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ABSTRACT OF THE DISSERTATION

Application-Tailored Security:

Lessons from Theory to Practice

by

Mohammed Karmoose

Doctor of Philosophy in Electrical and

Computer Engineering

University of California, Los Angeles, 2019

Professor Christina Fragouli, Chair

With the increase of inter-connected devices, it is of paramount importance to ensure the

security of the exchanged information. While cryptographic techniques provide tools to pro-

vide confidentiality and data integrity, such techniques may not provide the most efficient

solutions. In addition, applications today have challenging performance requirements, with

the emergence of time-critical applications such as vehicle networks, as well as resource-

limited inter-connected devices such as the devices used in the Internet-of-Things. For such

applications, novel security solutions that are application-tailored are needed to meet the

performance requirements while adhering to the constraints imposed by the available re-

sources. In this thesis, we adopt this methodology for security design: by understanding

the nature of the application, the possible adversaries that may target the communication

system, as well as the performance requirements, we design suitable and efficient security

solutions. We show this methodology in the context of three different scenarios.

The first scenario is data broadcasting in the context of the index coding problem. We

study the problem of providing privacy guarantees against curious clients who are interested

in knowing the requests and side information sets of other clients. We first design index codes

with higher privacy levels than conventional index codes. We also provide a mechanism,

which we call k-limited-access schemes, which transforms any index coding technique into

ii



another code with higher privacy guarantees.

The second scenario is in the context of communication systems which relies on millime-

ter waves. We tackle the problem of secret key establishment. We propose a secret key

establishment protocol which allows two communicating parties to establish shared secret

keys at very high rates. We showcase the performance of our proposed technique in two

different applications: in millimeter wave wireless systems such as 5G networks and IEEE

802.11ay, and vehicle platooning.

The last scenario is in the context of Cyber-Physical Systems. We first argue that, in

many situations, an adversary is interested in learning the state vector of the control system.

In such cases, a more suitable security metric would be a distortion-based one which leads

the adversary to make state estimates that are far from the actual value. We then propose

security schemes that require a very small number of secret key bits and still perform well

according to the proposed metric: we show that our proposed schemes are in fact optimal

for many cases.
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CHAPTER 1

Introduction

Communication systems have been increasingly prevalent in our lives. We are constantly

using our connected device to communicate, share information, store data on cloud services,

perform financial transactions, and remotely connecting and controlling other devices in our

smart homes and vehicles. The emergence of social networks and social media has also

influenced us to share a great deal of our daily lives with others.

This exchange of information is performed over a worldwide network of interconnected

devices. Typically, information exchange between two devices occur by routing information

through other devices and/or sub-networks of devices, most of which are intended to act as

intermediate relaying nodes without actually reading or altering the information. This setup

creates opportunities for malicious nodes to read and/or alter information in an unauthorized

manner. Naturally, this poses a major security concern which could lead to catastrophic

consequences if not adequately addressed.

Security vulnerabilities in communication systems create the possibility to be exploited in

harmful ways. [Arm] shows the biggest data breaches of the 21st century and the resultant

financial losses, which goes to the order of billions of dollars. The recent events of data

breaches of Facebook [IF], Apple [Art] and Google [Goo] show that, in addition to corporate-

level financial losses, such vulnerabilities can have harmful consequences on individuals [Lar];

in many situations, these consequences can be fatal, as is the case with the recent cyber-

attacks on autonomous vehicles [Gar, Gre].

It is due to the importance of Cybersecurity that many initiatives have been established to

understand security threats and provide methodological solutions to current information sys-

tems. These initiatives include the ETSI Cyber Security Technical Committee [ets], the ISO
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information security management standards [iso], and NIST Cybersecurity framework [nis].

While information systems naturally differ in their security requirements, three common

security objectives are generally targeted when developing any security solution. These

objectives are confidentiality, integrity and availability ; commonly referred to as the CIA

Triad. Confidentiality maintains that exchanged information is only observed/consumed by

the intended receiver, with no unauthorized access by other parties. Integrity ensures the

information received by the intended receiver is unchanged with respect to when it was gen-

erated. Finally, availability is to make sure that the system is continuously delivering the

needed amount of information from sources to destination, even in the presence of possible

malicious actions.

1.1 Role of Cryptography – Can we always rely on it?

An obvious question arise: ”can cryptographic tools provide an adequate security solution?”

Indeed, there exist cryptographic primitives which promise to provide security guarantees in

accordance to the CIA triad. Specifically, cryptography provides encryption schemes such as

Integrated Encryption Scheme (IES) [Sti05] and Advanced Encryption Scheme (AES) [Sti05]

which ensures that only receivers with the right secret key can decrypt and read the data,

thus providing confidentiality. In addition, data integrity can be maintained by the use of

authentication mechanisms such as Message Authentication Codes (MAC) [Sti05] and Dig-

ital Signature Algorithms (DSA) [Sti05]. While these tools are commonly used to ensure

security in many of today’s application, I would like to argue that they do not always provide

the most efficient solutions. To better illustrate, a more careful look into these techniques

is required1. These techniques can be generally classified into two categories based on the

type of secret keys used for encryption: symmetric key encryption (e.g., AES and MAC)

in which the same key is used for encryption by the source and decryption by the destina-

tion, and asymmetric key encryption (e.g., IES and DSA) where different keys are used for

1Most of the following discussion can be readily found in most modern cryptography textbooks,
e.g., [Sti05, KL14]
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encryption and decryption. Symmetric-key-based techniques are generally more computa-

tionally efficient than their public-key-based counterparts. However, the establishment of

shared symmetric keys between communicating parties is usually considered as a burden, es-

pecially in the context of dynamic networks which change rapidly. In contrast, the dynamic

and efficient distribution of private/public key pairs among communicating nodes is usually

possible through the establishment of dedicated security facilities in the network (what is

called public key infrastructure). In this case, public-key-based schemes are used despite the

added penalty in computation efficiency.

This brief exposition of cryptographic techniques immediately shows that, even within

the realms of cryptography, there is no ”one-size-fits-all” security solution to communication

systems; a concept that is already realized in many of today’s security initiatives [nis]. More

specifically, dynamic networks require security solutions that are scalable, which bodes well

with a public-key infrastructure. However, this requires the availability of trusted infrastruc-

ture that establishes and distributes keys across nodes, and it uses computationally-heavy

encryption and verification techniques. This is in contrast to symmetric-key-based schemes,

which are highly efficient yet not as scalable. In the following, I provide two examples which

highlight this particular concept.

1.1.1 Example 1 - Autonomous Vehicles and Safety Messages

Autonomous vehicles have gained considerable attention from both industry and academic

communities. The main objective is to rely on the processing and sensing capabilities of

modern vehicles to (semi)-automate the driving process, further enhancing the driving ex-

perience of passengers as well as providing benefits in terms of traffic management and road

safety [MGL16]. However, in order to ensure the safety of such technologies, autonomous

vehicles on the road need to obtain essential information about surrounding vehicles. This

is achieved by mandating vehicles to exchange data packets known as Basic Safety Messages

(BSMs), which is a part of the IEEE Standard for Wireless Access in Vehicle Environments

(WAVE) [IEE16a]. A key property that is imperative for the safety of autonomous driving
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is that BSMs are received within a 100-ms latency constraint [IEE16a]. The security of

BSMs are of paramount importance for the safety of autonomous vehicles, and therefore

a security amendment has been proposed for the WAVE standard [IEE16b]; the standard

proposes the use of public-key infrastructure for key establishment and the use of digital sig-

natures (namely ECDSA) for message authenticity verification, among other cryptographic

primitives.

However, the use of the aforementioned schemes pose a challenge as to adhere to the

stringent latency requirement of BSMs. Specifically, typical off-the-shelf WAVE modules

which implement the WAVE protocol stack report an approximately 50-ms delay to perform

ECDSA verification of one packet [Une]. This means that, in a 100-ms latency window, one

such WAVE module is only able to process up to 2 BSM packets from 2 different cars; a

situation that is unlikely reflecting of real world environment. Efforts are currently being

made to 1) provide more efficient implementations of ECDSA creation/verification schemes,

and/or 2) provide dynamic and scalable security architecture which does not rely on the

less-efficient public-key-based cryptographic schemes.

1.1.2 Example 2 - Vehicle Platooning

Vehicle platooning is another example of autonomous driving in which vehicles form tightly-

packed platoons on the road. This promises to provide great fuel savings especially for trucks

on highways [AGJ10], as well as better traffic conditions [FN12]. To realize such benefits,

platoons are envisioned to have inter-vehicle spacings as small as 10 meters. In such a

critical situation, vehicles in a platoon has to be highly adaptable to changes that might

suddenly occur on the road which would lead to a change in driving behavior of leading or

trailing cars in a platoon. This can only be achieved by equipping vehicles with high sensing

capabilities, as well as inter-vehicle communications. Apparently, trust has to be established

between platoon vehicles (e.g., by distributing secret keys) in order to prevent unauthorized

vehicles from adversely affecting communication. A typical way of establishing such trust is

via the use of a public-key infrastructure, as suggested by the security amendment for IEEE
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WAVE standard [IEE16b]. However, this trust has to be established while accounting for

the dynamic nature of platoons (platoons are expected to form and/or disband frequently

to account for changes on the road). Considering that platoons (especially of trucks) are

expected to be on highways for most of the time, providing the necessary infrastructure for a

public-key infrastructure security solution can be a challenge. Therefore, other mechanisms

have to be provided for an efficient trust establishment that does not highly depend on trusted

infrastructure – one solution replaces the use of trusted infrastructure and private/public keys

with the use of symmetric keys and the concept of trusted platoon leader to establish trust

between current and new platoon vehicles [KMY19].

1.1.3 Example 3 - Wearable Health Monitoring Devices

A typical wearable health monitoring platform consists of an array of sensors connected

to a person’s body, which collect physical and chemical information about his/her health

status in real-time. [GEN16]. The sensor array is coupled with a communication module

which enables the transmission of the collected information to a central hub responsible

for data collection and analysis – the collection of the sensor array and communication

module, along with additional circuitry, is what constitutes a wearable device [HBH17]. As

this collected data contains sensitive information about the person’s health status in an

extended period of time, it is imperative to equip the wearable device with a sufficiently

strong encryption schemes [HBH17]. However, a typical wearable sensing device is battery-

operated. In addition, due to the size limitation, these devices are usually equipped with

small batteries that come with limited power capacities [GEN16]. To enable data collection

through different sensors and seamlessly perform data analysis in an extended period of

time, power consumption has to be handled very efficiently. With the foreseen increase in

the amounts of data collection and transmission, it is not clear how typical cryptographic

techniques can be utilized with the required power efficiency in terms of encrypting and

validating the data.
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1.2 Design Methodology

The aforementioned discussion emphasizes that a ”one-time-fits-all” solution approach to

security is not always fruitful. Although cryptography provides useful general tools for

securing communication, an application-based security design is in many cases required.

Such a design methodology would require the following:

1. An understanding of the adversaries and threats that may impact the underlying com-

munication system;

2. An understanding of the nature of the application in terms of the available resources

and/or performance requirements; and

3. Choosing the right security metric based on which the security system is designed and

optimized.

1.2.1 Adversaries and Threats

It is important to have a precise understanding of the adversaries and threats against which a

security solution should protect. Generally, adversaries can be classified into passive (i.e., can

listen to communication but not maliciously tamper with it) and active (i.e., can actively

tamper with communication). Although the focus of the thesis is on passive adversaries,

more information about the adversary can help provide an effective solution. For example,

1. if the adversary is an outsider to the system, then it may be possible for the legitimate

communicating parties to establish a secure communication channel via shared keys,

whereas it may not be possible/efficient to do so if the adversary is an honest-but-

curious client in the system – this happens to be the case when we discuss our work

about data privacy in broadcasting domains in Chapters 2 and 3,

2. the adversary may be eavesdropping communication to extract information, but its

end goal is not to learn the communicated data itself, but rather a particular function

of it. In this case, it may be easier/more efficient to design a security scheme with the
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target of preventing the adversary from learning this information, rather than targeting

the protection of the data itself – this is a key observation that lead to our proposed

security solution for Cyber-physical systems which we talk about in Chapter 4,

3. the capabilities of the adversaries is crucial. An adversary with limited computa-

tional power can be prevented by using typical cryptographic techniques, whereas a

quantum adversary may not be. In this case, alternative schemes can be used for pro-

tection (e.g., physical layer security). While such schemes may be protective against

computationally-capable adversaries, they are affected by other properties of the ad-

versaries which are also essential to understand (e.g., the network presence of the

adversary in the case of physical layer security schemes) – we touch more on this in

discussing security applications for millimeter waves in Chapter 3.

1.2.2 Available Resources and Performance Requirements

Understanding the performance requirements is essential for the design of a suitable security

scheme. As was discussed with Example 1, using a computationally-expensive scheme for

data verification is not suitable to meet the stringent latency requirement of the application.

On the other hand, the nature of the application provides the system designer with resources

to use in designing the security solution. This was the case with Example 2, where the

compact nature of the platoon allows for the use of symmetric key encryption techniques.

We also show how this manifests in the application of data privacy in broadcasting domains

(Chapters 2 and 3) and in the use of milli-meter waves for communication (Chapter 4).

1.2.3 Security Metric

The right choice of a security metric influences the design of a suitable and effective security

scheme. The right metric is also dependent on the nature of the application. In cases where

an adversary is present with unlimited computational capabilities, an information-theoretic

security metric could be a suitable choice. We also discuss a variety of information-theoretic

metrics when tackling private information broadcasting in Chapters 2 and 3 (e.g., conditional
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entropy of requests and side information, maximal information leakage). Contrary, we show

that a distortion-based metric can be useful in applications such as Cyber-physical systems,

which we elaborate on more in Chapter 5.

1.3 Contributions

The focus of this thesis is to use the previously discussed application-tailored security in

designing security solutions for different applications. Namely, in this thesis, I showcase how

this methodology can be used in three different scenarios:

1. The first application is in the context of data broadcasting. I consider the problem

of index coding where a server delivers data requested by a set of clients over an

error-free broadcast channel. By knowing the requests and the side information (e.g.,

previously known messages) of the clients, the server uses network-coded transmissions

to simultaneously deliver the requested data in a small number of transmissions. In

this application, we consider an adversary who is a curious client in the system, and the

threat it poses is to gain information about the requests and/or side information sets

of other clients in the channel. We show how the advesray can gain such information

by having access to the broadcast transmission. Since the adversary is also a legitimate

client with its own requested data, giving it access to the transmissions is unavoidable

and therefore it is unclear how cryptographic approaches are useful in this context.

However, we show that the nature of the application shows different resources to be

used for security: the unknown requests/side information of other clients, as well as

the number of transmissions. We first show that the server can indeed design index

codes that tradeoff the privacy of one quantity (the requests or side information) at

the expense of the privacy of the other. In addition, we show how we can transform

index codes into other codes that provide more privacy for both quantities by using

additional transmissions. This is the main topic of Chapters 2 and 3 of this thesis.

2. The second application is in the context of wireless communication systems which use
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milli-meter Waves (mmWaves). We consider here the problem of secret key estab-

lishment between two communicating parties. With no wired or secured connection

between the two parties, key establishment needs to be perfomed over the wireless

channel. This creates the possibility of an adversary who has access to the wireless

medium to pose the threat of overhearing the secret key being shared between the

two parties. With the emergence of quantum computers, it is reasonable to assume

that the adversary has unlimited computational power, and therefore traditional key

establishment techniques, e.g., Diffie-Hellman (DH), can be broken [SKK18]. However,

the nature of the application provides an excellent resource to be used for securing the

process. Namely, communication over mmWaves is required to be highly directional in

order to overcome the large signal attentuation. This directionality, if used properly,

can be used as a countermeasure against an adversary with wireless access. We show

how the right secret key generation protocol allows us to generate a significantly higher

rate of secret keys than existing key establishment mechanisms. This is the main topic

of Chapter 3 of this thesis.

3. The final application is in the context of Cyber-Physical Systems (CPSs). Namely, we

consider a typical scenario where an agent is required to transmit information about its

current state vector. An adversary has access to the transmission medium and therefore

poses the threat to retrieve this information. While general cryptographic techniques

may be suitable in some of such scenarios, consider the case where the agent represent

a CPS with low computation capabilities such as a small Internet-of-Things (IoT)

device. In this case, a computationally-heavy process such as cryptographic encryption

technique may not be feasible. We show in this case that a better understanding of

the adversary can lead to a better-suited security solution. Specifically, we argue that,

in many cases, the adversary is interested in the value of the state vector. However,

confusing the adversary into estimating a state vector value that is ”far” from the

actual value is in many cases sufficient. In this case, we propose a new distortion-based

security metric, and we show that more efficient schemes (than typical cryptographic

techniques) can be developed to optimize for this metric. This is the main topic of
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Chapter 4 of this thesis.

1.4 Outline of the thesis

The thesis is organized as follows. Chapter 2 discusses the problem of private broadcasting

in index coding, where index codes are designed which provide privacy guarantees for the

requests and side information sets. Chapter 3 discusses the use of k-limited-access schemes to

increase the privacy levels of existing index codes. Chapter 4 shows how millimeter waves can

be leveraged to provide better secret key establishment solutions. Chapter 4 discusses the

use of distortion-based security metrics for cyber-physical systems and how efficient security

mechanisms are designed. We finish this thesis by a conclusion.

1.5 Notation

Calligraphic letters indicate sets; |X | is the cardinality of X ; by [m] we denote {1, 2, . . . ,m}
where m ∈ Z+; and by [m1 : m2] we denote {m1,m1 + 1, . . . ,m2} where m1,m2 ∈ Z+

and m2 > m1; 2[n] and
(

[n]
s

)
are the power set and the set of all possible subsets of [n] of

size s, respectively; for a sequence X = {X1, . . . , Xn}, XS is the subsequence of X where

only the elements indexed by S are retained; boldface lower case letters denote vectors and

boldface upper case letters indicate matrices; For a matrix A, we denote by A′ the transpose

of A; given a vector b, bi indicates the i-th element of b; given matrices A and B, B ⊂k A

indicates that B is formed by a set of k rows of A; AS is the submatrix of A where only

the columns indexed by S are retained; let xi be a set of column vectors indexed by i, then

xba = [x′a x′a+1 · · · x′b]
′ for b ≥ a and a, b ∈ Z; span(A) is the linear span of the columns

of A; 0j is the all-zero row vector of dimension j; 0i×j is the all-zero matrix of dimension

i × j; 1j denotes a row vector of dimension j of all ones – sometimes alternatively denoted

by I while the size is understood from context; Ij is the identity matrix of dimension j; eji

is the all-zero row vector of length j with a 1 in position i; Pr(X) refers to the probability

of event X; H(X|y) is the entropy of the random variable X, conditioned on the specific
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realization y; fX(x) denotes the probability density function of a random vector X, which

can be alternatively denoted by f(x) for brevity; for any random vector Y , we denote the

mean and covariance matrices of Y by µY and RY respectively; for all x ∈ R, the floor and

ceiling functions are denoted with bxc and dxe, respectively;
(
n
k

)
= 0 if k < 0 or k > n;

finally, logarithms are in base 2.
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CHAPTER 2

Private Broadcasting: an Index Coding Approach

The first example of our application-tailored security design is in the context of index coding.

In the traditional index coding problem, a server employs coding to send messages to n

clients within the same broadcast domain. Each client already has some messages as side

information and requests a particular unknown message from the server. This setup is

an abstraction which captures the essence of many data broadcasting scenarios []. In index

coding, all clients learn the coding matrix so that they can decode and retrieve their requested

data. Our starting observation is that, learning the coding matrix can pose privacy concerns:

it may enable a client to infer information about the requests and side information of other

clients. In other words, we are concerned in this application by an adversary who is one

of the clients in the index coding setting, but is curious, i.e., it wants to learn information

about the requests and side information of other clients. In order to capture the effect of

such adversary, our security metric of choice is an information-theoretic one which captures

how much information is leaked by the adversary from learning the coding matrix. Since our

adversary of concern is a legitimate client (hence it learns the coding matrix), it is not clear

how cryptographic tools can be used to provide privacy. However, with a careful examination

of the problem, two different resources can be used to provide a security solution. The first

of which is the requests and side information sets: index codes can be designed to provide

privacy of one quantity at the expense of the other. The main focus of this chapter is to

design index codes which provides a trade-off between the privacy of these two quantities.

In the following chapter, we discuss the use of another resource: increasing the number of

transmissions to attain better privacy guarantees.
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2.1 Introduction

Consider a set of clients who share the same broadcast domain and wish to download data

content from a server. Even though the content that they request may be publicly available,

they wish to preserve the anonymity of their requests. For instance, assume that a client

requests a video from YouTube related to a particular medical condition. If other clients

learn about the identity of that request, this may then violate the privacy of that client. In

this chapter, we are interested in studying how to maintain the privacy of clients sharing a

broadcast domain.

It is well established that coding across the content messages of the clients is needed to

efficiently use the shared broadcast domain, as formalized in index coding [BBJ11]. A typical

index coding instance consists of a server with m messages, connected through a broadcast

channel to a set of n clients. Each client possesses a subset of the messages as side information

and requires a specific new message. The server then uses these side information sets to send

coded transmissions, which efficiently deliver the required messages to the clients.

In this chapter we claim that index coding poses a privacy challenge. Consider, for exam-

ple, that a server transmits b1 + b2 to satisfy client 1. Since this is a broadcast transmission,

other clients observing this transmission will infer that the request of client 1 is either b1

or b2, while the other message must belong to her side information. This suggests that,

although the clients can securely convey their requests to the server (e.g., through pairwise

keys), a curious client may be able to infer information about the requests and/or side infor-

mation sets of other clients by learning the encoding matrix used to generate the broadcast

transmissions.

The first question we ask is: how much information does the encoding matrix in index

coding reveal about the requests and the side information of other users? At a high level, one

can think of the request and side information as two shared secrets between each client and

the server, where one secret could be used to protect the other. Therefore, as we also show

in the chapter, these two aspects exhibit a trade-off: maintaining a certain level of privacy

on one aspect limits the amount of privacy level achieved on the other. We also ask: can we
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design index coding matrices that, for a given number of transmissions, achieve the highest

possible level of privacy? How should these matrices be designed and how much privacy can

they guarantee?

In this chapter, we take first steps in answering such questions. Our main contributions

can be summarized as follows:

1) We propose an information-theoretic metric to characterize the levels of privacy that can

be guaranteed. We then provide guidelines for designing encoding matrices and transmission

strategies to achieve high privacy levels;

2) We design an encoding matrix and characterize the maximum levels of privacy that it can

achieve;

3) We derive universal upper bounds (i.e., which hold independently of the scheme that is

used) on the maximum levels of privacy that can be attained;

4) We consider a special case of the problem and we characterize in closed-form the levels

of privacy achieved by our scheme, which then we compare to the outer bounds, hence

highlighting the privacy trade-off.

Related Work. In secure index coding [DSC12], the primal goal is to design strategies such

that a passive external eavesdropper – who wiretaps the communication from the server to

the clients – cannot learn any information about the messages. Differently, in this work we

seek to protect clients’ privacy against adversaries who wish to learn information about the

identity of the requests and side information sets of the clients.

Recently, there has been a lot of effort trying to address privacy concerns in communica-

tion setups. For instance, a set of relevant work has considered the problem of protecting pri-

vacy of a user against a database. This problem was introduced in [CKG98] and is known as

Private Information Retrieval (PIR). Specifically, in PIR a client wishes to receive a specific

message from a set of (possibly colluding) databases, without revealing the identity of the re-

quest. Towards this end, data request and/or storage schemes were designed [TR16, FGH16]

and recently the PIR capacity was characterized [SJ16, BU16].

In cryptography, the Oblivious Transfer (OT) problem [BCR87] has a close connection
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to PIR [MDP14]. Specifically, in OT the goal is to protect both the privacy of the client

against the server (i.e., as in PIR, the identity of the request of the client is not revealed to

the server) and the privacy of the server against the client (i.e., the client learns only the

requested message). OT has also been used as a primitive to build techniques for secure

multi-party computation [MDP14].

Different from these works, in this chapter we seek to understand the privacy issues

that can arise among clients who share the same broadcast domain. Specifically, we seek to

design techniques that guarantee high levels of privacy both in the side information and in the

request of a client against another curious client. Given the different problem formulation,

the techniques developed to solve the PIR and OT problems do not easily extend to our

setup.

Chapter Organization. The chapter is organized as follows. In Section 2.2 we define

our setup. In Section 2.3 we provide definitions and guidelines on how to design privacy-

preserving transmission schemes and we derive fundamental upper bounds. In Section 2.4

we present the design of a privacy-preserving matrix. Based on this matrix, in Section 2.5

we consider a specific scenario for which we propose a transmission scheme and assess its

performance. In Section 3.7 we conclude the chapter. Some of the proofs are delegated to

the appendices.

2.2 Setup

We consider a typical index coding instance, where a set of clients N = {c[n]}, with |N | = n,

are connected to a server through a shared broadcast channel. The server has a database

of messages M = {b[m]}, with |M| = m. Each client ci, i ∈ [n], is represented by a pair

of random variables, namely: (i) Q̄i ∈ [m] associated with the index of the message that

ci wishes to download from the server and (ii) S̄i ∈ 2[m], associated with the indices of the

subset of messages she already has as side information. We indicate with q̄i and S̄i the

realizations of Q̄i and S̄i, respectively, which are chosen uniformly at random from their

respective domains. Clearly, q̄i /∈ S̄i. We assume that the pairs (Q̄i, S̄i), ∀i ∈ [n], are
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independent across i ∈ [n].

Server Model. We assume that the server knows the request and the side information of

each client, i.e., it is aware of the realizations of the random variables Q̄i = q̄i and S̄i = S̄i,
with i ∈ [n]. Given this, the server seeks to satisfy the requests of the clients through T

broadcast transmissions. The server employs linear encoding, i.e., each transmission consists

of a linear combination of the m messages, where the coefficients are chosen from a finite field

FL with L being large enough. This can be mathematically formulated as Ab = y, where

b ∈ FmL is the column vector of the m messages, A ∈ FT×mL is the encoding matrix used by

the server and y ∈ FTL is the column vector with linear combinations of the messages.

Therefore, a transmission scheme employed by the server consists of the following two

components:

i) Transmission space: a specific set A of encoding matrices designed to satisfy the clients

and protect their privacy;

ii) Transmission strategy: a function that, given (q̄[n], S̄[n]), determines the encoding matrix

A ∈ A to be used. We model the output of the function as a random variable A where

A = Â according to a probability distribution pA|Q̄[n],S̄[n]
(Â|q̄[n], S̄[n]) that has to be

designed.

Adversary Model. We assume that some of the clients – referred to as eavesdroppers

– are malicious. Specifically, the eavesdroppers are non-cooperative clients who, based on

the broadcast transmissions they receive, are eager to infer information about the requests

and the side information sets of other clients. Since the eavesdroppers do not cooperate,

without loss of generality, we can assume that there is only one eavesdropper in the system,

namely client cn. In addition, we assume that the eavesdropper cn: (i) is aware of both the

transmission scheme employed by the server and the underlying distribution based on which

the clients obtain their requests and side information sets; (ii) has infinite computational

power; (iii) knows the size of the side information set of each client, i.e., si = |S̄i|, i ∈ [n].
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This last assumption, which we make to simplify the analysis, provides pessimistic privacy

guarantees with respect to a scenario where the eavesdropper does not have this information.

Based on this knowledge, the eavesdropper cn wishes to infer information about the

request and side information of the other clients. Specifically, we denote with Qi and Si

the random variables, which represent the eavesdropper’s estimate of the request and side

information of client ci, respectively and we let pQi
(qi) and pSi

(Si) be the corresponding

probability density functions. For ease of notation, in the rest of the chapter, we drop the

subscripts from the probability density functions while retaining the arguments. Clearly,

Qn = Q̄n and Sn = S̄n. Before transmission, the eavesdropper is completely oblivious to

Qi and Si for i ∈ [n − 1]; we model this situation by having p(qi|si) and p(Si|si) uniformly

distributed over [m] and
(

[m]
si

)
, respectively1. Then, by learning the specific encoding ma-

trix Â employed by the server, the eavesdropper infers some information about the other

clients, which is reflected in the conditional probability distributions p(qi|Â, s[n], qn,Sn) and

p(Si|Â, s[n], qn,Sn).

Privacy Metric. We consider the amount of knowledge the eavesdropper has about the

variables Qi and Si as a privacy metric. In particular, we evaluate how far the uniform

distribution is from the conditional distribution that the eavesdropper has after learning the

encoding matrix Â. Let X ∈ {Q[n], S[n]}. Then, inspired by the t-closeness metric for data

privacy [LLV07], we consider the Kullback–Leibler divergence as a distance metric between

the distributions p(x|Â, si, qn,Sn) and p(x|si), namely

DKL(p(x|Â, s[n], qn,Sn)||p(x|si)) = log(|X |)−H(X|Â, s[n], qn,Sn), (2.1)

where X is the support of X (note that the entropy used throughout the chapter is condi-

tioned on specific realizations). IfDKL(p(x|Â, s[n], qn,Sn)||p(x|si)) = 0, i.e., H(X|Â, s[n], qn,Sn) =

log(|X |)), then the eavesdropper has no knowledge of the variable X. Differently, larger val-

ues of DKL(p(x|Â, s[n], qn,Sn)||p(x|si)), i.e., smaller values of H(X|Â, s[n], qn,Sn) indicate

lower levels of privacy. Therefore, we consider H(X|Â, s[n], qn,Sn) as an indication of the

1In principle, in p(qi|si) and p(Si|si) we should also have qn, Sn and s[n]\{i} in the conditioning. However,
since (Q̄i, S̄i), ∀i ∈ [n], are independent across i, we can safely drop this dependence.
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level of privacy attained for the variable X. We focus on designing transmission schemes

with guaranteed levels of privacy regarding three different quantities for each client:

i) Privacy in the request, captured by H(Qi|Â, s[n], qn,Sn);

ii) Privacy in the side information, captured by H(Si|Â, s[n], qn,Sn);

iii) Joint privacy, captured by H(Qi, Si|Â, s[n], qn,Sn).

Therefore, our goal is to design a transmission scheme which provides privacy guarantees -

in terms of the aforementioned metrics - for a given number of transmissions.

2.3 Guidelines for Protecting Privacy

Based on the knowledge of (Q̄[n], S̄[n]), the server chooses to use an encoding matrix A = Â

such that it satisfies all clients, i.e., it allows each client to decode her request using her side

information set.

Definition 2.3.1. A (q,S) pair is said to be decodable in Â if, using Â as encoding matrix,

message bq can be decoded knowing bS .

Definition 2.3.2. A q (or S) is said to be decodable in Â if there exists S (or q) such that

(q,S) is decodable in Â.

In order to design an encoding matrix that satisfies all clients, we rely on the following

lemma – a slight variation of [SF15, Lemma 4] – which provides a decodability criterion for

(q,S) using a matrix Â.

Lemma 2.3.1 (Decodability Criterion). Let Â be the encoding matrix used by the server.

Then, the pair (q,S) is decodable in Â iff Âq /∈ span(Â[m]\{q∪S}).

Lemma 2.3.1 provides a necessary and sufficient algebraic condition on whether a partic-

ular (q,S) pair is decodable using a given encoding matrix. The eavesdropper, when trying

to infer information about ci, i ∈ [n − 1], can therefore apply this decodability criterion on
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all possible (qi,Si) pairs with |Si| = si, to determine the subset of pairs that are decodable

using Â. In other words, since she knows that the request of client ci must be satisfied, then

the actual (q̄i, S̄i) pair of client ci must belong to this set of decodable pairs. Thus, the size

of the set of decodable pairs with side information sets of size si determines the uncertainty

that the eavesdropper has regarding the information of client ci and hence the attained levels

of privacy for ci. Therefore, in order to maintain high levels of privacy, it is imperative to

design encoding matrices with decodable sets of large sizes.

We next formalize this intuition. Towards this end, we define the following three quan-

tities: (i) D(Â, si), i.e., the set of decodable (qi,Si) pairs in Â for client ci; (ii) DQ(Â, si),

i.e., the set of decodable qi in Â for client ci, and (iii) DS(Â, si), i.e., the set of decodable Si
in Â for client ci. To better understand this notation, consider the following example.

Example. Consider m = 5, n = 2 and s1 = 1. If the server uses Â1 =

1 0 0 0 0

0 0 1 0 0


as an encoding matrix, then D(Â1, 1) = {(1, i), (3, j)} with i ∈ [5]\{1} and j ∈ [5]\{3},

DQ(Â1, 1) = {1, 3} andDS(Â1, 1) = [5]. Now, suppose that the server uses Â2 =

1 1 0 0 0

0 0 1 1 0

.

Then, D(Â2, 1) = {(1, 2), (2, 1), (3, 4), (4, 3)}, DQ(Â2, 1) = DS(Â2, 1) = [4]. Clearly, |D(Â1, 1)| >
|D(Â2, 1)| and |DS(Â1, 1)| > |DS(Â2, 1)|, but |DQ(Â1, 1)| < |DQ(Â2, 1)|.

With this, we have the following remark that relates the privacy metrics to the sizes of the

decodable sets (see Appendix 2.7.1 for details).

Remark 2.3.2. When the eavesdropper observes the encoding matrix Â, then for all i ∈
[n− 1] and si ∈ [m− 1], we have

H(Qi, Si|Â, s[n], qn,Sn) ≤ log |D(Â, si)|, (2.2a)

H(Qi|Â, s[n], qn,Sn) ≤ log |DQ(Â, si)|, (2.2b)

H(Si|Â, s[n], qn,Sn) ≤ log |DS(Â, si)|. (2.2c)

Moreover, these bounds are tight iff the corresponding probability distributions are uniform.

Namely:

i) eq.(2.2a) is tight iff p(qi,Si|Â, s[n], qn,Sn) is uniform over (qi,Si) ∈ D(Â, si);
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ii) eq.(2.2b) is tight iff p(qi|Â, s[n], qn,Sn) is uniform over qi ∈ DQ(Â, si);

iii) eq.(2.2c) is tight iff p(Si|Â, s[n], qn,Sn) is uniform over Si ∈ DS(Â, si).

Remark 2.3.2 implies that the sizes of the decodable sets give an upper bound on the

corresponding levels of the privacy metrics. Moreover, one can show that the conditions i)

to iii) in Remark 2.3.2 hold – and hence bounds (2.2a) to (2.2c) are tight – if p(Â|q̄[n], S̄[n])

in the transmission strategy (described in Section 2.2) is properly designed. For instance,

using Bayes’ rule, it can be shown – see Appendix 2.7.1 for the details – that condition i) is

satisfied iff

∑
qK,SK∈

∏
j∈K
D(Â,sj)

p(Â|q[n],S[n], s[n]), K = [n− 1]\{i}

is the same for all (qi,Si) ∈ D(Â, si).

From Remark 2.3.2, it follows that the design of privacy-preserving transmission schemes

consists of two main steps: (i) designing encoding matrices with large decodable sets and (ii)

using transmission strategies which satisfy uniformity conditions and hence achieve maximum

levels of privacy.

Based on the result in Remark 2.3.2, we now derive universal upper bounds (i.e., which

hold independently of the encoding matrix that the server uses) on the decodable sets and

hence on the levels of the privacy metrics. In particular, we have

Lemma 2.3.3. For any Â ∈ FT×mL and si ∈ [m− 1], we have

|D(Â, si)| ≤ T

(
m

si

)
=: UBQ,S, (2.3a)

|DQ(Â, si)| ≤ m =: UBQ, (2.3b)

|DS(Â, si)| ≤
(
m

si

)
=: UBS. (2.3c)

Proof: The upper bounds in (2.3b) and (2.3c) simply follow by noticing that the size of

a decodable set is upper bounded by the size of the support of the corresponding random

variable. We next prove the bound in (2.3a). For a given encoding matrix Â ∈ FT×mL , one can
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Figure 2.1: Design of the base matrix Abase for the achievable scheme.

write D(Â, si) =
∑
Si∈([m]

si
)N (Â,Si), where N (Â,Si) is the set of requests qi ∈ DQ(Â, si)

for which the pair (qi,Si) is decodable. According to Lemma 2.3.1, for each qi ∈ N (Â,Si),
Âqi is not in the span of Â[m]\Si∪qi . It is therefore straightforward to show that the columns

of ÂN (Â,Si) are linearly independent. Thus, |N (Â,Si)| ≤ T and hence we have |D(Â, si)| ≤
T
(
m
si

)
. �

2.4 Design of a Transmission Space

In this section, we take first steps towards designing a privacy-preserving transmission

scheme. Specifically, we design an encoding matrix, referred to as the base matrix Abase.

Then, we populate the transmission space with the matrices obtained from Abase by taking

all the permutations of its columns. Our design of Abase is based on the use of Maximum Dis-

tance Separable (MDS) codes. A generator matrix of an [m,T ] MDS code has the property

that any T × T submatrix is full rank, i.e., any T columns are linearly independent. Such

matrices promise to provide large decodable sets. To see this notice that, for a given side

information set S with |S| ≥ m−T , all requests in [m] \S are decodable with S. Therefore,

if B ∈ FT×mL is a generator matrix of an [m,T ] MDS code, then, for all s ≥ m− T , we have

|DQ(B, s)| = m and |D(B, s)| = m
(
m−1
s

)
= O(ms). However, this scheme might require

a prohibitively large number of transmissions T , especially when m is large and s is small

compared to m. To achieve high levels of privacy with T that is not that large, we next

propose the design of Abase, which is based on a block-MDS as shown in Figure 2.1 and
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Figure 2.2: Numerical evaluation of rQ, rS and rQ,S - m = 30 and s = 3.

structured as follows:

i) The columns of Abase are divided in k + 1 segments, labeled as “Seg. 0 to k”, where T

is a multiple of k;

ii) Segments from 1 to k consist of ` columns, where ` ≤ min{smin + T/k, bm/kc}, with

smin = mini∈[n] si;

iii) A matrix Ab ∈ F
T
k
×`

L is constructed as the generator matrix of an [`, T/k] MDS code;

then, Ab is repeated k times and positioned in Abase as shown in Figure 2.1;

iv) The rest of Abase is filled with zeros.

Note that, for any number of clients n and messages m, one can always find values of k,

` and T so that Abase satisfies all clients (e.g., k = 1, ` = smin and T = n).

We now analyze the performance of our proposed Abase in terms of the sizes of its decod-

able sets (see Appendix 2.7.2). These, by means of Remark 2.3.2, provide upper bounds on

the levels of privacy that could be attained using Abase.

Theorem 2.4.1. For Abase and any si ∈ [m− 1], we have

H(Qi, Si|Â, s[n], qn,Sn) ≤ log

k` `−1∑
j=`−T/k

(
`− 1

j

)(
m− `
si − j

) , (2.4a)

H(Qi|Â, s[n], qn,Sn) ≤ (k`) . (2.4b)

where the bounds can be achieved by satisfying the uniformity conditions in Remark 2.3.2

In the next section we study a special scenario in which we use the transmission space here

proposed (i.e., populated by the matrices obtained from Abase by taking all the permutations

of its columns) and we design the transmission strategy.
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2.5 Transmission Strategy for a Special Case

In the previous section, we designed a transmission space that consists of all possible matrices

obtained by permuting the columns of the matrix Abase. Thus, as discussed in Section 2.2, in

order to design a transmission scheme, we need to design a transmission strategy that selects

which specific matrix to use according to a probability distribution. However, designing such

a transmission strategy that achieves the upper bounds in Remark 2.3.2 is non-trivial. To

get an analytical handle on the problem, we take a first step and consider a simplified model:

we assume n = 2 and an eavesdropper who does not have a request. Such a scenario can

model a situation where the n = 2 clients (the second of which is the eavesdropper) do not

have a simultaneous request.

Since only one client needs to be satisfied, then we can use our proposed encoding matrix

Abase with k = T and ` ≤ min{s1 + 1, bm/T c}, knowing that the client c1 can always be

satisfied by using the appropriate column-permutation of Abase (i.e., by ensuring that Abase
q1

is non-zero, and all other columns belonging to the same segment of Abase
q1

correspond to

messages in S1). In this case, Ab is a row vector of arbitrary non-zero values. The following

theorem (whose proof can be found in Appendix 2.7.3) then provides analytical guarantees

on the attained performance of this scheme.

Theorem 2.5.1. For the scheme described above, we have

H(Q1, S1|Â, s1) = log T`

(
m− `

s1 − `+ 1

)
=: LBQ,S, (2.5a)

H(Q1|Â, s1) = log T` =: LBQ, (2.5b)

H(S1|Â, s1) = log T`

(
m− `

s1 − `+ 1

)
− K =: LBS, (2.5c)

K =
T∑
i=1

(
T − 1

i− 1

)
`i−1

(
m−i`

s1−i(`−1)

)(
m−`

s1−`+1

) i∑
x=1

(−1)i−x
(
i−1

x−1

)
log x,

where Â is the column permutation of Abase that is used.

Note that the two quantities in (2.5a) and (2.5b) meet the upper bounds that follow

from Theorem 2.4.1 by applying the conditions in Remark 2.3.2. Moreover, in order to get
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the bounds in (2.5), we used a transmission strategy for which p(Â|q̄1, S̄1) is uniform over

all Â that satisfy (q̄1, S̄1) for all (q̄1, S̄1) ∈ D(Â, s1). This is because, thanks to the special

structure of Abase, the number of column-permutations of Abase that satisfies a given (q̄1, S̄1)

is equal for all (q̄1, S̄1).

We next analyze the performance of our scheme. Towards this end, we define the following

quantities:

• GQ,S := log (UBQ,S)− LBQ,S, rQ,S = 2−GQ,S ;

• GQ := log (UBQ)− LBQ, rQ = 2−GQ ;

• GS := log (UBS)− LBS, rS = 2−GS .

Figure 2.2 shows an example of how the quantities rQ,S, rQ and rS behave as ` changes. Note

that all these quantities are fractions and hence the maximum level of privacy (y-axis) is 1.

Figure 2.2 shows that as ` increases, higher values of privacy are attained in the requests

(i.e., rQ increases), but smaller levels of privacy are achieved in the side information (i.e., rS

decreases). This highlights a trade-off: maintaining a certain level of privacy on one aspect

limits the amount of privacy level achieved on the other. It is also noted that increasing T

increases the attained values of rQ and rS for the same value of `. We believe that the reason

such increase does not occur in rQ,S is because UBQ,S in (2.3a) is loose.

Next, we assess the performance of our scheme when the parameters of the system grow.

We assume that s1 = c ·m and ` = b ·m+ 1, where b ≤ c ≤ m−1
m

. We consider two cases:

Case I: c = m−kc
m

where kc > 0 is a constant. In this case, full privacy in the request,

side information and their joint can be achieved by using an [m,T ] MDS code with T = kc.

Case II: c and T are constants. In this case, by choosing b = 0, we get GQ = log m
T

=

O(logm) and GQ,S = log
( m
cm)

T(m−1
cm )

= log 1
T (1−c) = O(1). Also, since conditioning reduces the

entropy, we have H(S1|Â, s1) ≥ eq. (2.5a) − eq. (2.5b), which implies GS ≤ log
( m
cm)

(m−1
cm )

=

log 1
1−c = O(1). This suggests that when s1 grows as a constant fraction of m, then with a

constant number of transmissions we can have almost perfect side information (and joint)
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privacy, but very little privacy in the request. However, if we choose b = c, then we get

GQ ≤ log 1
Tc

= O(1), GQ,S = GS ≤ log
(
m
cm

)
= O(m logm) since, under these conditions,

K = 0 in (2.5c). Thus, in this case almost full privacy is achieved in the request while very

little privacy is attained in the side information (and in the joint).

2.6 Conclusion

We considered an index coding instance where some clients are malicious: they wish to

learn information about the requests and side information of the other clients. We showed

how this privacy breach is possible by learning the encoding matrix used by the server. We

proposed information-theoretic metrics to model the levels of privacy that can be guaranteed

and we designed an encoding matrix for protecting privacy. Then, for a special case of the

problem, we derived in closed-form the levels of privacy that our proposed scheme achieves.

We showed an inherent trade-off between protecting privacy of either the request or the side

information set of the clients.

2.7 Appendices

2.7.1 Proof of Remark 2.3.2

We prove the result for the upper bound in (2.2a). Given Â and si, the set D(Â, si) consists

of all possible (qi,Si) pairs that could be the request/side information pair for ci. Therefore,

p(qi,Si|Â, s[n], qn,Sn) = 0 for all (qi,Si) /∈ D(Â, si). Therefore,

H(Qi, Si|Â, s[n], qn,Sn) = −
∑

(qi,Si)∈D(Â,si)

p(qi,Si|Â, s[n], qn,Sn) log p(qi,Si|Â, s[n], qn,Sn) ≤ log |D(Â, si)|,

thus proving (2.2a). Since p(qi,Si|Â, s[n], qn,Sn) = 0 for all (qi,Si) /∈ D(Â, si), then this

upper bound is achieved if and only if p(qi,Si|Â, s[n], qn,Sn) is uniform over for (qi,Si) ∈
D(Â, si), thus proving the uniformity condition i) on (2.2a). Similar arguments can be made

to prove (2.2b) and (2.2c).

Next, we show that the uniformity conditions in i)-iii) imply constraints on the design
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of the transmission strategy p(Â|q[n],S[n]). To see this, note that we can write

p(qi,Si|Â, s[n], qn,Sn) = p(Â|q{i,n},S{i,n}, s[n])
p(qi,Si|s[n], qn,Sn)

p(Â|s[n], qn,Sn)
,

which follows by applying Bayes’ rule. Since the probabilities in the fraction term do not de-

pend on the value of (qi,Si) (note that p(qi,Si|s[n]) is uniform), then the uniformity condition

i) is satisfied if and only if the term p(Â|q{i,n},S{i,n}, s[n]) is the same for all (qi,Si) ∈ D(Â, si).

We can further write

p(Â|q{i,n},S{i,n}, s[n]) =
∑

qK,SK∈
∏

j∈K
D(Â,sj)

p(Â|q[n],S[n], s[n])p(qK,SK|qi,Si, s[n]), K = [n− 1] \ i.

Note that the distribution p(qK,SK|qi,Si, s[n]) is assumed to be uniform and independent

over i ∈ [n]. Therefore, to satisfy the uniformity condition, we must have the summation

term on the Righ-Hand Side to be the same for all (qi,Si) ∈ D(Â, si). This therefore imposes

constraints on the transmission strategy used by the server. We can similarly show that the

uniformity conditions on (2.2b) and (2.2c) also impose constraints on the used transmission

strategy.

2.7.2 Proof of Theorem 2.4.1

In order to prove Theorem 2.4.1, we need to characterize the quantities |D(Â, s)| and

|DQ(Â, s)|, and therefore, using Remark 2.3.2 the result in Theorem 2.4.1 follows.

Characterizing |DQ(Â, s)|: One can show that every request q whose corresponding column

Abase
q is non-zero has at least one side information set S with which (q,S) is decodable in

Abase. If this in fact is true, then the result |DQ(Abase, s)| = k` follows immediately, since

we have k` such requests. To prove this statement then, notice that ` ≤ smin + T/k. Then

consider a side information set with |S| = smin and where all the elements of S correspond to

columns of the same segment as Abase
q . Therefore, the set of all columns of Abase belonging
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to the same segment as Abase
q and do not belong to S is of size ` − S = T/k. They are

therefore linearly independent, and q is decodable with S.

Characterizing |D(Â, s)|: To prove the remaining quantity, notice that we can write

D(Abase, s) =
∑

q∈[m]N (Abase, q), where N (Abase, q) is the number of side information sets

that are decodable with q in Abase. For a given q, this quantity is equal to

N (Abase, q) =
`−1∑

i=`−T/k

(
`− 1

i

)(
m− `
s− i

)
, (2.6)

for all q with Abase being non-zero, and 0 otherwise. Since this quantity does not depend

on the value of q, then the result follows that D(Abase, s) = k`
`−1∑

i=`−T/k

(
`−1
i

)(
m−`
s−i

)
. What

remains is to prove (2.6), which we justify as follows: Consider a given q with a non-zero

corresponding column in Abase, and let j be the index of the segment to which Abase
q belongs.

For a given side information set S, let i be the number of elements in S whose corresponding

columns in Abase belong to j. Then, (q,S) is decodable in Abase if and only if the elements

` − T/k ≤ i ≤ ` − 1; the lower bound is to ensure that the columns of Abase belonging

to segment j that fall outside of S are linearly independent, and the upper bound is to

ensure that q is not in S. The number of subsets S with i columns in segment j is equal to(
`−1
i

)(
m−`
s−`+1

)
. Therefore, by summing over all possible i and multiplying by the number of

possible requests we get the expression in (2.6).

2.7.3 Proof of Theorem 2.5.1

For this scheme, we can have p(Â|q1,S1) = 1/K for all Â ∈ A for all (q1,S1) ∈ D(Â, s1),

where K is equal to

K = T

(
s

`− 1

)(
m− `
` ` · · · `︸ ︷︷ ︸

k−1

)(M)

,

where the last term is a multinomial coefficient. This is because the number of column-

permutations of Âbase that satisfies a given (q1,S1) is equal to K, independently of the

value of (q1,S1). This statement can be justified as follows: for a pair to be decodable,

the column of the encoding matrix corresponding to q should be non-zero, and since we

have T segments, then there are T possibilities for that column; thus the term T in the
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expression. Next, all remaining `− 1 columns of the same segment must correspond to ele-

ments in the side information set; thus the term
(
s
`−1

)
. Finally, among the remaining m− `

columns, we have to choose k−1 segments, each of length `; thus the final multinomial term.

Calculating H(Q1, S1|Â, s1): Note that by using the transmission strategy described above,

we satisfy the uniformity condition of Remark 2.3.2 for (2.2a). Therefore, we haveH(Q1, S1|Â, s1) =

log |D(Â, s1)| = log T l
(
m−`
s−`+1

)
. The last equality can be obtained by considering (2.4b) with

k = T .

Calculating H(Q1|Â, s1): Using the transmission strategy described above also satisfies

the uniformity condition of Remark 2.3.2 for (2.2b). To see this, note that

p(q1|Â, s1) =
∑

S1:(q1,S1)∈D(Â,s1)

p(q1,S1|Â, s1),

where the number of elements in the summation corresponds to the number of subsets S1

that are decodable with q1, which is equal to
(
m−`
s−`+1

)
irrespective of q1. Therefore, p(q1|Â, s1)

is uniform over all q1 ∈ DQ(Â, s1). Thus we have H(Q1|Â, s1) = log |DQ(Â, s1)| = log T`,

where the last equality similarly holds by considering (2.4b) with k = T .

Calculating H(S1|Â, s1): Using the transmission strategy above does not satisfy the uni-

formity condition of Remark 2.3.2 for (2.2c). Therefore, we now seek to quantify the achieved

value of H(S1|Â, s1).

Note that the used transmission strategy would yield p(q1,S1|Â, s1) = 1/|D(Â, s1)| for

all (q1,S1) ∈ D(Â, s1) and 0 otherwise. One can then write the marginal p(S1|Â, s1) as

p(S1|Â, s) =
∑

q1∈DQ(Â,s1)

p(q1,S1|Â, s1) =
NÂ,S1

|D(Â, s1)|
,

where NÂ,S1 is the number of requests q1 that are decodable with S1 in Â. Therefore, we

have
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H(S1|Â, s1) = −
∑

S1∈DS(Â,s1)

NÂ,S1

|D(Â, s1)|
log

NÂ,S1

|D(Â, s1)|

= log |D(Â, s1)| − 1

|D(Â, s1)|
∑

S1∈DS(Â,s1)

NÂ,S1 logNÂ,S1︸ ︷︷ ︸
N̄t

. (2.7)

Next we calculate N̄t. For a given S1, let `j, j ∈ [T ] be the number of elements of S1 for

which the corresponding columns in Â belong to segment j. Then in order for a pair (q1,S1)

to be decodable, then `j must be exactly equal to `− 1, where j corresponds to the segment

to which Âq belongs.

Note that NÂ,S1 only depends on the values of `j, and therefore all subsets S1 for which

`j, j ∈ [T ] are the same will have the same value for NÂ,S1 . Based on this fact, we can then

write

N̄t =
∑̀
`1=0

· · ·
∑̀
`T =0

(
`

`1

)
· · ·
(
`

`T

)( m− T`
s1 −

T∑
i=1

`i

)( T∑
i=1

1{`i=`−1}

)
log

(
T∑
i=1

1{`i=`−1}

)

(a)
=

T∑
x=1

x log x

(
T

x

)
`x

Cs1,T
(T−x)︷ ︸︸ ︷ ∑̀

`1=0

`1 6=`−1

· · ·
∑̀

`T−x=0

`T−x 6=`−1

(
`

`1

)
· · ·
(

`

`T−x

)( m− T`
s1 − x(`− 1)−

T−x∑
i=1

`i

) (2.8)

where (a) can be justified as follows: note that the possible values to which the term
T∑
i=1

1{`i=`−1} evaluates are x ∈ [T ] (x = 0 is also possible, but trivial). Moreover, it is

equal to x if and only if there are exactly x indices from the set `[T ] which are equal to

`− 1, while the remaining indices can take any value (except `− 1). Therefore, by means of

counting arguments, N̄t can be expressed as (2.8).
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Note that we can write

Cs1,T (T − x) =

 ∑̀
`1=0

`1 6=`−1

· · ·
l∑

`T−x=0

`T−x 6=`−1

(
`

`1

)
· · ·
(

`

`T−x

)( m− T`
s1 − x(`− 1)−

T−x∑
i=1

`i

)

(b)
=

Bs1,T
(T−x)︷ ︸︸ ︷∑̀

`1=0

· · ·
∑̀

`T−x=0

(
l

`1

)
· · ·
(

`

`T−x

)( m− T`
s1 − x(`− 1)−

T−x∑
i=1

`i

)−
T−x∑
y=1

(
T − x
y

)
`y

 ∑̀
`1=0

`1 6=`−1

..
∑̀

`T−x−y=0

`T−x−y 6=`−1

(
`

`1

)
..

(
`

`T−x−y

)( m− T`
s1 − (x+ y)(`− 1)−

T−x−y∑
i=1

`i

)
= Bs1,T (T − x)−

T−x∑
y=1

(
T − x
y

)
`yCs1,T (T − x− y) (2.9)

where (b) follows by adding the missing summation terms of Cs1,T (T − x) corresponding

to `i = ` − 1 and - by means of counting - subtracting them. By noting that Cs1,T (0) =(
m−T`

s1−T (`−1)

)
, equation (2.9) then defines a linear recurrence relation on Cs1,T (T −x) which we

solve in the following lemma.

Lemma 2.7.1. The solution to the linear recurrence relation in (2.9) is

Cs1,T (T − x) =
T−x∑
v=0

(−1)v`v
(
T − x
v

)
Bs1,T (T − x− v) (2.10)

where Bs1,T (0) =
(

m−T`
s1−T (`−1)

)
.

Proof: We will solve the recurrence relation using strong induction. Specifically, assume

that

Cs1,T (T − x− y) =

T−x−y∑
v=0

(−1)v`v
(
T − x− y

v

)
Bs1,T (T − x− v − y)

for 1 ≤ y ≤ T − x. Then consider
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T−x∑
y=1

(
T − x
y

)
`yCs1,T (T − x− y) =

=
T−x∑
y=1

T−x−y∑
v=0

(−1)v`v+y

(
T − x
y

)(
T − x− y

v

)
Bs1,T (T − x− v − y)

(c)
=

T−x∑
k=1

(−1)k`k
(
T − x
k

)
Bs1,T (T − x− k)

k−1∑
v=0

(−1)v−k
(
T−x
k−v

)(
T−x−k+v

v

)(
T−x
k

)
=

T−x∑
k=1

(−1)k`k
(
T − x
k

)
Bs1,T (T − x− k)

k−1∑
v=0

(−1)k−v
(

k

k − v

)

=
T−x∑
k=1

(−1)k`k
(
T − x
k

)
Bs1,T (T − x− k)

k∑
v′=1

(−1)v
′
(
k

v′

)

=
T−x∑
k=1

(−1)k`k
(
T − x
k

)
Bs1,T (T − x− k)(δk0 − 1)

= −
T−x∑
k=0

(−1)k`k
(
T − x
k

)
Bs1,T (T − x− k) +Bs1,T (T − x)

where (c) follows by i) changing summation variables as v + y = k and ii) multiplying and

dividing by (−1)k
(
T−x
k

)
, and where δij is the Kronecher delta function. Therefore we have

Cs1,T (T − x) =
T−x∑
k=0

(−1)k`k
(
T − x
k

)
Bs1,T (T − x− k)

= Bs1,T (T − x)−
T−x∑
y=1

(
T − x
y

)
`yCs1,T (T − x− y)

satisfying (2.9), thus completing the proof. �

By plugging (2.10) in (2.8), we can further simply (2.8) as follows
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N̄t =
T∑
x=1

x log x

(
T

x

)
`x

T−x∑
v=0

(−1)v`v
(
T − x
v

)
Bs1,T (T − x− v)

=
T∑
x=1

T−x∑
v=0

x log x

(
T

x

)(
T − x
v

)
`x+v(−1)vBs1,T (T − x− v)

=
T∑
x=1

T−x∑
v=0

x log x

(
T

x+ v

)(
x+ v

x

)
`x+v(−1)vBs1,T (T − x− v)

=
T∑
i=1

i∑
x=1

x log x

(
T

i

)(
i

x

)
`i(−1)i−xBs1,T (T − i)

=
T∑
i=1

(
T

i

)
`iBs1,T (T − i)

i∑
x=1

(−1)i−x
(
i

x

)
x log x

=
T∑
i=1

(
T

i

)
`iBs1,T (T − i)

i∑
x=1

(−1)i−xi

(
i− 1

x− 1

)
log x

= T
T∑
i=1

(
T − 1

i− 1

)
`iBs1,T (T − i)

i∑
x=1

(−1)i−x
(
i− 1

x− 1

)
log x. (2.11)

Also, we can write

Bs1,T (T − x) =
∑̀
`1=0

· · ·
∑̀

`T−x=0

m−T`∑
y=0︸ ︷︷ ︸

T−x∑
i=1

li+y=s1−x(`−1)

(
`

`1

)
· · ·
(

`

`T−x

)(
m− T`

y

)
(d)
=

(
m− x`

s1 − x(`− 1)

)
(2.12)

where (d) follows by using Vandermonde’s identity. Using (2.7), (2.11) and (2.12) thus proves

the theorem.
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CHAPTER 3

Privacy in Index Coding: k-Limited-Access Schemes

In this chapter, we continue our study of the index coding problem and the associated privacy

concerns. We continue with the same setup: we assume an index coding instance with an

adversary who is a curious client. The adversary wishes to learn information about the

requests and side information sets of other clients. We discusses in the previous chapter how

the adversary is able to do so by learning the coding matrix (which it naturally learns since

it is a legitimate client). The key idea in the work of previous chapter was to utilize the

requests and side information sets as resources for security: we showed how index codes can

be designed which provides a trade-off between the privacy of one quantity at the expense

of the other.

The focus of this chapter is to utilize another resource to guarantee privacy: the number

of transmissions. We start our approach by an intuitive observation: a client would have

less information if it has access to a fewer number of transmissions. Therefore, in this

chapter, we mitigate the privacy concern by allowing each client to have limited access to

the coding matrix. Keeping in mind that the adversary needs to decode its own request,

we design coding matrices so that each client needs only to learn some of (and not all) the

rows to decode her requested message. Designing such a scheme may require additional

transmissions, which comes as a cost for the added privacy level.

First, we show that such an approach indeed increases the level of privacy. We propose

to privacy metrics which we use to show that this is indeed the case. Based on this, we

propose the use of k-limited-access schemes: given an index coding scheme that employs T

transmissions, we create a k-limited-access scheme with Tk ≥ T transmissions, and with the

property that each client needs at most k transmissions to decode her message. We derive
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upper and lower bounds on Tk for all values of k, and develop deterministic designs for these

schemes, which are universal, i.e., independent of the coding matrix. We show that our

schemes are order-optimal when either k or n is large. Moreover, we propose heuristics that

complement the universal schemes for the case when both n and k are small.

3.1 Introduction

It is well recognized that broadcasting can offer significant bandwidth savings compared to

point-to-point communication [EK11, FLW06], and could be leveraged in several wireless

network applications. Use cases include Wi-Fi (cellular) networks where an access point (a

base station) is connected to a set of Wi-Fi (cellular) devices through a wireless broadcast

channel, and where devices request messages, such as YouTube videos. Another use case

has recently emerged in the context of distributed computing [LMY18, EKF], where worker

nodes exchange data among themselves to complete computational tasks.

A canonical setup which captures the essence of broadcast channels is the index coding

framework [BBJ11]. In an index coding instance, a server is connected to a set of clients

through a noiseless broadcast channel. The server has a database that contains a set of

messages. Each client: 1) possesses a subset of the messages that she already knows, which

is referred to as the side information set, and 2) requests a message from the database which

is not in her side information set. The server has full knowledge of the requests and side

information sets of all clients. A linear index code (or index code in short)1 is a linear coding

scheme that comprises a set of coded broadcast transmissions which allow each client to

decode her requested message using her side information set. The goal is to find an index

code which uses the smallest possible number of broadcast transmissions. The key ingredient

in designing efficient (i.e., with a small number of transmissions) index codes is the use of

coding across messages.

The starting observation of this work is that, using coding over broadcast channels can

1In this work, we solely focus on linear index codes.
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Server

Figure 3.1: An index coding example with 5 messages and 4 clients. Each client wants one

message and has another as shown above. The optimal index code consists of sending the

two transmissions b1 + b2 and b3 + b4.

cause privacy risks. In particular, a curious client may infer information about the requests

and side information sets of other clients, which can be deemed sensitive by their owners. For

example, consider a set of clients that use a server to download YouTube videos. Although

YouTube videos are publicly available, a client requesting a video about a medical condition

may not wish for others to learn her request, or learn what are other videos that she has

already downloaded.

To illustrate why coding can create privacy leakage, consider the index coding instance

shown in Figure 3.1. A server possesses a set of 5 messages, which we refer to as b1 to b5. The

server is connected to a set of 4 clients: client 1 wants message b1 and has as side information

message b2; client 2 wants b2 and has b1; client 3 wants b3 and has b4; and client 4 wants

b4 and has b3. In this case, an optimal (i.e., with the minimum number of transmissions)

index code consists of sending 2 transmissions, namely b1 + b2 and b3 + b4: it is easy to see

that each client can decode the requested message from one of these transmissions using the

side information. However, this index code can allow curious clients to violate the privacy

of other clients who share the broadcast channel, by learning information that pertains to

their requests and/or side information sets. For example, assume that client 4 is curious.

Upon learning the two transmissions, client 4 knows that nobody is requesting message b5.
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Moreover, she knows that if a client is requesting b1 or b2 (similarly, b3 or b4), then this

client should have the other message as side information in order to decode the requested

message.

The solution that we propose to limit this privacy leakage stems from the following

observation: it may not be necessary to provide clients with the entire set of broadcast

transmissions. Instead, each client can be given access, and learn the coding operations, for

only a subset of the transmissions, i.e., the subset that would allow her to decode the message

that she requested. Consider again the example in Figure 3.1. The optimal index code

consists of two transmissions. However, each client is able to decode her request using exactly

one of the two transmissions. Therefore, if each client only learns the coding coefficients for

the transmission that she needs, then she will have no knowledge of the content of the other

transmission, and thus would have less information about the requests of the other clients.

Limiting the access of each client to just one out of the two transmissions was possible for

this particular example; however, it is not the case that every index code has this property.

Our approach in this chapter builds on the idea described above. In particular, given an

index coding instance that uses T transmissions, we ask: Can we limit the access of each

client to at most k ≤ T transmissions, while still allowing each client to decode her requested

message? In other words, for a given index coding instance, what is the best (in terms of

number of transmissions) index code that we can design such that each client is able to decode

her request using at most k out of these transmissions? Our work attempts to understand the

fundamental relation between limiting the accessibility of clients to the coding matrix and

the attained level of privacy. In particular, we propose the use of k-limited-access schemes,

that transform the coding matrix so as to restrict each client to access at most k rows of the

transformed matrix, as opposed to the whole of it. Our contributions include:

• We formalize the intuition that using k-limited-access-schemes can indeed increase the

attained level of privacy against curious clients. We demonstrate this using two privacy

metrics, namely an entropy-based metric and the maximal information leakage. In both

cases, we show that the attained level of privacy is linearly dependent on the value of
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k, i.e., privacy increases linearly with the number of rows of the coding matrix that

we hide.

• We design polynomial time (in the number of clients) universal k-limited-access schemes

(i.e., that do not depend on the structure of the coding matrix), and require a simple

matrix multiplication. We prove that these schemes are order-optimal in some regimes,

in particular when either k or n (the number of clients) is large. Interestingly, when k

is larger than a threshold, these schemes enable to restrict the amount of access to half

of the coding matrix with an overhead of exactly one additional transmission. This

result indicates that some privacy-bandwidth trade-off points can be achieved with

minimal overhead.

• We propose algorithms that depend on the structure of the coding matrix and show

that, when n and k are both small, they provide improved performance with respect

to the universal schemes mentioned above. These schemes use a graph-theory repre-

sentation of the problem, and are optimal for some special instances.

• We provide analytical and numerical performance evaluations of our schemes. We

show how our proposed k-limited-access schemes provide a bandwidth-privacy trade-

off, namely how much bandwidth usage (i.e., number of transmissions) is needed to

achieve a certain level of privacy (captured by the value of k). We show that our

proposed schemes provide a trade-off curve that is close to the lower bound when

either k or n is large. In the case where both n and k are small, we show through

numerical evaluations that our proposed algorithms give an average performance that

is close to the lower bound.

The chapter is organized as follows. Section 3.2 introduces our notation, formulates the

problem, and gives a geometric interpretation. Section 3.3 discusses how k-limited-access

schemes limit the privacy leakage. Section 3.4 shows the construction of k-limited-access

schemes and proves their order-optimality when either n or k is large. Section 3.5 designs

algorithms which are better-suited for cases when both n and k are small. Section 3.6 dis-
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cusses related work and Section 3.7 concludes the chapter. Some of the proofs are delegated

to the appendices.

3.2 Problem Formulation and Geometric Interpretation

Index Coding. We consider an index coding instance, where a server has a database B of

m messages B = {bM}, where M = [m] is the set of message indices, and bj ∈ FF2 , j ∈ M,

with F being the message size, and where operations are done over the binary field. The

server is connected through a broadcast channel to a set of clients C = {cN}, where N = [n]

is the set of client indices. We assume that m ≥ n. Each client ci, i ∈ N , has a subset of

the messages {bSi}, with Si ⊂M, as side information and requests a new message bqi with

qi ∈ M \ Si that she does not have. We assume that the server employs a linear code, i.e.,

it designs a set of broadcast transmissions that are linear combinations of the messages in

B. The linear index code can be represented as AB = Y, where A ∈ FT×m2 is the coding

matrix, B ∈ Fm×F2 is the matrix of all the messages and Y ∈ FT×F2 is the resulting matrix of

linear combinations. Upon receiving Y, client ci, i ∈ N , employs linear decoding to decode

the requested message bqi .

Problem Formulation. In [BBJ11], it was shown that the index coding problem is equiv-

alent to the rank minimization of an n ×m matrix G ∈ Fn×m2 , whose i-th row gi, i ∈ [n],

has the following properties: (i) has a 1 in the position qi (i.e., the index of the message

requested by client ci), (ii) has a 0 in the j-th position for all j ∈ M \ Si, (iii) can have

either 0 or 1 in all the remaining positions. For instance, with reference to the example in

Figure 3.1, we would have

G =


1 ? 0 0 0

? 1 0 0 0

0 0 1 ? 0

0 0 ? 1 0

 ,

where ? can be either 0 or 1. It was shown in [BBJ11] that finding an optimal linear coding

scheme i.e., with minimum number of transmissions) is equivalent to completing G (i.e.,
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assign values to the ? components of G) so that it has the minimum possible rank. Once

we have completed G, we can use a basis of the row space of G (of size T = rank (G)) as a

coding matrix A. In this case, client ci can construct gi as a linear combination of the rows

of A, i.e., ci performs the decoding operation diAB = diY, where di ∈ FT2 is the decoding

row vector of ci chosen such that diA = gi. Finally, client ci can successfully decode bqi by

subtracting from diY the messages corresponding to the non-zero entries of gi (other than

the requested message). We remark that any linear index code that satisfies all clients with

T transmissions (where T is not necessarily optimal) – and can be obtained by any index

code design algorithm [ELH, HE15, CS08] – corresponds to a completion of G (i.e., given

A ∈ FT×m2 , we can create a corresponding G in polynomial time).

In our problem formulation we assume that we start with a given matrix G of rank T ,

i.e., we are given n distinct vectors that belong to a T -dimensional subspace. Using a basis

of the row space of the given G, we construct A ∈ FT×m2 . Then, we ask: Given n distinct

vectors gi, i ∈ [n], in a T -dimensional space, can we find a minimum-size set Ak with Tk ≥ T

vectors, such that each gi can be expressed as a linear combination of at most k vectors in

Ak (with 1 ≤ k ≤ T )? The vectors in Ak form the rows of the coding matrix Ak that we

will employ. Then by definition, client ci will be able to reconstruct gi using the matrix

A
(i)
k ⊂k Ak. We can equivalently restate the question as follows: Given a coding matrix A,

can we find P ∈ FTk×T2 , with Tk as small as possible, such that Ak = PA and each row of G

can be reconstructed by combining at most k rows of Ak? Note that k = T corresponds to

the conventional transmission scheme of an index coding problem for which P = IT . In the

remainder of the chapter we will refer to a scheme that chooses Ak to be the coding matrix

as k-limited-access scheme.

Transmission Protocol. In order to realize the privacy benefits of using k-limited-access

schemes – which we will thoroughly illustrate in Section 3.3 – we propose a different trans-

mission protocol for the index coding setup. Figure 3.2 shows both the conventional and the

proposed transmission protocols. In the conventional protocol, the server designs a set of T

packets, each corresponding to an equation from the set of equations AB = Y. As shown

in Figure 3.2(a), packet i ∈ [T ] consists of (i) a payload which contains the linear combi-
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Server

:Header

:Payload

i-th packet

(a) Conventional Transmission Protocol.

:Header

:Payload

Server

(b) Proposed Transmission Protocol.

Figure 3.2: A comparison between the conventional and the proposed transmission protocols.

The proposed transmission protocol incurs a negligible increase in the transmission overhead

when both n and m are o(F ).

nation yi and (ii) a header which contains the coefficients ai used to create the equation.

In the conventional protocol, the server sends these packets (both headers and payloads) on

the broadcast channel to all clients. Our proposed protocol, however, operates differently.

Specifically, the server generates packets which correspond to the set of equations AkB = Yk

in a way that is similar to the conventional protocol. The server then sends only the pay-

loads of these packets on the broadcast channel. Differently, the server sends the coefficients

corresponding to only A
(i)
k ⊂k Ak to client ci using a private key or on a dedicated private

channel (e.g., the same channel used by ci to convey her request to the server). Thus, using a

k-limited-access scheme incurs an extra transmission overhead to privately convey the coding

vectors. In particular, the total number of transmitted bits Ck can be upper bounded as

Ck ≤ nkm+ TkF, while the total number of transmitted bits C using a conventional scheme

is C = T (F +m). The extra overhead incurred is negligible in comparison to the broadcast

transmissions that convey the encoded messages when n and m are both o(F ), which is a

reasonable assumption for large file sizes (for instance, when sharing YouTube videos).

Geometric Interpretation. The geometric interpretation of our problem is depicted in

Figure 3.3. An index code A corresponds to a particular completion of the matrix G.

Therefore, the set of row vectors in G lies in the row span of A (which is of dimension T ).

We denote this subspace of dimension T by L. The problem of finding a matrix Ak can be

40



Figure 3.3: A geometric interpretation of k-limited-access schemes. An index code A is

obtained from a particular filling of the matrix G. Therefore, the collection of row vectors

of G lies in the span of A. Finding Ak is equivalent to finding a collection of subspaces,

each of dimension at most k, to cover G. Client ci is sent a collection of (at most) k rows of

Ak; these correspond to one subspace which covers gi.

interpreted as finding a set of subspaces, each of dimension at most k, such that each row

vector gi, i ∈ [n], is covered by at least one of these smaller subspaces. Once these subspaces

are selected, then the rows of Ak are taken as the union of the basis vectors of all these

subspaces. Client ci is then given the basis vectors of subspace Li, i.e., the one which covers

gi, instead of the whole matrix Ak. Therefore ci would have perfect knowledge of Li instead

of L. Having less information about L naturally translates to less information about the

requests of other clients, as we more formally discuss in the next section.

3.3 Achieved Privacy Levels

In this section, we investigate and quantify the level of privacy that k-limited-access schemes

can achieve compared to a conventional index coding scheme (i.e., when each client has

access to the entire coding matrix). In what follows, we consider the setup described in the

previous section and suppose that client cn is curious, i.e., by leveraging the (at most) k rows

A
(n)
k that she receives, she seeks to infer information about client ci, i ∈ [n− 1]. Specifically,
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Figure 3.4: The procedure of designing an index code and applying k-limited-access schemes.

we are interested in quantifying the amount of information that cn can obtain about qi (i.e.,

the identity of the request of ci) as a function of k.

We assume that the index coding instance is random, i.e., we consider the requests

and side information sets of clients as random variables and denote them as Q[n] and S[n],

respectively. The operation of the server is shown in Figure 3.4 and is described as follows:

Step-1: The server obtains the information about the requests Q[n] and side information

sets S[n] of all clients c[n].

Step-2: Based on this information, the server designs an index code A by means of some

index coding algorithm [ELH, HE15, CS08].

Step-3: The server then applies the k-limited-access scheme to obtain Ak = PA, where P

is a deterministic mapping from A to Ak (see Section 3.4 for the construction of P). This

implies that Tk is a deterministic function of T and k (i.e., the parameter of the scheme).

Step-4: The server sends A
(i)
k to client ci. If multiple A

(i)
k can be selected, then the server

picks and transmits one such matrix uniformly at random, independently of the underlying

A which might have generated this Ak.

We are now interested in quantifying the level of privacy that is achieved by the protocol

described above. Towards this end, we use two privacy metrics, namely an entropy-based

metric and the maximal information leakage.

3.3.1 Entropy-Based Privacy Metric

The entropy-based privacy metric is inspired by the geometric interpretation of our problem

in Figure 3.3. We let L (respectively, Ln) be the random variable associated with the
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subspace spanned by the T rows of the coding matrix A (respectively, spanned by the k row

vectors of A
(n)
k ). Client cn receives the matrix Yk and as such she knows Tk. Given this, we

now define the entropy-based privacy metric and evaluate it for the proposed protocol.

Definition 3.3.1. The entropy-based privacy metric is defined as

P
(Ent)
k = H (L|Ln, Tk) ,

and quantifies the amount of uncertainty that cn has about the subspace spanned by the T

rows of the index coding matrix A.

Before characterizing P
(Ent)
k , we state the following lemma, which is proved in Ap-

pendix 3.8.1.

Lemma 3.3.1. Given a subspace Ln ⊆ Fm2 of dimension k, let L(T, Ln) be the set of sub-

spaces L ⊆ Fm2 of dimension T ≥ k where Ln ⊆ L. Then |L(T, Ln)| is equal to

|L(T, Ln)| =
T−k−1∏
`=0

2m − 2k+`

2T − 2k+`
.

Assume an index coding setting with cn observing a particular subspace Ln = `n and a

number of transmissions Tk = tk for the k-limited access scheme. Moreover, we consider a

stronger adversary (i.e., curious client) and assume that she also knows the specific realization

of T = t. Given this, we can compute

P
(Ent)
k = H (L|Ln = `n, Tk = tk, T = t)

(a)
= H (L|Ln = `n, T = t)

(b)
= log (|L(t, `n)|)

(c)
= log

(
t−k−1∏
`=0

2m − 2k+`

2t − 2k+`

)
m�t≈ m(t− k), (3.1)

where: (i) the equality in (a) follows because Tk is a deterministic function of T and k, which

is the parameter of the scheme (see Step-3); (ii) the equality in (b) follows by assuming

that the underlying system maintains a uniform distribution across all feasible t-dimensional

subspaces of Fm2 ; (iii) the equality in (c) follows by virtue of Lemma 3.3.1. We note that when

m� t, then the quantity in (3.1) decreases linearly with k, i.e., as intuitively expected, the
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less rows of the coding matrix cn learns, the less she can infer about the subspace spanned

by the T rows of the coding matrix A. This suggests that, by increasing k, cn has less

uncertainty about qi. Note also that P
(Ent)
k is zero when k = t; this is because, under this

condition, cn receives the entire index coding matrix, i.e., Ln = L, and hence she is able

to perfectly reconstruct the subspace spanned by its rows. However, although P
(Ent)
k = 0

when k = t, cn might still have uncertainty about qi [KSC17]. Quantifying this uncertainty

is an interesting open problem; this uncertainty, in fact, depends on the underlying system,

e.g., on the index code used by the server and on the distribution with which the index code

matrix is selected.

3.3.2 Maximal Information Leakage

The second metric that we consider as our privacy metric is the Maximal Information Leakage

(MIL) [IKW16]. Given two discrete random variables X and Y with alphabets X and Y ,

the MIL from X to Y is denoted by L(X → Y ) and defined as

L(X → Y ) = sup
S−X−Y

log

∑
y∈Y maxs∈S pSY (s, y)

maxs∈S pS(s)
= log

∑
y∈Y

max
x∈X :pX(x)>0

pY |X(y|x), (3.2)

where the second equality is shown in [IKW16]. The MIL metric captures the amount of

information leaked about X through Y to an adversary, who is interested in estimating

a (possibly probabilistic) function S of X. This is captured by the fact that S − X − Y

forms a Markov chain as shown in the expression in (3.2). The metric considers a worst-case

such adversary, that is, an adversary who is interested in computing a function S for which

the maximum information can be leaked out of Y . The result in [IKW16] shows that this

quantity depends only on the joint distribution of X and Y . The following properties of the

MIL are useful [IKW16]:

• (Property 1): If X − Y − Z, then L(X → Z) ≤ min{L(X → Y ),L(Y → Z)},

• (Property 2): L(X → Y ) ≤ min{log |X |, log |Y|},

• (Property 3): L(X → X) = log | {x : pX(x) > 0} |.
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To describe how we use the MIL as a privacy metric in our setup, we first need to define

what are the corresponding random variables X and Y , and then argue that the estimation

of client cn of the requests of other clients forms a Markov chain as required by the MIL

definition. To do so, we first define the following sets:

1) Given gi, Ak and an integer r, let P(gi,Ak, r) be the set of all possible sub-matrices A
(i)
k

of Ak with exactly r rows, that client ci can use to reconstruct the vector gi:

P(gi,Ak, r) = {Z ⊂r Ak | ∃d ∈ Fr2 s.t. gi = dZ} ,

2) Given qi, Si and Ak, let T (qi,Si,Ak) be the set of all possible sub-matrices A
(i)
k of Ak

with the minimum possible number of rows, such that client ci with side information Si can

decode qi:

T (qi,Si,Ak) =
⋃

gi∈G(qi,Si)

P(gi,Ak, rmin),

where

G(qi,Si) =
{
g ∈ Fm2 | gqi = 1, g[m]\{qi∪Si} = 0

}
,

and

rmin = minR, R =
{
r ∈ N+ : ∃gi ∈ G(qi,Si) such that P(gi,Ak, r) 6= ∅

}
.

Since the requests and the side information sets are considered as random variables,

then all subsequently generated codes, namely A, Ak and A
(i)
k can be treated as random

variables as well. We denote the corresponding random variables of these quantities as A,

Ak and A
(i)
k respectively. In other words, for a given realization of Q[n] = q[n] and S[n] = S[n],

the corresponding realizations of the aforementioned codes used by the server are A = A,

Ak = Ak and A
(i)
k = A

(i)
k .

When using conventional index codes (i.e., without k-limited-access schemes), client cn

(i.e., the curious client and hence the adversary) would try to infer information about Q[n−1]

from observing A and given her information of Qn, Sn. Therefore, one can think of client

cn estimate of Q[n−1] as being a particular estimation function, the input of which is A.

Differently, after using k-limited-access schemes, client cn would only have observed A
(n)
k
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instead of A. Therefore, in the context of MIL, one choice of the variables X and Y is A

and A
(n)
k respectively. The function S would therefore be client cn’s estimate of Q[n−1] out

of A. The following proposition shows that this choice of variables X, Y and S allows us to

use the MIL as a metric.

Proposition 3.3.2. The following Markov chain holds

Q[n−1] − A− Ak − A(n)
k , (3.3)

conditioned on the knowledge of Qn, Sn in every stage of the chain.

Proof: We have the following:

• Q[n−1] −A−Ak holds since Ak is a deterministic function of A (see also Step-3 of the

proposed protocol);

• A − Ak − A(n)
k holds since p(A

(n)
k |Ak, Qn, Sn) = 1/|T (Qn, Sn, Ak)|, independent of A,

as described in Step-4 of the proposed protocol.

�

We define P
(MIL)
k = L

(
A→ A

(n)
k |Qn = qn, Sn = Sn

)
as our MIL privacy metric2. The quan-

tity P
(MIL)
k gives the maximum amount of information that cn can extract about Q[n−1] given

the knowledge of Qn, Sn. The following theorem – proved in Appendix 3.8.2 – provides a

guarantee on P
(MIL)
k .

Theorem 3.3.3. Using the MIL, the attained level of privacy against a curious client when

k-limited-access schemes are used is

P
(MIL)
k = O(|Sn|+mk). (3.4)

The quantity in (3.4) characterizes the maximum amount of information that can be leaked

to a curious client when k-limited-access schemes are used. It is clear that decreasing k

would decrease this amount of information; this aligns with the intuition that the less rows

2We use the notation L (X → Y |Z) to denote that the variables X and Y are conditioned on Z.
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Figure 3.5: This figure shows how the MIL privacy metrics compare for the conventional

index coding schemes and the k-limited-access schemes. Taking k = o(T ) would guarantee

privacy gains when using k-limited-access schemes.

a server gives to a client, the less information a client would be able to infer about other

clients sharing the broadcast domain. In order to shed more light on the benefits of using

k-limited-access schemes, one could compare the quantity P
(MIL)
k with the MIL obtained

when k-limited-access schemes are not used, i.e., when a client observes the whole matrix

A. Let this quantity be denoted as P̄
(MIL)
k = L(A → A|Qn = qn, Sn = Sn). Then we have

the following result, which is proved in Appendix 3.8.3.

Theorem 3.3.4. Using the MIL, the attained level of privacy against a curious client for a

conventional index coding setup is

P̄
(MIL)
k = Ω

(
mT − T 2

)
. (3.5)

The results in Theorem 3.3.3 and Theorem 3.3.4 can be interpreted with the help of Fig-

ure 3.5. The k-limited-access schemes achieve privacy gains as compared to conventional

index codes, when the two bounds in (3.4) and (3.5) strictly mismatch. A sufficient (but not

necessary) condition for this is to select k = o(T ).

3.4 Construction of k-limited-access Schemes

In this section, we focus on designing k-limited-access schemes and assessing their theoretical

performance in terms of number of additional transmissions required with respect to a con-

ventional index coding scheme. Recall that we are given a coding matrix A that requires T

transmissions. Then, we seek to construct a matrix P ∈ FTk×T2 , so that Ak = PA, and each

client needs to access at most k rows of Ak to decode her requested message. In particular,
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we aim at constructing matrices P with Tk as small as possible. Trivially, Tk ≥ T . Towards

this end, we first derive upper and lower bounds on Tk. Our main result is stated in the

theorem below.

Theorem 3.4.1. Given an index coding matrix A ∈ FT×m2 with T ≥ 2, it is possible to

transform it into Ak = PA with P ∈ FTk×T2 , such that each client can decode her requested

message by combining at most k rows of Ak, if and only if

Tk ≥ max {T, T ?} , T ? = min

{
Tk :

k∑
i=1

(
Tk
i

)
≥ n

}
. (3.6)

Moreover, we provide polynomial time (in n) constructions of P such that:

• When dT/2e ≤ k < T , then

Tk ≤ min {n, T + 1} ; (3.7)

• When 1 ≤ k < dT/2e, then

Tk ≤ min
{
n, k2dTk e

}
. (3.8)

Proof: The lower bound on Tk in (3.6) is proved in Appendix 3.8.4. In particular, the

bound in (3.6) says that, if we are allowed to combine at most k out of the Tk vectors, then

we should be able to create a sufficient number of vectors. The two upper bounds on Tk

in (3.7) and (3.8) are proved in Section 3.4.1, where we give explicit constructions for P. �

We note that, as expected, the smaller the value of k that we require, the larger the value

of Tk that we need to use. Trivially, for k = 1 we would need Tk = n, i.e., the server would

need to send uncoded transmissions. Thus, there is a trade-off between the bandwidth –

measured as the number Tk of broadcast transmissions – and privacy – captured by the value

of k that we require. Interestingly, when k ≥ dT/2e, with just one extra transmission, i.e.,

Tk = T + 1, we can restrict the access of each client to at most half of the coding matrix,

independently of the coding matrix A. In other words, for this regime, we can achieve a

certain level of privacy with minimal overhead. However, as we further reduce the value of

k, the overhead becomes more significant. Moreover, the results in Theorem 3.4.1 also imply
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Figure 3.6: Bandwidth (Tk on the y-axis) versus privacy (k on the x-axis) trade-off when

using the k-limited-access schemes in Theorem 3.4.1 for different values of n. The plots in

this figure are for T = 20.

that our constructions are order-optimal in the case of large values of n (when n = Θ(2T ))3.

In addition, when dT/2e ≤ k < T , our scheme is at most one transmission away from the

optimal number of transmissions, and this is for any value of n. This is shown in the following

lemma, which is proved in Appendix 3.8.4.

Lemma 3.4.2. Consider an index coding setup. We have

• When n = 2T − 1 and dT/2e ≤ k < T , the bounds in (3.6) and (3.7) coincide, i.e., the

provided construction of P is optimal;

• For any value of n < 2T − 1 and dT/2e ≤ k < T , the bound in (3.7) is at most one

transmission away from the bound in (3.6);

• When n = Θ(2T ) and for any value of k, then Tk = Θ(k2
T
k ), i.e., the provided con-

struction is order-optimal.

Figure 3.6 shows the trade-off exhibited by our proposed k-limited-access schemes be-

tween bandwidth usage (Tk) and the attained privacy (k) - we use k as a proxy to the

amount of attained privacy against a curious client (see Section 3.3). The figure shows the

3Note that n is always O(2T ) (i.e., the number of distinct vectors gi for a given T is at most 2T − 1).
The case of large values of n corresponds to the case where this bound on the number of distinct vectors gi

is not loose: there is a corresponding lower bound on n, i.e., n = Ω(2T ). Therefore, the case of large values
of n corresponds to n = Θ(2T ).
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performance of our constructions in Theorem 3.4.1 (labeled as Scheme-1), as well as the

lower bound in (3.6) (labeled as LB) and an upper bound which corresponds to uncoded

transmissions (labeled as UB). Figure 3.6(a) confirms the order-optimality of our construc-

tions when n = 2T −1. In addition, our schemes perform similarly well when n is sufficiently

large (and not necessarily equal to 2T − 1) as shown in Figure 3.6(b) where n = T 4. Finally,

Figure 3.6(c) shows the performance for a small value of n (n = T 2). The figure shows that

our proposed constructions do not perform as well when n and k are small, a case which we

study in more details in Section 3.5.

We now conclude this section by giving explicit constructions of the P matrix and prove

the two upper bounds on Tk in (3.7) and (3.8). Our design of P allows to reconstruct any

of the 2T vectors of size T . As such our constructions are universal, in the sense that the

matrix P that we construct does not depend on the specific index coding matrix A.

3.4.1 Proof of Theorem 3.4.1, Equations (3.7) and (3.8)

Recall that A is full rank and that the i-th row of G can be expressed as gi = diA, where

di ∈ FT2 is the coefficients row vector associated with gi. We next analyze two different

cases/regimes, which depend on the value of k.

Case I: dT/2e ≤ k < T . When n ≥ T + 1, let

P =

IT

1T

 , (3.9)

which results in a matrix Ak with Tk = T + 1, matching the bound in (3.7). We now

show that each gi = diA, i ∈ [n], can be reconstructed by combining up to k vectors of

Ak. Let w(di) be the Hamming weight of di. If w(di) ≤ dT/2e, then we can reconstruct

gi as gi = [di 0]Ak, which involves adding w(di) ≤ dT/2e ≤ k rows of Ak. Differently, if

w(di) ≥ dT/2e + 1, then we can reconstruct gi as gi = [d̄i 1]Ak, where d̄i is the bitwise

complement of di. In this case, reconstructing gi involves adding T −w(di)+1 ≤ bT/2c ≤ k

rows of Ak.

When n < T + 1, then it is sufficient to send n uncoded transmissions, where the i-th

50



transmission satisfies ci, i ∈ [n]. In this case ci has access only to the i-th transmission, i.e.,

k = 1. This completes the proof of the upper bound in (3.7).

Example: We show how the scheme works via a small example, where T = 4 and k = 2.

In this case, we have

P =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1


.

If gi =
[
1 1 0 0

]
A, then it can be reconstructed as gi =

[
1 1 0 0 0

]
PA with 2 rows

of PA used in the reconstruction. Differently, if gi =
[
1 1 1 0

]
A, then it can be recon-

structed as gi =
[
0 0 0 1 1

]
PA with again 2 rows of PA used in the reconstruction.

Case II: 1 ≤ k < dT/2e. Let Q =
⌊
T/
⌈
T
k

⌉⌋
and Trem = T − Q

⌈
T
k

⌉
. If k divides T , then

Q = k, Trem = 0, otherwise Q ≤ k − 1 and Trem ≤
⌈
T
k

⌉
. Then, we can write

P =



Z1 0 · · · 0 0

0 Z2 · · · 0 0
...

...
. . .

...
...

0 0 · · · ZQ 0

0 0 · · · 0 ZQ+1


,

where, for i ∈ [Q], the matrix Zi, of dimension λi × T , is constructed as follows

Zi =
[
0λi×(i−1)dTk e Z̄i 0λi×(Q−i)dTk e 0λi×Trem

]
,

where Z̄i, of dimension λi ×
⌈
T
k

⌉
, has as rows all non-zero vectors of length

⌈
T
k

⌉
. Therefore,

λi = 2dT/ke− 1. Similarly, the matrix ZQ+1, of dimension λQ+1×T , is constructed as follows

ZQ+1 =
[
0λQ+1×QdTk e Z̄Q+1

]
,
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where Z̄Q+1, of dimension λQ+1 × Trem, has as rows all non-zero vectors of length Trem.

Therefore, λQ+1 = 2Trem − 1.

In other words, the matrix P is constructed as a block-diagonal matrix, with the diagonal

elements being Z̄i for all i ∈ [Q+ 1]. Therefore, equation (3.8) holds by computing

Tk =

Q+1∑
i=1

λi = Q
(

2dTk e − 1
)

+ 2Trem − 1 ≤ k2dTk e.

What remains is to show that any vector gi, i ∈ [n], can be reconstructed by adding

at most k vectors of P. To show this, we prove that any vector v ∈ FT2 can indeed be

constructed with the proposed design of P. We note that we can express the vector v as

v = [v1 · · · vQ+1], where vi, i ∈ [Q] are parts of the vector v each of length
⌈
T
k

⌉
, while

vQ+1 is the last part of v of length Trem. Then, we can write v =
∑

i∈K(v)

v̄i, where v̄i =[
0(i−1)dTk e vi 0(Q−i)dTk e 0Trem

]
for i ∈ [Q], v̄Q+1 =

[
0QdTk e vQ+1

]
and K(v) ⊆ [Q+ 1]

is the set of indices for which vi is not all-zero. According to the construction of P, for all

i ∈ K(v), the corresponding vector vi is one of the rows in Zi. The proof concludes by noting

that |K(v)| ≤ k. This is true because, if k does not divide T , then Q ≤ k − 1; otherwise,

Q = k but Trem = 0 (i.e., vQ+1 does not exist), therefore K(v) ⊆ [k]. This completes the

proof of the upper bound in (3.8).

Example: We show how the scheme works via a small example, where T = 8 and k = 3.

For this particular example, we have Q =
⌊
T/
⌈
T
k

⌉⌋
= 2 and Trem = T − Q

⌈
T
k

⌉
= 2. Thus,

the idea is that, to reconstruct a vector v ∈ F8
2, we treat v as k = 3 disjoint parts; the first 2

are of length
⌈
T
k

⌉
= 3 and the remaining part is of length Trem = 2. We then construct P as

k = 3 disjoint sections, where each section allows us to reconstruct one part of the vector.

52



10
1

10
2

10
3

10
4

10
5

10
6

n

10
1

10
2

10
3

10
4

10
5

10
6

T
k

UB

LB

Scheme-1

(a) k = 2

10
1

10
2

10
3

10
4

10
5

10
6

n

10
1

10
2

10
3

10
4

10
5

10
6

T
k

UB

LB

Scheme-1

(b) k = 5

Figure 3.7: Performance of the scheme in Theorem 3.4.1 (referred to as Scheme-1) for dif-

ferent values of n, compared against the lower bound LB in equation (3.6) and the upper

bound UB of sending uncoded transmissions - T = 20.

Specifically, we construct

Z̄1 = Z̄2 =



0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1


, Z̄3 =


0 1

1 0

1 1

 , P =


Z̄1 07×3 07×2

07×3 Z̄2 07×2

03×3 03×3 Z̄3

 .

Any vector v can be reconstructed by picking at most k vectors out of P, one from each

section. For example, let v = [0 1 0 0 1 1 1 0]. This vector can be reconstructed by adding

vectors number 2, 10 and 16 from P.

3.5 Constructions for small values of n and k

In Section 3.4, we have proved that, independently of the value of n, if k ≥ dT/2e, then it is

sufficient to add one additional transmission to the T transmissions of the conventional index

coding scheme. Moreover, the analysis provided in Lemma 3.4.2 showed the order-optimality
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of our universal scheme in Theorem 3.4.1 (referred to as Scheme-1) for values of k < dT/2e
when n is large (i.e., exponential in T ). Figure 3.7 shows the performance of Scheme-1 in

Theorem 3.4.1 as a function of the values of n for T = 20, with k = 2 in Figure 3.7(a) and

k = 5 in Figure 3.7(b). The performance of Scheme-1 was obtained by averaging over 1000

random index coding instances. In each instance, a code is constructed using the scheme

described in Section 3.4.1, and only the rows actually used by the clients c[n] are retained.

The performance of the scheme is finally computed by the average number of rows retained in

those 1000 iterations. Figure 3.7 shows that our proposed scheme performs well not only for

the case of large n (i.e., n = 2T − 1) but also for lower values of n. However, Figure 3.7 also

suggests that for small values of both n and k (note the left-half of the plot in Figure 3.7(a)),

we need to devise schemes that better adapt to the specific values of the index coding matrix

A and vectors gi, i ∈ [n] (recall that Scheme-1 is universal, and hence independent of the

value of A). We next propose and analyze the performance of such algorithms.

3.5.1 Special Instances

We first represent the problem through a bipartite graph as follows. We assume that the rank

of the matrix G is T . Then, there exists a set of T linearly independent vectors in G; without

loss of generality, we denote them as g1 to gT . Therefore, each vector gi+T , i ∈ [n− T ], can

be expressed as a linear combination of some/all vectors from g[T ]; we denote these vectors

as the component vectors of gi+T . We can then represent the problem as a bipartite graph

(U ∪ V , E) with |U| = T and |V| = n− T , where ui ∈ U represents the vector gi for i ∈ [T ],

vj ∈ V represents the vector gj+T for j ∈ [n − T ], and an edge exists from node ui to

node vj if gi is one of the component vectors of gj+T . Figure 3.8 shows an example of such

graph, where n = 9 and T = 6. For instance, v1 (i.e., g7) can be reconstructed by adding

ui, i ∈ [4] (i.e., gi, i ∈ [4]). Given a node s in the graph, we refer to the sets Os and Is as

the outbound and inbound sets of s, respectively: the inbound set contains the nodes which

have edges outgoing to node s, and the outbound set contains the nodes to which node s

has outgoing edges (i.e., the nodes each of which has an incoming edge from s). Nodes

on either sides of the bipartite graph have either inbound or outbound sets. For instance,
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Figure 3.8: Bipartite graph represen-

tation.

Figure 3.9: Optimal representation

when k = 2.

with reference to Figure 3.8, Ou1 = {v1, v2, v3} and Iv1 = {u1, u2, u3, u4}. For this particular

example, there exists a scheme with T2 = 6 which can reconstruct any vector with at most

k = 2 additions. The matrix A2 which corresponds to this solution consists of the following

vectors: g1, g1 + g2, g1 + g2 + g3, g1 + g2 + g3 + g4, g5 and g5 + g6. It is not hard to see

that each vector in G can be reconstructed by adding at most 2 vectors in A2. The vectors

in A2 that are not in G can be aptly represented as intermediate nodes on the previously

described bipartite graph. These intermediate nodes are shown in Figure 3.9 as highlighted

nodes. Each added node represents a new vector, which is the sum of the vectors associated

to the nodes in its inbound set. We refer to the process of adding these intermediate nodes

as creating a branch, which is defined next.

Definition 3.5.1. Given an ordered set S = {s1, · · · , sS} of nodes, where si precedes si+1

for i ∈ [S−1], a branch on S is a set S ′ = {s′1, · · · , s′S−1} of S−1 intermediate nodes added

to the graph with the following connections: node s′1 has two incoming edges from s1 and

s2, and for i ∈ [S − 1] \ {1}, s′i has two incoming edges from nodes s′i−1 and si+1.

For the example in Figure 3.9, we created branches on two ordered sets, S1 = {u1, u2, u3, u4}
and S2 = {u5, u6}. Once the branch is added, we can change the connections of the nodes

in V in accordance to the added vectors. For the example in Figure 3.9, we can replace u[4]

in Iv1 with only s3. Using this representation, we have the following lemma.

Lemma 3.5.1. If OuiT ⊆ OuiT−1
⊆ · · · ⊆ Oui1 for some permutation i1, · · · , iT of [T ], then

this instance can be solved by exactly T transmissions for any k ≥ 2.
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Proof: One solution of such instance would involve creating a branch on the set S =

{ui1 , ui2 , · · · , uiT }. The scheme used would have the matrix A2 with its t-th row at =
t∑̀
=1

gi`

for t ∈ [T ]. Note that gi1 = a1 and at + at−1 = git for all t ∈ [T ] \ {1}. Moreover, for

j ∈ [n] \ [T ], if vj−T ∈ Ouit for some it, then vj−T ∈ Oui` for all ` ≤ t. If we let t be the

maximum index for which vj−T ∈ Ouit , then we have Ivj−T
= {ui1 , · · · , uit}, and so we get

gj =
t∑̀
=1

gi` = at. This completes the proof. �

Corollary 3.5.2. For G ∈ Fn×T2 of rank T , if n = T + 1, then this instance can be solved

in T transmissions for any k ≥ 2.

Proof: Without loss of generality, let g[T ] be a set of linearly independent vectors of G.

Then, we have Oui = {v1} for i ∈ Iv1 and Ouj = ∅ for j ∈ [T ]\Iv1 . Thus, from Lemma 3.5.1,

this instance can be solved in T transmissions. This completes the proof. �

3.5.2 Algorithms for General Instances

We here propose two different algorithms, namely Successive Circuit Removing (SCR) and

Branch-Search, and analyze their performance.

Algorithm 1: Successive Circuit Removing (SCR). Our first proposed algorithm is

based on Corollary 3.5.2, which can be interpreted as follows: any matrix G of r + 1 row

vectors and rank r can be reconstructed by a corresponding A2 matrix with r rows. If there

does not exist any subset of rows of G with rank less than r, we call G a circuit4. Our

algorithm works for the case k = 2q, for some integer q. We first describe SCR for the case

where q = 1, and then extend it to general values of q. The algorithm works as follows:

1) Circuit Finding: find a set of vectors of G that form a circuit of small size. Denote the

size of this circuit as r + 1.

2) Matrix Update: apply Corollary 3.5.2 to find a set of r vectors that can optimally recon-

struct the circuit by adding at most k = 2 of them, and add this set to A2.

3) Circuit Removing: update G by removing the circuit. Repeat the first two steps until the

4This is in accordance to the definition of a circuit for a matroid[Oxl06].
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matrix G is of size T ′ × T and of rank T ′, where T ′ ≤ T . Then, add these vectors to A2.

Once SCR is executed, the output is a matrix A2 such that any vector in G can be

reconstructed by adding at most k = 2 vectors of A2. Consider now the case where q = 2

(i.e., k = 4) for example. In this case, a second application of SCR on the matrix A2 would

yield another matrix, denoted as A4, such that any row in A2 can be reconstructed by adding

at most 2 vectors of A4. Therefore, any vector in G can now be reconstructed by adding at

most 4 vectors of A4. We can therefore extrapolate this idea for a general q by successively

applying SCR q times on G to obtain Ak, with k = 2q.

The following theorem gives a closed form characterization of the best and worst case

performance of SCR.

Theorem 3.5.3. Let T SCR
q be the number of vectors in Ak obtained via SCR. Then, for

k = 2q and integer q, we have

fBest(fBest(· · · fBest(n)))︸ ︷︷ ︸
q times

≤T SCR
q ≤fWorst(fWorst(· · · fWorst(n)))︸ ︷︷ ︸

q times

, (3.10)

where fBest(n) = 2
⌊
n
3

⌋
and fWorst(n) = T

(⌊
n

T+1

⌋
+ 1
)
.

Proof: First we focus on the case q = 1. The lower bound in (3.10) corresponds to the

best case when the matrix G can be partitioned into disjoint circuits of size 3. In this case,

if SCR finds one such circuit in each iteration, then each circuit is replaced with 2 vectors

in A2 according to Corollary 3.5.2. To obtain the upper bound, note that any collection of

T + 1 has at most T independent vectors, and therefore contains a circuit of at most size

T + 1. Therefore, the upper bound corresponds to the case where the matrix G can be

partitioned into circuits of size T + 1 and an extra T linearly independent vectors. In that

case, the algorithm can go through each of these circuits, adding T vectors to A2 for each

of these circuits, and then add the last T vectors in the last step of the algorithm. Finally,

the bounds in (3.10) for a general q can be proven by a successive repetition of the above

arguments. �

Algorithm 2: Branch-Search. A naive approach to determining the optimal matrix Ak

is to consider the whole space FT2 , loop over all possible subsets of vectors of FT2 and, for
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every subset, check if it can be used as a matrix Ak. The minimum-size subset which can be

used as Ak is indeed the optimal matrix. However, such algorithm requires in the worst case

O
(

22T
)

number of operations, which makes it prohibitively slow even for very small values

of T . Instead, the heuristic that we here propose finds a matrix Ak more efficiently than

the naive search scheme. The main idea behind the heuristic is based on providing a subset

R ⊂ FT2 which is much smaller than 2T and is guaranteed to have at least one solution.

The heuristic then searches for a matrix Ak by looping over all possible subsets of R. Our

heuristic therefore consists of two sub-algorithms, namely Branch and Search. Branch takes

as input G, and produces as output a set of vectors R which contains at least one solution

Ak. The algorithm works as follows:

1) Find a set of T vectors of G that are linearly independent. Denote this set as B.

2) Create a bipartite graph representation of G as discussed in Section 3.5.1, using B as the

independent vectors for U .

3) Pick the dependent node vi with the highest degree, and split ties arbitrarily. Denote by

deg(vi) the degree of node vi.

4) Consider the inbound set Ivi , and sort its elements in a descending order according to

their degrees. Without loss of generality, assume that this set of ordered independent nodes

is Ivi = {u1, u2, · · · , udeg(vi)}.
5) Create a branch on Ivi . Denote the new branch nodes as {u?1, u?2, · · · , u?deg(vi)

}.
6) Update the connections of all dependent nodes in accordance with the constructed branch.

This is done as follows: for each node vj ∈ V with deg(vj) ≥ k, if Ivj ∩ Ivi is of the form

{u1, u2, · · · , u`} for some ` ≤ deg(vi), then replace {u1, u2, · · · , u`} in Ivj with the single

node u?` . Do such replacement for the maximum possible value of `.

7) Repeat 3) to 6) until all nodes in V have degree at most k.

The output R is the set of vectors corresponding to all nodes in the graph. The next

theorem shows that R in fact contains one possible Ak, and characterizes the performance

of Branch.

Theorem 3.5.4. For a matrix G of dimension n × T , (a) Branch produces a set R which
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contains at least one possible Ak, (b) the worst-case time complexity tBranch of Branch is

O(n2), and (c) |R| ≤ (n− T )T .

Proof: To see (a), note that the algorithm terminates when all dependent nodes have a

degree of k or less. In every iteration of the algorithm, the degrees of all dependent nodes

either remain the same or are reduced. In addition, at least one dependent node is updated

and its degree is reduced to 1. Therefore the algorithm is guaranteed to terminate. Since all

dependent nodes have degrees k or less, their corresponding vectors can be reconstructed by

at most k vectors in R. Therefore, R contains at least one solution Ak.

To prove (b), the worst-case runtime of Branch corresponds to going over all nodes in

V , creating a branch for each one. For the i-th node considered by Branch, the algorithm

would update the dependencies of all dependent nodes with degrees greater than k, which

are at most n− i nodes. Therefore tBranch =
n−1∑
i=0

(n− i) = n(n− 1) = O(n2).

To prove (c), note that |R| is equal to the total number of nodes in all branches created

by the algorithm. Therefore we can write |R| ≤ ∑
vi∈V

deg(vi) ≤ (n− T )T = O(nT ). �

Let tSearch be the worst-time complexity of the Search step in Branch-Search. Then the

worst-case time complexity of Branch-Search is equal to tBS = tBranch+tSearch ≤ O(n2)+2|R| =

O(n2) + O(2nT ) = O(2nT ), which is exponentially better than the complexity of the naive

search. Although our heuristic is still of exponential runtime complexity, we observe from

numerical simulations that |R| is usually much less than (n − T )T . Finding more efficient

ways of searching through the set R to find a solution Ak is an open question.

3.5.3 Numerical Evaluation

We here explore the performance of our proposed schemes through numerical evaluations.

Specifically, we assess the performance in terms of Tk of SCR and Branch-Search (labeled

as BS). We compare their performance against the lower bound in equation (3.6) (labeled

as LB), and the upper bound of sending uncoded transmissions (labeled as UB). In partic-

ular, we are interested in regimes for which k < dT/2e, because otherwise we know from

Theorem 3.4.1 that Tk = T + 1. Moreover, we consider values of n < 2T − 1, because
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Figure 3.10: Performance comparison for different schemes - T = 6, k = 2.

if n = 2T − 1 we know from Lemma 3.4.2 that Scheme-1 is order optimal. For SCR, we

evaluate its average performance (averaged over 1000 iterations) as well as its upper and

lower bounds performance established in Theorem 3.5.3. For Branch-Search, we evaluate its

average performance (averaged over 1000 iterations). Figure 3.10 shows the performance of

all the aforementioned schemes for T = 6 and k = 2. As can be seen from Figure 3.10, SCR

consistently performs better than uncoded transmissions. In addition, although the current

implementation of SCR greedily searches for a small circuit to remove, more sophisticated

algorithms for small circuit finding could potentially improve its performance. However,

the bounds in (3.10) suggest that the performance of SCR is asymptotically O(n). Branch-

Search appears to perform better than other schemes in the average sense. Understanding

its asymptotic behavior in the worst-case is an interesting open problem.

3.6 Related Work

Index coding was introduced in [BBJ11], where the problem was proven to be NP-hard.

Given this, several works have aimed at providing approximate algorithms for the index
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coding problem [ELH, BKL10, CS08]. In our work, we were interested in studying the index

coding problem from the perspective of private information delivery.

The problem of protecting privacy was initially proposed to enable the disclosure of

databases for public access, while maintaining the anonymity of the clients [AP08]. Similar

concerns have been raised in the context of Private Information Retrieval (PIR), which

was introduced in [CKG98] and has received a fair amount of attention [FGH16, CWJ17,

SJ18, BU18b, BU18a]. In particular, in PIR the goal is to ensure that no information

about the identity of clients’ requests is revealed to a set of malicious databases when clients

are trying to retrieve information from them. Similarly, the problem of Oblivious Transfer

was studied [BCR87, MDP14] to establish, by means of cryptographic techniques, two-way

private connections between the clients and the server. We note that it is not clear how

the use of cryptographic approaches would help in our setup. A curious client, in fact,

obtains information about other clients once she learns the transmitted combinations of the

messages, i.e., the coding operations. In other words, given that a curious client has also

requested data, she needs to learn how the transmitted messages are coded, in order to be

able to decode her own requested message.

We were here interested in addressing privacy concerns in broadcast domains. In partic-

ular, we analyzed this problem within the index coding framework, as we recently proposed

in [KSC17]. This problem differs from secure index coding [DSC12, NPR18], where the goal

is to guarantee that an external eavesdropper (with her own side information set) in [DSC12],

and each client in [NPR18], does not learn any information about the content of the mes-

sages other than her requested message. Differently, our goal was to limit the information

that a client can learn about the identities of the requests of other clients (however, the two

approaches could be combined). Note that the techniques developed here can fundamen-

tally differ from those designed for secure index coding. As an extreme example, in fact,

the server in our setup can trivially send all the messages that it possesses in an uncoded

manner on the broadcast channel. In this case, a curious client will be able to decode all mes-

sages, but would still not be able to infer which messages were requested/possessed by other

clients, and would learn nothing about their side information. This property is what fun-
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damentally contrasts the problem under consideration from the works in [DSC12, NPR18].

Moreover, our approach here has a significant difference with respect to [KSC17]. In fact,

while in [KSC17] our goal was to design the coding matrix to guarantee a high-level of pri-

vacy, here we assumed that an index coding matrix (that satisfies all clients) was given to

us and we developed methods to increase its achieved level of privacy.

The use of k-limited-access schemes allows the server to transform an existing index code

into a locally decodable index code [HL12, NKL18]. Locally decodable index codes allow each

client to decode her request using at most k symbols out of the codeword, where k is referred

to as the locality of the code. In [HL12], the authors showed that the optimal scalar linear

locally decodable index codes with locality 1 are the ones obtained from the coloring of the

information graph of the index coding problem. In addition, they provided probabilistic

results on the existence (and the impossibility of existence) of locally decodable codes with

particular lengths and localities for index coding problems on random graphs. In [NKL18],

the authors extended one result in [HL12] where they showed that the optimal vector linear

locally decodable index codes with locality 1 are obtained from the fractional coloring of the

information graph. In addition, they provided a scheme which allows the construction of

locally decodable codes for a particular set of index coding instances with special properties,

i.e., when certain covering properties are maintained on the side information graph of the

index coding problem. Differently from these works, one of the main results of this chapter

consisted of providing deterministic constructions/schemes which transform any existing

index code into an equivalent code with locality k. In addition, our schemes are universal,

i.e., they do not depend on the underlying index coding instance.

The solution that we here proposed to limit the privacy leakage is based on finding

overcomplete bases. This approach is closely related to compressed sensing and dictionary

learning [CN15], where the goal is to learn a dictionary of signals such that other signals can

be sparsely and accurately represented using atoms from this dictionary. These problems

seek lossy solutions, i.e., signal reconstruction is not necessarily perfect. This allows a

convex optimization formulation of the problem, which can be solved efficiently [RBE10].

In contrast, our problem was concerned with lossless reconstructions, in which case the
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optimization problem is no longer convex.

3.7 Conclusion

In this chapter, we studied privacy risks in index coding. This problem is motivated by the

observation that, since the coding matrix needs to be available to all clients, then some clients

may be able to infer the identity of the request and side information of other clients. We

proposed the use of k-limited-access schemes: these schemes transform the coding matrix so

that we can restrict each client to access at most k-rows of the transformed matrix as opposed

to the whole of it. We explored two privacy metrics, one based on entropy arguments, and the

other on the maximal information leakage. Both metrics indicate that the amount of privacy

increases with the number of rows that we hide. We then designed polynomial time universal

k-limited-access schemes, that do not depend on the structure of the index coding matrix

A and proved that they are order-optimal when either k or n is large. For the case where

both k and n are small, we proposed algorithms that depend on the structure of the index

coding matrix A and provide improved performance. We overall found that there exists an

inherent trade-off between privacy and bandwidth (number of broadcast transmissions), and

that in some cases we can achieve significant privacy with minimal overhead.

3.8 Appendices

3.8.1 Proof of Lemma 3.3.1

The proof is based on simple counting arguments. A subspace L contains all vectors in

Ln, the number of which is 2k. A subspace L therefore consists of a set of T − k linearly

independent vectors {v1, · · · vT−k} that are in Fm2 \Ln, and all linear combinations of {v[T−k]}
and vectors in Ln. We now enumerate the number of ways such a subspace L, with Ln ⊆ L,

can be constructed. We first pick a vector v1 ∈ Fm2 \ Ln. The total number of possible

choices for v1 is equal to 2m − 2k. Once v1 is selected to be in L, then all vectors in v1 + Ln

are added to L, where v1 + Ln is the set of vectors obtained by adding v1 to all possible
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vectors in Ln. Therefore, by picking v1, the total number of vectors of Fm2 that do not belong

to L is now equal to 2m − 2k+1, out of which we pick v2. The above process is repeated

until all vectors {v[T−k]} are selected. Therefore, the total number of such choices becomes∏T−k−1
`=0

(
2m − 2k+`

)
. In order to compute the total number of subspaces, we need to divide

this number by the total number of basis vectors (i.e., linearly independent vectors) used to

represent the vectors in L \ Ln; we denote them by {b1, · · · , bT−k}. The number of vectors

in such a basis is T − k. Given a subspace L, we pick b1 from the set of vectors in L \ Ln,

the number of which is 2T − 2k. Then we pick b2 from the set of vectors L \ (Ln + b1), the

number of which is 2T − 2k+1. We repeat the previous argument for all T − k vectors. The

total number of such basis vectors is therefore equal to
∏T−k−1

`=0

(
2T − 2k+`

)
. Dividing the

two quantities therefore proves Lemma 3.3.1.

3.8.2 Proof of Theorem 3.3.3

To prove Theorem 3.3.3, we first recall the definition of G(qi,Si). Given qi and Si, G(qi,Si)
is the set which contains all possible i-th vectors gi of the realization G of the matrix G,

namely

G(qi,Si) =
{
g ∈ Fm2 | gqi = 1, g[m]\{qi∪Si} = 0

}
.

In addition, we define the following set. Given gi and an integer r, we let D(gi, r) be the set

of all possible matrices A
(i)
k of r rows from which gi can be reconstructed, namely

D(gi, r) =
{
Z ∈ Fr×m2 | ∃d ∈ Fr2 s.t. gi = dZ

}
.

Note that the definition of D(gi, r) is different than that of P(gi,Ak, r) in that it is not

dependent on a specific matrix Ak. Then, we can write
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P
(MIL)
k = L(A→ A

(n)
k |Qn = qn, Sn = Sn)

(a)

≤ log
∣∣∣A(n)

k |Qn = qn, Sn = Sn
∣∣∣

(b)
= log

∣∣∣∣∣∣
k⋃
r=1

⋃
gn∈G(qn,Sn)

D(gn, r)

∣∣∣∣∣∣
≤ log

 k∑
r=1

∑
gn∈G(qn,Sn)

|D(gn, r)|


(c)
= log

(
2|Sn|

k∑
r=1

|D(g′n, r)|
)

(d)

≤ log

(
2|Sn|

k∑
r=1

r−2∏
j=0

(2m − 2j+1)

)

≤ log
(
2|Sn|k(2m − 2)k−1

)
= O(|Sn|+mk),

where: (i) the equality in (a) follows from Property 2 of the MIL; (ii) the equality in (b)

follows by noting that, given Qn and Sn, a possible A
(n)
k would belong to D(gn, r) for some

r ∈ [k] and some gn ∈ G(Qn, Sn); (iii) the equality in (c) follows by noting that, by symmetry,

the number of matrices with r rows from which the vector gi can be reconstructed is the

same for every possible vector gi ∈ G(qi,Si). Therefore, the sum over gn can be replaced by

D(g′n, r)×|G(qn,Sn)| where g′n is any arbitrary vector in G(qn,Sn). Based on the structure of

the vectors gn ∈ G(qn,Sn), i.e., one in position qn and zeros in the positions [m] \ {qn ∪ Sn},
it follows that |G(qn,Sn)| = 2|Sn|; (iv) the inequality in (d) is obtained by counting arguments

similar to those in the proof of Lemma 3.3.1. In particular, we enumerate the number of

ways we can construct a matrix A
(n)
k with r linearly independent rows, which when linearly

combined gives gi. We first pick a row vector v1 ∈ Fm2 \ Span(gi), where Span(X ) of a set of

row vectors X is the row span of these vectors; the number of possible vectors v1 is 2m − 2.

Then, we pick a second row vector v2 ∈ Fm2 \ Span({gi, v1}); the number of possible vectors

v2 is 2m − 22. We repeat this argument for r − 1 vectors; the r-th vector is then selected so

that a linear combination of all r vectors is equal to gi.

65



3.8.3 Proof of Theorem 3.3.4

We have

P̄
(MIL)
k = L(A→ A|Qn = qn, Sn = Sn)

(a)
= log |{A : p(A|Qn = qn, Sn = Sn) > 0}|

= log

∣∣∣∣∣∣
⋃

g∈G(qn,Sn)

{A : ∃d ∈ FT2 ,g = dA}

∣∣∣∣∣∣
≥ log

∣∣{A : ∃d ∈ FT2 ,g
′ = dA}

∣∣
(b)

≥ log |{L ⊆ Fm2 : dim(L) = T,g′ ∈ L}|

(c)
= log

T−1∏
j=1

(
2m − 2j

2T − 2j

)
(d)

≥ log

(
2m − 2

2T − 2

)T−1

= Ω
(
mT − T 2

)
,

where: (i) the equality in (a) follows from Property 3 of the MIL; (ii) the inequality in (b)

follows by letting L ⊆ Fm2 be a subspace of dimension dim(L); (iii) the equality in (c) follows

by using Lemma 3.3.1 with k = 1 (since g′ has only one row) and t = T ; (iv) the inequality

in (d) follows by noting that

(
2m − 2j

2T − 2j

)
≥
(

2m − 2

2T − 2

)
for j ∈ [T − 1].

3.8.4 Proof of Theorem 3.4.1 - Equation (3.6) and Lemma 3.4.2

Theorem 3.4.1 - Equation (3.6). Given an index coding matrix A, we denote by VA ⊆ FT2

the subspace formed by the span of the rows of A. It is clear that the dimension of VA is

at most T (exactly T if A is full rank) and that the n distinct rows of G lie in VA. Let

ai ∈ Fm2 , i ∈ [Tk], be the i-th row of Ak. Then, the problem of finding a lower bound on the

value of Tk can be formulated as follows: what is a minimum-size set of vectors Ak = {a[Tk]}
such that any row vector of G can be represented by a linear combination of at most k vectors

of Ak?

A lower bound on Tk can be obtained as follows. Given Ak, there must exist a linear

combination of at most k vectors of Ak that is equal to each of the n distinct row vectors of

G. The number of distinct non-zero linear combinations of up to k vectors is at most equal
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to
k∑
j=1

(
Tk
j

)
. Thus, we have

k∑
i=1

(
Tk
i

)
≥ n. (3.11)

Combining this with the fact that Tk ≥ T gives precisely the bound in (3.6).

Lemma 3.4.2. We now derive the lower bound in Lemma 3.4.2. We first consider the case

where n = 2T − 1. From (3.11), we obtain

k∑
i=1

(
Tk
i

)
≥ 2T − 1. (3.12)

Since in general Tk ≥ T , to prove that Tk ≥ T + 1 for k < T , it is sufficient to show that we

have a contradiction for Tk = T . Indeed, by setting Tk = T , the bound in (3.12) becomes

k∑
i=1

(
T

i

)
≥ 2T − 1 =

T∑
i=1

(
T

i

)
,

which clearly is not possible since k < T . Hence, Tk ≥ T + 1 for all k < T .

For a general n and 1 ≤ k < dT/2e, we have

k

(
Tke

k

)k
≥ k

(
Tk
k

)
≥

k∑
i=1

(
Tk
i

)
≥ n

=⇒ Tk ≥
k

k−1
k

e
n1/k = Ω(kn

1
k ).

Therefore, Tk = Ω(k2
T
k ) when n = Θ(2T ). This lower bound, along with the upper bound

in equation (3.8) concludes the proof of Lemma 3.4.2.
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CHAPTER 4

Using mm-Waves for Secret Key Establishment

This chapter shows our second example of application-tailored security solution; namely

the use of Millimeter Waves (mmWaves) for ensuring security. The fact that mmWave

communication needs to be directional is usually perceived as a challenge; in this chapter

we argue that it can be perceived as an opportunity for more resilient security solutions.

We are concerned with the problem of efficient secret key sharing among communicating

parties. We consider an adversary who passively eavesdrops communication and wishes

to learn the secret key being established. Our goal is to establish unconditionally (e.g.,

regardless of the computational and/or storage capabilities of the adversary) secure keys at

a high rate – the reason for these goals will be apparent later in the chapter. Therefore,

our security metrics are namely the secret key generation rate and the information-theoretic

secrecy of the established keys. We use the directionality in mmWave communication as

a resource in our protocol: as will be shown later, our proposed protocol builds on packet

erasures, which we show can be induced by the appropriate use of spatial and temporal

coding of the transmitted data. We showcase the potential of our approach in two setups:

mmWave-based WiFi networks and vehicle platooning. We show that in the first case, we

can establish a few hundred secret bits with minimal changes to standard communication

protocol; while in both cases, with the right choice of parameters, we can potentially establish

keys in the order of tenths of Mbps.
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4.1 Introduction

Millimeter Wave (mmWave) communications are expected to have significant impact on

wireless communication networks such as 5G networks [WHG14], over-60 GHz-WiFi net-

works [GSC17], autonomous vehicles and vehicle platoons [PSV]. In addition, the inherent

directionality of mmWaves can be utilized to establish physical layer secrecy. In fact, inher-

ent properties to the mmWave communication systems (e.g., channel variability, direction-

ality, wider bandwidth allocations) are exploited to reduce the eavesdropping capabilities of

Eve [ZWW17].

This work proposes a secret key establishment technique based on mmWave communica-

tion. The main motivation stems from the fact that packet erasures can help create secrecy.

In fact, a recent line of work [ADD13, SCA16] demonstrated secret key establishment proto-

cols that relied on packet erasures from multi-hop and multipath communication, as well as

the use of wiretap codes and beamforming over WiFi. Experiments showed that these pro-

tocols yield several Mbps of shared secret keys. This work extends these secret key exchange

protocols in a mmWave environment. In fact, the mmWave directional transmissions, if not

perfectly aligned, inherently lead to packet losses, and thus it seems a natural host environ-

ment for erasure-based key establishment. Differently from existing physical layer secrecy

works [HFA18], our proposed protocol: 1) is information-theoretically secure against passive

eavesdroppers with limited network presence, 2) allows for very high secret key exchange

rates, and 3) is autonomous (i.e., does not require third-party assistance).

Our proposed technique differs from existing cryptographic encryption measures which

depend on limited adversarial capabilities: computational capabilities, e.g. Diffie-Hellman

(DH), or storage capabilities, e.g., Bounded-Storage Model [Dzi06]. In contrast, our proposed

scheme establishes secret keys that are information-theoretically secure against eavesdrop-

pers with limited network presence. Moreover, current cryptographic techniques rely on

high complexity algorithms to compensate for the low rate of secret key establishment. In

this work, we show, through two different scenarios, that our scheme promises secret key

generation rates in the order of tens/hundreds of Mbps.

69



Main Contributions. We showcase our approach for two scenarios: (1) over-60 GHz-WiFi

networks, where base stations use mmWave antenna arrays for transmissions. First, we pro-

pose an analytical model for the instantaneous received Signal-to-Noise-Ratio (SNR), that

is inspired from the empirical channel model in [TNM14] and system parameters (e.g., an-

tenna array sizes and beam patterns as described in [GSC17]. We show that, with the right

choice of parameters, with minor modification to the standard beamsweeping mechanism, a

considerable amount of secret bits (up to a few hundreds) can be established between the

base station and mobile devices for virtually no additional transmission cost. In addition,

we show that a more invasive secret key establishment protocol achieves few hundred Mbps

of secret key generation rates with increased security guarantees.

(2) Vehicular platooning, which is a safety-critical application. We show that, with appro-

priate choices of code parameters and antenna placement, our technique allows platoons to

establish keys with rates up to 166 Mbps – 4 orders of magnitude gain over rates achieved

by DH; this allows the use of (otherwise impractical) One-Time Pad (OTP) encryption (an

information-theoretically secure encryption technique).

The chapter is organized as follows: Section 4.2 presents our adversary model and back-

ground; Section 4.3 discusses the WiFi network application; Section 4.4 discusses the vehicle

platooning application and Section 4.5 concludes the chapter.

4.2 Model and Background

System and Adversary Model. We consider a pair of communicating parties who

wish to establish a pairwise key using the scheme in [ADD13, SCA16]. The transmitting,

a.k.a. Alice (resp. receiving, a.k.a. Bob) party is connected to a set of NT transmitting

(resp. NR receiving) mmWave antenna arrays, each labeled by ti and situated at location

Ti, i ∈ {1, · · · , NT} (resp. rj and Rj, j ∈ {1, · · · , NR}). In addition, the communicating

parties wish to communicate secretly in the presence of an eavesdropper (a.k.a. Eve), which

is equipped with a set of NE antenna arrays, each label by ek and situated at location

Ek, k ∈ {1, · · · , NE}. We assume Eve to be located anywhere within the transmission radius
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of the communicating parties, and is passive; therefore the locations of its antennas are un-

known. We assume also that Eve has access to the same physical layer technology as the

legitimate nodes, has infinite memory as well as unbounded computational capabilities at

her disposal, and has perfect knowledge of the protocols. The transmitting power used by

each transmitting antenna is denoted by PT , while the noise figure at each receiving antenna

array (for both Bob and Eve) is No. We assume that the available bandwidth is B. We

assume that each transmitting antenna array is capable of focusing its transmitting energy

in desired directions by the use of appropriate beamforming mechanisms. Given a particu-

lar beamforming direction, the received SNR at the jth receiver (resp. kth eavesdropper)

antenna from the ith transmitter antenna is denoted by γ(ti,rj) (resp. γ(ti,ek)). Considering

the fact that the wireless channel is typically random, then γ(ti,rj) and γ(ti,ek) are considered

as random variables, with distributions denoted as f
γ(ti,rj)

and fγ(ti,ek) .

mmWave Channel Model and Antenna Patterns. In mmWaves, transmitters are ex-

pected to employ transmit beamforming in order to focus transmission energy in a particular

direction in space. However, the radiated energy pattern in space as a result of beamforming

strongly relies on 1) the wireless channel between the transmitters and receivers, and 2) the

assumed antenna radiation pattern. Therefore, in this work, we strive to employ realistic

channel models and antenna patterns in order to give a realistic assessment of our proposed

mechanisms. In particular, (1) For over-60 GHz-WiFi cellular networks, we implement the

point-to-point 73 GHz outdoor channel model proposed in [TNM14] which takes into account

line-of-sight as well as multipath fading signal components. Moreover, in order to take into

account the fact that transmitters/receivers that are close by in space exhibit similar chan-

nel characteristic, we also implement space consistency between receivers and transmitters,

as specified in [Net16]. We also use the standardized antenna radiation pattern proposed

in [Net16]. Based on empirical data, we deduce an analytical expression for the received

SNR which we describe in the next section.

(2) For vehicular networks, similar models for mmWave channel models are lacking. We

developed instead a channel model based on ray tracing, which takes into account reflections

off the hood, back and roof of the cars in the platoon. We also used a realistic model for a
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vertically-polarized 70 GHz antenna array system.

Secret Key Protocol [CPF15]. The protocol proposed in [CPF15] allows Alice and Bob

(each with possibly multiple antennas) to establish a shared key which is secret from Eve.

We here briefly explain how the protocol works, and delegate the details of the protocol

to [CPF15, ADD13]. The protocol operates in two rounds of transmission.

Round 1: Alice sends a set of random packets to Bob, who sends feedback of which packets

were correctly received. The key idea is that some of these packets are received by Bob while

being erased for Eve. If Alice knows a lower-bound estimate N of such erased packets, then

it can create a shared secret key of size N with Bob in the second round.

Round 2: Assume that x1, · · · , xM are the M packets now shared between Alice and Bob,

and Eve knows M − N of them. Then, the secure common key is the concatenation of

y1, · · · , yN , where the packets yi are carefully designed (based on MDS codes [SCA16]) linear

combinations of x1, · · · , xM . Note that Alice does not need to know which N packets are

erased; only the number of such packets suffices.

Example. In round 1, Alice sends x1 to x4 to Bob, who sends a feedback that packets x1

to x3 were correctly received. Assuming Eve missed two packets N = 2, then in round 2,

the secret key is the concatenation of y1 = x1 + x2 and y2 = x2 + x3 which Eve would know

nothing about.

Note that this secret is created by knowing that Eve misses at least two packets, but

not necessarily knowing which two exactly. The security is guaranteed by the fact that the

second round does not involve sending the secret itself but rather the packet indices used to

create the secrets [SCA16] (e.g., the indices (1, 2) and (2, 3) in the discussed example). In

our setting, we make worst-case estimates on how much Eve misses i.e., N , and assess how

good these estimates are via the insecure areas concept as we show next.

Creating Erasures and Insecure Areas. The method we follow to enforce erasures in

the protocol described previously is based on wiretap codes and directionality. A high-level

description of wiretap codes is as follows. The performance of a wiretap code is dictated

through two parameters, namely Th1 and Th2. Three distinct situations can occur when a
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wiretap-coded packet is received: 1) if it is received with γ ≥ Th1 then it is decoded perfectly

(i.e., “received”), 2) if γ ≤ Th2 then it is completely missed by the receiver (i.e., “erased”),

and 3) if Th1 > γ > Th2 then partial information can be extracted from the packet. The

three aforementioned modes of reception are shown in Figure 4.3. The green area highlights

an area in space where a receiver would experience a value of γ ≥ Th1 and therefore would

decode all transmitted information. The orange region (which typically encloses the green

region) highlights an area where Th1 > γ > Th2 and therefore a receiver may decode part of

the transmitted information. Finally, a receiver outside the green and orange regions (white

region) will not be able to infer any information. We assume that packets transmitted in

the first round are encoded using wiretap codes. Therefore, Alice hopes that Bob receives

these packets while at least some of the packets are erased at Eve; we refer to this event

as the Secret Reception (SecRec) event. In our setup, we always make the assumption that

N = 1, i.e., packets from at least one transmission/receiver link are erased at Eve while

received by Bob. More formally, we denote by a SecRec event that there exists (ti, rj) for

(i, j) ∈ {1, · · · , T}× {1, · · · , R} for which the transmission is correctly received by rj and is

erased by all eavesdropper’s antennas. The probability of such event is defined as

PSecRec := Pr
(
∃(i, j) : γ(ti,rj) ≥ Th1, γ

(ti,ek) ≤ Th2 ; ∀k
)

(4.1)
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If M is the number of packets sent on one such link, then the protocol can create shared

secret key of sizeN = M ·L where L is the size of one packet. Note that increasing the number

of transmitters/receivers (and dispersing them geographically) increase the probability of this

estimate of N . The protocol fails when the Secure Reception event does not happen, i.e.,

either Bob does not receive data or Eve receives all packets the Bob does. Consider the

example in Figure 4.3 with two transmitting antennas at Alice, and assume that Bob and

Eve each has one antenna. If Eve resides in the “not white” region of any link then it would

be able to receive the packets transmitted on that link; Secure Reception will not occur with

high probability. We therefore consider the protocol to be vulnerable if PSecRec is not high

enough, i.e., PSecRec ≤ 1 − δ where δ is our security level. We refer to this situation as the

protocol being not δ-secure. The region in space where this occurs (i.e., the probability is

not high enough) is referred to as the Insecure Area (IA). Other mechanisms may be needed

to protect against eavesdroppers in the IA, and therefore a smaller IA indicates a stronger

key agreement mechanism. The choices of Th1 and Th2 affect the secret key generation rate

as well as the size of the IA. In what follows, we use these two quantities as the performance

metrics of our proposed protocol.

Performance Metrics. We define the following two performance metrics:

1. The average secret key rate: the average number of bits per second established between

the communicating parties secretly from the eavesdropper. Given a wiretap code with

parameters Th1 and Th2, a key generation rate equal toB [log(1 + Th1)− log(1 + Th2)]

can be established between communicating parties while being secure from an eaves-

dropper, assuming that a secret reception event occurs. Therefore, the average secret

key rate is equal to

Rav = RmaxPSecRec, Rmax =

B log2(1 + Th1)︸ ︷︷ ︸
Decoding Rate

−B log2(1 + Th2)︸ ︷︷ ︸
Secrecy Overhead

 . (4.2)

The Decoding Rate component corresponds to the raw data transmission rate achieved

between the (i, j)-th transmitting/receiving antennas whenever γ(ti,rj) ≥ Th1. The
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Figure 4.4: Antenna sectors [GSC17].

Secrecy Overhead component accounts for the coding overhead due to the use of wiretap

codes, thus the difference is the achieved data throughput.

2. δ-Insecure Area or IAδ: we define the set A = {r, θ : PSecRec ≤ 1− δ} as the set of

locations in space where the protocol is not δ-secure, where r, θ are polar coordinates.

Therefore, we can define the δ-Insecure Area as

IAδ :=

∫
r,θ∈A

rdrdθ.

δ-Insecure Area captures the regions where the likelihood of Eve breaking the secret

key establishment mechanism is too high (i.e., at least δ).

Choosing Th1 and Th2 gives contradicting effects with respect to the last two objectives.

Specifically, when Th1 and Th2 are relatively different in value, this results in a relatively

larger PSecRec (therefore a larger insecure area) and larger value of Rmax. The reverse effect

happens when Th1 and Th2 are relatively close. We finally note that today a number of

practical designs for wiretap codes are emerging, based on polar [MV11], LDPC [TDC07]

and lattice codes [LHO], which enable with low complexity to achieve performance curves

similar to Rmax in (4.2). For this chapter, we will directly use the expression in (4.2) to

estimate potential benefits and trade-offs.
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4.3 Showcase I - IEEE 802.11ay

Our first showcase application is in the context of 60-GHz-based WiFi networks [GSC17].

The IEEE 802.11ay amendment proposes the use of directional communication to cope with

the increased signal attenuation that accompanies transmission in the mmWave band.

Directional Communication. IEEE 802.11ay proposes the use of virtual antenna sec-

tors which discretizes the azimuth angle. Shown in Figure 4.4, a base station sectorizes

the azimuth range into 32 − 64 sectors. Being equipped with up to 3 antenna arrays, each

array is responsible from transmission in one-third of these sectors1. A mobile device is

typically equipped with one antenna array and can have up to 4 sectors. Each device has

a set of pre-computed beamforming weights that correspond to transmission in each of the

predefined sectors. When a base station wishes to communicate with a mobile device, both

communicating parties have to agree on the best sector to use (i.e. best set of beamforming

weights to employ) so that received signal strength is maximized. This sector training phase

is referred to as the beamsweeping phase, and it is split into to sub-phases: 1) a Sector-Level

Sweep (SLS) phase where both communicating parties agree on the best two sectors to use,

and 2) a Beam Refinement Phase (BRP) in which the predefined beamforming weights are

fine-tuned to further maximize the received signal strength. The SLS phase is also com-

prised of two sub-phases: the Transmit-SLS for negotiating the best sector to use at the

transmitter, and the Receive-SLS for the receiver. We claim that the proposed mechanism

for beam training in IEEE 802.11ay creates an excellent opportunity to establish secret keys

between mobile devices and WiFi back-end services. For the sake of demonstrating our ideas

we only focus on the Transmit-SLS phase, noting that they can be extended to other phases

of beamsweeping. We next describe Transmit-SLS:

1) The initiator (e.g. base station) sends a sequence of beacon frames, one in each sector. The

responder (e.g. mobile device) receives these frames with a quasi-omnidirectional antenna

pattern. Each beacon frame is marked with an ID for the used antenna array and sector.

1Antenna arrays do not cooperatively transmit in the same sector.
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2) The responder receives the aforementioned frames with varying levels of SNR. It then

sends a feedback packet containing the optimal SNR value, and the sector ID of initiator

transmitted beacon which was received with this SNR. This feedback packet is transmitted

once in every sector of the responder. The initiator receives these frames with a quasi-

omnidirectional antenna pattern.

3) Upon receiving the feedback packet from the responder, the initiator will be informed of

the best sector to use for transmission. The initiator will then send one feedback packet on

this sector, containing the optimal SNR value and the ID of the sector used by the responder

which was received with this SNR.

4) Upon receiving the feedback packet from the initiator, the responder will be informed of

the best sector to use for transmission.

System Parameters. We assume a WiFi network with NT base stations (which act as Al-

ice’s transmitters) and a mobile device with NR antennas. Each base station is equipped with

mmWave planar antenna arrays with 6 × 6 elements, while each mobile device is equipped

with a single antenna array. The antenna arrays specifications and radiation patterns fol-

low the standard in [Net16]. As mentioned earlier, we use the channel model proposed

in [TNM14] with space consistency as specified in [Net16]. We assume that PT/NoB = −99

dB and the channel bandwidth is 1 GHz. All transceivers have a noise figure of −99 dBm.

We assume that base stations have 36 transmission sectors, with the first sector centered at

0◦ with inter-sector separation of 10◦.

4.3.1 Analytical Expressions

Empirically, and according to the channel model we use, γ(i,j) in dB is normally distributed,

i.e., fγ(i,j)(x) ∼ N (γ
(i,j)
av , σ2). The parameters are σ2 = 24 and

γ(i,j)
av (d, θ) = γ(i,j)

av (1, θ)− 21 log10(d), (4.3)

where d and θ are the distance and the azimuth angle between ith transmitter and jth

receiver (j here refers to an antenna of either Bob or Eve), and where we explicate by
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γ
(i,j)
av (d, θ) that γ

(i,j)
av depends on the factors d and θ. The term γ

(i,j)
av (1, θ) corresponds to

the average received SNR at a receiver located 1 m away from the ith transmitter and with

the same azimuth angle as the jth receiver. This value is dependent on the transmitted

power, receiver noise figure as well as the beampattern of the transmitting antenna array.

Empirically, γ
(i,j)
av (1, θ) can be approximately modeled as

γ(i,j)
av (1, θ) = G(θ) + γ

(i,j)
init − 66.8,

G(θ) = 10 log10

∣∣∣∣∣
(

3∑
i=1

0.33 cos

(
θ

1.8

)
cos

(
2i− 1

2
π sin (θ)

))3
∣∣∣∣∣ , θ ∈ [−180, 180],

(4.4)

where γ
(i,j)
init = 10 log10(

PT
NoB

) and the subtraction of −66.8 dB is to account for the path

loss due to 1-m of signal propagation. The empirical expressions discussed here are obtained

from Monte-Carlo simulations with 300000 iterations. Figure 4.5 shows γ
(i,j)
av versus r for

θ = 0, both from numerical simulations as well as the expression in (4.3). Figure 4.6

shows γ
(i,j)
av versus θ for r = 1 both from numerical simulations as well as the expression

in (4.4). Figure 4.7 shows the empirical histogram of γ(i,j) values in dB, as well as the

normal distribution N (γ
(i,j)
av , 24) for r = 0.2 m, 1 m and 2 m.

Based on the aforementioned assumptions, we can express PSecRec as
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PSecRec = Pr
(
∃(i, j) : γ(ti,rj) ≥ Th1, γ

(ti,ek) ≤ Th2 ; ∀k
)

(4.5)

= 1− Pr
(
∀(i, j) : γ(ti,rj) ≥ Th1, γ(ti,ek) ≤ Th2 ; ∀k

)
(a)
= 1−

∏
(i,j)

Pr
(
γ(ti,rj) ≥ Th1, γ(ti,ek) ≤ Th2 ; ∀k

)
(4.6)

= 1−
∏
(i,j)

(
1− Pr

(
γ(ti,rj) ≥ Th1, γ

(ti,ek) ≤ Th2 ; ∀k
))

= 1−
∏
(i,j)

(
1−Q

(
Th1 − γ(ti,rj)

av√
24

)∏
k

(
1−Q

(
Th2 − γ(ti,ek)

av√
24

)))

(4.7)

where (a) follows by making an assumption that the variables γ(i,j),∀(i, j) are independent.

4.3.2 Secret Key Establishment Protocols

Incorporating the secret key exchange scheme into the assumed WiFi network can be done

in various ways, each with different levels of effectiveness (in terms of the proposed security

metrics) as well as its complexity (e.g., how much change in the communication protocol is

required to facilitate the scheme). In addition, the performance of the proposed scheme is

dictated by the values of Th1 and Th2. The thresholds are computed based on the assumed

transmission rate and the target secret key rate as follows. Let the beacon frames be trans-

mitted at a rate of RT Mbps. Setting the Decoding rate in equation (4.2) to this value would
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give the corresponding value of Th1. To achieve a target secret key exchange rate of RS, the

Secrecy Overhead rate in equation (4.2) should be equal to RT −RS; this directly gives the

corresponding value of Th2.

We now consider two possible secret key establishment protocols:

1. Beamsweeping-Based (Less Overhead). In this protocol, the secret key estab-

lishment protocol is bootstrapped on top of the T-SLS protocol. Specifically, the protocol

includes a chunk of random bits in the beacon frame used by transmitter antennas during

the T-SLS phase. Beacon frames are transmitted at a rate of RT = 27.5 Mbps [NCF14].

We assume that a chunk of 1 kbits in the beacon frame is allocated for random bits. In this

chunk, we assume that 250 random bits are encoded by a wiretap code and inserted. There-

fore we have the Secrecy Overhead to be equal to 750/1k × 27.5 Mbps. The corresponding

values of Th1 and Th2 can therefore be computed as described earlier. This approach does

not require an intrusive change in the existing transmission protocol of the assumed WiFi

network. Therefore, as will be shown in the next section, it allows for the establishment of

shared secret keys at virtually no additional transmission overhead.

2. Dedicated Secret Key Exchange Packets (High Secrecy Rate). In this protocol,

dedicated frames are sent for the purpose of secret key establishment. The Decoding Rate as

well as the Secrecy Overhead are determined so as the establish a good secret key rate and

a small insecure area. These dedicated frames are sent after a legitimate receiver is detected

by the transmitter at the T-SLS phase, and therefore an estimate of the receiver’s SNR value

is known by the transmitter.

4.3.3 Performance Evaluation

We assume that a legitimate receiver has NR = 1 one antenna which is located at position

(0, 0) in space, and receives in an omni-directional way. The transmitter has NT transmitting

antenna array, which are symmetrically distributed around the point (0, 0) on a circle with
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radius d. We also assume that the eavesdropper is equipped with one antenna which receives

in an omni-directional manner (similar to the receiver). When a transmitter antenna array is

transmitting data to the legitimate receiver antenna, we assume that the transmitter antenna

array beamforms at the location of the receiver’s antenna, even during T-SLS phase (i.e.,

we assume that the legitimate receiver is always aligned with the main direction of a sector).

This assumption is reasonable given the locations of transmitters we consider with respect

to the legitimate receiver.

1) Beamsweeping-Based. Figure 4.8 shows the average number of secret bits when

NT = 4 and assuming a Beamsweeping-Based protocol. The value of Rav depends on the

probability of Secret Reception, and therefore is dependent on the location of the eavesdrop-

per. Nevertheless, Figure 4.8 shows that an average of 250 bits of secret keys can be achieved

against eavesdroppers 5 meters away from the legitimate receiver antenna. Therefore, our

simulations suggest T-SLS can automatically provide an average of 250 bits between the

transmitter and receiver which are kept secret from eavesdroppers that are 5 meters away

from the receiver.

Figure 4.9 shows the insecure area IAδ versus NT for different values of d. We consider

here δ = 0.01. For NT = 4 and d = 2, the insecure region (i.e., the area in which an

eavesdroppers renders PSecRec ≤ 0.99) is approximately 20 m2. As intuitively expected,
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increasing d further increases the insecure area. Moreover, Figure 4.9 suggests that further

increasing the number of transmitters does not always decrease the insecure area – the

amount of decrease in the insecure area as NT increases diminishes, with a seeming plateau

reached for the case of d = 2 at approximately NT = 8.

2) Dedicated Secret Key Exchange Packets. The relatively high values of an

insecure areas exhibited in Figure 4.9 is due to the particular choices of Th1 and Th2 so

as to be compatible with T-SLS frames. On the other hand, if dedicated frames (with

specific Decoding Rates and Secrecy Overhead) are to be used, better-performing (in terms

of average secret key exchange rate and insecure areas) secret key exchange protocols can be

established. Figure 4.10 shows the insecure area versus different choices of Th2 for d = 2,

NT = 4 and Th1 = 7. The figure suggests that the insecure region can be significantly

decreased (approximately to an order of magnitude) by increasing the value of Th2 to 3

dB. In fact, using these particular choices of the thresholds yields a maximum secret key

generation rate of 301 Mbps. Figure 4.11 shows how much the average secret key rate is

achieved against eavesdroppers in different locations. It is clear that in most of the region,

the maximum secret key generation rate is achieved.
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4.4 Showcase II - Vehicle platooning

Vehicle platooning comprises a set of autonomous cars which drive on the road in a line

formation with approximately the same speed and relatively small inter-vehicle distances

[PSV].

Setup and Protocol. We assume that each car has two mmWave antenna arrays used for

transmission and two omni-directional antennas for reception. One pair of transmit/receive

antennas (pair-1) is mounted on top of the roof of the car at a height of 0.5 m and the other

pair (pair-2) at 1 m. We assume that No = −80 dBm and PT = 30 dBm.

The secret key protocol works as follows: 1) Pair-1 from the front car sends random

packets encoded with a suitable wiretap code to Pair-1 of the back car (Link-1), 2) Pair-2

from the front car sends random packets encoded with a suitable wiretap code to Pair-2 of

the back car (Link-2), 3) the front car sends a set of carefully-designed packets as per the

protocol in [CPF15] to the back car to establish secret keys.

Analysis and Discussion. The preliminary channel model we developed does not account

for random channel fading. Therefore, the concept of δ-insecure area becomes a deterministic

one, i.e., we only consider IA0. Our key agreement protocol can establish up to 166 Mbps

of secret bits, with IA0 = 0. To put this number in perspective, a typical symmetric key

exchange algorithm such as (DH-2048), implemented on an off-the-shelf Dedicated-Short-

Range-Communication (DSCR) transceiver, gives a key generation rate of approximately 20

kbps; that is, there is a performance gain of approximately 4 orders of magnitude. Table 4.1

shows a comparison between DH-2048 and our proposed secret key establishment protocol.

Application Example. We will show next that, thanks to the high rate of secret key

generation, our protocol allows for the use of OTP to secure the string stability functionality

of vehicle platoons. In order to maintain string stability within the platoon controllers,

each car in the platoon exchanges data packets every 100 ms, each of size 60 bytes [PSV],

with both the cars in front of and to the back of it. We will show that our suggested

key agreement technique can generate enough secret bits which allows the use of OTP to

encrypt such messages. Assume that our proposed algorithm for key generation is used every
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DH-2048 Erasure-based mechanism

Critical resource Computation power Bandwidth

Secret Key Rate

(realistic setup)
20 kbps 166 Mbps

Complexity of

encryption technique
Moderate (AES) Simple (OTP)

Quantum-Vulnerable Yes No (Info. theoretically secure)

Adversary with

high network

presence

Resilient Weak

Table 4.1: Comparison between DH and proposed mechanism for vehicle platooning.

5 minutes for a duration of 10 ms. Therefore, each two consecutive cars will have an amount

of secret keys equal to 10 ms ×166 Mbps ≈ 200 kB to use for encryption during the next

5 minutes. The total amount of data to be transmitted during the next 5 minutes is equal

to 5 min × 60 B ≈ 180 kB ≤ 200 kB of secret bits. Therefore, OTP is a practical solution,

something rarely achieved in any other kind of security application.

Discussion. Comparing our proposed key establishment mechanism that is based on channel

erasures, against conventional DH algorithms, we note that our solution is superior in the

following aspects: 1) it attains 4 orders of magnitude gains in terms of key generation rates,

2) it allows for using encryption techniques with very low complexity (e.g., OTP) and 3)

it is not vulnerable against eavesdroppers with high computational powers (e.g., quantum

adversaries). However, it is affected by the availability of a wide transmission bandwidth

and the network-presence of adversaries.

4.5 Conclusion and Discussion

In this chapter we investigated how the directional nature of mmWave communication can

be used to enhance security. We showcased how mmWaves and wiretap codes can enhance
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the performance of secret key generation techniques in the context of two applications, over-

60 GHz-WiFi networks and vehicle platooning. For both cases, we used/developed channel

models with realistic antenna parameters to give realistic assessment of such protocols. For

the case of WiFi networks, we empirically developed analytical expressions for the received

SNR. We showed that existing T-SLS protocol in IEEE 802.11ay can be used to create a few

hundred secret keys at virtually no additional transmission cost, while dedicated protocols

in both cases establish very high rates. This work is an initial investigation on the topic. We

believe that our results are enticing enough to build a complete system-level implementations

of our proposed scheme and analyze its performance in real-world.
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CHAPTER 5

Distortion based Light-weight Security for

Cyber-Physical Systems

(The work in this chapter is based on joint work with Ph.D candidate Gaurav Kumar Agar-

wal.)

The final example of our application-tailored approach to security is in the context of

Cyber-Physical Systems (CPS). In many CPSs, agents can affect the operation of other

agents using data that is inter-communicated among them; this data pertains to the control

operations of these agents (e.g., state vectors and input vectors). Therefore, an unauthorized

and malicious access to this data can hazardously affect the operations of these CPSs. In

this work, we consider an adversary who wishes to learn the communicated state vector of a

particular control system. Many CPSs are comprised of agents with limited computational

and/or energy resources (e.g., IoT devices). In these cases, typical cryptographic tools may

not be the most efficient security solutions, and encryption and decryption scheme needs to

be devised which are suitable for such control systems. Fortunately, the following observation

exists: when designing a security solution, it is (in many cases) sufficient to influence the

estimate of the adversary to an estimate that is ”far away” from the actual value of the

data vector. Based on this observation, we propose a distortion-based security metric which

we believe is more appropriate for these applications and is quite frugal in terms of prior

requirements on shared keys. In this chapter, we propose distortion-based metrics to protect

CPS communication and show that it is possible to confuse adversaries with just a few bits of

pre-shared keys. In particular, we will show that a linear dynamical system can communicate

its state in a manner that prevents an eavesdropper from accurately learning the state.
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5.1 Introduction

Wireless networked environments are a natural host for a number of cyber-physical control

applications, ranging from autonomous cars and drones, to the Internet-of-Things (IoT),

to immersive environments such as augmented reality. It is well recognized that wireless

networking is essential to realize the potential of new CPS applications, and is equally well

recognized that private and secure exchange of information are necessary and not simply

desirable conditions for the CPS ecosystem to thrive. For instance, personal health data

in assisted environments, car positions and trajectories, proprietary interests, all need to

be protected. This chapter introduces a new approach to secure communication in CPS,

that aims to distort an adversary’s view of a control system’s states. In particular, we will

show that a linear dynamical system can securely communicate its state to a trusted party

in a manner that prevents a malicious adversary eavesdropping the communication from

accurately learning the state.

Our starting observation is that information security measures (cryptographic and in-

formation theoretic secrecy), are not well matched to CPS applications as they impose

unnecessary requirements, such as protecting all the raw data, and thus can cause high

operational costs. Cryptographic methods rely on computational complexity: they require

short keys, but high complexity at the communicating nodes (that can be simple sensors in

some cases), and can impose a significant overhead on short packet transmissions, therefore

increasing delay [WLF16, ZGH13, THM15, KS13]. Information theoretic methods rely on

keys: they have low complexity and do not add packet overhead, but require the communi-

cating nodes to share large keys - every communication link needs to use a shared secret key

(for a one-time pad) of length equal to the entropy (effectively length) of the transmitted

data [Sha49]. These costs accumulate rapidly given that large CPS applications can have

dense communication patterns.

Instead, we propose a lightweight approach, that uses small amounts of key and low com-

plexity operations, and builds upon a distortion measure. The following example illustrates
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Figure 5.1: Example of drone motion: protection of the most significant bit.

the effect of maximizing distortion1. Consider the following simple example of a drone’s

flying motion, depicted in Fig. 5.1. The drone starts at any position, and moves between ad-

jacent points within the grid. It regularly communicates its location to a legitimate receiver,

Bob. A passive eavesdropper, Eve, wishes to infer the drone’s locations, and can perfectly

overhear all the transmissions the drone makes. We assume the drone and Bob share just

one bit of key, that is secret from Eve, and ask: what is the best use we can make of the

key?

Using the one bit of shared key to protect the most significant bit (MSB) is not a good

solution. The MSB can be protected by XORing a one bit of shared key with the MSB.

As shown in Fig. 5.1 the adversary can discover the fake trajectory after a few time steps

since this scheme leads to trajectories that do not adhere to the dynamics or environment

constraints. In particular, the fake trajectory abruptly moves from the left end of the grid

to the right end. At this point, the adversary can learn the real trajectory by flipping back

the MSB (we assume that the used scheme is known to everyone). Similar attacks can be

made if we use a one-time pad [Sha49] using the same keys over time: as time progresses,

more fake trajectories can be discovered and discarded.

Conventional entropy measures also fail to provide insights on how to use the key. For

instance, assume we label the 64 squares in Fig. 5.1 sequentially row per row, and consider

1Although we illustrate our approach for a specific simple example, it extends to protecting general system
states.
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two cases: in case I, Eve learns that the drone is in one of the neighboring squares {1, 2}, each

with probability 1/2. For case II, Eve knows that the drone is in one of the squares {1, 64},
again each with probability 1/2. Both cases are equivalent from an information security

perspective since in both cases Eve’s uncertainty is a set of two equiprobable elements and

hence its entropy is 1. However, the security risks in both situations are different. For

example, if Eve aims to take a photo of the drone, in the first case she knows where to turn

her camera (squares 1 and 2 are close by) while in the second case, she does not (squares 1

and 64 are far apart).

Instead, we propose to use an Euclidean distance distortion measure: how far (in Eu-

clidean space) is Eve’s estimate from the actual location. We then propose encoding/decoding

schemes which utilize the shared key to maximize this distance. We first consider an “aver-

age” distortion measure. Note that if Eve had not received any of the drone transmissions,

then the best (adversarial) estimate of the drone’s location at any given time is the center

point of the confined region in Fig. 5.1. Therefore, a good encryption scheme would strive

to maintain Eve’s estimate to be as close to the center point as possible; and we achieve

the maximum possible distortion, if, after overhearing the drone’s transmissions, Eve’s best

estimate still remains the center point.

The following scheme can achieve this maximum distortion by using exactly one bit

of shared secret key. When encoding, the drone either sends its actual trajectory, or a

“mirrored” version of it, depending on the value of the secret key. The mirrored trajectory

is obtained by reflecting the actual trajectory across a mirroring point in space; in this

example, the mirroring point is the center point in Fig. 5.2. Since Eve does not know the

value of the shared key, its best estimate of the drone’s location - after receiving the drone’s

transmissions - would be the average location given the trajectory and its mirrored version,

which is exactly the center point.

Our results in Section 5.3 extend this idea of mirroring to more general light-weight

mappings for dynamical systems in higher dimensional spaces, and theoretically analyze the

performance in terms of average distortion for a larger variety of distributions (with certain

symmetry conditions). We also discuss a class of systems and controllers for which we can
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Figure 5.2: Example of drone motion: mirroring based scheme.

always achieve the perfect distortion with just one bit of key.

The main idea is that many CPS applications can be effectively secured using lightweight

approaches which utilize a small amount of keys. To better illustrate this idea, consider a

general encryption scheme which uses a K-bit key to encrypt the states of a dynamical

system. From an abstract point of view, such a scheme hides the true value of the state

among a set of 2K states; without knowing the value of the key, an outside observer of the

encrypted state cannot resolve the ambiguity among these fake states – we refer to this

set as the ambiguity set. General encryption (e.g., cryptographic or information-theoretic)

schemes aim at increasing the size of the ambiguity set. Differently, in CPS applications,

increasing the size of the ambiguity set may not be effective if all of these states are close

to each other in a metric space. Distortion based schemes enable to make the most out of a

given ambiguity set size.

The main contributions in this chapter are as follows:

•We define security measures that are based on assessing the distortion in the average sense

over time and over data.

•We develop a scheme which uses exactly one bit of key and can provide maximum possible

distortion (equivalent to Eve with no observations) in some cases. We also discuss the cases

where it is not optimal and give an analytical characterization of the attained distortion.

• We then discuss a class of systems and controllers for which we can always guarantee the

perfect distortion with just one bit of shared key.
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• Since for some applications an ambiguity set of size two (corresponding to one bit of key)

may not be enough, we also derive an expression of attained distortion when we use larger

keys.

5.2 System Model

5.2.1 System Dynamics

We consider the linear dynamical system,

x̃t+1 = Ax̃t + But + wt, yt = Cx̃t + vt, (5.1)

where x̃t ∈ Rn is the state of the system at time t ∈ N, ut ∈ Rm is the input to the system

at time t, wt ∈ Rn is the process noise, yt are the system observations, and vt ∈ Rp is the

observation noise. We denote x̃T1 by x̃, uT−1
1 by u and wT−1

1 by w. Based on the initial

state x̃1 and target state x̃T , the controller computes a sequence of inputs that moves the

state from initial state x̃1 to the target state x̃T in T time instances. We assume that the

system uses the obsevations yT1 to optimally estimate the states x̃. The optimal estimates

of x̃ made by the system are denoted by x – in the case of perfect observation, i.e., noiseless

and observable systems, then x = x̃.

5.2.2 Communication and Adversary Models

At each time instance the system (Alice) transmits information about its state estimate to

a legitimate receiver, which is referred to as Bob, via a noiseless link. This situation occurs

for example when Bob is remotely monitoring the execution of the system as in Supervisory

Control And Data Acquisition (SCADA) systems or in the remote operation of drones.

A malicious receiver, referred to as Eve, is assumed to eavesdrop on the communication

between the system and Bob and is able to receive all transmitted signals. The goal of Eve is

to make an estimate that is as close to x as possible: since Bob receives x and makes control

decisions with this information, Eve is interested in x. Eve is assumed to be passive: she
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does not actively communicate but is interested in learning the system’s states from t = 1

to T . We assume that the System and Bob have a shared k-bit key K which they use to

encode/decode the transmitted messages.

5.2.3 Inputs and States Random Process Model

We assume that both receivers are only aware of the system model, the matrices A,B,C

and the statistics of noises. Therefore, from the perspective of the receivers, the input and

output sequences have random distributions which depend on A,B,C and the statistics of

the noise. In addition to the process noise w, the joint distribution f(x,u,w) depends on i)

the initial and target states, ii) the control law of the system and iii) the state estimation

process. So, even in noiseless systems, x and u possess inherent randomness from a receiver’s

perspective due to its lack of knowledge about the initial and target states.

5.2.4 Encoding Model

The system encodes and transmits packets zT1 to ensure that Bob is able to accurately re-

ceive xT1 , the optimal estimates of the system. To do so, the system transmits a packet zt

at each time step t. In this work, we use light-weight memoryless encryption schemes. The

t-th transmitted packet is a function of only the current state estimate and the shared keys,

thus, zt := Et(xt, K), where Et is the encoding function used at time t. We will denote zT1 by z.

5.2.5 Bob/Eve Models of Decoding

Bob noiselessly receives the transmitted packets from the system, and decodes them using

the shared key. Then, using the decoded information, it generates an estimate of the state

of the system at times t ∈ [T ]. We require that Bob’s estimate is as accurate as Alice’s. If

we assume that, at time t ∈ [T ], Bob’s decoding function is Γt (zt1, K), then the previous

condition is satisfied by ensuring that Γt (zt1, K) = xt for all t ∈ [T ].

Similarly, Eve also receives all transmissions from the system. However, unlike Bob, she
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does not have the key K. Therefore, Eve’s estimate of xt is x̂t := φt
(
zT1
)
, t ∈ [T ], where φt

is the decoding function used by Eve at time t.

5.2.6 Distortion Metrics

We consider a distortion-based security metric which captures how far an estimate is from the

actual value. In particular, our analysis is based on the Euclidean distance as our distance

metric. However, our analysis can be extended to any p-norm, since other norms are just

a constant factor away, i.e., ‖x‖p ≤ n
1
p
− 1

q ‖x‖q. We assess the performance of Eve as how

far its estimate x̂, is from Alice’s estimate x. Formally, for a given time instance t and a

transmitted codeword zT1 , we define the following quantity,

D(t, zT1 ) := Ext|zT1 ‖xt − x̂t‖2 (a)
= tr

(
Rxt|zT1

)
, (5.2)

where (5.2) captures the distortion incurred by Eve while estimating xt for transmitted

symbols zT1 . Equality in (a) follows because the best (minimizing) estimates of Eve at time

t are, x̂t = φt
(
zT1
)

= E
[
xt|zT1

]
.

Note that Bob is required to successfully estimate xt knowing zt1 and the key. Therefore,

for a given realization of the key, the encoding function can only map one xt and that key

realization to each value of zT1 . Therefore Eve realizes that only trajectories from a particular

subset can be the true trajectory for a given zT1 : those are the ones which correspond to each

key realization. Therefore, the expectation in (5.2) is in fact taken over the randomness in the

key taking into account posterior probabilities given zT1 . If Eve does not have observations,

the expectation is taken over Xt with prior distribution and we get D(t, zT1 ) = tr(Rxt).

As D(t, zT1 ) is a function of time t and the transmitted sequence zT1 , we consider an

”average case” distortion (denoted by DE) where we take expectation over all possible zT1

and average out over time2.

Average

Distortion
− DE := EzT1

[
1

T

T∑
t=1

D(t, zT1 )

]
(5.3)

2Another notion of ”worst-case” distortion is considered in [AKD18] which is not included in this thesis.
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It is worth to note that the definitions of DE in (5.3) implies that Eve’s state estimation

must be associated to a time instance. In other words, making a random/constant estimate

of the state hoping that it matches the actual state at some time will lead to high distortion

values.

5.2.7 Design Goals

Our goal is to choose the encoding and decoding functions, Et and φt, so that Bob can

decode loselessly while the distortion is maximized for Eve’s estimate. In addition, we seek

to achieve this with the minimum amount of shared keys K. In absence of any observation

by Eve, the distortion will be,

Dmax
E =

1

T

T∑
t=1

tr(Rxt),

This will serve as upper bounds as,

DE =
1

T
EzT1

T∑
t=1

tr(Rxt|zT1 )
(a)

≤ 1

T

T∑
t=1

tr(Rxt) = Dmax
E , (5.4)

where (a) follows by noting that the trace of the conditional covariance matrix is a quadratic

(convex) function in zT1 and therefore we can use Jensen’s inequality.

5.3 Optimizing Average Distortion DE

In this section, we will first discuss schemes to optimize the Average Distortion (DE). We

will initially analyze encoding schemes which use one bit of secret key, and characterize their

attained level of distortion. We then show that such schemes attain the maximum level of

distortion for a family of distributions on x which exhibit a certain class of symmetry. Later

we describe how this analysis extends to the use of multiple keys, as for some application

having an ambiguity set of size two might not be enough.
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5.3.1 Encoding Schemes with 1-bit Shared Secret Key

We now discuss encoding schemes that use one bit of shared key and show how the achieved

distortion compares to the upper bound in (5.4). These encoding schemes work as follows:

zt =

 xt if K = 0,

αt(xt) if K = 1,
∀t ∈ [T ], (5.5)

where K ∈ {0, 1} is the shared bit and αt(Xt) is a transformation of the state vector xt.

We denote by α−1
t (xt) the inverse transformation of αt. We will next show the attained

distortion of such schemes.

Theorem 5.3.1 (Proof in Appendix 5.4.1). The average distortion (DE) attained by using

the scheme in (5.5) is,

1

2T

T∑
t=1

Ex

{
fx(α−1(x))

fx(x) + fx(α−1(x))

∥∥xt − α−1
t (xt)

∥∥2
}
, (5.6)

where α−1(x) := [α1(x1)′ α2(x2)′ · · · αT (xT )′]′. Moreover, if the following condition holds,

fx(x) = fx(α−1(x)), for all x ∈ X , (5.7)

then the expression simplifies to

DE =
1

4T

T∑
t=1

Ex ‖xt − αt(xt)‖2 . (5.8)

Condition (5.7) implies a general notion of symmetry in the distribution of fx(x). In the

following, we focus on a particular notion of distribution symmetry, for which we show the

corresponding choice of αt(xt) and how it can achieve high levels of distortion. Consider a

transformation function αt(x) which reflects a point x across an affine subspace of dimension

d, defined by the equations Stx = bt where St ∈ Rd×n consists of d ≤ n orthonormal rows,

and bt ∈ Rd; the transformation is αt(x) = (I− 2S′tSt) x+2S′tbt. The choice of the dimension

d and the subspace (St,bt) depend on the properties we would like the encoded trajectories

to have. We refer to encoding schemes that are based on this transformation as mirroring
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Figure 5.3: Mirroring across the line passing through the origin and having a 45◦ angle with

the X-axis.

schemes. For example, consider xt ∈ R2 where St = 1√
2
[−1 1] and bt = 0. Then αt(xt)

corresponds to mirroring across a line that passes through the origin with a 45◦ angle. This

is shown in Fig. 5.3. We are interested in mirroring schemes as they are light-weight and

can be implemented on low-complexity IoT devices. Moreover, such schemes can provide

the maximum distortion level for a class of distributions with what we refer to as Point

Symmetry.

Definition 5.3.1 (Point Symmetry). A random vector x is said to have Point Symmetry

if there exists a point v for which fx(x) = fx(2v − x), ∀x ∈ X .

Lemma 5.3.2. If x has Point Symmetry across v, then v = µx.

Proof: Since x has Point Symmetry, then

fx(x) = fx(2v − x) ⇒ fx(x) = f2v−x(x)

⇒ µx = 2v − µx ⇒ µx = v.

�

The following result characterizes the performance of the mirroring scheme, and shows

that it achieves the maximum distortion for distributions with Point Symmetry.

Corollary 5.3.3. If αt(xt) is based on a mirroring scheme along the planes given by

Stx = bt, t ∈ [T ] and the condition (5.7) holds, then (5.8) becomes,

DE =
1

T

T∑
i=1

tr (StRxtS
′
t + (bt − Stµxt)(bt − Stµxt)

′) . (5.9)
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Moreover, if x has Point Symmetry, then DE = 1
T

T∑
t=1

tr(Rxt), the maximum possible distor-

tion.

Proof: If condition (5.7) holds, then by simply plugging the expression of αt(xt) for the

mirroring scheme along Stx = bt that is αt(xt) = (I− 2S′tSt) xt + 2S′tbt in (5.8) we get (5.9)

(Formal proof in Appendix 5.4.1). Choosing St = I and bt = µxt makes α−1(xT1 ) = 2µxT
1
−xT1

which by Point Symmetry satisfies (5.7). Therefore, we get DE = 1
T

T∑
t=1

tr(Rxt). �

Now, we show the implications of our results for mirroring based schemes in the context

of a few examples.

Example 1. Consider an example where u is distributed as Gaussian with mean µu and

covariance matrix Ru. Then for a noiseless system with perfect observation and a zero initial

state, xT2 is also Gaussian distributed with mean µxT
2

= Qµu and variance RxT
2

= QRUQT ,

where

Q =


B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AT−2B · · · AB B

 .

A Gaussian random vector has Point Symmetry and therefore, according to Corollary 5.3.3,

we can get maximum distortion by setting bt = µxt and St = I.

The next example is based on a Markov-based model for the dynamical system. For this

example, the following lemma is useful.

Lemma 5.3.4. Consider the random vector xT1 where the following conditions hold: 1)

fx1(x1) has Point Symmetry, and 2) fxt|xt−1
1

(xt|xt−1
1 ) has Point Symmetry, then so does

fx(x), where x = xT1 and µ = [µx1
′ µx2

′ · · · µxT
′]′. Therefore, by virtue of Corollary 5.3.3,

mirroring schemes can achieve the maximum distortion.

Lemma 5.3.4 allows us to characterize the performance of the following example.
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Example 2. Consider the following random walk mobility model. Let a ∈ N+, and xt

be its location at time t, then,

x1 ∼ Uni([−a : a])

xt|xt−1 ∼ Uni([−a : a] ∩ {xt−1 − 1,xt−1,xt−1 + 1}).

One can see that these distributions satisfy the conditions in Lemma 5.3.4. Therefore,

one can set bt = µt = 0 and St = 1, which will achieve maximum distortion of DE.

Example 3. Here we provide a numerical example which shows how our mirroring

scheme performs for situations where we compute the state distributions using numerical

simulations. We consider the quadrotor dynamical system provided in (4) of [KM12]. The

quadrotor moves in a 3-dimensional cubed space with a width, length and height of 2 meters,

where the origin is the center point of the space. The quadrotor starts its trajectory from an

initial point (−1, y1, z1) and finishes its trajectory at a target point (1, yT , zT ) after T time

steps, where the points y1, z1, yT , zT are picked uniformly at random in [−1, 1]4. We assume

that T = 10 time steps, and that the continuous model in [KM12, (4)] is discretized with a

sample time of Ts = 0.5 seconds. We assume that the quadrotor encodes and transmits only

the states which contain the location information (first three elements of the state vector

xt). The quadrotor is equipped with an LQR controller which designs the input sequence

uT−1
1 as the solution of the following problem

minimize ‖u‖2 + 10
∥∥xT−1

2

∥∥2

subject to xt+1 = Aquadxt + Bquadut, ∀t ∈ [T − 1]

x1 =
[
−1 y1 z1 0 · · · 0

]′
,

xT =
[
1 yT zT 0 · · · 0

]′
,

(5.10)

where Aquad and Bquad define the quadrotor’s discrete-time model. The remaining states of

x1 and xT are set to zero to allow the drone to hover at the respective locations. We perform

numerical simulation of the aforementioned setup: we run 2 millions iterations, where in each

iteration a new initial and target points are picked, and the resultant trajectory is recorded.
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Figure 5.4: An illustration of some trajectories. The reflection plane is shown as a

dashed-black line. One trajectory (solid-black) is shown along with its mirrored image (dot-

ted-black).

Based on the recorded data, we consider different mirroring schemes and numerically evaluate

the attained distortion. To facilitate numerical evaluations, the simulation space is gridded

into bins with 0.2 meters of separation, and the location of the drone at each trajectory is

approximated to the nearest space bin.

Figure 5.4 shows some of the drone trajectories obtained from our numerical simulation.

It is clear that not all trajectories are equiprobable, and therefore the distribution of xt is not

uniform across all bins in space. Since the motion of the drone is mainly progressive in the

positive x-axis direction, reflection across a fixed point results in mirrored trajectories that

are progressing in the opposite direction, and therefore are identified to be fake automatically.

Therefore, mirroring across a point here is useless: the numerically computed distortion for

this scheme is equal to zero.

Next we consider mirroring across the reflection plane shown in Figure 5.4, where bt = 0

and St =

0 1 0

0 0 1

. As can be seen from the figure, the reflection plane is indeed an

axis of symmetry for the distribution of the drones trajectories, and therefore is expected

to provide high distortion values. We numerically evaluate the attained distortion using the

scheme by using equation (5.6), which evaluates to DE = 0.3971. This is slightly less than
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Dmax
E = 0.3979.

5.3.2 Encoding Schemes with k-bits Shared Secret Key

The scheme in (5.5) assumes the use of one bit for encryption. However, it is straightforward

to extend the scheme when we require a larger ambiguity set. For k bits, we denote the

possible values of the shared key as K ∈ [0 : 2k − 1]. Therefore, the scheme works as follows

zt(K) = α
(K)
t (xt), ∀t ∈ [T ], (5.11)

where α
(K)
t is an invertible transformation function used at time t when the value of the key

is K, and α
(0)
t (x) = α

−(0)
t (x) = x. The following theorem shows the achieved value of the

distortion in this case, which is a direct extension of Theorem 5.3.1.

Theorem 5.3.5 (Proof in Appendix 5.4.2). The average distortion DE attained by using

the scheme in (5.11) is

1

2kT

T∑
t=1

Ex


2k−1∑
K=0

fx(α−(K)(x))
∥∥∥R(K)

t

∥∥∥2

[
2k−1∑
K=0

fx(α−(K)(x))

]2

fx(x)


, (5.12)

where

R
(K)
t =

2k−1∑
`=0

fx(α−(`)(x))
(
α
−(`)
t (xt)− α−(K)

t (xt)
)
,

α−(K)(x) := [α
−(K)
1 (x1)′ α

−(K)
2 (x2)′ · · · α−(K)

T (xT )′]′.

Moreover, if the following condition holds,

fx(α−(K)(x)) = C(x), ∀x ∈ X ,∀K ∈ [0 : 2k − 1], (5.13)

where C(x) is a constant, then the expression on DE simplifies to

1

23kT

T∑
t=1

Ex

2k−1∑
K=0

∥∥∥∥∥∥
2k−1∑
`=0

(
α
−(K)
t (xt)− α−(`)

t (xt)
)∥∥∥∥∥∥

2 . (5.14)
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Using multiple bits of shared keys can provide benefits beyond having a larger ambiguity

set. In fact, while we show the optimality of 1-bit mirroring schemes for distributions with

point symmetries, using multiple bits of shared key can provide a better distortion for general

distributions. For example, it was shown that, for a general finite alphabet: (1) 1-bit schemes

are not sufficient to achieve the maximum distortion, and (2) with just 5 bits of shared keys,

a scheme achieves more than 97% of the maximum possible distortion [TAF17].

5.4 Appendices

5.4.1 Proof of Theorem 5.3.1 and Corollary 5.3.3

We start by computing Rxt|zT1 . Note that given a sequence of transmitted symbol zT1 there

are two possible values of sequence of message symbols xT1 which are xT1 = zT1 and xT1 = z̃T1 ,

where z̃t is α−1
t (zt).

The posterior probability of xt = zt given zT1 , i.e., Pr(xt = zt|zT1 ) will be equal to

Pr(xT1 = zT1 |zT1 ) := pz. We note that pz = f(z)
f(z)+f(z̃)

, where z̃ := [z̃′1 z̃′2 · · · z̃′T ]′. Then,

E(xt|zT1 ) = pzzt + (1− pz)(z̃t). With this,

Rxt|zT1 = Ext|zT1

[(
xt − E(xt|zT1 )

) (
xt − E(xt|zT1 )

)′]
= pz(1− pz)2(zt − z̃t)(zt − z̃t)

′ + (1− pz)p2
z(zt − z̃t)(zt − z̃t)

′

= pz(1− pz)(zt − z̃t)(zt − z̃t)
′

DE =
1

T
Ez

T∑
t=1

tr
(
Rxt|zT1

)
=

1

T
Ez

T∑
t=1

tr (pz(1− pz)(zt − z̃t)(zt − z̃t)
′)

=
1

T
Ez

T∑
t=1

pz(1− pz)tr ((zt − z̃t)(zt − z̃t)
′)

=
1

T
Ez

T∑
t=1

pz(1− pz)‖zt − z̃t‖2 =
1

T
Ez

T∑
t=1

fx(z)fx(z̃)

(fx(z) + fx(z̃))2
‖zt − z̃t‖2.

Now, zT1 is the transmitted symbols if xT1 = zT1 and key was zero or if {xt = z̃t, ∀t ∈ [T ]}

101



and key was one. So fz(z) = fx(z)+fx(z̃)
2

. Thus DE,

=
1

T
Ez

T∑
t=1

fx(z)fx(z̃)

(fx(z) + fx(z̃))2
‖zt − z̃t‖2 =

1

T

∫
fz(z)

T∑
t=1

fx(z)fx(z̃)

(fx(z) + fx(z̃))2
‖zt − z̃t‖2dz

=
1

2T

∫ T∑
t=1

fx(z)fx(z̃)

fx(z) + fx(z̃)
‖zt − z̃t‖2 dz =

1

2T
Ex

T∑
t=1

fx(x̃)

fx(x) + fx(x̃)
‖zt − z̃t‖2

=
1

2T
Ex

T∑
t=1

fx(α−1(x))

fx(x) + fx(α−1(x))
‖xt − α−1

t (xt)‖2,

which proves (5.6). Again, if we can choose St’s, bt’s where αt() is mirroring across planes

given by Stx = bt such that,

fx(x) = fx(α−1(x)), ∀x ∈ RnT ,

the distortion DE becomes,

DE =
1

4T
Ex

T∑
t=1

‖xt − α−1
t (xt)‖2 (a)

=
1

T

T∑
t=1

Ext‖Stxt − bt‖2

=
1

T

T∑
t=1

tr (StRxtS
′
t + (bt − Stµxt)(bt − Stµxt)

′) ,

where (a) follows as αt(.) is mirroring across plane given by Stx = bt, and thus αt(x) =

α−1
t (x) = (I− 2S′tSt)xt + 2S′tbt. This proves (5.9).

5.4.2 Proof of Theorem 5.3.5

Since given z, there are 2k possibilities of xT1 ; xT1 = α−1(K)(z), K ∈ [0 : 2k − 1], we start by

computing,

p(K)
z := Pr(xt = α

−(K)
t (zt)|z) = Pr(x = α−(K)(z)|z)

=
1

fz(z)
Pr(z|x = α−(K)(z))fx(α−(K)(z))

(a)
=

fx(α−(K)(z))
2k−1∑
j=0

fx(α−(j)(z))

, K ∈ [0 : 2k − 1],
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where (a) follows by noting that Pr(z|x = α−(K)(z)|z) is equal to the probability of the key

being equal to K, which is 1/2k. Let S =
2k−1∑
j=0

fx(α−(j)(z)). Then E(xt|z) equals

2k−1∑
K=0

α−(K)(zt)p
(K)
z =

1

S

2k−1∑
K=0

α−(K)(zt)fx(α−(K)(z)).

We can then compute tr
(
Rxt|z

)
as,

Ext|z‖xt − E(xt|z)‖2 =
1

S3

2k−1∑
K=0

fx
(
α−(K)(z)

) ∥∥∥R(K)
t

∥∥∥2

,

where R
(K)
t =

2k−1∑̀
=0

fx(α−(`)(x))
(
α
−(`)
t (xt)− α−(K)

t (xt)
)

. Plugging tr
(
Rxt|z

)
in the expression

of DE gives (5.12). Moreover, if condition (5.13) is met, (5.12) simplifies to (5.14).

5.4.3 Related Work

Secure data communication where the adversary has unlimited computational power is stud-

ied from the lens of information theory, most notably by Shannon [Sha49] and Wyner [Wyn75].

The study of secure communication while using distortion as a measure of security is rel-

atively new and is first studied by Yamamoto [Yam88], where the goal is to maximize the

distortion of an eavesdropper’s estimate on a message, viewed from an asymptotic (in block

length) information-theoretic approach. Schieler and Cuff [SC14] later showed that, in the

limit of an infinite block length n code, only log(n) bits of secret keys are needed to achieve

the maximum possible distortion. The idea of using finite block length (and even single-shot)

distortion as a performance measure was initiated in [TAF17], where schemes for single shot

communication were considered. It demonstrated the exponential benefits for each addi-

tional bit of shared key. The schemes examined were for single-shot sensor observations, and

not for time-series data, which is the focus of our work in this paper.

Secure communication in control systems is studied in [TGP17b, TGP17a, TSS17, MMS13,

CDH16]. Securing the system state from an adversary was explored in [TGP17b, TGP17a],

where an asymptotic steady-state analysis was explored. In contrast our work also deals with

transients and is not asymptotic. Information-theoretic security was explored in [TSS17],
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where the mutual information was used as a privacy measure. Security of the terminal

state is considered in [MMS13] where an adversary makes partial noisy measurement of the

state trajectory. Differential privacy for control systems was explored in [CDH16], which uses

standard statistical indistinguishability which is equally applicable to categorical (non-metric

space) data; in our work, we use the estimation error of the adversary in order to quantify

privacy, utilizing the fact that CPS data lies in an Euclidean space, as argued earlier.
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CHAPTER 6

Conclusion and Open Questions

In this thesis, we discussed a general methodology for designing security schemes for differ-

ent communication systems. The core of this design methodology is that it is application-

tailored: the nature of the application influences how the security scheme is designed. In

doing so, various aspects of the application affects the design of the scheme, e.g., the na-

ture of the adversary and the assumptions on its capabilities, the performance requirements

dictated by the application, the available opportunities and resources, as well as the right

choice of a security metric. We considered three different applications for which we applied

the aforementioned methodology for designing a security solution. These applications were

namely: private data broadcasting in the context of index coding, established secret keys

between communicating parties in mmWave systems, and distortion-based security in CPSs.

We showed how a good understanding of these aspects allow for the designed of a suitable

security solution for the application at hand.

6.1 Application 1: Private Data Broadcasting

For the problem of private data broadcasting, we considered an index coding instance where

some clients are malicious: they wish to learn information about the requests and side

information of the other clients. We first showed how this setup can cause a privacy breach in

case there exists an honest-but-curious client. We showed how this breach can be manifested

just by learning the encoding matrix used for the index code. To capture the amount

of information leakage, we proposed the use of two different metrics: a conditional entropy

metric and maximum information leakage. To provide a security solution, we first attempted
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to design index codes that are private-aware, i.e., it provides a trade-off between the amount

of privacy achieved for the requests and the side information sets of the clients. We then

proposed a different scheme for maintaining privacy. The scheme, referred to as k-limited-

access scheme, transforms an index code into an equivalent one in which each client needs

only k transmissions to decode their request. We showed that this scheme is order optimal

in some regimes, and for other regimes we provide several heuristic methods to design k-

limited-access schemes.

Several open questions remain. First, our analysis for private-aware index codes is only

for a specific configuration of clients and adversaries. A general analysis for the scheme for

arbitrary configurations is still an open question. Second, we showed the order-optimality of

our proposed polynomial-time k-limited-access schemes for some parameter regimes (namely,

when the number of distinct clients is maximum). Whether an optimal polynomial-time

scheme exists for general parameter regimes is still an open question. In addition, a rigorous

analysis of the provided heuristics for designing k-limited-access schemes is also an open

question.

Protecting data privacy when using broadcasting domains is a challenging problem. The

nature of the broadcast channel allows all parties with access to the channel to receive the

broadcast data. This leads to an unavoidable situation where malicious parties get access to

data that, if not well protected, can leak sensitive information. Our work was a theoretical

characterization of this problem through the index coding model. Other approaches can be

attempted using different models for broadcast channels. In addition, a real-world practical

implementation of privacy-aware encoding schemes is also an interesting area of research.

6.2 Application 2: Secret Key Establishment in mmWave Systems

Next, we discussed the problem of establishing secret keys in mmWave systems. We first

remarked that an adversary with a quantum-computing capabilities may be able to break

standard number-based encryption mechanisms that are nowadays used. To circumvent this,

we proposed the use of a physical-layer-based secret key generation scheme. The proposed
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scheme relied on the idea of packet erasures happening on the adversary’s side. We pro-

posed the use of mmWave beamforming and wiretap codes to increase the likelihood of such

erasures. We should the anticipated benefits of using our scheme in two different scenarios,

namely IEEE 802.11ay networks and vehicle platooning. In both cases, results showed that

a few hundred Mbps of secret key can be established.

Physical-layer security is an attractive area of research with much potential and many

interesting open problems. The emergence of mmWave communication systems has further

increased the potential of such security schemes due to the inherent directionality in mmWave

communications. However, mmWave communications also come with the challenge of beam

coordination in order to establish links between communicating parties. Therefore, develop-

ing practical and high performing and reliable physical layer security schemes in mmWave

communication systems is a challenge open area of research. Our work studies the prob-

lem of secret key establishment using physical layer security techniques. As we remarked

earlier, a main open research problem is an actual implementation of the aforementioned

scheme. In this work, results were obtained based on numerical simulations and a few the-

oretical assumptions. For example, ideal wiretap codes were assumed to be used, and the

corresponding data communication rates expressions were used. In addition, some practical

issues were not taken into account during this initial study, such as packet drop rates, key

mismatch, etc. It would be quite an interesting research work to have an actual implemen-

tation of the end-to-end system to account for all missing factors in this initial study and

provide a realistic assessment for the benefits of such a system.

6.3 Application 3: Distortion-based Security in CPSs

The final application is related to security in CPSs. We began noting that, in many applica-

tions, an adversary would be interested in learning information about the state vector of the

CPSs. In which case, a more suitable goal may be to influence the adversary’s estimate of the

state vector to ”far” from the actual state vector. Based on this observation, we suggested

the use of a distortion-based metric, which captures the distance as well as the likelihood of
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the adversary’s estimate in comparison to the actual value. Targeting this metric as our se-

curity metric, we proposed the use of mirroring-based schemes which utilizes a small number

of secret keys. We showed that, for a specific class of state vector distributions, our proposed

scheme is optimal.

Several open research questions remain. The general class of distributions for which our

proposed scheme is optimal is still not characterized. In addition, a more ambitious goal is to

characterize a general encryption scheme that is optimal for arbitrary distributions. Finally,

our proposed scheme works towards optimizing the proposed distortion-based metric; in

which case, it sometimes suffices to use exactly one bit of secret key to achieve optimality.

However, in other applications, it may be equally important to lead the adversary into

having a larger ambiguity set (i.e., a larger set of possible estimates). The use of one-bit

of shared key does not appear to achieve such a goal. In addition, it is not clear how

several keys of shared keys can be used in a manner that optimizes the distortion-based

metric. Therefore, combining these two metrics (distortion-based and ambiguity sets) and

developing correspondingly suitable encryption schemes are still open questions.

Distortion-based security in CPS is a relatively recent area of research. The general aim

is to secure the system against an adversary, not necessarily by limiting its knowledge about

the communicated information (i.e., from an information-theoretic sense), but rather by

confusing the adversary into performing a worse inference job. The notion of distortion-based

security captures the effectiveness of the adversary’s inference task and how far the outcome is

from the actual value being inferred. Our work is an initial attempt to devise efficient security

schemes from a distortion-based security perspective, where an eavesdropper is interested

in estimating the state vector. However, in general, an adversary may be interested in

specific functions of the underlying variables (e.g., a function of the state vectors). In this

case, designing an efficient (optimal) security scheme is an open question. In addition, in

any such application, the evaluation of the attained level of distortion is dependent on the

understanding of the random process of the underlying system variables. This underlying

random process is dependent on the nature of the CPS application. Understanding this

process is also an interesting open question.

108



REFERENCES

[ADD13] Katerina Argyraki, Suhas Diggavi, Melissa Duarte, Christina Fragouli, Marios
Gatzianas, and Panagiotis Kostopoulos. “Creating secrets out of erasures.” In
Proceedings of the 19th annual international conference on Mobile computing &
networking, pp. 429–440. ACM, 2013.

[AGJ10] Assad Al Alam, Ather Gattami, and Karl Henrik Johansson. “An experimental
study on the fuel reduction potential of heavy duty vehicle platooning.” In 13th
International IEEE Conference on Intelligent Transportation Systems, pp. 306–
311. IEEE, 2010.

[AKD18] G. K. Agarwal, M. Karmoose, S. Diggavi, C. Fragouli, and P. Tabuada. “Dis-
torting an Adversary’s View in Cyber-Physical Systems.” In IEEE Conference
on Decision and Control (CDC), pp. 1476–1481, Dec 2018.

[AP08] Charu C Aggarwal and S Yu Philip. “A general survey of privacy-preserving data
mining models and algorithms.” In Privacy-preserving data mining, pp. 11–52.
Springer, 2008.

[Arm] Taylor Armerding. “The 18 biggest data breaches of the 21st cen-
tury.” https://www.csoonline.com/article/2130877/the-biggest-data-breaches-
of-the-21st-century.html.

[Art] Charles Arthur. “Security leak leaves US Apple iPad owners at risk.”
https://www.theguardian.com/technology/2010/jun/10/apple-ipad-security-
leak?INTCMP=SRCH.

[BBJ11] Ziv Bar-Yossef, Yitzhak Birk, TS Jayram, and Tomer Kol. “Index coding with
side information.” IEEE Transactions on Information Theory, 57(3):1479–1494,
Mar. 2011.

[BCR87] G. Brassard, C. Crepeau, and J.-M. Robert. “All-or-nothing disclosure of se-
crets.” Advances in Cryptology: Proceedings of Crypto ’86, Springer-Verlag, pp.
234–238, 1987.

[BKL10] Anna Blasiak, Robert Kleinberg, and Eyal Lubetzky. “Index coding via linear
programming.” arXiv preprint arXiv:1004.1379, 2010.

[BU16] Karim Banawan and Sennur Ulukus. “The capacity of private information re-
trieval from coded databases.” arXiv:1609.08138, Sep. 2016.

[BU18a] Karim Banawan and Sennur Ulukus. “The capacity of private information re-
trieval from Byzantine and colluding databases.” IEEE Transactions on Infor-
mation Theory, 2018.

[BU18b] Karim Banawan and Sennur Ulukus. “The capacity of private information
retrieval from coded databases.” IEEE Transactions on Information Theory,
64(3):1945–1956, 2018.

109



[CDH16] J. Cortés, G. E. Dullerud, S. Han, J. L. Ny, S. Mitra, and G. J. Pappas. “Differ-
ential privacy in control and network systems.” In 2016 IEEE 55th Conference
on Decision and Control (CDC), pp. 4252–4272, Dec 2016.

[CKG98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. “Private
information retrieval.” Journal of the ACM (JACM), 45(6):965–981, Nov. 1998.

[CN15] Guangliang Chen and Deanna Needell. “Compressed sensing and dictionary
learning.” Finite Frame Theory: A Complete Introduction to Overcompleteness,
73:201, January 2015.
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