel system and experiments by others done
with different systems. The first contrasting set of observations is in the change of the
CaT amplitude when cardiomyocytes contract auxotonically (contraction under changing
load) compared to unloaded contraction. We found that the CaT amplitude is larger
when cardiomyocytes contract while embedded in a viscoelastic gel compared to the CaT
amplitude when contracting in Tyrode’s solution, which offers little mechanical resistance
to contraction [16,17]. By contrast, White et al. [25] found no change in the CaT amplitude in
going from load-free to auxotonic contraction. In their system, cardiomyocytes contracted
against a load imposed by a flexible carbon fiber attached to one end of the long axis of the
cell while the other end remained fixed with a stiff carbon fiber. Importantly, the cells were
immersed in Tyrode’s solution that offers little mechanical resistance.

The second set of contrasting results come from experiments that inhibit nitric oxide
(NO) synthase (NOS). We found that the frequency of Ca2+ sparks during diastole increased
when cardiomyocytes contracted in the viscoelastic gel versus Tyrode’s solution and
inhibition of NOS by N(ω)-nitro-L-arginine methyl ester (L-NAME) or the specific NOS1
inhibitor N(ω)-propyl-L-arginine hydrochloride (L-NPA) reduced the spark frequency to
that seen when cells contract in Tyrode’s solution. By contrast, Prosser et al. [26] found that
L-NAME had no effect on Ca2+ spark frequency in unstretched or stretched cardiomyocytes.
In their system cardiomyocytes were stretched with glass fibers attached to one end of the
long axis of the cell and in the middle of the cell. As with White et al. in their system the
cells were immersed in Tyrode’s solution that, as mentioned, imposes little mechanical
force on the cardiomyocyte.

We suggested that the salient difference between our experiments and those of others
lay in the so-called dimensionality of forces [19], that is the number of dimensions against
which the cardiomyocytes did external work against. In the Cell-in-Gel system the dimen-
sion is 3 while in the systems of White et al. and Prosser et al. the dimension is 1. The
difference in dimensionalities suggested to us that surface mechanosensors that lie on the
lateral surface of the cardiomyocytes were being activated by transverse and shear forces
during contraction in the gel but not in Tyrode’s solution [19,27].

3.2. Biphasic CaT Response and Autoregulation in the MCT Model

The MCT model given in abstract form by Equations (1)–(3) or in the specific form by
Equations (9)–(11) are mathematical translations of the intuitive ideas presented in [19,27]
and Figure 2. Equations (9)–(11) made two predictions that defied our intuition. The
biphasic response prediction is that the CaT amplitude would rise then fall as the gel stiffens
as shown in Figure 4C. The autoregulation prediction, even more surprising than the first, is
that fractional shortening would remain constant or even increase despite an increase in
gel stiffness, at least up to a point as shown in Figure 4D.

We tested these predictions experimentally by varying the gel’s viscoelastic properties
and measuring the steady state CaT amplitude and fractional shortening. Experimental
matches of complex qualitative features (biphasic response, autoregulation) are stringent
tests of the model. Thus the experimental results would clearly either debunk or validate the
model. The concordance between the experimental and model predictions shown in Figure 5
supports the idea that the model for MCT in cardiomyocytes given by Equations (9)–(11) is
broadly correct.
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3.3. Stability, Biphasic CaT Response, and Autoregulation Are Natural Emergent Properties
of MCT

Although the model results shown in Figures 4 and 5 are from one specific model, given
by Equations (9)–(11) and a few sets of parameters, the results are general because these
equations satisfy the conditions of the abstract model equations given by Equations (1)–(3).
Therefore Theorems A1–A3, proven in the Appendix A, guarantees stability and conver-
gence, biphasic CaT response, and autoregulation.

Theorems are more than proven mathematical assertions. In the context of this paper,
their universality implies that autoregulation, biphasic CaT, and stability naturally emerge
from the structure of interactions between the surface mechanosensor strain (ξ), cell strain
(ε), and the CaT (C). This structure of interactions, given by Equations (1)–(3), is depicted
in Figure 6A.
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Figure 6. Positive feedback is inherent in the model. (A) Closed loop structure of model. (B) Effect of
loop structure on myocyte and mechanosensor strains. ξ = surface mechanosensor strain, ε = cell
strain, C, Ca2+ transient amplitude, and K, gel stiffness.

3.4. What the Theorems Tell Us about MCT

Figure 6A shows that the interaction of C, ξ, and ε have a closed loop structure. The
positive signs indicate that the variable at the tail of the arrow enhances the variable at the
tip of the arrow. Because each variable enhances each other we might expect explosive
growth but Theorem A1, the Convergence theorem, guarantees convergence. Convergence
of the CaT and cell strain are shown in Figure 4A,B. (We do not show the convergence of the
surface mechanosensor strain ξ because this variable is not measured in experiments). What
limits explosive growth is the bound M on the Ca2+ transient given by φ in Equation (3).

By autoregulation of contractility we mean that the change in the contraction ampli-
tude ε as the gel stiffness K changes is nil. The Autoregulation theorem states that for a
range of stiffness, the contraction amplitude will not change much, provided the MCT
feedback gain dφ/dξ is large enough. The flatness of the ε–K curve (blue squares) for a
range of K in Figure 4D illustrate the meaning of the Autoregulation theorem.

The Biphasic Theorem states that the CaT C, the cell strain ε, and the mechanosensor
strain ξ (that we cannot currently measure) can be nonmonotonic functions of gel stiffness K.
The nonmonotonic (hump) behavior is shown in Figure 4C,D. Note that nonmonotonicity
is not necessary; setting the feedback gain dφ/dξ to zero eliminates the hump as shown by
green triangle curves.

In particular, we can use the model shown in Figure 3, which conform to Equations (1)–(3),
to illustrate intuitively how autoregulation and the biphasic behavior arise.

Suppose that the gel has stiffness Ka and the myocyte has a steady state contraction
amplitude of ε shown in Figure 6B (black, long-dashed lines). The surface mechanosensor
has strain ξ. Now imagine that the stiffness of the gel suddenly increases to Kb. Let the
first contraction after the stiffening have magnitude ε0. We know that ε0 must be less than
the previous one by common sense and by Equation (2). Figure 6B (green, dash-dot lines)
shows that despite the smaller cell contraction the mechanosensor strain ξ0 is larger than ξ

because the slope Kb > Ka. The loop structure in Figure 6A shows that the larger ξ0 will
result in a larger CaT that will, in turn, lead to a larger cell contraction and a larger ξ, a
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larger C, and a larger cell contraction, and so on. Runaway growth is precluded because the
CaT is bounded by M. The actual values of C1, ξ1, and ε1 are determined by Equation (4).

The case just described explains the rising phase of the Ca2+ transient–stiffness curves
in Figure 4C,D. The falling phase can be explained similarly. Suppose instead that the
gel stiffness increases from Ka to Kc in Figure 6B (purple, short-dashed lines). Now the
stiffness is so great that the first contraction following the stiffening is the much smaller
ε′0. This causes the mechanosensor strain ξ′0 to be smaller than ξ so consequently the CaT
will be smaller so the next myocyte contraction amplitude ε′1 will be even smaller. This
downward spiral accounts for the falling phase of the biphasic C and ε curves.

3.5. Intrinsic Inotropy

The observation that the single cardiomyocyte isolated from external neurohormonal
signals can increase the amplitude of its CaT in stiffer gels shows cardiomyocytes possess
an intrinsic ability to increase inotropy. This ability appears to depend on the surface
mechanosensors that detect transverse and shear forces because White et al. [25] found no
change in the CaT amplitude when cardiomyocytes contracted auxotonically in Tyrode’s
solution. Further evidence for the involvement of surface mechanosensors come from O.
Cingolani et al. [5] who, as White et al., used the carbon fiber technique and found only
a modest 10% increase of the CaT amplitude in mouse cardiomyocytes. By contrast we
found CaT increase of 34% in mouse [16] and 76% in rabbit [17].

3.6. Intrinsic Inotropy and the Anrep Effect

The Anrep effect describes the increase in contractility of the heart in response to an
increase in afterload. An important mediator of the Anrep effect is β-adrenergic stimulation
as Anrep himself found [4]. Other extrinsic factors such as pH [10], glucagon [11,12,28], and
angiotensin [29,30] are also likely to be involved because when β-adrenergic receptors are
blocked [28,31], saturated [14], or when they are reduced [8] the Anrep effect still occurs.

The intrinsic inotropy that the Cell-in-Gel experiments revealed adds a new dimension
to our understanding of the cellular basis of the Anrep effect. In these experiments the gel
resists myocyte contraction simulating the mechanical environment of the myocyte in the
working myocardium as wall stress increases.

Myocytes contracting in-gel start from the same slack length of 1.8–2.0 µm without
prestretch, so the effect of the Frank-Starling mechanism is constant. Thus the intrinsic
inotropy can contribute to the variable force production at the same muscle length shown
in Figure 1. The mechanism underlying this variable force production is the change in
surface mechanosensor strain for the same cell strain depending on gel stiffness shown in
Figures 3 and 6.

3.7. Strength—Limitation Duality of the Model

Writing the mathematical representation of the MCT model with 3 abstract
(Equations (1)–(3)) or concrete (Equation (9)–(11)) equations is both a strength and a limita-
tion. An important limitation of this approach is that specific signaling pathways are not
identified. The mathematical model only requires that mechanosensor strain and the CaT
are non-negatively related and bounded. The model is completely silent on the origins of
this relationship.

Our experiments point to the critical role of NO signaling in the autoregulation of
contractility under mechanical loading in the Cell-in-Gel system [16,17]. Our working
hypothesis is that the dystrophin-glycoprotein complex (DGC) is functioning as the surface
mechanosensor. DGC has both components that lie on the cell surface (dystroglycans)
and within the myocyte (dystrophin) making this macromolecular complex suitable as
a mechanosensor [32,33]. Furthermore, NOS1 is linked to dystrophin [34,35] so we envi-
sion mechanical forces transmitted via dystrophin to NOS1 modulating NOS1’s activity.
Experiments are underway in our lab to test this hypothesis.
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We also found that Ca2+/calmodulin-dependent protein kinase (CaMKII) is involved
in load-mediated Ca2+ regulation [16]. Our working hypothesis is that a change in sur-
face mechanosensor strain is coupled to activation of NOS1, which in turn modulates
CaMKII [36,37]. CaMKII, depending on level of activation and compartmentalization has
variable effects on ryanodine receptors [36,38–40] and SERCA2A[38–40] that can either
increase or decrease the CaT and fractional shortening.

The simplicity of the model is also a strength. The model comprises just 3 interacting
parts and makes counterintuitive predictions that experiments confirmed. Furthermore,
the constraints on the model are mild, consisting of just signs of the derivatives and
bounds. The surprising conclusion we can draw is that a simple and robust mechanism
described in this conceptual model is sufficient to explain autoregulation of contraction
in cardiomyocytes.
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Appendix A

Appendix A.1. Monotonic Convergence of Equations (1)–(3)

Let ξ, φ, and ε be given by Equations (1)–(3) in the main text. We prove that the
iterative map always converges monotonically.

Theorem A1 (Convergence). If φk+1 > φk then φk+2 > φk+1 and {φk} is a monotonically
increasing convergent sequence.

Proof of Theorem A1. By the assumption of the theorem Ck+1 = φk+1 > φk = Ck and this
implies that εk+1 > εk from (2). Therefore, ξk+2 = αεk+1 > αεk = ξk+1. Because φ′(ξ) > 0
it immediately follows that φk+2 = φ(ξk+2) > φ(ξk+1) = φk+1. This completes the proof
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of monotonicity. Convergence follows naturally because φ is bounded by M so by the
Monotone Convergence Theorem the sequence φk converges.

Note that if φk+1 < φk a similar argument shows that {φk} is a monotonically decreas-
ing convergent sequence.

There are two immediate corollaries. The first is that εk+2 > εk+1 so contraction ampli-
tude increases monotonically and converges. The second is that an increase in contraction
always produces an increase in Ca2+ that, in turn, causes an increase in contraction. This
feedback loop, shown in Figure 6, is bounded despite it being regenerative.

Appendix A.2. Autoregulation Occurs Given Sufficient MCT Amplification

Theorem A2 (Autoregulation). By autoregulation we mean that

ε′(K) =
dε

dK
≈ 0. (A1)

Equality of ε′(K) to zero can always be obtained provided φξ(ξ) is large enough.

Proof of Theorem A2. From (3) and (1) we get

C = φ
(
ξ(K)

)
= φ

(
α(K)ε

)
. (A2)

Therefore from (2) we get
ε = γ(K)φ

(
α(K)ε

)
. (A3)

Then
ε′(K) =

dγ

dK
(K) φ

(
α(K)ε

)
+ γ(K)

dφ

dK
. (A4)

Applying the chain rule gives

dφ

dK
=

dφ

dξ
(
α(K)ε

)
· dα

dK
· ε. (A5)

Substituting (A5) into (A4) gives

dε

dK
= γK(K)︸ ︷︷ ︸

<0

φ
(
α(K)ε

)︸ ︷︷ ︸
>0

+ γ(K)︸ ︷︷ ︸
>0

φξ

(
α(K)ε

)︸ ︷︷ ︸
>0

αK︸︷︷︸
>0

ε︸︷︷︸
>0

. (A6)

The subscript on the function (e.g., φξ) indicates differentiation with respect to the sub-
scripted variable.

The sign of each term on the right hand side of (A6) is given in (1)–(3). Because the first
and second products have different signs, it is always possible to set ε′(K) = 0 provided
that the MCT amplification, defined as

φξ

(
α(K)ε

)
(A7)

is large enough to compensate for γK.
We assume that all functions in (1)–(3) are (at least) once differentiable so by continuity

there is a neighborhood about K∗, where ε′(K∗) = 0, in which ε′(K) ≈ 0.

Appendix A.3. Biphasic C(K), ε(K), and ξ(K) Curves

Figure 4 shows that the plots of C(K) and ε(K) can be non-monotonic. Here we show
that this non-monotonic behavior arises from the structure of the model given by (1)–(3).

Theorem A3 (Biphasic). The steady state values of ξ, C, and ε can have a non-monotonic
(biphasic) dependence on K.
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Proof of Theorem A3. To do this we show that the derivatives of ξ, C, and ε with respect
to K can be zero. Application of the product rule and chain rule gives

ξK = C

 αK︸︷︷︸
>0

γ︸︷︷︸
>0

+ α︸︷︷︸
>0

γK︸︷︷︸
<0

 = C
∂

∂K
(αγ) (A8)

The signs in (A8) are from (1)–(3). Because the two terms in the sum have opposite signs,
ξK can be zero.

Similarly,
CK = φξξK. (A9)

This shows that when ξK = 0, so is CK. Finally, Equation (A6) shows that εK can be zero.
Because ξ, C, and ε are positive, the extrema are maxima.

Note that we have shown that ξ, C, and ε can have a biphasic response to K. Theorem A3
does not state that the biphasic response is necessary. For example, setting φξ ≡ 0 results
in ε(K) decreasing linearly as shown by the green-triangle line in Figure 4D.
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