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A Poisson Log-Normal Model for Constructing

Gene Covariation Network Using RNA-seq Data

YOONHA CHOI,1,* MARC CORAM,2,{ JIE PENG,3 and HUA TANG1

ABSTRACT

Constructing expression networks using transcriptomic data is an effective approach for
studying gene regulation. A popular approach for constructing such a network is based on
the Gaussian graphical model (GGM), in which an edge between a pair of genes indicates
that the expression levels of these two genes are conditionally dependent, given the ex-
pression levels of all other genes. However, GGMs are not appropriate for non-Gaussian
data, such as those generated in RNA-seq experiments. We propose a novel statistical
framework that maximizes a penalized likelihood, in which the observed count data follow a
Poisson log-normal distribution. To overcome the computational challenges, we use La-
place’s method to approximate the likelihood and its gradients, and apply the alternating
directions method of multipliers to find the penalized maximum likelihood estimates. The
proposed method is evaluated and compared with GGMs using both simulated and real
RNA-seq data. The proposed method shows improved performance in detecting edges that
represent covarying pairs of genes, particularly for edges connecting low-abundant genes
and edges around regulatory hubs.

Keywords: alternating directions method of multipliers, Gaussian graphical model, penalized

likelihood, Poisson log-normal distribution, RNA-seq.

1. INTRODUCTION

W ith the accumulation of whole-genome expression data, there is an increased interest in depicting

patterns of expression variation at the transcriptome level. Genes exhibiting covarying expression

levels may be regulated by common factors and participate in related functions; therefore, statistically

constructed expression networks can generate candidate gene sets with shared regulatory mechanisms or

shared biological function. Gaussian graphical models (GGMs) offer an elegant framework to investigate the

covarying patterns of many genes (Li and Gui, 2006; Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007;

Peng et al., 2009). Under such models, gene expression data are represented as an n · d matrix, X‚ with each

row representing a sample and each column representing a gene. A GGM assumes that the samples (rows) are

independently and identically drawn from a Gaussian distribution with mean l and covariance matrix R,
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where the concentration matrix, R - 1, depicts an undirected graph, in which each node represents a gene, and

two nodes are connected by an edge if and only if the corresponding entry in R- 1 is nonzero.

In many gene expression studies, the number of genes far exceeds that of the sample size (d > n)‚ and

hence the maximum likelihood estimate of the concentration matrix is problematic because the sample

covariance matrix is either singular (d > n) or has high variance (d � n). Under a reasonable assumption

that only a small fraction of genes are under coordinated expression after accounting for the expression

levels of the remaining genes, a number of methods have been proposed to estimate a sparse concentration

matrix. Meinshausen and Bühlmann (2006) proposed to fit a lasso regression for each gene; extending this

approach, the space method jointly models all entries in R - 1 (Peng et al., 2009). In parallel, graphical lasso

proposes to estimate A = R - 1 by maximizing a penalized likelihood function (Yuan and Lin, 2007;

Friedman et al., 2008). These approaches have been widely applied to microarray gene expression data to

address a variety of questions (Oh and Deasy, 2014).

Measuring expression level by RNA sequencing has become a powerful tool for studying gene regulation

in human and nonhuman genomes. However, modeling the covarying pattern using RNA-seq data poses a

unique challenge because the measurements are non-negative counts and do not follow a Gaussian dis-

tribution. For certain purposes, univariate quantile transformation may be adequate for downstream anal-

ysis; however, such a transformation distorts the correlation structure among genes, especially when counts

are low or have many ties.

A number of studies have developed high-dimensional graphical models for non-Gaussian data, consid-

ering binary (Ravikumar et al., 2010; Wang et al., 2011), multinomial ( Jalali et al., 2011), or nonparametric

models (Liu et al., 2009, 2012; Dobra et al., 2011). For count data, a series of approaches have been proposed,

modeling the marginal distributions of the read counts as Poisson distributions (Allen and Liu, 2013; Yang

et al., 2013). These studies show that it is difficult to construct a multivariate joint Poisson distribution that

simultaneously permits global conditional independence, as well as both positive and negative conditional

correlations. Current solutions to overcome these challenges either focus on the joint distribution in local

neighborhoods or truncate the observed reads. Another limitation is that the RNA-seq counts often show

overdispersion, so modeling them by Poisson distributions may not be appropriate (Robinson et al., 2010).

Here we propose a novel statistical model based on a Poisson log-normal (PLN) distribution, which offers

an intuitive framework to model the conditional dependency of RNA-seq count data while allowing for

overdispersion in the marginal distributions. In essence, this model assumes that the observed RNA-seq

counts are Poisson variables with mean parameters determined by the underlying expression levels, where the

logarithm of the underlying unobserved expression levels follows a multivariate normal distribution. Our goal

is to estimate the GGM for the underlying expression levels. Similar to graphicallasso, PLN uses an ‘1

penalized likelihood function to achieve sparsity of the estimated network. We use Laplace’s method to

approximate the likelihood, and implement an alternating directions method of multipliers (ADMM) algo-

rithm (Boyd et al., 2011) to solve for the penalized maximum likelihood estimator (MLE). Simulation studies

reveal that PLN performs favorably compared with GGM, when the latter is applied to RNA-seq data with or

without various transformations. The improvement is particularly apparent for low-abundance transcripts and/

or under weak signals. Furthermore, PLN achieves greater sensitivity in detecting highly connected genes

(hubs), which point to master regulators. Finally, we apply PLN to a large RNA-seq data set (Lappalainen

et al., 2013) in humans, and construct networks that generate hypotheses of genetic regulatory interactions.

2. METHODS

2.1. PLN model

In this section, we describe the proposed PLN model for estimating a sparse undirected network using

RNA-seq read count data. Let X = x1‚ x2‚ . . . ‚ xn½ �T be an n · d matrix representing the observed counts for

n samples and d genes. We assume the n samples are independent, and the entries of xi = (xi
1‚ � � � ‚ xi

d)T are

conditionally independent, given the underlying unobserved expression levels of the ith sample whose

logarithm is denoted by gi = (gi
1‚ � � � ‚ gi

d)T .

We assume that for i = 1‚ � � � ‚ n

xi
jjgi *

indep
Poisson(Ki exp (gi

j))‚ j = 1‚ � � � ‚ d‚
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where Ki is a scaling factor adjusting for library size of the ith sample. Although the observed counts of

mapped reads also depend on the length of the gene, it is equivalent and notationally more convenient to

account for this factor in gi
j, because the length is constant for each gene across all samples. We further

assume that the underlying expression levels follow a multivariate log-normal distribution, that is,

gi *i:i:d:N(l‚ R)‚ i = 1‚ � � � ‚ n:

Under the mentioned model, denoting A = R - 1 and using p(�) as a generic symbol for probability density

function, the likelihood function is L(l‚ A) =
Qn

i = 1 Li(l‚ A), where

Li(l‚ A) = pXi (xi) =
Z

Rd

pXijgi (xi)pg(gi)dgi

=
Z

Rd

(2p) - d
2jAj

1
2 exp -

1

2
(gi - l)

T
A(gi - l)

� �Yd

j = 1

e - Kie
gi

j
Kiegi

j

� �xi
j

xi
j!

dgi:

(1)

Our goal is to estimate the concentration matrix, A; in particular, we aim to identify nonzero entries of

A‚ which indicate conditionally covarying pairs of genes. The Gaussian mean parameter, l‚ is treated as a

nuisance parameter. The scaling factors, Ki, are assumed to be known constants. To encourage sparsity, we

seek a positive definite A that minimizes an ‘1 penalized log-likelihood function:

O(l‚ A) = -
1

n

Xn

i = 1

log (Li(l‚ A)) + k
X
j6¼k

WjkjAjkj‚ (2)

where Wjk is a weight that allows differential amounts of regularization of the entries of A based on prior

knowledge or anticipated network properties (see Supplementary Data).

2.2. Computational algorithm

Optimization of the objective function in Equation (2) is computationally prohibitive because each

evaluation of the likelihood function requires a d-dimensional integration, which does not have a closed

form solution. Our strategy is to use Laplace’s method of integration, which enables us to approximate the

objective function [Eq. (2)] in closed form (up to a constant that does not involve unknown parameters):

O(l‚ A) � -
1

2
log jAj + 1

2n

Xn

i = 1

(g�(i) - l)T A(g�(i) - l) +
1

n

Xn

i = 1

Ki1T eg�(i) - g�(i)T xi
h i

+
1

2n

Xn

i = 1

log diag Kieg�(i)
� �

+ A
��� ��� + k

X
j 6¼k

WjkjAjkj‚
(3)

where g�(i) = arg maxgi log pXijgi (xi)pg(gi).

To obtain parameter estimates that minimize the objective function, we alternatively update g�(i) for fixed

(l‚ A) using Newton’s method, and update l and A given g�(i) using an ADMM algorithm (Boyd et al.,

2011). Finally, the tuning parameter k, which controls the sparsity of the inferred network, is chosen by the

extended Bayesian information criterion (eBIC) criterion (Chen and Chen, 2008). Details about the ap-

proximation and optimization of the objective function can be found in Supplementary Data.

2.3. Simulation studies

We conduct a series of simulation studies to compare the PLN and GGM approaches. Counts data are

generated in the following way: we start with an assumed graph, which either follows a power-law

network (Newman, 2003) or an inferred protein network (Wu et al., 2013). The mean expression level, l,

and the concentration matrix, A, are generated according to the connectivity of the graph and a pre-

specified distribution that controls the signal-to-noise ratio (Fig. 1C). Next, the latent expression level (g)

and the observed counts x are simulated according to the PLN model described in Section 2.1. The

simulation settings are summarized in Table 1; the details of each simulation can be found in Supple-

mentary Data.

A HIGH-DIMENSIONAL GRAPHICAL MODEL ON COUNT DATA 723



For comparison, we apply the graphicallasso (Friedman et al., 2008) to the raw count data as well as to

data under several commonly used transformations: (i) normal quantile transformation, (ii) logarithmic trans-

formation, and (iii) square-root transformation. Note that the quantile transformation assigns the same value for

ties; thus the transformed data are not guaranteed to be perfectly normal if the data include many ties. Because the

counts can be 0 for low-abundance genes, we add 1 to all counts before applying the logarithm transformation.

Although studies of inferring biological networks have primarily focused on edge detection, that is, whether an

edge is present or not, the signs and magnitudes of the partial correlations provide clues regarding the nature of

the corresponding regulation relationships: positive or negative, strong or weak. Therefore, in addition to edge

detection ability, we also compare the ‘2 distance between the estimated and the true partial correlations:

d(q‚ q̂) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1�i‚ j�d

jqij - q̂ijj2
s

:

BA

DC

E F

FIG. 1. (A) The power-law network. (B) The protein network. (C, D) The histograms of partial correlations for

power-net simulation and protein-net simulation, respectively. (E, F) The degree distributions for power-law network

and protein network, respectively.
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2.4. Application to RNA-seq data

The Geuvadis data consist of RNA-seq assays on 462 lymphoblastoid cell lines derived from five

populations: European American from Utah (CEU), Finnish (FIN), British (GBR), Toscani (TSI), and

African (Yoruban from Nigeria, YRI) in the 1000 Genomes Project (Lappalainen et al., 2013). We prefilter

the data to focus on the 275 genes that overlap with the inferred protein network (Wu et al., 2013). To apply

the PLN model and GGMs, we choose to use the RPKM (reads per kilobase of transcript per million

mapped reads.), instead of the raw reads, primarily for two reasons: first, RPKM removes some systematic

effects such as the batch effects and is the commonly shared form of data. Moreover, it is not always

possible to reconstruct the raw read counts from RPKM. Second, empirically, we find both PLN and GGMs

lead to more interpretable networks when applied to RPKM reads than to the raw reads. Three existing

GGMs are used to analyze the quantile-transformed data on RPKM: (i) neighborhood selection (Mein-

shausen and Bühlmann, 2006), (ii) space (Peng et al., 2009), and (iii) graphical lasso (Friedman et al.,

2008). The RNA-seq expression networks are inferred separately in European (CEU, FIN, GBR, and TSI;

total N = 373) and African (YRI, N = 89) populations. For the PLN model, the tuning parameters are

selected by minimizing the eBIC with c = 0:5; for the three GGMs, tuning parameters are adjusted so that

the same number of edges are selected by all methods.

Since there is no known truth to evaluate the performance of these methods on real data, we use the

modularity of the constructed network as a surrogate criterion. Each gene is assigned a functional category

based on gene ontology (GO). Following Clauset et al. (2004), we define modularity as the fraction of the

edges that connect two genes in the same functional category minus the expected value of such fraction if

edges were distributed at random. This measure ranges between - 1 and 1, with higher positive values

suggesting coordinated regulation of genes in related biological pathways. In practice, a modularity greater

than 0:3 is taken as an indicator of significant group structure in a network (Clauset et al., 2004).

3. RESULTS

3.1. Simulation studies

We carry out simulation studies to assess the performance of the PLN model; as comparisons, we

compare this model with graphical lasso applied to the raw or transformed count data (Friedman

et al., 2008). Other GGM methods, such as neighborhood selection and space (Meinshausen and Bühlmann,

2006; Peng et al., 2009), are also investigated, both of which show similar results as graphical lasso
(results not shown).

Figures 2 and 3 report the number of correctly detected edges versus the number of total detected edges,

averaged across 50 independent replicates with sample size n = 100. A common pattern shared by all methods is

that the power of edge detection improves with the increase of the overall abundance of gene expression levels

(large lj). When the observed counts are very low with many 0’s (small lj), there is little information and all

methods perform poorly. Measured in terms of sensitivity and specificity of edge detection, PLN performs

comparably to graphical lasso on logarithm- or quantile-transformed data. All methods perform sig-

nificantly better than applying graphical lasso to the raw counts directly. In addition, the performance

of graphical lasso on raw or square-root transformed counts is highly sensitive to the skewness of the

data and deteriorates as the variance increases (Fig. 3B, D). In contrast, PLN and graphical lasso with

quantile or logarithm transformations are reasonably robust to extreme values in the data; in fact, for a fixed

mean expression level, the edge-detection power of these methods improves for more skewed data with

Table 1. Simulation Scenarios

Label Network Goal of investigation

Power-net 1 Power-net Effects of mean and variance of the underlying expression level

Power-net 2 Power-net Overall counts distribution

Power-net 3 Power-net Effects of sample size

Power-net 4 Power-net Presence of a hub gene (highly connected node)

Protein-net Protein network Network topology and effects of the magnitudes of partial correlations

A HIGH-DIMENSIONAL GRAPHICAL MODEL ON COUNT DATA 725



higher variance (Fig. 3B, D). Finally, Figure 2 indicates that PLN outperforms all the other methods in terms

of estimating the magnitudes of the partial correlations, measured by entry-wise ‘2 distance.

With varying sample sizes of n = 50 and n = 200, not surprisingly, the performance of all methods

improves with increased sample size. At a smaller sample size, PLN has more prominent advantage in

detecting correct edges, whereas at a larger sample size, PLN produces comparatively more accurate

estimates of partial correlations (Supplementary Fig. S1).

It has been previously observed that gene expression in a cell follows a hierarchical structure, in which the

expression levels of a few genes influence the expression levels of many other genes (Morley et al., 2004). In

a graph, such a ‘‘master regulator’’ that appears as a hub, a node is connected with many other nodes. There is

an increasing interest in identifying master regulators as they play central roles in gene regulation. To

investigate the ability of detecting such hub nodes, we examine the edge-detection performance in two

subnetworks of the power-law network. The underlying graphs are shown in Figure 4A and B: in one

subnetwork, any node is connected to at most 12 other nodes (degree �12) and there is no prominent hub; in

contrast, the second subnetwork features a hub node of degree 28. Figure 4C and D compares the performance

of these methods for the two subnetworks separately. Although PLN and graphical lasso with loga-

rithm and quantile transformations perform similarly on the first subnetwork, the advantage of PLN in edge

detection is more prominent in the presence of a hub node in the second subnetwork.

We next perform simulation according to a network that we have previously constructed in a high-throughput

proteomics study, varying signal strength in terms of magnitudes of the partial correlations (Wu et al., 2013).

Again, all methods, except for applying graphical lasso to raw counts, perform competitively; the

advantage of PLN becomes more apparent when the signals are weak (Supplementary Fig. S2C, F).

3.2. Application to RNA-seq data

Figure 5 and Supplementary Figure S3 display the inferred networks on the Geuvadis data using four

different methods: PLN, neighborhood selection (MB), space, and graphical lasso; except for PLN,

all other methods are applied to quantile-transformed data. All methods are tuned such that the number of

detected edges is the same: 207 for EUR and 97 for YRI. We observe that the network inferred by PLN

tends to be more concentrated and hub like; in other words, fewer genes are connected by at least one edge,
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FIG. 2. Power-net simulation 1. (A–C) The number of total detected edges (x-axis) and the number of correctly

detected edges (y-axis) under the three scenarios of (lj‚Sjj). (D–F) ‘2 distance (y-axis) between the estimated and the

true partial correlations under the three scenarios of (lj‚Sjj).
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but these connected genes tend to have higher degrees than those in the networks constructed by other

methods. In EUR, modularities are 0:32, 0:36, 0:37, and 0:43 for MB, space, graphical lasso, and

PLN, respectively. In YRI, the corresponding modularities are 0:37, 0:50, 0:57, and 0:57 for these four

methods. We emphasize that the knowledge of functional annotation is not used in constructing the network.

Therefore, the enrichment of edges connecting genes in the same GO category provides independent support

that these networks recapitulate some degree of functional organization. Using this measure, the proposed

PLN performs favorably compared with GGMs. Connected genes that do not fall in the same GO category

may implicate uncharacterized gene function or incomplete pathways, thus offering candidates for future

investigation. Moreover, we further compared hub genes between EUR and YRI networks inferred by PLN.

Among top 10 high-degree genes, there were three genes (HSPA5, MANF, and PPIB) that are in common and

two of them (HSPA5 and PPIB) belong to GO category; ‘‘protein transport, modification, and folding’’ also

appear as high-degree genes in the protein network (Wu et al., 2013).

4. DISCUSSION

We have developed a graphical model approach for identifying expression covarying networks based on

high-throughput RNA-seq read count data. The proposed model is hierarchical and models the observed
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FIG. 4. Power-net simulation 4: The performance on two subnetworks of the power-law network. (lj‚Sjj) are fixed at

(2‚ 1); methods are applied to the two subnetworks (d = 100 each) separately. (A) Subnetwork 1 has no prominent hub.

(B) Subnetwork 2 has 1 hub gene with 28 edges. (C, D) The number of total detected edges (x-axis) and the number of

correctly detected edges (y-axis) for subnetwork 1 and subnetwork 2, respectively.
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counts as Poisson random variables with random mean parameters that follow a multivariate log-normal

distribution. Conditional dependency of the underlying unobserved expression levels is then inferred from

the inverse covariance matrix of the multivariate Gaussian distribution, which is estimated based on

maximizing a penalized likelihood objective function. Simulation studies demonstrate that this PLN model

offers several advantages over existing methods: first, PLN improves the power in edge detection compared

with GGMs, especially when the sample size is small and/or the dependency is weak; second, by explicitly

modeling the counts, the PLN model produces more accurate estimates of the concentration matrix,

measured by the ‘2 distance loss; third, in simulation and analysis of real RNA-seq data, the PLN model

achieves greater sensitivity in detecting edges connected to hub genes, thus facilitating the detection and

investigation of master regulators.

Using a PLN distribution to model RNA-seq counts also allows for overdispersion across biological

replicates, a phenomena widely observed for RNA-seq count data. In fact, the PLN model is closely related

to the popular negative binomial model used in differential expression analysis for RNA-seq data (Robinson

and Smyth, 2008). A negative binomial distribution can be thought of the distribution of a Poisson random

variable with the mean parameter drawn from a gamma distribution. Thus, whereas the negative binomial

model assumes that the underlying gene expression follows a gamma distribution, the PLN model proposed

here uses a log-normal distribution instead.

Our PLN model is also related to the work of Gallopin et al. (2013), which found that a hierarchical PLN

model provides a better fit of the count data, compared with Gaussian and other existing methods. The main

distinction is that Gallopin et al. (2013) fit a linear model, gi
j =
P

j0 6¼j bjj0~x
i
j0 , where xi

j*Poisson(exp (gi
j)) is

the count of gene j for sample i and ~x is a standardization of logarithm-transformed data. In contrast, the

PLN model proposed here models g through g*N(l‚ R). Another important distinction between this work

and the work by Robinson and Smyth (2008) and Gallopin et al. (2013) is that our goal is to infer

expression networks based on RNA-seq data, rather than identifying differentially expressed genes using

RNA-seq data. Therefore, we need to model the joint distribution of the read counts rather than only

inspecting their marginal distributions. The PLN model directly links to GGM through the joint distribution

of the logarithm of the underlying unobserved expression levels, g, while sharing flexibility of the PLN

distribution in modeling the RNA-seq counts.

MB SPACE

GLASSO PLN

Cell cycle
Carbohydrate metabolic process
Immune system process
Ion and electron transport chain on mitochondria
Protein transport, modification and folding
Transcription regulation and mRNA processing
Translation
Others

Cell cycle
Carbohydrate metabolic process
Immune system process
Ion and electron transport chain on mitochondria
Protein transport, modification and folding
Transcription regulation and mRNA processing
Translation
Others

FIG. 5. Application: The inferred networks on European population (n = 373). An edge is a solid line according to the

gene ontology (GO) category if the two connecting nodes belong to the same category; otherwise, the edge is a dashed line.

The number of detected edges is 207 for the PLN model and is matched to be the same for the three Gaussian graphical

models (MB, space, and glasso).
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On analyzing the Geuvadis RNA-seq data, PLN infers more hub-like genes and the degrees of the nodes

are higher than GGMs such as MB, space, or graphicallasso. Although it is difficult to compare the

performance of these methods in the real data example because of the lack of ground truth, we note that a

substantial fraction of edges detected by any of the four methods connect genes with related biological

functions, with PLN performing favorably measured by this modularity criterion.

ONLINE RESOURCES

The RNA-seq data from Geuvadis are available from www.ebi.ac.uk/Tools/geuvadis-das. The PLN

model implemented through R is available at https://github.com/yoonhachoi/PLNet.

ACKNOWLEDGMENTS

This work is supported by U.S. NIH grants R01 GM073059 (Y.C, M.C., H.T.) and R01 GM082802

( J.P.), NSF grants DBI-0820854 ( J.P.), and DMS-1148643 ( J.P.). Y.C. was also supported by NIH T32

HG000044.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Allen, G.I., and Liu, Z. 2013. A local poisson graphical model for inferring networks from sequencing data. IEEE

Trans. Nanobioscience 12, 189–198.

Boyd, S., Parikh, N., Chu, E., et al. 2011. Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. Trends Mach. Learn. 3, 1–122.

Chen, J., and Chen, Z. 2008. Extended bayesian information criteria for model selection with large model spaces.

Biometrika 95, 759–771.

Clauset, A., Newman, M.E., and Moore, C. 2004. Finding community structure in very large networks. Phys. Rev. E 70,

066111.

Dobra, A., Lenkoski, A., et al. 2011. Copula Gaussian graphical models and their application to modeling functional

disability data. Ann. Appl.Stat. 5, 969–993.

Efron, B., Hastie, T., Johnstone, I., et al. 2004. Least angle regression. Ann. Stat. 32, 407–499.

Foygel, R., and Drton, M. 2010. Extended bayesian information criteria for Gaussian graphical models. Adv. Neural Inf.

Process. Syst. 604–612.

Friedman, J., Hastie, T., and Tibshirani, R. 2008. Sparse inverse covariance estimation with the graphical lasso.

Biostatistics 9, 432–441.
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