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ABSTRACT

The objective of this work is to present a systematic development of mixed finite element models
within the context of nonlinear material models. The framework for this effort is the Hu-Washizu
functional, due to the relative ease with which it incorporates nonlinear material laws. The
functional is subjected to constraints on the spaces of admissible distributions of the assumed
stress and strain fields, added to the classical form of the Hu-Washizu functional by the use of
Lagrangian multipliers. As a result, the spaces of admissible assumed stress and strain fields are
limited to those which satisfy internal constraints pointwise (e.g., incompressibility). In addition,
the sensitivity to mesh distortion observed in classical finite element models is greatly reduced.
Four-node plane strain elements are presented as an illustration of the proposed formulation. The
excellent performance of these elements is illustrated in a number of numerical examples.

NOMENCLATURE
R™  Euclidian n-space
‘B reference configuration of the body
B reference configuration of the element domain
d nodal displacement vector
e independent strain parameters vector
E strain shape function
N 1soparametric shape function
'S independent stress parameters vector
S stress shape function
u displacement field
W(e) stored energy function
A Lagrange multiplier
€ strain field
[1 total energy functional
o stress field

&n  element's natural coordinates



1. INTRODUCTION

Since the early days, finite element research has pursued three main objectives: i. To
reduce sensitivity to mesh distortion; ii. To improve performance in bending dominated problems;
and iii. To avoid locking behavior in problems involving internal constraints (e.g.,
incompressibility). In addition, common to all these objectives has been the attempt to ensure that

the proposed methods will be general in scope of applications, and carry over to nonlinear regimes.

The initial approach taken was to utilize either Reduced Integration (RI) or Selective
Reduced Integration (SRI) (see e.g., Zienkiewicz and Taylor1 and references therein). To avoid
the appearance of spurious zero energy modes, while maintaining the reduced computational effort
necessitated by these approaches, the RI scheme was used in conjunction with stabilization
methods.23 Later, in view of the equivalence theorem®, more rigorous approaches capitalizing on
the large body of literature regarding the convergence of mixed methods were proposed. Most
notable among these approaches is the B-bar method.-¢

Working within the realm of linear elasticity, Weissman and Taylor’ proposed a method to
generate assumed stress and strain fields within the context of mixed finite element formulations.
These fields, assumed discontinuous across element boundaries, are constrained to g priori satisfy
the homogeneous part of the equilibrium equations in a weak sense (at the element level). As a
result, the set of admissible stress and strain fields satisfies internal constraints pointwise. The
proposed methodology was shown to yield excellent results when applied to model plane
stress/strain problems8 as well as to bending of thin plates.?

The objective of this work is two—fold: one, to extend the approach taken by Weissman
and Taylor7 to the more general realm of nonlinear material behavior, and two, to recast the
proposed method into a more classical form. With respect to the first objective, the proposed
method is formulated in the context of a three-field formulation of the Hu-Washizu!? type, which
makes it attractive to use in the area of nonlinear material behavior.® In particular, the case of
nonlinear elasticity is considered. The second objective is achieved by appending the constraints to

the functional by means of Lagrange multipliers, thus rephrasing it as an unconstrained
minimization problem.

An outline of the paper follows. The formal statement of the problem is summarized in
Section 2. In Section 3, the method proposed by Weissman and Taylor’ is extended to the

nonlinear regime, and recast in a classical form by the use of Lagrangian multipliers. Algorithmic
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stability is considered in Section 4. The assumed fields for a four-node plane strain element used
to illustrate the proposed method are presented in Section 5. The performance of the proposed
clement is demonstrated in a set of examples in Section 6. Conclusions and closing remarks are
contained in Section 7.

2. THE BOUNDARY VALUE PROBLEM: STRONG FORM

The strong (local) form of the boundary value problem considered in this work is

summarized in this section. The framework for the present effort is that of hyperelastic bodies in

an ny; Euclidian space RMim (1 < Nyim < 3 1s the number of space dimensions), with { g

RMdim the standard basis. Thus, a vector, o, and a rank two tensor, B, are given in component

} in
form by:

a = al ei and B= Cl.] Ci ® Cj, (21)

where repeated indicies imply the usual summation convention, and ® denotes tensor product.
Finally, the space of second rank symmetric tensors is introduced as

s:={ B:RMim — Rdim | B s linear, and B =B . (2.2)

Consider a bounded body, B < R™Mim, with a smooth boundary 8. The boundary, 98, is

assumed to have a continuous outward unit normal field, n, and furthermore, possesses the
following structure

0B = dgB M IyB and dgBU IyB=, 2.3)
where dy3B is the part of 9B where displacements are specified as

u lau 5= U (given), (2.4)

and dg'B is the part of 0B where tractions are prescribed as

t=c-n Iac 5 (given). (2.5)

In the above, u(x) is the displacement field associated with particles x € 8. The strain field is

obtained from the displacement field through the following relation:

8=VSU :Z%[ VU+(VU)T ] = % [ui’j+ uj,i ] ei®€j . (26)



Let b: 8 — R™im and p:8 — R be the (given) body force and mass density, respectively.
The local form of the equilibrium equations is given by:

. {div0+pb=0
in 8

2.7
T = o (2.7)

By relating the stress field, o, to the displacement field, the boundary value problem for the
displacements u(x) subjected to the boundary conditions [equations (2.4) and (2.5)] is obtained.

In the present work a hyperelastic material is assumed. Consequently, the stress response is
formulated in terms of a stored energy function

W(x,e(x)): Bx S — R, (2.8)
such that the second rank stress tensor (o € ) is given by:
o(x) := ., W(x,e(x)). (2.9)
The elasticity tensor, C, (a rank four tensor) is defined as
C =0, W(x.e(x)). (2.10)
Remarks 2:
1. By the definition of C it possesses the following symmetries:
Cijkt = Ciaij = Cijic = Cyink - 2.11)
2. Cis assumed to be positive definite relative to S, i.e.,
ez peit (2.12)

for some 3 > 0 and for all { € 5. This condition is known as “pointwise stability”

(e.g., Marsden and Hughes,!! Chapter 4) and is equivalent to the convexity of W. =&




3. PROPOSED FORMULATION

The method proposed by Weissman and Taylor’ is recast in a classical form by the use of

Lagrange multipliers. As stated above, the formulation is presented within the context of nonlinear
hyperelasticity.

The total free energy is introduced via the notion of a three-field functional, commonly
referred to as the Hu-Washizul0 functional:

T(0,e,u) :=L;[W(8) +0T(VSu ~€)]dV = My p(u). (3.1)

Here, W(g) is the stored energy function (where for convenience the explicit dependence on x has
been omitted), and I1py(u) is the potential energy of the external loading, which under the

assumption of dead loading is given by

Hpyp(u) =~ jB pbudV - JaG{Bbu dar. (3.2)

In equation (3.1), {0, €, u } are taken as independent variables. Thus, ¢ may be viewed as a
Lagrange multiplier. This form is obtained from the standard total energy functional (e = Vu

pointwise) by the introduction of the two following Legendre transformations:
c=0,W() and &=09,%0), (3.3)
where K(C) is the complementary energy, given by:
X0) :=cTe — W(e). | (3.4)

The finite element presented in this work is based on discontinuous interpolations of the
stress and strain fields over the boundary of a typical element & B of a discretization B = u;‘jl

(where nel is the number of elements in the discretization), while using the standard isoparametric

interpolation for the displacement field. Consequently, the total energy is approximated by

M(o.eu) = X% [1(c%e%u), (3.5)

where
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| TT%0°,e%,u®) = J. @e[W(ee) +0°T(Vsue — g2) JdV — Tpyp(u®). (3.6)

The remainder of this section is carried out at the element level. Thus, it is possible to omit the

superscript “e” denoting the element level without any confusion.

Unfortunately, the use of mixed finite elements does not guarantee improved results over
those obtained by the displacement formulation. Indeed, if the stress and strain fields derived from
the displacement field form a subset of the corresponding assumed fields, the best result will be
that produced by the displacement formulation (Fraeis de Veubeke!2). Moreover, the constrained
optimization problem of minimizing the energy functional, equation (3.6), subjected to internal
constraints (e.g., incompressibility), may result in locking behavior (i.e., poor results for coarse

meshes, and very slow convergence). One way to overcome this setback is to choose the assumed
stress and strain fields from a subset of S, denoted S'; where

S= { Sc S e 5" @ {es and( satisfies the internal constraints pointwise. } (3.7)
How to construct the assumed fields to be elements of S constitutes the reminder of this Section.

Let the assumed strain, stress and displacement fields (at the element level) be
approximated by

e=g + g, =E e+ E,e,, (3.8a)
C:=0,+0,=8,8 + S,5,, (3.8b)

and
u:=Nd, (3.8¢)

where the additive split is such that the distributions obey
g,MN & =0 and o;N 0,=(, (3.9)
and d is the vector of nodal displacements.

The objective of constraining ¢ and € to be elements of §' can be obtained by constraining

these fields to @ priori satisfy the homogeneous part of the equilibrium equations in a weak
sense.’-13:14 Thuys, by using the method of Lagrange multipliers, the constrained optimization

problem may be rephrased as an unconstrained one. Accordingly, the problem is to minimize the
following functional:




[T (0,8,u,A ) = f oL W© +0T(VSu—e)+ AT 6+145 3 W(e) JaV — Mgyp(u).)
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(3.10)

where A, and A, are Lagrange multipliers, interpreted as strains so that the expression has the

dimensionality of energy. In particular, Ay and X, possess the following structure:

The Euler-Lagrange equations associated with the modified Lagrangian are:

DITy,
DIy,
DIT,,
DIT,,
DIT,,
DII,,

DIy,

Ay :=Eizl and Ao = Eizz‘

- 8¢, =J 581 [3WE©) - 0 + 3, W) 1, Jdv =0,
~582=f 40882 [3WE) - 0 + 9, W(e)n, Jav =0,
.561=J@cﬁo}’[vsu- e+ A, JdV =0,
.502=f$cac§[vsu— e+ A, JdV =0,

 Su = f 4o (V58w 0 AV + Tlpyr(du) =0,

X =J@esxfcdv=o,

L 8A, = L}e Shy 9 W(e) dV =0,

(3.11)

(3.12a)

(3.12b)

(3.13a)

(3.13b)

(3.14)

(3.15)

(3.16)

where equations (3.12) are the weak form of the constitutive equations; equations (3.13) are the
weak form of the compatability equations; equation (3.14) is the weak form of the momentum

equation; and equations (3.15) and (3.16) are the constraint equations on the assumed stress and
strain fields, respectively.

Equation (3.15) is now used to relate s; to sy

s,= - ( J-chEiT S, dv )7! Jge E'TS, dV s,

(3.16)

and equation (3.16) may be used to relate e, to e,. However, as W(g) is in general a nonlinear

function, equation (3.16) must be linearized, and only Aey can be related to Ae,. The linearized

form is given

DI,y A, ~ L}e 8k, [9:W(ey + C, (E, Ae,, + E,Ae, ) JdV =0

by:

(3.17)
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where the subscript n denotes the iteration in a Newton scheme. Ae, can be expressed as:
Aey =— (j B CrEy av)! [f o EToW(e) dv+ f LETCaE Y Ae,, ] (3.18)

Substituting the above relations into the Euler-Lagrange equations yields a reduced system of
equations, given by:

DIT- e, = 8e] L;e E'[9,W(e,) + C EAe, ~S (s, + As;, ) |dV =0, (3.19)
DI 8s, = 8s. f@e S'[BAd,~ E_Ae, —E,V, ]dV =0, (3.20)
DIT- 8u = f 4o (V8w 0V + Tgyr(dw) =0, (3.21)

where the following definitions have been introduced:

§:=8,-8,( L;eEiT s, dv ) J@e ETS, dv (3.22)

E, :=E, - E,( j'BeEiTCn E, dV )"‘Jge ETC E, dv (3.23)

Vo= ( f ETC E, dv )"1f ETo W ) dV (3.24)
n- @e n -2 ,BC € n v

and taking notice that

Lﬁxfs dV =0 and f@exg C,EdV=0. (3.25)

The following definitions are now introduced:

T B T (
G ;=L;65 B dv A= _f@es E_dV (3.26a)
T o~ T
H, = f oEnC,E dV R_:= f o En 9 Wee,) av (3.26b)
r -—f ETSqvs —f ET 3. Wee.) dv (3.26¢)
In ™ ® o n 1n g nUE n .

and
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= J‘ge S'[E, e, + Eye, + E,V, —-Bd_]dV (3.26d)
where
B:= VSN (3.27)
is the finite element strain displacement operator. The incremental discrete problem can now be
written into a matrix form as:

H —ArrI; 0 Aeyy, Fin

n

A, 0 G Asy, | =]| Fon (3.28)
0 G' o ad | Lt
Eliminating the stress and strain coefficients yields:
K,Ad, =R,_|, (3.29)
where K, and R, are the tangent stiffness matrix and residual, given by:
K,:=G (A, v 1Al ylg (3.30)
and
T -1, T.-1 -1
Ry=f,+G (A, H A ) (Hp A 'rq+ 1oy (3.31)

The algebraic condition to perform this elimination is:

ng+nyg2ng and ng2 ny (3.32)

(“Mixed patch test,” Zienkiewicz, er al. 15); where ng, 0, and ny are the number of strain, stress,
and displacement parameters, respectively (ngq 1s equal to the number of nodal degrees-of-freedom

minus the number of rigid body modes).

To save in the computational effort, A_ can be constructed to be invertible. Henceforth, A,
is assumed to be invertible. It follows that n, = ng, and consequently, inequality (3.32); is

automatically satisfied. As a result, the minimal number of independent stress and strain
parameters that satisfies inequalities (3.32) is ng =n, = ny. Furthermore, in view of the desire to

mimimize the computational effort, this is the optimal number. The tangent stiffness matrix is now
given by:

K,:=G'ATH alc| (3.33)

and the residual is given by:
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R,:=f+G AT (r +HAr, ). (3.34)

Finally, for completeness, the admissible spaces are now stated. The space of trial
displacement solutions is as follows:

U:= { ulue Hl('Be), u= u on OB } (3.35)
Space of displacement weight functions:
Vi={ulue 0%, u=0 on 3,3} (3.36)
Space of stress solution and weight functions:
2={oloenls} (3.37)
Space of strain solution and weight functions:

vi={elee 0]} (3.35)

Remarks 3:

1. Note that the constraint equations make sense only in a finite dimensional space
obtained by the projection of the continuum problem (infinite dimensional) on a finite

dimensional subspace via the finite element discretization.

2. The constraint equation on the strain field, equation (3.16), does not involve the strain
field directly. Rather, the constraint is imposed on the stress field which is related,
pointwise, to the strain field via the constitutive equations. Thus, in an abstract sense,
equations (3.15) and (3.16) impose the same constraint on different fields.

3. Pian and Chen'® constrained the stress equilibrium equations (the homogeneous part of
equation (2.1),) using incompatible displacements as Lagrange multipliers. However,
‘while their stated objective was the same, the implementation involved the stress
equilibrium equation explicitly. As a result, when applied by Pian and Sumihara,!3 the
procedure did not produce enough independent equations and further assumptions were
required, something avoided by the current procedure.
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4. Equation (3.16) is a basic requirement in the free formulation procedure.17 However,

it is used to select the higher order displacements, not to impose constraints on the
assumed strain field.

5. The completeness requirement represented by the constant stress/strain patch test'®
implies that the initial assumed stress and strain fields must be constructed
hierarchically in the Pascal triangle. As to the number of parameters, the minimum is
dictated by the mixed patch test. By choosing the first complete polynomial expansion

that contains this minimum number of parameters, the number of independent
parameters in 0, and &, is obtained. Note that dim(c,) = dim(g,).

6 . It follows from equations (3.16) and (3.18) that the dimension of ?\1 equals that of Oy,
and that of ?\.2 equals that of O,. Furthermore, in view of the the assumption on the
invertibility of A and the previous remarks, the same interpolation can be used for
both A and A,, a fact used in equation (3.11). =

4. ALGORITHMIC STABILITY

The algorithmic stability of the proposed formulation is examined in this section, and a
number of constraints on the admissible fields that can be used as the Lagrange multipliers are

added to those already established in Section 3. The discussion in this section is restricted to linear
elasticity with C = d,W = constant.

First, the constraints already established in Section 3 on € and ¢ are summarized.
1. Same interpolation is used for € and ©.

2. e =¢g;+¢& and 6 =0y + 0y, such that €, Ne, = and 6, N G, = T; these fields

are obtained by a hierarchical expansion in the Pascal triangle (completeness), with the
lower order distributions in 6 and €;; and the number of independent parameters in g,
and o is determined by the mixed patch test.

3. dim(L;) = dim(Ay) = dim(c,) = dim(e,).

4. The matrix of the shape function for ¢ and € has full column rank in the distributional

sense (i.e., each column is a different distribution, see, €.g., equation (5.1) below).

5. The distributions in €, (o) are chosen from the basis of B.
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6. d W is positive definite.

With the above assumptions at hand, it follows from the definitions of H, and A,

equation (3.26), that they are fully ranked (note that this crucially depends on assumption 5).
Let Ket[B] and Ker[G] denote the null spaces of B and G respectively, and recall that
Ker[B]={ d!Bd =0 }. (4.1)

[t is clear from the definition of G that Ker[B] c Ker[G]. However, the condition for stability is

|Ker[B] = Ker[G]]. (4.2)

Proposition: If assumptions 1 through 6 hold, condition (4.2) holds if and only if:

AMino =0 | (4.3)

or equivalently, Ay N g = &.

Proof: First note that if ?‘1 M oy # &, then by construction there is a vector d (nodal
displacements) such that G d =0, and d ¢ Ker[B] and consequently, Ker[B] # Ker[G].

Conversely, suppose there is a vector d ¢ Ker[B] but de Ker[G] (i.e., Ker[B] =
Ker[G]). Then, by the definition of S, S, can be obtained as a linear combination of S,. This,

however, contradicts assumption 2. B

Remarks 4:

1. Note that assumption 5 is crucial to proof as it guarantees that
Ker[ f@e S| B dV] = Ker[B]. (4.4)

2. Note further, that when remark 6 of Section 3 is added, the space of admissible
distributions for A, (A,) equals that of 0, (&)

3. In some problems such as plate bending it may prove beneficial to derive the
distribution for A; (A,) from a displacement field, usually termed “incompatible

displacements” (Weissman and Taylorg). This displacement field, however, is such
that the resulting strain field is a linear combination of 0, (&). L]
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5. EXAMPLE: FOUR-NODE PLANE STRAIN ELEMENTS

The method proposed in Section 3 is used to formulate four-node quadrilateral plane strain
elements. The assumed stress, strain and displacement fields used in the finite element
approximation are presented in Section 5.1, Section 5.2, and Section 5.3, respectively. Two
options for the incompatible displacements used to generate the Lagrange multipliers are
summarized in Section 5.4. The proposed elements are presented in Section 5.5.

5.1 Assumed Stress Field

First note that the number of nodal degrees-of-freedom is eight. Secondly, note that the
number of rigid body modes is three. Thus, in view of the mixed patch test the number of
independent stress parameters in oy 1s taken to be five. The first complete order polynomial is
linear, and so the number of independent parameters is nine (symmetry of the stress tensor).

Following Pian and Sumihara13, the assumed stress field is expressed in the element's natural
coordinates (§,1) as:

] ST

Opee lENO000000O0 N
or=| ¢* |=|l000tEno000 ||| (5.1)

™ 0000001&mn]||:

- On o

_59_.

The procedure presented in Section 3, however, would require the selection of a different set of
parameters in each element for ¢, (i.e., the procedure would depend upon the orientation of the

element's natural coordinate with respect to the special coordinates). This difficulty can be avoided
if the stress field is transformed from the (§,n) space into the (x1,X,) space by means of the

following transformation:

—

%
6y = 7 FitFjy oy

=] (5.2)

-

where both subindicies i and j take the values x; and X,; both subindicies I and J take the values &

and m; J is the Jacobian of the transformation; F is the “deformation gradient,” given in component
form by:
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9%

Fir= 3
1

; (5.3)

and in order to maintain the ability to pass the constant stress/strain patch test the transformation is
based on values of J and F at the element's center. After redefining the independent coefficients,

the assumed stress field is given by:

0y 100 am at a,

fuory

3 HT a3§ asn zl
£ byn bsg byn || (5.4)

where,
a) = xs? 4y = xt2 ag=2 XS Xt (5.5a)
b; = ys? by = yt? by=2ysyt (5.5b)
Ci=XSys Cy =Xt yt C3=xsyt+xtys (5.5¢)
xs-—-l-ix t=1m x s—lﬁx t=lnx (5.6)
=251 X1 XU=7M X YS$ =761 Xog yt=3"M X :
1 2% 2K Lo oF S 2% *
Sy = T (xssy + xs $4 + 2387) Sy =7 (ys®s] +ys“sy + bssy) (5.7a)
NS S * * _ 1 =
53 = JO (Clsl + 0254 + C3S7) Si = ]0 Sj (57b)
with
i e { @3), (5.9, 6,2), (1.6), 8,8), 9.9) }. (5.8)

With these definitions in hand, 6, can be chosen to contain the first five parameters (89—

$5), and O, to contain the last four parameters (86— Sg)-

5.2 Assumed Strain Field

A similar approach to that described for the stress field is taken. However, two approaches

can be taken in the coordinate transformation:

e Same transformation as that used for the stress field.
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¢ The inverse transformation:

-1 -1 _*

The first approach is motivated by the use of the same shape functions for the stress and strain

fields for the modified functional. The second approach is motivated by the invariance of the total
internal energy (GTS) under coordinate transformation. In this case the strain field in the (X1,X)

space is given by:

e=| & | =| 010 bm af b am ab abym || (5.10)
€1 001 b ag b am et o Jf g
where
ab; =-2 xt yt aby =-2xsys a4 =— XS Xt by=—ysyt. (5.1D

€, can now be chosen to contain the first five parameters (e4— €5), and &, to contain the last four
parameters (e~ €g).

5.3 Assumed Displacement Field

The isoparametric interpolation is used for the displacement field. Accordingly, the
displacement field is approximated by:

where, d is the vector of nodal displacements, and Ny is the shape function associated with node I

(I =1,2,3, or 4), which for the four-node element is given in the element's natural coordinates
(€.n) by:

Nx(ﬁm)—fﬁ (1 +EE)1 +nm). (5.12)

5.4  Assumed Incompatible Displacements

In view of the restriction placed on Ay and A, in Sections 3 and 4, and the fact that both ¢,

and €, contain four parameters each, the assumed incompatible displacements are given by:
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Uj=Njz +Nbz,  and  ul=Nizg+Nbz, . (5.13)

where z;, z,, z3, and z, are the independent incompatible displacements parameters, and N { and
Né are the incompatible shape functions. Thus, the issue is how to select these two shape

functions. Two options, selected from the literature, that satisfy the requirements set in Section 4
are considered:

e Wu,eral 14.

ey
oy
et

i_g2_2h, 20 i_.2,. 25, 20
N1—§—3JO§+3JOT1 and Ny =1 +3JOE‘,~—-3JOn (5.14)
e Taylor, er al. 15,
i ) 2 2
N1=(1‘-36ﬂ)(1—5§)+j6§(1—n) (5.15a)
and
: J J
Nj = (1 - ﬁ&)(l—n%i n(1-g3. (5.15b)

5.5 Proposed Elements

The fields proposed above are used to generate a number of four-node quadrilateral plane
strain elements, termed PS, (plane strain) (n = 1,2,3, or 4). These elements differ by the

incompatible shape functions used and by the transformation used for the assumed strain.
Elements PS; and PS; use the incompatible shape functions (5.14), while elements PS, and PS,
are based on the shape functions (5.15); in elements PS, and PS, the same transformation is used

for the stress and strain fields, while the other two elements use transformation (5.9) for the strain
field.

Remarks 5:

1. Note that the transformation (5.3) is identical to the transformation used to push
forward the second Piloa-Kirchhoff stress tensor to the Cauchy stress tensor.

2. The numerical results obtained in the linear case (Weissman and TaylorS) were
independent of the type of transformation used for the strain field. This characteristic
also carries over to the nonlinear case presented in this work. L
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6. NUMERICAL EXAMPLES

The performance of the elements proposed in Section 5 is evaluated with three problems
available in the literature. First considered is the constant stress/strain patch test in Section 6.1.
Secondly, the sensitivity to mesh distortion is examined in Section 6.2. Finally, Cook's
membrane problem is presented in Section 6.3.

Throughout this section the following strain energy function is used:
1 2 ' 2
W(e)=£KIl+ 2GL +BI I (6.1)

where I, = trace(¢) is the first invariant of the strain tensor; L= %eijeij
the strain deviator strain (e); K is the bulk modulus; G is the shear modulus; and B is a material

constant.

is the second invariant of

In the examples given below, all four proposed elements yield identical results, and are
designated by the term "Present.” The 5-parameter element recently proposed by Simo and
Rifail? (considered to be one of the best available elements) is used for comparison.

6.1 Constant Stress/Strain Patch Test

A rectangular mesh is modeled by one element in Figure 6.1a and by a skewed mesh in
Figure 6.1b. The following material properties are used: K = 10, G = 3.75, B = 1000. The mesh

is subjected to a constant state of tension/compression. All elements presented pass this test.

6.2 Sensitivity to Mesh Distortion

In this example, a beam is modeled by two elements, as shown in Figure 6.2. The top
edge displacement, v (normalized with the exact beam theory solution, w = 56.2565), is shown as
A is increased from 0 to 5. The material properties used are: K = 1666.67, G = 0.3333, and B=

5000 (these properties imply a nearly incompressible material).

The proposed elements are shown to avoid locking at the nearly incompressible limit, and
to yield excellent results in a bending dominated problem; furthermore, they exhibit less sensitivity
to mesh distortion than the 5-parameter element.
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6.3 Cook's Membrane Problem

A tapered panel is clamped at one end and loaded by a uniformly distributed in-plane
bending load on the other end, as shown in Figure 6.4. The material properties used are: K = 10,
G =3.75, and B = 1000. The transverse displacement at point C, normalized with a result

obtained by a mesh consisting of 1024 elements (w = 2.11885), is reported in Figure 6.5.

The results are practically identical to the results obtained by the 5-parameter element (with
the exception of the one element mesh where a better result is obtained).

7. CONCLUSION

The method proposed by Weissman and Taylor’ was generalized to the nonlinear
elasticity regime. Furthermore, using the method of Lagrange multipliers, the method was
rephrased as the minimization of an unconstrained problem.

The elements presented yield excellent results. Moreover, no sensitivity to the
transformation used for the strain field or to the incompatible displacements used is observed. It

must be noted, however, that the latter property holds only if at least two opposite sides are parallel
(Weissman and Taylorg)°
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Figure 6.1: Patch test - (a) One-element mesh, (b) Skewed mesh.



Figure 6.2: Beam bending problem, sensitivity to mesh distortion.
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Figure 6.3: Sensitivity to mesh distortion; normalized top edge tip displacement, v.
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Figure 6.4: Cook's membrane problem.
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Figure 6.5: Cook's membrane problem; vertical displacement at point C.





