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ABSTRACT OF THE DISSERTATION 

 

Computational characterization of the electroencephalogram in patients with infantile spasms 

syndrome 

 

By 

 

Rachel June Smith 

 

Doctor of Philosophy in Biomedical Engineering 

 

 University of California, Irvine, 2019 

 

Assistant Professor Beth A. Lopour, Irvine, Chair 

 

 

 

Infantile spasms (IS) is a potentially catastrophic epileptic encephalopathy that typically 

presents in children six to twelve months of age and is characterized by clusters of seizures 

consisting of abrupt muscle spasms. IS is associated with a host of comorbidities, high mortality 

rates, debilitating neurocognitive stagnation and psychomotor delay, and often progresses to 

other highly refractory forms of epilepsy. Diagnosis and clinical treatment decisions in IS are 

difficult due to the wide range of underlying etiologies and concomitant epilepsies. Patients with 

IS also exhibit a broad spectrum of electroencephalographic (EEG) morphologies, including a 

disorganized, high-amplitude pattern called hypsarrhythmia. Additionally, although the presence 

of hypsarrhythmia is often used as a diagnostic criterion for IS, there is low inter-rater reliability 

for identification of the pattern, and it is not a strong predictor of outcome. This lack of 

diagnostic accuracy and inefficient treatment response evaluation can delay successful treatment, 

which is associated with worse long-term outcomes.  
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Computational EEG biomarkers of IS that are independent of the presence of 

hypsarrhythmia could supplement standard visual inspection of the EEG and enable objective 

identification of the disease and assessment of treatment response. We quantified basic 

characteristics of the pre-treatment EEG signal such as the amplitude, power spectrum, and 

Shannon entropy in cohorts of IS patients both with and without hypsarrhythmia. We identified 

significant differences between IS patients and age-matched control subjects, and these 

differences were robust to the presence of hypsarrhythmia. We also investigated the strength of 

long-range temporal correlations in the EEG with detrended fluctuation analysis (DFA) and 

developed statistical methods to infer confidence intervals for this metric. DFA differentiated IS 

patients from control subjects and reflected treatment response in post-treatment data. Lastly, we 

calculated EEG-based functional connectivity networks via cross-correlation and characterized 

long-term functional connectivity network changes in IS patients over multiple days. Analysis of 

normal control subjects allowed us to account for physiological fluctuations of the functional 

connections during sleep/wake cycles. In all, this work describes the pathological features of IS 

EEG data, providing an objective basis for diagnosis and laying the groundwork for early 

biomarkers of treatment response.   
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CHAPTER 1 

BACKGROUND 

 

1.1 Epilepsy and Infantile spasms syndrome 

1.1.1 Definitions and key terms 

Epilepsy is a chronic neurological disease that affects nearly 65 million people worldwide 

[1]. According to the International League Against Epilepsy (ILAE), the disease is defined by 

any of the following conditions: “1) at least two unprovoked (or reflex) seizures occurring more 

than 24 hours apart; 2) one unprovoked (or reflex) seizure and a probability of further seizures 

similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring 

over the next 10 years; or 3) diagnosis of an epilepsy syndrome [2]”. A seizure is defined to be 

“a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous 

neuronal activity in the brain [2].” Following these definitions, clinicians diagnose and treat 

cases of epilepsy according to a variety of factors including the patient’s seizure type, etiology, 

and age [2].  

Infantile spasms syndrome (IS) is one of eight epilepsy syndromes the ILAE has 

classified as an epileptic encephalopathy [3]. Epileptic encephalopathies are conditions in which 

“the epileptiform abnormalities themselves are believed to contribute to the progressive 

disturbance in cerebral function” [4]. Epileptic encephalopathies are generally unresponsive to 

standard therapies, and this can cause devastating neurocognitive effects later in life [3]. 

 

1.1.2 Types of seizures 
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 Epileptic seizures are generally divided into three categories: focal seizures (formerly 

termed partial seizures), generalized seizures, and unknown [5]. Focal seizures originate in a 

small population of neurons and oftentimes propagate to other regions or whole hemispheres of 

the brain in what is called “secondary generalization” [6]. The symptoms of focal seizures vary 

widely because they depend on the location of the seizure focus within the brain [6]. Focal 

seizures are also subdivided into two categories: those in which the patient retains awareness and 

those in which awareness is impaired [5]. If the patient loses consciousness, it is most often that 

the focal seizure has secondarily generalized [6]. However, before this secondary generalization 

occurs, patients may experience auras. Auras are caused by the initial abnormal electrical 

activity within the seizure focus and can produce sensations of fear, a rising feeling in the 

abdomen, or specific odors [6]. 

Generalized seizures, on the other hand, begin without auras and involve both 

hemispheres of the brain [6]. Generalized seizures are further separated into convulsive and non-

convulsive seizure types (also called motor and non-motor seizures) [5]. Formerly called the 

grand mal seizure, the most prototypic convulsive seizure involves tonic-clonic movements [6]. 

The most common non-convulsive generalized seizures are called absence seizures and occur 

most often in children [6]. These seizures are associated with a loss of consciousness, but the 

patient maintains posture, and the events often do not last longer than 15 seconds [6]. The patient 

may or may not have motor abnormalities accompanying the seizure, like lip smacking or eyelid 

fluttering [7]. 

Epileptic spasms are classified as an unknown seizure type. In IS, the spasms are 

identified clinically as a sudden and brief contraction of axial and proximal limb muscles 

followed by longer tonic contractions [7], [8]. In rarer cases, the tonic component is absent and 
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only the initial phasic component is seen [9]. The semiology of the spasms may vary 

significantly depending on the muscle groups involved and whether the patient is supine or 

sitting during the attack [9]. Spasms are symmetric in most cases, but a variety of asymmetric or 

focal signs may be detected [7]. Because the spasms are not motor seizures, it is rarer to see head 

or eye deviation or hand or foot contractions [7]. The spasms occur mostly in clusters and can be 

precipitated by arousal from sleep, transitioning from NREM sleep to REM sleep, handling, and 

loud noises [7], [10]. The cluster will begin and end mildly, but spasms increase in intensity 

during the middle part of the cluster [7]. There can be as many as 100 spasms in a cluster, and 

the attack can last over ten minutes [9], [11].  

 

1.1.3 Etiologies associated with epilepsy and IS 

Although seizure classification is important in the diagnosis and treatment of epilepsy, 

the disease is not only defined by the seizure type. It is clinically important to determine what 

caused the seizures to begin so therapies can target the underlying cause [12]. Epilepsy etiology 

is categorized into three groups, according to the ILAE: genetic, structural/metabolic, and 

unknown [12].  

Genetic epilepsies “are a direct result of a known or presumed genetic defect(s) in which 

seizures are the core symptom of the disorder” [12]. As of 2013, over 70 genes have been linked 

to an epileptic phenotype and over half of these genes were discovered in humans [6], [13]. 

These genetic mutations can cause defects in ion channel units, proteins involved in synaptic 

transmission, vesicle proteins, synaptic receptors, and molecules involved in Ca2+ signaling [6]. 

It is estimated that genetic factors account for about 40% of epilepsy etiologies; however, 

Mendelian epilepsies (those that can demonstrate inheritance) only account for 1% of these cases 
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[14]. Thus, most cases are multigenic, commonly referred to as “complex epilepsy”, and the role 

environmental factors play in susceptibility to epilepsy in combination with genetic components 

is still to be determined [14].  

Structural and metabolic defects define a second etiological classification of epilepsy. 

These epilepsies can arise due to metabolic causes such as aminoacidopathies, but also structural 

lesions from stroke, trauma, brain tumors, and infection [1], [12]. An epilepsy can still be 

classified in this group if the structural/metabolic cause of the disease has strong genetic 

connections, such as tuberous sclerosis or cortical malformations [12]. It is hypothesized that 

seizures arise from structural lesions in a maladaptive response to the injury [6]. For example, 

patients that experience cortical injury due to head trauma can develop seizures several months 

after the incident. The emergence of pathological neuronal behavior could be due to axonal 

sprouting, alterations in dendritic structure, changes in control of transmitter release, and 

variation in activity of ion channels and pumps that resulted from the impact [6]. Although direct 

implications are yet to be found, these changes are believed to induce hyperexcitability and a 

specific electro-chemical process important in epileptogenesis called kindling [6].  

Infantile spasms is associated with as many as 200 different etiologies [15], and these 

underlying causes are often divided into three etiological groups according to the prior ILAE 

definitions: symptomatic, cryptogenic, and idiopathic (they were recently replaced with the terms 

genetic, structural-metabolic, and unknown) [7], [8]. The term symptomatic refers to cases of 

infantile spasms that arise from a diagnosed underlying disorder and account for more than 70-

80% of cases [7], [16]. Cryptogenic cases refer to those in which no specific cause can be 

identified, but the patient exhibits neurological symptoms, signs, or developmental delay. The 
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idiopathic group includes cases with no detectable underlying cause and in which no 

neurological symptoms or signs can be identified [8].  

According to a British study of 207 infants, the most common symptomatic etiologies are 

hypoxic-ischemic encephalopathy (HIE), chromosomal malfunctions, brain malformations, 

stroke, and tuberous sclerosis [17]. Cerebral malformations in the prenatal periods are a major 

cause of infantile spasms; abnormal neurogenesis, neuronal migration and neuronal organization 

can manifest with cortical dysplasia, microcephaly, agyria/polygyria, and heterotopias [7]. 

Genetic etiologies account for 13% of the symptomatic IS population, with the most common 

chromosomal abnormalities including Down syndrome and X-linked genes such as CDKL5 in 

female patients and ARX in male patients [7]. Studies in monozygotic twins [18] and familial 

risk [19] also support strong genetic components in these cases.  

 

1.1.4 Incidence and prevalence of epilepsy and IS 

The incidence and prevalence of epilepsy varies by age and by world region. Prevalence 

of epilepsy is lowest early in life, peaks around adolescence, and gradually decreases after age 30 

[20]. The incidence of epilepsy is higher in those under 18 years of age (46.9/100,000 person-

years) compared with those 19 years of age and above (34.63/100,000 person-years) [20]. A 

2017 meta-analysis of epilepsy epidemiology reported significantly higher active annual period 

prevalence and incidence rate of epilepsy in low-middle income countries than high-income 

countries. The prevalence was 5-8/1000 in high-income countries and 10/1000 in low-income 

countries and even higher rates were observed in rural areas [1], [20]. These differences by 

country income can be attributed to the expense or inaccessibility of anti-epileptic drugs, as well 

as levels of risk for infections and levels of antenatal and perinatal care [1], [20]. Interestingly, 
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the cumulative incidence of epilepsy was higher in high-income countries in comparison to low-

income countries, but this may be attributed to the lower premature mortality rate and better 

diagnostic techniques in high-income countries [20].   

Infantile spasms (IS) strikes within the first year of life in 90% of cases [8]. The 

incidence of infantile spasms is 2-5/10,000 newborns with a slight male dominance [8], [9], 

however the incidence rates can vary widely, even among high-income countries [21]. The onset 

of spasms occurs at a peak age of 4 to 7 months and spasms typically persist 25 to 32 months [8].  

The age-specific prevalence of IS is 1-2/10,000 by the age of 10 years, with the highest 

prevalence corresponding to high geographic latitudes [21]. Infantile spasms constitutes 

approximately 34% of all epilepsies diagnosed within the first year of life, which has an 

incidence rate of 124/100,000 [22]. The next most common epilepsy diagnosis for children under 

12 months is benign infantile epilepsy, which has an incidence rate of 22/100,000 [22]. This 

places extreme importance on accurate diagnostic tools, as a misdiagnosis of IS for benign 

infantile epilepsy can have severe neurocognitive consequences for the patient later in life. 

 

1.1.5 Comorbidities of epilepsy 

In addition to the burden of the disease itself, epilepsy patients are often diagnosed with 

comorbidities, conditions that occur during the course of another disease, at a higher rate than the 

general population [23]. Physical comorbidities such as heart disease, peptic ulcers, arthritis, and 

migraines are up to eight times more common in epilepsy patients [23]. Psychiatric comorbidities 

such as depression and anxiety are twice as prevalent among people with epilepsy, and are highly 

associated with reduced quality of life and poor seizure outcomes [23]. Epilepsy increases 

chances of premature mortality [23]. Nearly all mortalities are due to comorbidities, with 
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neoplasms, cardiovascular disease, and cerebrovascular disease posing the greatest risks [23]. 

The mortality rates from epilepsy are higher in lower-income countries (37 times greater than the 

general population) than higher income countries (2-5 times greater than the general population) 

[1]. Although SUDEP (Sudden Unexpected Death in Epilepsy) is generally regarded as the most 

common cause of death in high-income countries [1], one study showed that only 4% of deaths 

attributed to SUDEP had no comorbid association [24]. However, in lower-income countries and 

rural areas drowning or status epilepticus are more common and account for more epilepsy-

related and SUDEP deaths [1], [24].  

In children with epilepsy, the odds ratios (OR) for comorbid conditions are amplified 

even further [25]. Children with “complicated epilepsies”, defined as any other diagnosed 

neurologic/developmental disorder, were at much greater odds to experience malnutrition (OR = 

27.9), chromosomal abnormalities (OR = 31.9), sleep disorders (OR = 17.9), visual impairment 

or blindness (OR = 50.3), and intellectual disability (OR = 84.0) [25]. 

 

1.1.6 Diagnosis of epilepsy and IS 

Diagnosis of epilepsy begins with descriptions about seizure semiology from friends and 

family, but it is preferable to capture the seizures on video in the clinic. Procedures to diagnose 

different types of epilepsy require different tests, but almost all require a personal and family 

history, a recount of the age of onset, an identification of seizure type, a neurological and 

cognitive status examination, a 12-lead electrocardiogram (ECG) to rule out cardiac 

abnormalities, and an interictal electroencephalogram (EEG) [1]. Brain magnetic resonance 

imaging (MRI) is common, except when the patient presents with typical syndromes, and lumbar 

puncture and blood tests can also be used to confirm or reject specific causes [1]. Diagnostic 
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biomarkers can help clinicians provide objective basis for a diagnosis of epilepsy [26]. Some 

proposed diagnostic biomarkers include the presence of high-frequency oscillations in 

intracranial or scalp EEG [27], [28], the differential and increased/decreased expression of 

specific microRNAs [29], [30], and reduced temporal lobe white matter fractional anisotropy on 

diffusion tensor imaging [31], though these are not yet standard clinical practice. 

Similar to other forms of epilepsy, diagnosis of infantile spasms begins with a physical 

examination of the patient [9]. Diagnosis of infantile spasms is difficult because of the wide 

variation in spasm semiology; spasms can be a slight head nod or violent muscle contractions 

[9]. Parents may not recognize the abnormal movements and delay taking the child to a 

pediatrician [9]. Even in the clinic, subtle spasms may be misdiagnosed for gastroesophageal 

reflux, constipation, colitis, or benign infantile epilepsy [32]. Additionally, even after an IS 

diagnosis, parents often substantially underestimate the frequency of the spasms [9]. 

Once infantile spasms is suspected, the ictal and interictal EEG are required for 

diagnosis. The clinician visually assesses the EEG for signs of positive-vertex slow waves, 

spindle-like activity, and diffuse flattening (i.e. voltage attenuation) during ictal periods, as well 

as a stereotypical EEG pattern called hypsarrhythmia during interictal periods [9], [33]. The 

characteristics of hypsarrhythmia are further discussed in Section 1.2.4. Visual assessment of 

these patterns is challenging and has unacceptably low interrater reliability [34], [35], and this 

has drastic implications for prompt treatment initiation in these patients. 

 

1.1.7 Treatment of epilepsy and IS 

After an epilepsy diagnosis, clinicians must decide how to treat the disease. The goal of 

treatment is a resolution of epilepsy. According to the ILAE: “Epilepsy is considered to be 
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resolved for individuals who had an age-dependent epilepsy syndrome but are now past the 

applicable age or those who have remained seizure-free for the last 10 years, with no seizure 

medicines for the last 5 years [2].” Resolution was chosen by the ILAE instead of “cured” 

because a history of epilepsy indisputably places the risk of future seizures higher than the risk in 

the general population [2].  However, the term “in remission” does not convey the absence of the 

disease in those that were successfully treated [2]. Resolution implies the patient no longer has 

epilepsy but does not guarantee it will not return [2].   

The first line treatment of epilepsy is anti-epileptic drugs (AEDs). The selection of a 

specific AED depends on factors such as the seizure type, the possibility of adverse effects, the 

pharmacokinetic properties, ease of use, and cost [36]. The majority of the AEDs act by blocking 

voltage-dependent sodium channels or calcium channels, but some mainly operate by increasing 

GABA activity levels [36].  

Most patients who become seizure-free due to treatment with AEDs respond to the 

initially prescribed drug [1]. If a patient’s seizures are not controlled after the first-line treatment, 

the clinician will often consider alternative monotherapies or combination therapies (after 

treatment protocol non-adherence is ruled out) [1]. However, the probability of the patient 

responding to therapies administered after the first-line treatment diminishes proportionally to 

the number of alternative drugs tested [1]. Thus, if the patient has seen no reduction in the 

seizure frequency after the fist- or second-line AEDs, the disease is designated as a “drug-

resistant epilepsy” and the clinician may look to alternative methods [37]. These include surgical 

intervention, neurostimulation, diet therapies, and some exploratory therapeutic approaches [38].  

Neurosurgery has been regarded as a “last resort” for treatment of drug-resistant epilepsy 

in spite of the American Academy of Neurology’s recommendation for referral for surgical 



10 
 
 

 

 

evaluation after failing AED therapy [37]. In specific cases of focal epilepsy, surgical resection 

of the epileptic tissue provide much higher chances of seizure freedom than the continuation of 

another AED [39]. Patients that are not good surgical candidates may be candidates for 

therapeutic brain stimulation [38]. Although the curative mechanisms of the various forms of 

stimulation remain elusive, vagus nerve stimulators (VNS) and deep brain stimulation (DBS) 

have provided up to a 50% reduction in seizure frequency in some patient populations [40]. 

Lastly, alternative therapies such as a ketogenic diet, antioxidant therapy, and newer therapies 

such as gene therapy, cell therapy, and exosome therapy have been indicated for some drug-

resistant epilepsy patients [38].  

The treatment of infantile spasms is extremely difficult; the spasms are highly refractory 

and conventional AEDs are considered ineffective [7]. Two therapies, namely 

adrenocorticotropic hormone (ACTH) and vigabatrin, are the first-line AEDs in infantile spasms 

[41], [42]. The treatment choice between ACTH, vigabatrin, or a non-standard therapy and 

response rates can vary widely across different centers and studies; consensus on optimal 

treatment in all cases is not yet attained [43]. ACTH is administered daily at 1-2 IU/kg for two 

weeks and then tapered off [7]. ACTH has been reported to have a relapse rate of around 55%, 

but a second course of therapy can control seizures in approximately 75% of patients [7]. One 

important downside to ACTH is the severity of the side effects. Treatment-related mortality is as 

high as 5% and common side effects include infections, increased arterial blood pressure, 

gastritis, and hyperexcitability [7], [44]. Recent studies show similar efficacies in low-dose 

regimens of ACTH as opposed to high-dose, and lower doses may ameliorate some of the severe 

side effects of the therapy [45]. 
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Vigabatrin has been shown to be more effective than ACTH in certain etiologies of IS 

such as tuberous sclerosis [41]. In general, vigabatrin has lower initial response rates but also 

lower relapse rates than ACTH (48% vs 74% for vigabatrin and ACTH, respectively) [7]. In one 

study of epileptic spasms due to tuberous sclerosis, vigabatrin achieved a 100% response rate 

[46]. The main side effect in vigabatrin is its retinal toxicity that produces irreversible visual 

field loss in around 20% of pediatric patients [7]. Lower doses of vigabatrin may reduce the 

chances of the patient experiencing these effects [7].  

The United Kingdom Infantile Spasms Study (UKISS) prospectively compared hormonal 

therapy (ACTH) to vigabatrin in a multi-center randomized trial of 107 infants [47]. Seventy-five 

percent of all enrolled patients initially responded in both groups, half of the patients continued 

to be spasm free after 1 month, and 40% remained spasm free at 6 months [47]. If the first 

treatment failed, initiating the other had a good chance of response, which is atypical of AED 

therapies in other forms of epilepsy [1]. No differences in neurodevelopmental outcomes 

between treatments for symptomatic etiologies were found, but the Vineland adaptive behavior 

scale (VABS) scores were higher in the patients successfully treated with ACTH with 

cryptogenic etiologies [47].  

Other therapies such as neurosurgery and the ketogenic diet are considered if the patient 

fails the first-line treatments of ACTH, vigabatrin, or other steroids such as prednisolone [9]. 

Neurosurgery is only applicable in infants with symptomatic IS with focal cortical abnormalities, 

and thus cannot be regarded as first-line in all cases. The ketogenic diet has shown insufficient 

efficacy to be a first-line treatment in IS, but can be considered if first-line treatments fail or have 

been deemed inappropriate for the patient (e.g. in some mitochondrial disorders) [9]. 
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The cost associated with the treatment of infantile spasms is staggering [48]. The cost of 

medication alone in IS treatment can reach $93,100 [48]. For comparison, it is estimated that the 

cost of treating uncontrolled childhood epilepsy (not infantile spasms) can reach $5000 per year 

[49], [50]. Although this value is burdensome on families to be sure, it pales in comparison to the 

cost of infantile spasms treatment [48]. It is estimated that one round of treatment for IS, 

including hospitalization, outpatient, services, and medication costs reaches over $200,000 [48]. 

This value inflates further in refractory cases, as this implies more hospital visits and additional 

rounds of new therapies [49]. 

 

1.1.8 Forms of pediatric epilepsy associated with IS 

Table 1.1.8.1 lists selected epileptic syndromes, categorized by age.  

Table 1.1.8.1 Pediatric Epilepsy Syndromes [7]  

Syndromes in the neonatal period Benign familial neonatal epilepsy (BFNE) 

Ohtahara syndrome 

Syndromes in infancy Epilepsy of infancy with migrating partial 

seizures 

West syndrome 

Myoclonic epilepsy in infancy (MEI) 

Benign infantile epilepsy 

Benign familial infantile epilepsy 

Dravet syndrome 

Myoclonic encephalopathy in non-

progressive disorders 

Syndromes in childhood and adolescence Lennox-Gastaut Syndrome (LGS) 

Childhood absence epilepsy (CAE) 

Rasmussen syndrome (RS) 

Progressive myoclonus epilepsies 

 

 In neonatal epilepsy syndromes such as BFNE, the prognosis is favorable: psychomotor 

development tends to be normal and patients do not develop subsequent epilepsies [7]. In others 
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forms of neonatal epilepsy, such as Ohtahara syndrome (also known as early infantile epileptic 

encephalopathy), the effects of the seizures can be devastating [7]. Ohtahara syndrome is 

associated with a suppression-burst EEG pattern, increased risk of mortality, severe neurological 

impairment, and progression to other age-dependent encephalopathies such as infantile spasms 

and Lennox-Gastaut syndrome [7]. 

 Infantile epilepsies vary in seizure semiology, electrographic manifestations, and risk of 

mortality and comorbidity [7]. In addition to infantile spasms, Dravet syndrome is a severe 

myoclonic epilepsy that begins early in life, around 3-8 months of age, and is characterized by 

developmental delay and the progression of focal seizures into adulthood [7].  

 Lennox-Gastaut syndrome (LGS) is a childhood epilepsy that is preceded by infantile 

spasms syndrome approximately 30% of LGS cases, and follows infantile spasms in 20-50% of 

IS cases [7], [51]. LGS is defined by: “1) epileptic seizures: axial tonic, atonic and atypical 

absence; 2) EEG abnormalities: bursts of diffuse slow spike-waves during wakefulness and 

bursts of fast rhythmic waves and slow polyspikes and above all generalized fast rhythms at 

about 10 Hz during sleep; and 3) a slowness in intellectual growth and associated personality 

disorders [7].” Patients with LGS often cannot live independently, as over 80% of patients 

continue to have daily or weekly seizures into adulthood. It is prognostically unfavorable if LGS 

was preceded by infantile spasms syndrome [7]. 

 

1.1.9 Prognosis and long-term outcome in IS 

Some groups have identified favorable prognostic factors in cases of infantile spasms 

[15]. Patients who are older when the spasms first begin have a greater chance of treatment 

success and better neurocognitive outcomes [15]. The specific etiology of the spasms does not 
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always predict clinical outcome [52], but cryptogenic etiologies generally respond better to 

treatment than patients with symptomatic etiologies [15], [53], [54]. The mortality rate is 

estimated to be 10% before the age of 3 [55].  Over 75% of the patients that survive past age 3 

have below-normal intelligence levels [15], [56]. Psychiatric disorders, hyperkinetic behavior, 

and infantile autism are seen in 25% of patients [15]. Because IS often transitions into other 

forms of epilepsy such as Lennox-Gastaut syndrome, almost 70% of patients continue to have 

seizures, with around one-third of those experiencing daily seizures [15]. Shortening the lead 

time to treatment, the time delay between the onset of spasms and successful treatment, 

correlates to better patient outcomes [15], [55]. Accurate diagnoses and suitable treatment 

assessment tools shorten the lag time to successful treatment, improving overall outcomes [15], 

[55]. 

 

1.2 Electroencephalography 

1.2.1 Neurophysiological basis of EEG 

EEG is an indispensable tool for the diagnosis and follow-up of epilepsy patients. EEG 

provides a temporally-resolved picture of the electrical activity in the brain that can help 

clinicians localize pathological neuronal activity.  

Neuronal activation can be described by two main processes: the first is the action 

potential, a fast depolarization of the neuronal membrane that is mediated by sodium and 

potassium voltage-dependent ionic conductances; the second is a slower change in the membrane 

potential due to synaptic activation associated with different neurotransmitter systems [57]. 

Although action potentials cause larger voltage changes than synaptic potentials, the synaptic 

potentials are longer and spread across a greater spatial area, allowing for both temporal and 
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spatial summation [58]. This summed activation can be large enough to be detected on the scalp 

[58].   

The waveforms detected with EEG are dominated by the activity of cortical pyramidal 

neurons [59]. Excitation of post-synaptic neurons creates an extracellular voltage near the 

dendrites that is more negative than elsewhere along the neuron [59]. This creates a dipole, an 

element with two adjacent, oppositely charged sites [58]. The recording electrode measures the 

summed positive and negative dipole charges in their vicinity as a function of time. However, the 

orientation of the dipoles determines what the recording electrode “sees” [59]. Dipoles oriented 

“radially”, or pointing directly outward, produce the strongest deflections in EEG because the 

positive or negative end of the neuron is directed normal to the electrode surface. Dipoles 

oriented “tangentially”, or parallel to the scalp surface will contribute positive and negative 

charge equally to the recording electrode and will produce no deflection in the EEG data [59]. 

Neurons must be oriented in the same direction and activated simultaneously in order for the 

activity to be measured on the scalp [59]. 

Volume conduction is the process by which charge propagates through extracellular space 

from the neuron to the recording electrode on the scalp [58].  Ions of the same charge are 

repelled and opposite charges are attracted, forming a “wave” that propagates through each 

medium from the extracellular space through cerebrospinal fluid, dura layers, skull layers, and 

scalp to the electrode [59]. The movement of ions in these spaces is impeded by physiological 

barriers such as myelin-coated nerve tracts and different tissue densities [59]. One consequence 

of volume conduction is the spreading of electrical signals, such that a single source may be 

detected by more than one sensor. This effect must be particularly considered in investigations of 
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functional connectivity, so that significantly high levels of interaction are not falsely inferred 

from a common source measured by the pair of electrodes.   

 

1.2.2 EEG in infants 

The electrographic activity in pediatric subjects visually appears drastically different 

from healthy adult EEG. The patterns in pediatric EEG are also highly variable, creating 

difficulty in defining standards of healthy activity. In addition, the rapid development of the 

neonatal and infant brain blurs the developmental timeline. Thus, age-specific rhythms may or 

may not be present in perfectly healthy children at differing brain maturation states [60].  

At the earliest stage of life, wakeful background activity is dominated by delta (1-4 Hz) 

and theta (4-7 Hz) oscillations. However by the end of the first year of life, the delta oscillations 

diminish, leaving predominantly theta oscillations [61]. The posterior dominant rhythm is 

typically not present at birth, but appears at around 3 months of age. The frequency of the 

posterior dominant rhythm increases over time, with its rate determined by the level of brain 

maturation [60]. These occipital rhythms are usually in the delta band (1-3 Hz) at 4 months of 

age, then theta (4-7 Hz) by around 1 year of age, and up to 8 Hz by three years of age  [62]. The 

amplitude of the posterior dominant rhythm is higher in children than adults [63].  

By 4-6 months of age, a common 5-6 Hz activity in the central regions emerges as a 

possible early manifestation of the mu rhythm [61]. Beta activity develops between 6 months and 

2 years of age over the central and posterior regions, then migrates anteriorly with development 

[63]. The amplitude of beta activity is typically less than 20 µV, however, importantly for our 

analyses, the administration of anti-epileptic drugs such as barbituates, benzodiazepines, and 

chloral hydrates increase the amplitude and amount of beta activity [62].  
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Another common feature in pediatric EEG is generalized slowing. Similar to the posterior 

dominant rhythm, generalized slowing begins in lower frequencies within the first few months of 

life and increases in frequency with brain development [60].  

During drowsiness, rhythms generally slow to 2-3 Hz and increase in amplitude. At 4-20 

months of age, drowsiness elicits hypnogogic hypersynchrony: high-amplitude, synchronous 3-5 

Hz waves in both hemispheres [61]. An increase in beta activity over the frontocentral regions, 

diffuse rhythmic theta activity, and vertex waves may all be common during deep drowsiness 

[62]. 

At the onset of sleep, neonates typically enter active sleep. Between 1-2 months, 

however, infants will enter quiet sleep at onset, and oscillatory activity switches from a tracé 

alternant pattern to a high voltage slow pattern [61]. At 3 months, infants spend about 50% of 

their sleep time in REM sleep, but it gradually decreases to 30% with development. The tracé 

alternant and high voltage slow waves begin to disappear and sleep stages become 

distinguishable by 6 months [61].  

In stage II sleep, pediatric subjects tend to have high voltage EEG with less synchrony 

than adult subjects [60]. During the first year of life, sleep spindles, vertex sharp transients, and 

K-complexes and other features of stage II sleep are acquired [61]. Sleep spindles are 12-14 Hz 

runs of activity with a rectified morphology, V waves have a sharp high-amplitude negative 

polarity with a wide distribution, and K-complexes are sharp negative waves followed by a high 

amplitude longer duration positive wave [63]. Stage III and IV sleep is defined by rhythmic delta 

and theta frequencies as well as a decrease in the presence of sleep spindles [62]. Low voltage 

activity and slow alpha waves are present in REM sleep, with short bursts of saw-tooth waves 

[62]. 
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1.2.3 EEG in epilepsy 

Although not the definitive factor in every case, EEG most often provides strong clinical 

support for diagnosis in epilepsy [60]. Epileptiform patterns are distinguished from non-

epileptiform sharp transients and paroxysmal waveforms by several criteria: the spikes and sharp 

waves are typically asymmetric, usually have more than one phase, and should be distinct from 

background activity [61]. Spike waveforms typically last 20-80 ms [62]. They can be focused in 

a given region of the brain, originate from many areas (multi-focal), or generalize across the 

entire brain at once. In adults, the burst of neuronal activity causing a spike will often show up in 

3-4 electrodes, creating a physiologic field [62], [63]. However in infancy, it is possible to see a 

spike in only one electrode [63]. Approximately 6-11 cm2 of synchronously discharging cortex is 

needed to be detected on scalp electrodes [62]. The spike is sharp, with a rising slope steeper 

than its descending slope [60]. The spike-wave complex is defined by three phases: first the 

spike, then a deflection below baseline, and lastly a high-amplitude, time-locked 2-3 Hz slow 

wave [60], [63]. The discharges can be generalized and may have polyspike-wave complexes in 

some cases [60]. The sharp wave is a longer paroxysmal potential, lasting 80 to 200 ms, and is 

slightly less sharp than a spike. The sharp wave is hypothesized to be generated by a larger 

neuronal network, increasing its duration while decreasing its sharpness [60]. Although thought 

to be less localizing of aberrant behavior than spikes, the sharp wave is strongly indicative of 

epileptic behavior in the EEG [60].  

In focal epilepsies, wave shape, duration, and distribution differ between ictal periods, 

times during a seizure, and interictal periods, times between seizures. Ictal waveforms change in 

shape, frequency and amplitude over the course of the seizure [61]. The duration varies by the 



19 
 
 

 

 

clinical manifestation, and the distribution is wider in ictal patterns, as they begin focally and 

gradually diffuse [61]. Some common interictal patterns in focal epilepsies include: 3 Hz spike-

and-slow wave, the sharp-and-slow wave, atypical repetitive spike-and-slow wave, polyspike-

and-slow wave, and paroxysmal fast activity [62]. Ictal patterns are almost always stereotyped 

for individual patients, but often involve evolving repetitive sharp waves and spikes that modify 

in frequency, amplitude, topography and morphology over the course of the seizure [62]. In 

pediatric EEG, some criteria of poor prognosis, such as generalized paroxysmal fast activity, 

localized background flattening, continuous focal slow waves, and abnormal asymmetric 

background activity have been identified [62]. 

Generalized epileptiform patterns differ from focal activity more in the distribution than 

morphology of waveforms [61]. Generalized epileptiform activity is typically synchronous, has 

similar amplitude, and is present in corresponding parts of the hemisphere or the entire head 

[61]. Ictal discharges are often long repetitions of interictal patterns, an example being the 

“typical” 3 Hz spike-and-wave complex and the slow spike-and-wave discharge [61].  

 

1.2.4 EEG in IS and hypsarrhythmia  

EEG during the ictal periods of infantile spasms almost always include diffuse, high-

amplitude slow waves [7]. Beta activity (14-30 Hz), or “fast” activity, has been associated with 

infantile spasms and generally superimposes on the ascending portion of the slow wave [7], 

[64]–[66]. Some report over ten different ictal patterns in IS, with patterns such as high-voltage 

slow wave, sharp wave, and voltage attenuation most commonly identified [7]. The similarity of 

the spasm semiology to the startle reflex, along with the electroclinical findings of fast activity 
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and spiking unilaterally occur, lead researchers to believe the spasms could be generated by 

brainstem circuits with unilateral cortical descending input [7]. 

 The interictal EEG is more stereotyped when the spasms onset is within the first year of 

life [7]. Hypsarrhythmia is the pattern most associated with IS, and is characterized by 

asynchronous high-amplitude slow waves, a disorganized background, and multi-focal 

independent spikes [7], [11]. Hypsarrhythmia is reported to be present in approximately 70% of 

IS cases [10]. In NREM sleep, the EEG oscillates between lower theta-beta activity and diffuse 

irregular asymmetric spike-wave discharges, creating a paroxysmal alternating pattern [7]. 

Although it is generally a diffuse pattern, hypsarrhythmia can be lateralized, most often in 

symptomatic cases [7], [67]. Additionally, the multifocal spikes present in the EEG can 

correspond to focal cortical lesions or a region of the brain associated with comorbid partial 

seizures in symptomatic cases [7], [68]. There are also several variants of hypsarrhythmia, and 

these variants vary widely in power and spectral characteristics [10], [69]. 

 

1.3 Dissertation Roadmap 

 Currently, diagnosis and treatment response assessment in IS heavily rely on clinical 

EEG findings [9]. Clinicians visually assess the EEG signals for abnormal patterns and identify 

changes in the EEG associated with a response to therapy after treatment administration [21]. 

Hypsarrhythmia specifically is often used a criterion for IS diagnosis and the absence of the 

pattern after treatment is used as a criterion for treatment response, even if this means the EEG is 

still abnormal after treatment [34].  

However, it has been shown that the inter-rater reliability for the identification of 

hypsarrhythmia is unacceptably low, with a kappa value of 0.4 among six blinded pediatric 
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encephalographers (Randolph’s free-marginal multi-rater kappa statistic) [34]. This problem is 

further compounded by an inability to reach a consensus on the definition of hypsarrhythmia 

[70]. Several groups have attempted to objectify identification of hypsarrhythmia by developing 

different scoring schemes of accepted features, such as the BASED score [35], the Kramer 

Global Score [52], [71], and the hypsarrhythmia paroxysm index [72]. However, all of these 

schemes rely on visual identification of the features of the pattern, leaving subjectivity in EEG 

assessment. Computational EEG metrics may provide objectivity in clinical EEG assessment and 

improve diagnostic capabilities. 

Thus, we developed computational EEG metrics that successfully discriminate between 

awake EEG data with and without hypsarrhythmia in a cohort of 21 IS patients. In Chapter 2, we 

describe how the amplitude, power spectrum, and power-law scaling can discriminate the 

hypsarrhythmia pattern with high accuracy.  

To characterize power-law scaling in the EEG of IS subjects, we used an algorithm called 

Detrended Fluctuation Analysis (DFA). The output of the algorithm is a single number, the DFA 

exponent, that describes the strength of long-range temporal correlations in the data. This single 

number precludes statistical analyses over time or within single subjects. Hence, in Chapter 3, 

we describe a novel statistical analysis method based on the moving block bootstrap to derive 

confidence intervals for the DFA exponent, expanding the utility of DFA in neural data analysis. 

Next, recent literature suggests that hypsarrhythmia may be less clinically useful than 

once believed. In fact, it was shown in the largest prospective study as of 2017 that the presence 

of hypsarrhythmia did not predict treatment outcome [73]. Patients that present with IS without 

hypsarrhythmia still exhibit extremely poor outcomes. This could partially be due to the fact that 

patients with IS without hypsarrhythmia are less likely to receive first-line treatment because it si 
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likely to be misdiagnosed [74], [75]. Additionally, definitions of response after treatment 

typically only require a resolution of hypsarrhythmia, although abnormal and epileptiform 

waveforms after treatment herald high risk for spasm relapse [76]–[79]. As such, we sought to 

identify biomarkers of the EEG that reflected disease burden in IS patients that were independent 

of the presence of hypsarrhythmia. In Chapter 4, we report our analysis of EEG from a cohort of 

50 IS patients recorded at UCLA that exhibited longer lead times to treatment than most studies 

and had only a small fraction (8/50) of patients with hypsarrhythmia on the pre-treatment EEG.  

Lastly, the consistency of EEG patterns in IS suggests common underlying functional 

networks associated with the disease [80], [81]. Indeed, studies with SPECT [82], PET [83], 

fMRI [84], and source localization [85] found that subcortical-cortical interactions may play a 

role in the development of IS [82] and how generalized abnormal EEG patterns are observed 

despite focal etiologies. In Chapter 5, we investigated functional connectivity using an algorithm 

based in cross-correlation and identified differences in networks patterns between IS and control 

subjects. We also show that these networks change over the course of a 24-period, revealing 

intrinsic patterns that corroborate circadian patterns in ictal onset of spasm clusters [10].  

We believe these computational metrics will aid clinicians in the diagnosis and 

assessment of treatment in infantile spasms patients. This work meets a critical need in 

evaluation of IS because this patient population presents a huge burden on the healthcare system 

with high-risk and high-cost therapies [48], and prompt treatment initiation is imperative to 

maximize their overall developmental outcome [86]. We hypothesize these metrics will enable 

more accurate diagnoses of IS and aid in the assessment of treatment of this vulnerable patient 

population.  
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CHAPTER 2 

TEMPORAL and SPECTRAL CHARACTERISTICS of the EEG with 

HYPSARRHYTHMIA 

 

2.1 Amplitude and Power Spectrum in hypsarrhythmia 

2.1.1 Introduction 

Infantile spasms (IS) is often accompanied by a chaotic electroencephalographic (EEG) 

pattern known as hypsarrhythmia [8]. In contrast with the low amplitude, mixed frequency 

activity of normal awake EEG (Figure 2.1A), classic hypsarrhythmia is defined by multi-focal, 

independent epileptiform discharges on a disorganized background activity with asynchronous 

large amplitude slow waves (Figure 2.1B) [42]. There are also several variants of 

hypsarrhythmia that include episodes of voltage attenuation, burst-suppression patterns, 

increased interhemispheric synchronization, and hyperactive epileptiform foci [69]. Quantifying 

the presence and severity of hypsarrhythmia is nontrivial, as these variants exhibit drastically 

different power and spectral characteristics [34], [70]. For example, Hussain et al. showed that 

the inter-rater reliability for hypsarrhythmia identification is unacceptably low, with kappa less 

than 0.5 (2015). This can impede accurate diagnosis and evaluation of short-term treatment 

response for patients with IS. Therefore, computational measurements of hypsarrhythmia are 

needed to improve the accuracy, objectivity, and reliability of these assessments [34]. Improving 

these methods may also reduce the time between diagnosis and successful treatment, but basic 

characteristics have never been reported. Here, we address this gap in the literature by measuring 

amplitude and spectral features of EEG with hypsarrhythmia.  
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2.1.2 Methods 

2.1.2.1 Data collection and pre-processing 

  Scalp EEG data was recorded from infantile spasms and control patients using Nihon-

Kohden acquisition hardware and software in the Epilepsy Monitoring Unit at the Children’s 

Hospital of Orange County (CHOC). Nineteen scalp EEG electrodes recorded neural activity, 

placed according to the 10-20 international electrode placement system. Data were sampled at 

200 Hz or 500 Hz with electrode impedances below 5 kOhms. A clinical pediatric epileptologist 

at CHOC (DS) retrospectively collected the datasets from the electronic medical record and 

stored them in an encrypted database. Approval to perform this study was obtained from the 

CHOC Institutional Review Board.  

We gathered EEG and clinical data for 21 infantile spasms patients. Two separate 

recordings were collected during wakefulness (median recording duration: 22.1, IQR 19.4-24.1 

minutes). The first recording was performed at the time of the infantile spasms diagnosis prior to 

treatment (median age: 6.3, IQR 5.2-8.1 months), and the second was done after treatment 

initiation to assess response (median time to second recording: 29, IQR 19-42.25 days). The data 

was clipped without reviewer knowledge of treatment status or outcome. Awake EEG was 

chosen for analysis because EEG characteristics vary significantly across different sleep stages. 

The pre-treatment EEGs of all 21 patients exhibited findings consistent with hypsarrhythmia. In 

three patients, this pattern occurred intermittently, whereas in the other 18 it was consistently 

present.   
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We also collected data for 21 control subjects of a similar age distribution (median age: 7, 

IQR 5.75-11.25 months). In this group, neurologists had ordered routine EEGs for suspected 

neurological abnormalities due to trauma or atypical behavior, but later classified the EEG as 

normal. These recordings contained both sleep and awake data, and the sections of wakefulness 

were selected for analysis (median recording duration: 12.2, IQR 10.1-16.3 minutes). Additional 

exclusion criteria for control patients in this study included a history of epilepsy, abnormal 

developmental history, abnormal video-EEG telemetry monitoring, and known neurological 

conditions.  

 We divided the data into three groups: patient data with hypsarrhythmia (HYPS), patient 

data without hypsarrhythmia (NoHYPS), and control subjects (CONTROL). All pre-treatment 

data was classified as HYPS (n=21), as well as data from patients that had persistent 

 
Figure 2.1 Example EEG traces. (A) Awake EEG from a control subject and (B) Awake EEG from a 

subject with infantile spasms and hypsarrhythmia. 
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hypsarrhythmia after treatment (n=4, total HYPS n=25). Patients whose data no longer met 

criteria for hypsarrhythmia after treatment were classified as NoHYPS (n=17). 

Data were re-referenced to a linked-ear montage. We broadband bandpass-filtered the re-

referenced data using an FIR filter for the amplitude and spectral analysis (pass band: 1-55 Hz, 

order: 200, transitions: 0.25-1 Hz, 55-58 Hz) and then removed signal epochs marked as artifact 

by board-certified pediatric epileptologists at CHOC. 

Table 2.1 Infantile Spasms Patient Clinical Information 

Patient 

Number 

Age at 

Treatment 

Initiation 

(months) 

Spasms Etiology Medication Time between 

Onset of 

Spasms and 

Treatment 

(days) 

Treatment Response 

Hypsarrhythmia 

Resolved 

Spasms 

Resolved 

1 12.0 Cortical Malformation  VGB 35 No No 

4 5.5 Neonatal HIE ACTH 7 Yes Yes 

5 8.7 Unknown, Prematurity, 

Diffuse Cerebral 

Atrophy 

ACTH 4 Yes Yes 

6 6.8 Tuberous Sclerosis VGB 4 Yes Yes 

8 4.5 Dysmorphic, likely 

genetic 

ACTH 14 Yes No 

9 6.0 Neurofibromatosis 

Type I 

ACTH 3 Yes No 

10 4.5 Unknown ACTH 10 Yes No 

11 7.9 Paroxysmal 

Bifunctional Protein 

Deficiency 

ACTH 7 Yes Yes 

13 3.7 GBS Ventriculitis and 

hydrocephalus 

VGB 7 No No 

16 6.6 CDKL5 Mutation ACTH, 

VGB 

23 Yes No 

18 18.3 Unknown ACTH 270 Yes Yes 

19 4.9 Neonatal HIE ACTH 8 Yes Yes 

20 6.3 Unknown ACTH 30 Yes Yes 

22 7.7 Unknown ACTH 30 Yes Yes 

25 7.7 Tuberous Sclerosis VGB 7 Yes No 

28 6.0 Chromosome 8 

Abnormality & Stroke 

ACTH 4 Yes Yes 

29 5.8 Lissencephaly & 

Pachygyria 

ACTH 5 Yes Yes 

30 5.3 Lissencephaly ACTH 90 No No 

31 19.4 Bacterial 

Meningoencephalitis 

ACTH 90 Yes No 

32 9.0 Prematurity and Left-

sided IVH 

ACTH 4 Yes Yes 

34 4.9 Unknown ACTH 28 No No 
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Clinical information for 21 infantile spasms patients.  

Acronyms are defined as follows: HIE = hypoxic-ischemic encephalopathy, WM = white matter, GBS = 

Group B streptococcus, ACTH = adrenocorticotropic hormone, and VGB = vigabatrin. 

 

2.1.2.2 Amplitude Analysis 

 Amplitude values were calculated from the range of the filtered data in 1 s windows in 

the Cz electrode. We aggregated all amplitude values from patients within each group and 

constructed amplitude histograms. Statistical significance was assessed using the median 

amplitude value from individual patients. Electrode Cz was chosen because it is minimally 

affected by muscle and eye movement artifacts.  

 The variation of the signal amplitude across channels was visualized via topographic 

maps. We first constructed individual patient maps by calculating the median amplitude value in 

each channel from the recording. These values were normalized by dividing by the largest 

channel median value. The group topographic maps were constructed from the mean of the 

normalized patient values within each group. The figures were generated using the MATLAB-

based EEGLAB function topoplot() [87].   

 

2.1.2.3 Power Spectrum Analysis 

The frequency content of the signal was analyzed with the fast Fourier Transform. We 

computed the magnitude of the Fourier coefficients in five second windows of continuous data 

and averaged over all windows in the dataset to obtain a mean power spectrum. We performed 

this calculation for every channel in each dataset. The median power maps for HYPS and 

NoHYPS groups were normalized to the median power values of the CONTROL group to reveal 

deviations from healthy physiological processing.  
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The spectral edge frequency (SEF) is defined as the frequency under which 95% of the 

power resides. We calculated the SEF for every channel in each patient. We compared group-

wise differences by constructing topographic maps of the mean SEF from patients within each 

group. 

 

2.1.3 Results 

2.1.3.1 High amplitude in hypsarrhythmia 

 The mode of the amplitude was higher for HYPS (150-160 µV), compared to 40-50 µV 

for NoHYPS, and 60-70 µV for CONTROL data (Figure 2.2A). The median amplitude in the Cz 

electrode was significantly higher in HYPS when compared to NoHYPS and CONTROL data 

(Wilcoxon rank-sum test: p<1e-6 for NoHYPS, p<1e-7 for CONTROL) (Figure 2.2B). There 

was no difference between the median signal amplitude in the Cz electrode in NoHYPS and 

CONTROL data (Wilcoxon rank-sum test:  p=0.3042). 

The topographic amplitude maps were symmetric in all cases and displaced anteriorly in 

NoHYPS and slightly anteriorly in HYPS compared to controls (Figure 2.3). We assessed 

statistical significance of topographic maps with random polarity inversion permutation testing 

[88]. The HYPS map revealed high amplitudes were more common in the frontal and central 

brain regions. Channels F3, F4, Fz, C3, Cz, P3, and Pz exhibited significantly high normalized 

values (p<0.05 from bootstrapped distribution) (Figure 2.3A). NoHYPS subjects showed a 

consistent lower amplitude in the parietal electrodes (P3, P4 and Pz) and significantly higher 

amplitude in Fp1 and Fp2 (bootstrap, p<0.05) (Figure 2.3B). CONTROL subjects showed 

consistently higher values in channels Fp1, Fp2, F3, F4, Cz, and Pz (bootstrap, p<0.05) (Figure 
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2.3C). We note, however, the highest amplitudes residing in the midline may be partially 

artefactual due to the linked-ear reference. 

 

 

 
Figure 2.2 (A) Channel Cz amplitude histograms from all subjects in each group. The lines connect 

histogram bar centers. Red indicates HYPS, blue indicates NoHYPS and black indicates CONTROL 

groups. (B) The median amplitude from the Cz electrode in each group. 

 

 

 
Figure 2.3 Mean topographic map of median normalized amplitude for (A) HYPS, (B) NoHYPS, and 

(C) CONTROL subjects. 
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2.1.3.2 High power in lower frequency bands in hypsarrhythmia  

 In HYPS, power was greater in the delta (1-3 Hz) and alpha (8-12 Hz) frequency bands 

when compared to CONTROL (Figure 2.4A). The power in the beta (13-30 Hz) frequency band 

in HYPS was similar to CONTROL data (Figure 2.4A). There was a slight suppression of 

activity in the theta (4-7 Hz) and low alpha frequency band in the NoHYPS data compared to 

CONTROL data (Figure 2.4B).  

The topographical maps of the SEF in HYPS revealed that the values are consistent 

across EEG channels (Figure 2.5). SEF values for HYPS were statistically different from 

 
Figure 2.4 Power spectrum generated via fast Fourier Transform. Group mean power in all frequencies 

and all channels was normalized to the respective mean value from the CONTROL power spectra. (A) 

Relative differences between HYPS and CONTROL. (B) Relative differences between NoHYPS and 

CONTROL.  
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NoHYPS in 17 of the 19 channels (all except O1 and O2, Wilcoxon rank-sum: p<0.05, adjusted 

by Benjamini-Hochberg procedure). HYPS differed from CONTROL SEF values in all channels 

(Wilcox. rank-sum, adjusted: p<0.05). NoHYPS and CONTROL SEF topographic maps 

revealed wide variation in SEF values across the scalp, each with very high values in the 

temporal channels. NoHYPS and CONTROL SEF values differed significantly only in channels 

Fp1 and Fp2 (Wilcox. rank-sum, adjusted: p<0.05).  

 

2.1.4 Discussion 

 In this study, we quantified the amplitude and power spectrum of the hypsarrhythmia 

EEG pattern in IS patients.  

Currently, identification of hypsarrhythmia is performed visually by clinicians based on 

general descriptions of the pattern. For example, hypsarrhythmia is often described as a high-

amplitude (>200 µV) signal [11]. However, this definition often becomes hard to distinguish 

visually if the high amplitude oscillations are intermittent, when the amplitude is close to the 200 

µV cutoff threshold, or if the clinician uses a different EEG reference. Attempts to objectify the 

 
Figure 2.5 Spectral edge frequency topographic maps for (A) HYPS, (B) NoHYPS, and (C) 

CONTROL subjects. 
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identification of hypsarrhythmia have included different scoring schemes [35], [52], [72], but 

these techniques still rely on visual identification of components of the pattern.  

Thus, computational techniques are required, and we believe the significance of our study 

lies in the simplicity of the quantitative measures presented. Other groups have quantitatively 

described more complex characteristics of hypsarrhythmia such as the presence of multi-focal 

independent spikes [89], fast oscillations [65], nonlinear properties [90], neuronal network 

patterns [84], [85], and temporal structure [91]. Although these properties have reliably 

distinguished the pattern from normal control data, they require special analysis tools that are not 

readily available in commercial EEG systems. The simple measures we present in this study are 

trending algorithms frequently used in ICU monitoring systems, and thus reduce the barrier to 

implementation of computational EEG analysis in IS diagnosis. 

One limitation of this study is that we selected and classified datasets based on the visual 

identification of hypsarrhythmia. We plan to mitigate the effect of human bias in future studies 

by implementing a scoring system [35] with multiple clinical reviewers, while conceding that 

complete objectivity cannot be obtained with these methods. Another limitation is that we 

compare patients with IS to healthy controls, and thus cannot be certain these results are specific 

to IS among the many types of epilepsy. To address this, we specifically plan to investigate these 

measures in various other forms of epilepsy, including Lennox-Gastaut syndrome (LGS), a type 

of pediatric epileptic encephalopathy that often develops in children with IS. 

Amplitude, power spectrum, and SEF are readily available and clinically understood 

tools that may aid epileptologists in the identification of hypsarrhythmia in EEG data. We 

believe these measures, in combination with other, more complex measurements, could comprise 

a robust system to score and classify EEG with and without hypsarrhythmia. Because successful 
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treatment of IS is defined by both the cessation of spasms and the resolution of hypsarrhythmia, 

such a system could also enable a quantification of treatment response in these patients. This tool 

could have widespread impact in both industrial and clinical settings: 1) Computational measures 

of treatment response could minimize the number of placebo controls needed in clinical trials of 

novel therapies; and 2) If clinicians can assess early treatment response, they could adjust 

treatment methods if a particular medication is ineffective early in the treatment process. As 

prompt initiation of effective therapies maximizes developmental progress and reduces the 

chance of comorbidities in these high-risk patients, the introduction of these measures in the 

evaluation of IS patients may improve long-term outcomes.   
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2.2 Long-range temporal correlations in hypsarrhythmia 

2.2.1 Introduction 

As opposed to hypsarrhythmia, which is qualitatively described as a “chaotic” pattern, it 

is known that EEG activity in a healthy human brain possesses scale-free structure over multiple 

time scales [92]. Neural data has been shown to exhibit amplitude modulations on a power-law 

scale, in which the power in the amplitude envelope 𝑦 is related to its frequency 𝑓 by: 𝑦 =
1

𝑓𝛼, 

with a scaling constant 𝛼 termed the Hurst parameter [92]. The power-law scaled nature of 

amplitude fluctuations in EEG data gives rise to long-range temporal correlations in the time 

series [93].  

The autocorrelation is one of the simplest methods to assess long-range temporal 

structure in time series data. It has been used to characterize periodic phenomena in childhood 

absence seizures [94] and to perform automatic detection of neonatal seizures [95]. However, the 

autocorrelation function often provides a noisier estimate of the decay of temporal correlations 

than more complex methods [96]. The noise level in these calculations can be reduced by using 

techniques that are based on random walk theory rather than analyzing the time series directly 

[97]. Specifically, detrended fluctuation analysis (DFA) has been shown to be robust to certain 

nonstationarities in positively correlated signals, such as discontinuities due to artifact removal, 

and it is appropriate for use on shortened data segments [98], [99]. Both of these factors directly 

affect the stability of the autocorrelation. Thus, we used both the autocorrelation and DFA to 

characterize the long-range temporal dependence in EEG data associated with infantile spasms 

before and after treatment. We hypothesized that the presence of infantile spasms and 
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hypsarrhythmia would disrupt long-range temporal correlations in the EEG and that a response 

to treatment would be associated with the return of temporal correlations to normal levels.  

 

2.2.2 Methods 

2.2.2.1 Data pre-processing 

The EEG data were re-referenced to a linked-ear montage and divided into narrow 

frequency bands using FIR filters for the delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta 

(13-30 Hz) ranges. Epileptologists at CHOC marked and removed artifacts due to eye blinks, 

muscle activity, movement, poor electrode contact, and periods of photic stimulation prior to 

analysis.  

 

2.2.2.2 The autocorrelation function 

We calculated the autocorrelation of the amplitude envelope of infantile spasms patients 

with and without hypsarrhythmia in the Cz electrode. The amplitude envelope was extracted 

from the bandpass-filtered data by applying the Hilbert transform and calculating the magnitude 

of the analytic signal. We then calculated the autocorrelation using a biased cross-correlation of 

the envelope at all possible time lags, normalized to correlation values between 0 and 1. To 

assess the significance of temporal correlations in the data, we compared the result of the 

autocorrelation to surrogate data that was created by shuffling the Fourier phases of the original 

envelope. We calculated the time lag at which each patient autocorrelation function failed to 

exceed the 95th percentile of the surrogate data. This represented the time lag at which the 

correlations in the time series were not significantly different from chance levels.  
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2.2.2.3 Detrended Fluctuation Analysis 

Detrended Fluctuation Analysis (DFA) was implemented using the following algorithm, 

adapted from Hardstone et al. (2012): 

First, the amplitude envelope was extracted from each channel by similar methods used 

in the autocorrelation calculation. We then subtracted the mean of the amplitude envelope and 

computed the cumulative sum of the signal to create the signal profile. This signal profile was 

divided into equally-sized windows with 50% overlap. Within each window, we performed a 

linear fit of the signal profile, subtracted the fit from the time series, and calculated the standard 

deviation of the detrended signal. After computing the standard deviations of the detrended 

signal for all windows of that size, we recorded the median standard deviation for that window 

size. This process was repeated for logarithmically-spaced window sizes from 3 seconds to 25 

seconds in length. 

When the median standard deviations are plotted on a logarithmic scale against the log-

spaced window sizes, the result is linear with slope 𝛼 (Figure 2.6). This slope is a direct 

estimation of the Hurst parameter and indicates the strength of the temporal correlations present 

in the time series [99]. The slope of the resultant DFA plot varies between 0 and 1.0. Exponents 

less than 0.5 designate anti-correlated signals, while positively correlated signals have an 

exponent greater than 0.5, indicating strong long-range temporal correlations. Uncorrelated 

signals, such as white noise, result in a DFA exponent of 0.5.  

We averaged 𝛼 from all individual channels to obtain a single value approximating the 

strength of long-range temporal correlations in the EEG, as individual channels within a subject 

exhibited consistent slopes (Figure 2.6). The intercept of the DFA plot was calculated from the 

linear fit of the channel average by extrapolating on the logarithmic plot to find the fluctuation 
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value when window size was one sample, the value at which the logarithm of the window size 

equals zero. (Figure 2.6 filled black dot).  

 

Note that DFA has been shown to robustly measure temporal dependence in positively-

correlated signals, even when the data contains discontinuities due to artifact removal [98]. 

Although DFA has been criticized by several groups in this regard [100], [101], their concerns 

are often aimed at the generalizability of the technique to all signal nonstationarities. We use the 

method under the careful assumption that neural signals are positively correlated and we use 

sufficiently long window sizes to mitigate the uncertainty of the measure in small data segments. 

Other forms of the algorithm increase the largest window size to 1/10 of the signal length [99], 

 
 Figure 2.6 Example DFA plot. The DFA exponent, α, is the slope of the linear fit of the average of all 

channels. Each channel’s median fluctuation value (standard deviation of the detrended signal) is 

plotted as a circle for each window size. Window size is measured in data points. The intercept is 

calculated as the theoretical fluctuation value when the logarithm of the window size equals zero, 

represented by the filled dot on the y-axis. 
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but the use of large windows can cause a piecewise linear result with one or more “cross-over” 

points, requiring special analysis techniques  [98], [102]. Therefore, we set the smallest window 

size to 3 seconds and the largest window size to 25 seconds to maintain consistent linearity at all 

window sizes (mean SSE: 0.0017 +/- 0.0042).  

 

2.2.2.4 Support Vector Machine Classification 

 To quantify our ability to distinguish between patients with and without hypsarrhythmia, 

we trained one-dimensional and two-dimensional support vector machines (SVM). The one-

dimensional SVM imposes a simple threshold, while the two-dimensional SVM optimizes a 

linear classifier to separate the two groups. To train the SVM, we randomly selected half of the 

subjects with hypsarrhythmia (n=25) and half of the subjects without hypsarrhythmia (both 

spasms and control patients, n=38) and used the MATLAB function “svmtrain”. We then tested 

the classifier with the remainder of the data using the MATLAB function “svmclassify”. The 

number of correct classifications, the sensitivity, and specificity were recorded over 1000 

iterations of randomly-selected training and testing datasets. 

 

2.2.2.5 Effect of amplitude and standard deviation on DFA parameters 

To gain insight into how basic characteristics of the EEG data, including amplitude and 

standard deviation, affect the DFA measurement, we performed simulations using pink noise. 

Pink noise was generated at 200 Hz for 20 minutes to match the characteristics of our EEG 

dataset. After bandpass filtering, the amplitude envelope was extracted by performing the Hilbert 

transform and calculating the magnitude of the analytic signal.  
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We then measured the DFA exponent and intercept of the simulated signal, using scaling 

factors to independently vary the amplitude and variance of the envelope. The 1000 scaling 

factors were linearly-spaced values from 1 to 100. To vary the overall amplitude, we calculated 

the mean value of the amplitude envelope, multiplied the mean by the scaling factor, and added 

this constant to the original envelope (Figure 2.7, green line). To scale the variance, we first 

subtracted the mean from the original amplitude envelope, multiplied the zero-mean signal by 

the scaling factor, and added the original mean value back into the signal (Figure 2.7, blue line). 

For each scaling factor, DFA was performed on all three envelopes: the original envelope, the 

envelope with increased amplitude, and the envelope with increased variance. 

 

 

  

 
 Figure 2.7 Example amplitude envelope traces used in simulated EEG filtered in the alpha band. The 

red line is the original extracted amplitude envelope from a simulated EEG signal. The green and blue 

lines depict the original envelope scaled with increased amplitude and variance, respectively. 
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2.2.3 Results 

 

2.2.3.1 Hypsarrhythmia is associated with weaker long-range temporal correlations 

 

In the beta frequency band, the EEGs of patients without hypsarrhythmia exhibited 

stronger autocorrelation values over all time lags when compared to data with hypsarrhythmia 

(Figure 2.8A). Both patient groups showed significant correlations over longer time lags than 

surrogate data (Figure 2.8A), but the autocorrelation of data without hypsarrhythmia remained 

significantly higher than surrogate data over longer time lags (Wilcoxon rank-sum: p<0.01, z = -

2.58, Figure 2.8B). Results in other frequency bands were not significant (data not shown). The 

differences in the beta band motivated further investigation into how hypsarrhythmia disrupts 

temporal structure in EEG. Note, however, that we were unable to directly compare to the 

autocorrelation functions for the control group, as the control subject EEG data was often shorter 

and contained both sleep and wakeful states. The autocorrelation measurement is negatively 

impacted by the discontinuities created by concatenating the awake segments, and it was not 

possible to extract uninterrupted segments of awake data of sufficient length to directly compare 

the autocorrelation functions of the three groups. 

 Thus, further quantification and a comparison with control data warranted the use of 

detrended fluctuation analysis to more robustly characterize the strength of long-range temporal 

correlations in the data. First, we compared DFA exponents of patients with hypsarrhythmia to 

those without, regardless of whether the data was collected before or after treatment. Recall that 

some patients did not respond to treatment and still had hypsarrhythmia in the post-treatment 

EEG (4 out of 21 patients, see Table 2.1). Patients with hypsarrhythmia exhibited lower DFA 

exponents than control subjects in all frequency bands (Figure 2.9, Wilcoxon rank-sum test: 

p<0.0125 corrected for multiple comparisons, average z = -3.74). Patients without 
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hypsarrhythmia had significantly greater DFA exponents than patients with hypsarrhythmia in 

the theta (p<0.0125, z = -3.31), alpha (p<0.0125, z = -2.92), and beta (p<0.0001, z = -3.92) 

bands. There was no significant difference between patients without hypsarrhythmia and control 

patients in any frequency band (Figure 2.9). 

 

 

 

2.2.3.2 DFA parameters enable classification of patients with and without hypsarrhythmia 

 

DFA analysis results in a straight line that is characterized by both its slope (exponent) 

and y-intercept (Figure 2.6). The DFA exponent measures how the amplitude envelope is 

modulated over time, whereas the DFA intercept is a function of the standard deviation of the 

amplitude envelope (see Figure 2.14D). When these two quantities were plotted against one 

 
 Figure 2.8 EEG data with hypsarrhythmia is associated with decreased temporal correlations in the 

beta frequency band when calculated with autocorrelation. (A) The median normalized 

autocorrelation function of the amplitude envelope in patients with hypsarrhythmia (red, n=25), 

patients without hypsarrhythmia (blue, n=17), and surrogate data (green, n=42). The respective 

shaded areas represent data between the 25th and 75th quantile of individual autocorrelation functions. 

The black line indicates the 95th quantile of the surrogate data used as the threshold of significance for 

patient data. (B) Boxplots of the distribution of lag times at which individual patient autocorrelation 

functions were no longer significant, for patient data with (red) and without (blue) hypsarrhythmia. 

Patients with intermittent hypsarrhythmia are included in the hypsarrhythmia boxplot. 
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another, we saw a separation between subjects with hypsarrhythmia (Figure 2.10, red and pink 

circles) and those without hypsarrhythmia (Figure 2.10, blue and black circles), regardless of 

treatment status (pre- or post-treatment). We note a strong negative correlation between the DFA 

intercept and DFA exponent in our data, despite the fact that they are derived from independent 

properties of the signal (Figure 2.10). 

 

 

Table 2.2 Support Vector Machine Classification of Hypsarrhythmia 
Frequency 

Band 

Classification Accuracy Sensitivity Specificity 

Exponent 

only 

Exponent and 

Intercept 

Exponent 

only 

Exponent and 

Intercept 

Exponent 

only 

Exponent and 

Intercept 

Delta 69.1% 91.6% 62.95% 91.86% 73.77% 91.06% 

Theta 77.6% 86.8% 67.52% 77.30% 85.27% 93.37% 

Alpha 78.0% 88.9% 64.11% 74.27% 87.64% 98.99% 

Beta 80.9% 82.9% 79.62% 75.90% 80.62% 88.24% 

 

 

 

 

 

 

 
 Figure 2.9 Hypsarrhythmia is associated with lower values of the DFA exponent (* = p<0.0125, ** = 

p<0.0001). Results are shown for (A) delta band (z = -2.54), (B) theta band (z = -3.64), (C) alpha 

band (z = -3.77), and (D) beta band (z = -5.03). Z-values report significance between hypsarrhythmia 

and controls. The red box designates hypsarrhythmia (n=25), blue indicates no hypsarrhythmia 

(n=17), and black represents control patients (n=21). Patients with intermittent hypsarrhythmia are 

included in the hypsarrhythmia boxplot. 
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We used a support vector machine to quantify our ability to classify patients with and 

without hypsarrhythmia. The SVM was trained first using only the DFA exponent as input (the 

one-dimensional case based on a simple threshold for the exponent), and then with both the 

exponent and intercept as inputs (the linear, two-dimensional case). When the data were 

classified using only the DFA exponent, the highest classification accuracy was 80.9%, based on 

the beta frequency band, with 80% sensitivity and 81% specificity (Table 2.2). When the 

 
 Figure 2.10 A plot of DFA exponent versus DFA intercept results in separation of patients with 

hypsarrhythmia from those without, enabling classification. Red open circles designate 

hypsarrhythmia pre-treatment and magenta closed circles indicate intermittent hypsarrhythmia pre-

treatment. The red and blue stars indicate hypsarrhythmia and no hypsarrhythmia post-treatment, 

respectively. Black open circles represent control subjects. Results are shown for the (A) delta, (B) 

theta, (C) alpha, and (D) beta frequency bands. 
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intercept was added as a parameter, the mean classification accuracy, sensitivity, and specificity 

increased an average of 11% in all categories. Using both parameters as input, we achieved a 

maximum classification accuracy of 92% in the delta band with 92% sensitivity and 91% 

specificity (Table 2.2). 

 

2.2.3.3 The change in the DFA exponent reflects treatment response 

 

Successful treatment of infantile spasms is defined by both a resolution of 

hypsarrhythmia and a cessation of clinical spasms. In our dataset, 10 of the 21 patients were 

classified as “non-responders” because they still exhibited clinical spasms after the administered 

treatment. Four of those 10 patients had persistent hypsarrhythmia following treatment. 

We expected a group-wise increase in strength of long-range temporal correlations due to 

the resolution of hypsarrhythmia in 17 subjects (see also Figure 2.9). An analysis of pair-wise 

measurements in the theta and beta bands of pre- and post-treatment datasets showed that a 

significant number of responders exhibited an increase in strength of long-range temporal 

correlations after treatment (Wilcoxon left-tailed sign-rank test: p<0.01), whereas non-

responders did not (Figure 2.11B and 2.11D). 

In the beta band, responders had a greater increase in strength of long-range temporal 

correlations after treatment than non-responders (Figure 2.11D). The median post-treatment DFA 

exponent in the beta band of responders was not significantly different from the median value for 

the control patients (Wilcoxon rank-sum: p=0.4509, z = -0.75). However, the non-responder 

post-treatment median exponent was significantly lower than the control patient median 

exponent (Wilcoxon rank-sum: p<0.001, z = -3.44) (Figure 2.11D). Accounting for the DFA 

intercept induces further separation between responders and non-responders (Figure 2.12). These 
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results suggest that the change in the DFA exponent may reflect the clinical response to 

treatment, rather than just the presence or absence of hypsarrhythmia. 

 

 

 
 Figure 2.11 Greater increases in DFA exponent in the beta band are associated with treatment 

success. Data is shown for patients with hypsarrhythmia (red open circles), patients with intermittent 

hypsarrhythmia (magenta closed circles), patients without hypsarrhythmia (blue open circles), and 

control subjects (black open circles). The black lines indicate that the patient was a responder who had 

a resolution of hypsarrhythmia and spasms after treatment. The magenta lines represent patients that 

were non-responders with persistent spasms after treatment. The small black arrows indicate outlier 

patient 18 (see Discussion). Results are shown for the (A) delta, (B) theta, (C) alpha, and (D) beta 

frequency bands. 
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2.2.3.4 Interpretation of DFA exponent and intercept relative to basic EEG characteristics 

 

Because the long-range temporal correlation measurement integrates information over 

many time scales, it is informative to interpret the DFA parameters relative to basic 

characteristics of the EEG that can be visually assessed by the human eye and are used for 

clinical diagnosis. For example, hypsarrhythmic EEG is clinically defined as a high amplitude 

signal, so pre-treatment EEGs with hypsarrhythmia have a much higher amplitude than post-

 
 Figure 2.12 Treatment response vectors with both DFA exponent and DFA intercept as parameters. 

For each patient, the vector originates at the pre-treatment DFA exponent and intercept and ends at the 

post-treatment values. The magenta vectors represent non-responders and black vectors represent 

responders. Results are shown for the (A) delta band, (B) theta band, (C) alpha band, and (D) beta 

band. 
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treatment EEGs without hypsarrhythmia. Indeed, our calculation of amplitude histograms in 

patient EEGs revealed a decrease in amplitude after treatment, consistent with a resolution of 

hypsarrhythmia in most cases (17 out of 21 patients) (Figure 2.13). To investigate how this 

change in amplitude affected the analysis of temporal correlations, we performed DFA on 

simulated data with varying amplitude characteristics. We modulated both the overall amplitude 

value as well as the variance of the amplitude envelope (Figure 2.7). Our simulations confirmed 

that the DFA exponent is robust to variations in the amplitude of the signal (Figure 2.14A and 

2.14C). The DFA intercept is also independent from the EEG amplitude (Figure 2.14B), but it 

exhibits a logarithmic relationship to the scaled amplitude variance (Figure 2.14D, see also 

Figure 2.7, blue line).  

 

 

2.2.4 Discussion 

In this study, we demonstrated a relationship between infantile spasms and 

hypsarrhythmia and the strength of long-range temporal correlations in the developing brain. 

Consistent with the idea that long-range temporal correlations reflect the brain’s normal 

functional control of synchrony, we found that the strength of correlations in the EEGs of 

infantile spasms patients were weaker than those seen in healthy brains. Using the DFA 

parameters, the presence of hypsarrhythmia could be classified with up to 92% accuracy. We 

further found that successful treatment caused the strength of long-range temporal correlations to 

return to the level of control patients, with responders exhibiting a significantly greater increase 

in exponent values than non-responders. These results suggest that the strength of long-range 



48 
 
 

 

 

temporal correlations may not only be an indicator of hypsarrhythmia, but also reflect treatment 

response. 

 

  

 

 
 Figure 2.13 Histograms of EEG amplitude. The count in each bin is represented as a fraction of the 

total number of occurrences. Histograms for (A) pre-treatment, (B) post-treatment and (C) control 

patients. Red lines designate patients with hypsarrhythmia, magenta for patients with intermittent 

hypsarrhythmia, blue for patients without hypsarrhythmia, and black indicates control patients. (D) 

Boxplot of the mode amplitude values for all pre-treatment (red), post-treatment (blue), and control 

patients (black). Pre-treatment boxplot includes patients with intermittent hypsarrhythmia, and post-

treatment boxplot includes patients that had persistent hypsarrhythmia and spasms after treatment. 
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Researchers and clinicians have tried to quantify various characteristics of 

hypsarrhythmia in an attempt to ameliorate the subjectivity of the assessment [52]. Some groups 

have attempted to quantitatively describe the underlying functional and neuronal network that 

facilitates hypsarrhythmia through EEG-fMRI [84], source analysis methods [85], and detection 

of fast oscillations [65]. Though the hypsarrhythmia signal is often empirically described as 

“chaotic,” with the term describing the signal’s disorganized appearance [8], the mathematical 

 
 Figure 2.14 DFA results based on 1/f distributed noise filtered into the alpha band (8-12 Hz). (A) 

DFA exponent does not vary with increasing amplitude. (B) DFA intercept does not vary with 

increasing amplitude. (C)DFA exponent does not vary with increasing envelope variance. (D) DFA 

intercept varies logarithmically with increasing envelope variance. 
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definition of chaos and signal nonlinearity has been explored in several forms of epilepsy [90], 

[94], [103]. In hypsarrhythmia, an inter-ictal phenomenon, the deviation from stochastic 

behavior was greater than in control data, but not as nonlinear as seen during seizure periods 

[90]. Our results correspondingly indicate that temporal structure reliably exists in 

hypsarrhythmia, although it is disrupted as an effect of the disease.  

DFA has been used clinically to show that the scaling properties of the EEG change when 

a patient experiences a stroke, enabling accurate detection of stroke by EEG in the absence of 

MRI [104]. In a study of epilepsy, long-range temporal correlations measured by DFA in depth 

electrodes and subdural EEG were shown to be stronger when in close proximity to the 

epileptogenic zone [105], [106]. Similar to our results, the effects of proximity to the seizure 

onset zone and treatment were the most prevalent in the beta frequency band [105]. However the 

pathogenic zone in that study showed elevated levels of long-range temporal correlations, 

whereas our results showed weaker correlations in the untreated, pathologic state [105]. Under 

the interpretation of DFA as measuring the functional self-control of the underlying network of 

the brain, we associated weaker temporal correlations with an inability to self-regulate the 

amplitude modulations necessary for healthy processing over long time scales. 

The classification accuracy of infantile spasms patients in this study indicates that the 

strength of long-range temporal correlations measured with DFA is highly differentiable in 

patients with and without hypsarrhythmia. We used a support vector machine to classify patients 

in this study to simulate how this measure might perform if used in a clinical environment. 

Because the training and testing procedures used in the SVM are independent of one another, the 

classification accuracy indicates how well new data would be categorized in the clinic based on 

data from a cohort of patients from a prior study. While our dataset is quite small, the high 
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accuracy, sensitivity, and specificity are promising, and they support future investigation on the 

use of DFA in hypsarrhythmia identification for both diagnosis and treatment evaluation.  

An assessment of long-range temporal correlations, by definition, analyzes longer 

temporal scales than typical time-frequency analyses. Because human reviewers are only able to 

visualize several seconds of EEG data at a time, a measure of control of the neural network over 

long time frames is a novel way to probe the severity of infantile spasms and hypsarrhythmia. 

Additionally, our quantitative measurement of long-range temporal correlations in these patients 

is unique in that we are assessing the ability of the neural network to regulate its own activity. 

The results of our simulations with pink noise indicate that DFA captures more complex 

characteristics of the EEG with greater clinical relevance than amplitude alone: the changes in 

DFA parameters after treatment are not influenced by large decreases in amplitude, but rather are 

secondary to alteration of the neuronal activity that underlies spasms and hypsarrhythmia.  

Although there were slight increases in DFA exponents in the other frequency bands 

following successful treatment, the increases were most significant in the beta band. We 

hypothesize this may be the case for several reasons. First, studies show that high amplitude beta 

activity is a predominant EEG feature in healthy infants [107]. Secondly, paroxysmal fast 

activity (PFA) and focal or lateralized beta activity is commonly seen in infantile spasms and 

other epileptic syndromes [66], [108]. In addition, some of the medications prescribed for 

patients with IS, such as barbiturates and benzodiazepines, are often associated with an increase 

in beta activity [107]. Although beta activity is more prevalent in the spasms cases, the lower 

pre-treatment DFA exponents indicate that the activity is less correlated over long time scales. 

Thus, the stronger correlations seen after successful treatment may indicate that the brain has 

reestablished normal beta amplitude fluctuations associated with this stage of development. 
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There are several important limitations to the current study. Data collection was 

retrospective, which led to a variable amount of time between pre-treatment and post-treatment 

EEGs and an inability to precisely control the dataset lengths. The relatively small number of 

patients included in this study is an effect of the rarity of the disease and precluded comparative 

analysis of antiepileptic medication and etiology of spasms. Although the diverse etiology of 

patients is a limitation of the current study, the surprising consistency of the strength of temporal 

correlations across both focal and generalized etiologies promotes the use of DFA as a potential 

widespread diagnostic tool in this disease. Additionally, though others have reported differences 

in the strength of long-range temporal correlations as a function of age [96], we found no 

significant correlation between age and DFA exponent in the control patients in our study 

(Figure 2.15). We believe this is due to the narrow age distribution of the control patients 

(median age: 7, IQR 5.75-11.25 months). Lastly, we tested only one epileptic syndrome, so it 

remains unknown whether the change in the strength of long-range temporal correlations is 

specific to infantile spasms or is a general marker for differentiating neuropathologies from 

normal cortical function. 

In our dataset, there were several outliers that may have impacted our results, and these 

correspond to some of the confounding factors known to affect successful treatment. For 

example, patient 18 responded to treatment, but had a much higher pre-treatment DFA exponent 

than post-treatment, a pattern that was different than all other responders in the dataset (see small 

black arrows in Figure 2.11). This patient, as well as three others, had a large time delay between 

spasms onset and the initiation of treatment (Table 2.1), a factor known to be associated with 

worse developmental outcomes [15].   
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These limitations and gaps in knowledge necessitate further investigation into the effects 

of other clinical factors that confound the assessment of long-range temporal correlations in 

patients with infantile spasms. A prospective study with a much larger dataset will be required to 

assess how temporal structure is affected by factors such as therapy type and spasms etiology. As 

this study focused on analyzing the strength of temporal correlations in pre- and post-treatment 

EEG with respect to the presence of hypsarrhythmia and correlation with initial treatment 

 
 Figure 2.15 DFA exponent does not correlate with control subject age. Pearson correlations between 

the DFA exponent and subject age were not significant in the (A) delta band (p = 0.4911), (B) theta 

band (p=0.0644), (C) alpha band (p=0.2830), and (D) beta band (p=0.5971). 



54 
 
 

 

 

response, larger prospective studies may elucidate changes in the EEG temporal structure 

associated with specific epileptic encephalopathies as well as their relationship to long-term 

outcome.  
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CHAPTER 3 

INFERENCE on LONG-RANGE TEMPORAL CORRELATIONS in 

HUMAN EEG DATA 

 

3.1 Introduction 

The strength of long-range temporal correlations in time series can be estimated by 

Detrended Fluctuation Analysis (DFA), a statistical method based on scaled windowed variance 

[109]. Although the technique originated to assess patterns in DNA structure [110], the utility of 

DFA has expanded to probe temporal structure in other physical systems such as daily 

temperature fluctuations [111], gait stride intervals [112], and heart rate variability [113]. Since 

the discovery of long-range temporal correlations in recordings from the human brain [92], 

neurophysiologists and clinicians have used DFA to analyze the temporal structure in neural data 

associated with sensorimotor function [114], [115], cognitive development [96], [116], [117], 

neurologic disease [91], [105], [106], brain stimulation [118], [119], and brain trauma [104], 

[120], [121]. 

DFA is one of several algorithms that statistically estimates the Hurst exponent (H), a 

scalar value that reflects the level of self-similarity in time series [122]–[125]. The measure 

directly relates to the rate of decay of the autocorrelation function (Figure 3.1) [94], [95]. When 

DFA is applied to a single segment of time series data, it returns one estimate of the Hurst 

exponent. Thus, in the context of studies with neural data, conclusions are often based on 

distributions of single DFA exponent values from groups of subjects [92], [96], [126]. This 

precludes within-subject comparisons between different conditions and statistical analysis of 
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changes in the DFA exponent over time. In this study, we present a statistically rigorous method 

to estimate the confidence interval for the DFA exponent of human EEG data. This technique 

enables us to track long-term EEG temporal structure changes in an infant and to compare 

treatment responses in subjects diagnosed with epilepsy. 

 

Our method of statistical inference for DFA applied to neural data is based on the moving 

block bootstrap (MBB) [127], [128]. Bootstrapping and other Monte Carlo methods generate 

independently sampled data with similar statistics as the original signal. The MBB is a 

bootstrapping-based procedure that is applicable to signals with temporal autocorrelation (such 

as neural time series data) [129]. Using MBB we generate distributions of estimates of the Hurst 

exponent by randomly sampling from blocks of a time series (rather than singleton points, as in a 

classical bootstrapping technique), concatenating the blocks, and computing the test statistic over 

 
Figure 3.1 Relationship between simulated EEG time series and the signal autocorrelation. (A) Raw 

simulated EEG time series generated with H=0.55 (black), 0.65 (red), 0.75 (blue), 0.85 (green), and 

0.95 (magenta). We highlight that the time series display larger migrations from the mean in more 

positively correlated signals.  (B) Normalized autocorrelation of each time series.  
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the new time series [128]. This preserves the dependence structure of the time series [127]. 

Although MBB has been used to generate empirical distributions of DFA exponents in simulated 

and financial returns time series [130], the challenge of bootstrapping EEG data for analysis with 

DFA has not been addressed. The extension to brain signals, in particular EEG, is not trivial 

because of the nonstationary and nonlinear nature of the signals, the continuous transition of 

brain states, and the presence of artifacts in the data [131]–[134]. We show first through 

simulation that MBB can uncover statistically significant changes in the strength of long-range 

temporal correlations, and we discuss practical considerations for implementation such as the 

effect of varying epoch length and the introduction of discontinuities through bootstrapping and 

artifact rejection. We then show how these methods can be used in long-term EEG analyses to 

assess changes in brain state and in assessing response to treatment in subjects diagnosed with 

epilepsy. 

 

3.2 Methods 

3.2.1 Simulated Data Generation 

We used simulated data to show performance of the DFA algorithm under various 

conditions that are common in neural time series processing and MBB. Simulated fractional 

Brownian motion (fBm) was created by integrating fractional Gaussian noise (fGn) that was 

generated with a given Hurst exponent (H) [135]. We used the contributed MATLAB function 

“ffgn” [136] to create a temporally correlated signal with H ranging from 0.50 to 0.99. The 

function generated exact paths of fractional Gaussian noise by means of circulant embedding for 

positively correlated signals (0.5<H<1.0) [137]. The number of data points in the generated 
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signal corresponded to the number of samples in twenty minutes of EEG data at a sampling rate 

of 200 Hz to approximately match standard clinical data collected from human subjects.  

 

3.2.2 EEG Recording and Pre-processing 

We retrospectively analyzed three human EEG datasets from infant subjects enrolled in 

two different studies at the Children’s Hospital of Orange County (CHOC) to assess the utility of 

MBB and DFA. Both of these studies investigated a seizure type known as infantile spasms. 

These studies were approved by the CHOC Institutional Review Board. 

In the first dataset, a board-certified pediatric epileptologist (DS) retrospectively identified 20-30 

minute scalp EEG recordings from 21 normal infants aged 4-19 months (median 6.3 months). All 

21 recordings were ultimately classified as normal. This dataset was used to demonstrate the 

methods and parameter choices for MBB-DFA (see Sections 3.2.4, 3.2.5, 3.3.2, and 3.3.3). We 

will refer to this dataset as the Control dataset. 

The second dataset was comprised of a long-term (>24 hour) video-EEG recording of a 

7-month old otherwise normal infant who was having events suspected to be seizures. This 

recording was also ultimately classified as normal by the same epileptologist (DS). We selected a 

data segment that included 126 minutes of wakefulness and 166 minutes of sleep, without regard 

to specific sleep stages. (See Sections 3.2.6 and 3.3.5). We will refer to this dataset as the Long-

Term dataset. 

Lastly, the third dataset consisted of recordings from two infants who were diagnosed 

with infantile spasms. These subjects were chosen to demonstrate changes in the DFA exponent 

distributions after treatment. Subject A was a 5.5-month-old infant whose epilepsy was treated 

successfully with adrenocorticotropic hormone (ACTH), a common therapy for the disease. We 
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selected 24.3 and 21.2 minutes of awake data from the pre-treatment and post-treatment 

recordings of this subject, respectively. The clipped segments were chosen because they were 

relatively free of artifacts. Successful treatment was defined as a cessation of seizures and 

resolution of an epileptiform EEG pattern known as hypsarrhythmia [70], [138]. Subject B was a 

3.7-month-old infant who was treated unsuccessfully with vigabatrin, exhibiting persistent 

spasms and hypsarrhythmia after treatment initiation. This subject’s pre- and post-treatment EEG 

included 20.4 and 23.4 minutes of awake data, respectively. We will call this two-subject dataset 

the IS Subject dataset. 

All recordings consisted of nineteen scalp electrodes placed according to the international 

10-20 system, sampled at 200 Hz with impedances below 5 kΩ. The same board certified 

epileptologist (DS) viewed the broadband bandpass-filtered data according to the clinical 

standard (1.0-40 Hz). Start and end times of high-amplitude muscle activity, eye blinks, subject 

movement, poor electrode contact, impedance checks, and photic stimulation were marked. We 

note that the visually marked artifactual time periods included a buffer on either side of the 

artifact to account for any signal spread due to the filtering done prior to removal. EEG data were 

re-referenced to a linked-ear montage and divided into narrow frequency bands using FIR filters 

for the delta (1-4 Hz, order = 400), theta (4-7 Hz, order = 100), alpha (8-12 Hz, order = 50), and 

beta (14-30 Hz, order = 29) frequency bands (Figure 3.2). After the data was filtered into the 

frequency band of interest, the time periods marked as artifact were removed from all channels. 

This procedure was followed whenever artifacts were removed from the data. Note that for some 

analyses (Section 3.2.4 and 3.2.5), some or all of the artifacts were purposely left in the data. 
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3.2.3 Detrended Fluctuation Analysis 

Detrended Fluctuation Analysis was applied to both simulated and human scalp EEG 

data. We repeat the algorithm here for completeness; all steps are as originally described in Peng 

et al. and Hardstone et al. (and in Section 2.2.3.2 of this dissertation) except where indicated 

[99], [110]: 

We define {𝑦(𝑡)} to be the EEG time series with zero mean, and {ℎ(𝑡)} to be the Hilbert 

transform of {𝑦(𝑡)} where 

ℎ(𝑡) =
1

𝜋
 𝑝. 𝑣. ∫

𝑦(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
. (1) 

The magnitude of the Hilbert transform is  

𝑥(𝑡) = ‖ℎ(𝑡)‖, (2) 

 
Figure 3.2 The effect of filtering on scalp EEG time series. (A) Raw scalp EEG time series from 

control subject. (B) EEG data filtered into the delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta 

(13-30 Hz) frequency bands, from bottom to top, respectively.  
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representing the amplitude envelope. We define 𝑥̅ to be the average 
1

𝑘
∑ 𝑥(𝑖)𝑘

𝑖=1  where 𝑘 is the 

number of samples in the time series. The signal profile at time 𝑡 is the integrated zero-mean 

envelope 

𝑢(𝑡) =  ∑ [𝑥(𝑖) − 𝑥̅𝑡
𝑖=1 ]. (3) 

Note that in the simulated data, the mean is subtracted from the fractional Gaussian noise and 

then integrated over time.  

The signal profile {𝑢(𝑡)} is divided into equally-sized windows with 50% overlap [99] 

(Figure 3.3A). We define the 𝑞𝑡ℎ window of size 𝑀 to be the signal profile at time points 𝑡𝑞 +

1, 𝑡𝑞 + 2, … 𝑡𝑞 + 𝑀. In this window, 𝑢𝑞 can be represented by a linear model 𝑢𝑞(𝑡) =  𝛽0
𝑞 +  𝛽1

𝑞𝑡 

where 𝑡 = 𝑡𝑞 + 1, … 𝑡𝑞 + 𝑀, where the estimates of the regression parameters denoted by 𝛽̂0
𝑞
 and 

𝛽̂1
𝑞
 are obtained by the ordinary least squares criterion. The estimated trend is removed to form 

the residuals 

𝑅𝑞(𝑡) = 𝑢𝑞(𝑡) − [𝛽̂0
𝑞

+ 𝛽̂1
𝑞

𝑡], (4) 

for 𝑡 = 𝑡𝑞 + 1, … 𝑡𝑞 + 𝑀. One may estimate nonlinear trends in time 𝑡 and hence the residual 

will be 𝑢𝑞(𝑡) minus the estimated nonlinear trend. 

The standard deviation of {𝑅𝑞(𝑡)} is computed for the 𝑞𝑡ℎ window of length 𝑀 to be 

𝑆𝐷𝑀(𝑞) = √
∑ (𝑅𝑞(𝑡)−𝑅̅𝑞)2

𝑡𝑞+𝑀

𝑡=𝑡𝑞+1

𝑀−1
 (5) 

where 𝑅̅𝑞 =
1

𝑀
∑ 𝑅𝑞(𝑡)

𝑡𝑞+𝑀

𝑡=𝑡𝑞+1 . Note that 𝑅̅𝑞 theoretically equals zero because the intercept 𝛽̂0
𝑞
 is 

included in the linear model. For windows of size 𝑀, we denote the total number of windows to 
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be 𝑄𝑀. The median of the standard deviations across all windows 𝑞 = 1, … , 𝑄𝑀 is computed to 

be 𝑆𝐷̅̅ ̅̅
𝑀 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑞=1,…,𝑄𝑀

{𝑆𝐷𝑀(𝑞)}. 

This process is performed for twenty logarithmically-spaced (base 10) window sizes 𝑀 =

1 second (200 samples) to 𝑀 = (
1

10
𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ). The slope of the scatterplot for log{𝑆𝐷̅̅ ̅̅

𝑀} as 

a function of log(𝑀) is estimated using least squares (Figure 3.4). This sample slope is the DFA 

exponent, denoted 𝛼, and it serves as a direct estimate of the Hurst exponent (H).   

Because DFA will return an exponent value even when the resultant loglog plot is not 

linear, we ensured the data was best described by a linear model using the model selection 

technique outlined in [139]. 

 

 
Figure 3.3 The signal profile (cumulative sum of the time series) divided into windows. (A) Windows 

used in DFA are of length M with 50% overlap. Within each window, the linear trend is removed 

(dotted line) and the standard deviation of the detrended signal is obtained. (B) Blocks of data 

describing the moving block bootstrap and analysis of long-term EEG recordings. The length of the 

bootstrap block is BB (50 seconds) and the length of the global window is BG (1000 seconds). Ten 

windows of length BB are randomly sampled from a global window of length BG to create block-

bootstrapped time series. Global windows were shifted 200 seconds (after artifact removal) in the 

long-term recordings. 
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3.2.4 Signal Length Analysis 

To conduct rigorous statistical analysis, it is necessary to quantify the uncertainty of 𝛼, 

which is the point estimate for H. To estimate the variation in the DFA exponent 𝛼 when 

analyzing time series of different lengths, we examined the difference between 𝛼 measured for a 

short window of data and 𝛼 measured for the entire signal length. We simulated time series that 

were at least 2.4 × 105 samples in total, the equivalent of twenty minutes of data sampled at 200 

Hz. We performed DFA on the entire signal length and labeled this value as the “true” DFA 

exponent (𝛼̂). The signal was then divided into non-overlapping windows of one minute of data 

(1.2 × 104 samples), and the DFA exponent was calculated for each one-minute segment (𝛼). 

We recorded the difference between 𝛼 and 𝛼̂. This process was repeated for windows increasing 

in size by one minute up to ten minutes. 

 To demonstrate this effect in human EEG data, we analyzed the sleeping portions of the 

Control dataset before artifact removal. The artifacts were left in the data to minimize the 

number of discontinuities in the signal. The analysis included patients from this dataset whose 

sleeping portions of data exceeded 14 minutes in length (n=10 subjects). The iterative process 

described for simulated data was repeated for these data. The DFA exponent calculated for the 

entire EEG time series was labeled 𝛼𝑓𝑢𝑙𝑙 and the exponents for the shorter segments (𝛼) were 

compared with the 𝛼𝑓𝑢𝑙𝑙 value. 

 

3.2.5 The Effect of Discontinuities and Artifacts 

 Employing a moving block bootstrap will introduce discontinuities into the data because 

the process concatenates randomly sampled blocks of time series data (Figure 3.3, BB) [127], 
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[140], [141]. We wanted to quantify the effect of discontinuities on the estimate of H using DFA. 

This question was also investigated by [98], but the study did not quantify the effect of 

discontinuities on the variance of the distribution of DFA exponents obtained. One of our main 

goals in this paper is to study this effect. To do this, we first generated simulated time series as 

before, effectively twenty minutes in length. The DFA exponent was calculated for this original 

signal (𝛼̂). Discontinuities were introduced by randomly selecting one 50-second block of data 

from the time series, removing it from its original location, and adding it to the end of the time 

series, creating two discontinuities with one window translation. We chose a block length of 50 

seconds to match the bootstrapping block length (BB, Figure 3.3). This process was repeated for 

ten iterations of block translations. We measured the DFA exponent (𝛼) for the new time series 

with each iteration and recorded the difference between 𝛼 and 𝛼̂. The windows were sampled 

without replacement from the original signal, creating a total of twenty discontinuities in the new 

time series compared to the original. 

 We performed this test on the Control dataset. We recorded the difference between the 

DFA exponent measured for the original time series (𝛼𝑓𝑢𝑙𝑙) and the exponent measured with each 

window translation (𝛼). We analyzed patients from this dataset with at least 500 seconds of 

continuous EEG during wakefulness (n=13 subjects). 

In addition to discontinuities introduced by the bootstrapping procedure, discontinuities 

also arise due to the removal of artifacts. This is a common and often necessary practice in 

analyzing human EEG data. To test the effect of artifact removal on the estimate of H, we first 

bandpass-filtered the data and removed all artifacts. We then measured the DFA exponent for 

each electrode in the Control dataset (𝛼𝑓𝑢𝑙𝑙_𝑐𝑙𝑒𝑎𝑛). We compared this value to the DFA exponents 
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measured in bandpass-filtered data with a percentage of artifact time periods removed randomly 

(𝛼). We chose different subsets of artifacts for twenty iterations, resulting in a distribution of 𝛼 

values for each percentage of artifacts removed. This process was repeated in increments of 10% 

of artifact time periods removed in all waking portions of the 21 subjects in all channels. 

 

3.2.6 Bootstrap Analysis 

 We employed MBB-DFA by concatenating randomly selected blocks of data from the 

time series [127], [128], [140]. This method preserves the dependence structure in the time series 

by concatenating blocks of sufficient length to maintain correlation on a shorter time scale [141]. 

We built a bootstrap distribution to compare to the original 𝛼 value in simulated data as follows. 

First, we calculated the DFA exponent for the original time series (𝛼̂). Ten windows, each 50-

seconds (1.0 × 104 samples) in length (BB, Figure 3.3B), were randomly selected out of the 24 

 
Figure 3.4 Example output of detrended fluctuation analysis (DFA). When the log of the median 

fluctuation (the standard deviation of the detrended signal profile) is plotted as a function of the log of 

the window size, a linear result may indicate power-law scaling in the time series. The slope of the 

line (𝛼) is an estimate of H for the time series.  
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possible windows and concatenated to create a new time series that was 500 seconds long. DFA 

was performed on the new time series and the exponent (𝛼) was calculated for 500 realizations. 

We then applied MBB to the Long-Term and IS Subject datasets. All recordings in these datasets 

exceeded 1000 seconds in length (twenty 50-second windows) (Figure 3.3B). 

 The DFA exponent and its confidence intervals were tracked over time in the Long-Term 

dataset. The time series was segmented into 79 overlapping windows, which were defined as 

“global” windows. Each global window of data was individually bootstrapped to calculate the 

distribution of DFA exponents (𝛼) for that window. The global windows were 1000 seconds in 

length (BG, Figure 3.3B), approximately matching the length of the bootstrapping simulations, 

and shifted with 80% overlap (shift=200 seconds, after artifact removal).  In each global 

window, we randomly extracted ten 50-second segments of data (BB, Figure 3.3B) and 

concatenated the segments to make a new 500-second signal as described above. We analyzed 

this signal with DFA, recorded 𝛼, and repeated this process to create a distribution of 500 values. 

The empirical distributions were obtained for all 79 global windows. 

 

3.3 Results 

3.3.1 Variance of DFA exponents in simulated data 

 We first measured the variation in the DFA algorithm output by generating simulated 

data with a known Hurst exponent (H) and recording the estimates of H, represented by the DFA 

exponent (𝛼) over 500 realizations. The mean of the distribution of 𝛼 values was very similar to 

the true exponent H used to simulate the data (Figure 3.5). The maximum standard deviation of 

the distributions was 0.024. Thus, the proposed estimator is approximately unbiased for the true 
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exponent H. Histograms of selected distributions showed little deviation from normality (Figure 

3.5).  

 

3.3.2 The variance of the DFA estimate decreases for longer signal lengths 

 There is greater uncertainty in DFA exponent estimation in shorter data segments because 

the smaller box sizes are typically fixed, and a smaller number of data points will fall into each 

box size. We tested this effect using simulated data with H ranging from 0.50 to 0.99. We 

recorded the difference between the 𝛼 for a selected segment of the time series and 𝛼̂, and we 

aggregated the results from 50 independent realizations of simulated data (Figure 3.6A). The 

distributions indicate no trend in the median 𝛼 value as a function of segment length, but the 

variance of the distribution is higher for shorter data segments than longer segments.   

 
Figure 3.5 Comparison of the distribution of 𝛼 values to the true H value used to create simulated 

data. (A) The circles indicate the mean of the distribution of 𝛼 values and the line above and below 

indicate one standard deviation. (B) Histograms of selected distributions of 𝛼 values as a function of 

H.  
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 The Control EEG data show bias in 𝛼, with the largest effect in the lower frequency 

bands (Figure 3.6B). Similar to the simulation results (Figure 3.6A), the variance decreases with 

longer signal lengths. Though the EEG data interquartile range is only slightly larger than the 

simulated data, there are more outliers in the human EEG data. This is most likely due to the 

presence of artifacts. 

 

3.3.3 Discontinuities and artifacts increase the variance of the DFA estimate 

 Bootstrapping and the removal of artifacts will introduce discontinuities into the time 

series. We examined the effect of such discontinuities on the variance of the DFA exponent. In 

simulated data with varying numbers of added discontinuities, we found no trend in the median 

𝛼 − 𝛼̂ value for any value of H (Figure 3.7A). Here 𝛼 represents the DFA exponent with added 

discontinuities and 𝛼̂ is the DFA exponent of the signal with no discontinuities. The standard 

 
Figure 3.6 Boxplots showing the effect of data segment length on the DFA exponent. The horizontal 

black line denotes the median of the distribution and the bars indicate the interquartile range. (A) In 

simulated data, we varied both segment length and the value of H, which ranged from 0.50 to 0.99; 

boxplots for each value of H are placed adjacent to one another, in ascending order. The DFA 

exponent recorded for the signal segment is 𝛼, and the exponent recorded for the original 20-minute 

simulated data is 𝛼̂. (B) In the Control EEG dataset, we compared 𝛼 for each segment length to the 

value measured for the full signal (𝛼𝑓𝑢𝑙𝑙). The full signal consisted of the sleeping portions of the data 

from all channels for 10 of the 21 subjects.  
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deviation of the distribution, however, increased with the number of added discontinuities. This 

increase in standard deviation was greater for more positively correlated signals (Figure 3.7B). In 

the Control subject EEG data, the introduction of discontinuities due to artifact removal had less 

effect on the variability of 𝛼 than the presence of the artifacts (Figure 3.8). The addition of 

discontinuities caused slight increases in the median 𝛼 value and the variance of the distribution 

(Figure 3.8A). This trend was present in all frequency bands; representative data from the theta 

frequency band is shown. We note that the variance of 𝛼 in EEG data (Figure 3.8A) is only 

slightly bigger than the variance of 𝛼 in simulated data (Figure 3.7). The presence of artifacts 

was associated with higher 𝛼 values relative to data in which artifacts had been removed 

(𝛼𝑓𝑢𝑙𝑙_𝑐𝑙𝑒𝑎𝑛) (Figure 3.8B). The bias of the distribution due to the presence of artifacts (Figure 

3.8B) is larger than the bias solely due to discontinuities (Figure 3.8A). The 𝛼 values from each 

permutation of artifact time periods sampled are shown in Figure 3.9 and the median of those 

values are shown in Figure 3.8B.  

 
Figure 3.7 The effect of time series discontinuities on 𝛼. (A) Differences between 𝛼 values measured 

for twenty-minute simulated time series with translated windows compared to the DFA exponent 

measured using the original twenty-minute signal (𝛼̂). Signals were simulated with H=0.75. (B) 

Standard deviations of 𝛼 − 𝛼̂ distributions for varying values of H. 
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3.3.4 Bootstrapped distributions of DFA exponents in simulated data 

 Applying MBB to time series generates independently sampled realizations of the time 

series (correlated within a time series; independent across different time series realizations) upon 

which distributions of a test statistic can be derived. We generated simulated data, block-

bootstrapped the signal, and measured 𝛼 for 500 iterations. We tested simulated data with values 

of H ranging from 0.50 to 0.95, in increments of 0.05, using twenty realizations for each value of 

H (Figure 3.10). The median values of the bootstrapped 𝛼 distributions for individual realizations 

varied from one another despite being generated with the same Hurst exponent (Figure 3.10A). 

 
Figure 3.8 The effect of time series discontinuities and artifacts on 𝛼. (A) In the Control EEG dataset 

(n=13 subjects), we measured differences between 𝛼 values for EEG time series with translated 

windows compared to the DFA exponent measured using the original continuous EEG signal (𝛼𝑓𝑢𝑙𝑙). 

The median and interquartile range of the distribution increased as a function of the number of 

introduced discontinuities in the time series. (B) We also compared Control EEG data (n=21) with 

artifacts removed (𝛼𝑓𝑢𝑙𝑙_𝑐𝑙𝑒𝑎𝑛) to data with only a subset of the artifact time periods removed. We 

randomly selected 10% of artifact time periods to be removed from the data for twenty iterations and 

recorded the median value for each channel. This was repeated for an increasing percentage of artifact 

time periods in 10% increments. Artifacts increase the estimate of 𝛼 and bias the distribution more 

than discontinuities alone. Representative data is shown from the theta frequency band in both panels.  
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However, the variation in the median was comparable to the variation measured for independent 

simulated data realizations (Figure 3.5), so this variation was expected. 

 We also analyzed the distribution of exponent deviations, defined as the difference 

between the DFA exponent measured for the bootstrapped signal (𝛼) and the DFA exponent 

measured for the original signal (𝛼̂) (Figure 3.10B). When the DFA exponent deviations (𝛼 − 𝛼̂) 

were aggregated over all twenty realizations of noise for all H values, the greatest differences 

occurred in the more strongly correlated signals (Figure 3.11). Distributions generated with Hurst 

 
Figure 3.9 Effect of artifact removal for all twenty iterations in all channels for 21 subjects in the 

Control dataset. Deviations in DFA exponents are shown for the (A) delta, (B) theta, (C) alpha, and 

(D) beta frequency bands. 
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exponents of 0.9 and 0.95 had a positive bias of 0.012 and 0.023, respectively (Figure 3.11). The 

standard deviation of these distributions also increased as H increased. 

 

 
Figure 3.10 Applying DFA to iteratively bootstrapped time series generates a distribution of 𝛼 values 

for the signal. (A) The distributions of 𝛼 for 20 independent realizations of fBm generated with H = 

0.75. (B) Deviations in DFA exponents (𝛼 − 𝛼̂) for the data shown in (A). 
 

 
Figure 3.11 Deviations in DFA exponents (𝛼 − 𝛼̂) over all realizations for tested H values. 



73 
 
 

 

 

3.3.5 DFA bootstrapping in long-term EEG data 

 We used MBB and DFA to measure the statistical significance of changes in 𝛼 in the 

Long-Term dataset (Figure 3.12). This EEG dataset contained transitions in brain state over 

292.1 minutes: the subject was awake at the beginning of the recording, fell asleep at minute 56, 

woke up at minute 79, and then fell asleep again at minute 149 for the rest of the recording. We 

found significant differences between 𝛼 during waking and sleep in all frequency bands and in 

all channels except for channel Cz (changes in channels Fz, C3, C4, and F4 were only significant 

in the delta and theta bands). 

 

 
Figure 3.12 Bootstrapped distributions reveal differences between wake and sleep in a healthy human 

subject from channels O1 and O2. The averaged mean of the bootstrapped distribution is the dark 

solid line of the respective color for each frequency band. The translucent colored area around each 

distribution represents the 95% confidence interval. Periods of sleep are marked with a grey 

background.  
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3.3.6 DFA bootstrapping for within-subject comparison of pre- and post-treatment EEG data 

 Lastly, in the IS Subject dataset, we compared 𝛼 before treatment and after treatment in 

the delta, theta, and alpha frequency bands (Figure 3.13). For Subject A (blue), in all frequency 

bands and all channels, there was a statistically significant increase in the strength of correlations 

after successful treatment (Figure 3.14) (Wilcoxon rank-sum, corrected via Benjamini-Hochberg 

procedure, adj. p<0.05). For Subject B (red), the distributions were significantly different in all 

channels except P3 in the delta band, O2 in the theta band, and P4, O1, and T3 in the alpha band 

(Wilcoxon rank-sum, corrected via Benjamini-Hochberg procedure, adj. p <0.05). 

 
Figure 3.13 Bootstrapped distributions of 𝛼 for pre- (denoted 1) and post-treatment (denoted 2) EEG 

data in subjects with infantile spasms. Blue boxplots represent Subject A, a subject that responded to 

treatment. Red boxplots represent Subject B, a subject that did not respond to treatment.  Results are 

shown for all frequency bands in EEG channel P3. All channels are shown in Figure 3.14. 
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Figure 3.14 Distributions of 𝛼 for all channels in pre- and post-treatment data from Subjects A and B. 

(a) Subject A, delta frequency band, (b) Subject B, delta frequency band, (c) Subject A, theta 

frequency band, (d) Subject B, theta frequency band, (e) Subject A, alpha frequency band, and (f) 

Subject B, alpha frequency band. 
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3.4 Discussion 

 When applying Detrended Fluctuation Analysis (DFA) to neural data, one major 

limitation is that there is no framework to examine the variation of the Hurst exponent estimator. 

Our proposed approach integrates the moving block bootstrap with DFA to produce statistically 

rigorous inferential results. Our approach enables the calculation of confidence intervals which 

give an indication of the uncertainty of the Hurst exponent estimate in neural data. We showed 

that the use of short data segments increases the variability of the DFA exponent (Figure 3.6), 

suggesting the use of longer segments of data whenever possible. We also confirmed previous 

findings that, in positively correlated signals, the introduction of discontinuities causes small 

increases in the measurement variance. In contrast, the presence of artifacts positively biases 𝛼. 

This effect can be mitigated by removal of artifactual segments, even though this introduces 

additional discontinuities (assuming enough data remains to obtain a robust estimate of the 

scaling properties). This allows techniques like DFA to be successfully applied to human neural 

data. When analyzing EEG data, MBB-DFA provided a time-varying measurement of 𝛼, and we 

found that there were significant differences between wake and sleep (Figure 3.12). For 

application to a clinical setting, we show that our method can be used to compare pre-treatment 

and post-treatment EEG data in subjects with infantile spasms (Figure 3.13). This demonstrates 

the potential impact of our approach, as single-subject comparisons were not possible with 

previously available methods. 

 

3.4.1 Practical considerations for implementation of MBB and DFA on neural data 

3.4.1.1 Selection of DFA window size 
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 Although there are many ways to measure temporal dependence in neural time series 

[142]–[147], we chose to use DFA to estimate the Hurst parameter due to its widespread 

application in current neuroscience literature [92], [96], [104], [106], [121]. The method was 

originally developed to accurately estimate the Hurst exponent despite specific nonstationarities 

in the data, supporting its use as the preferred method to analyze temporal structure [99], [110], 

[148]. However, some groups have heavily criticized DFA in this regard in recent years, showing 

circumstances where certain nonstationarities and parameter selection greatly influenced the 

accuracy of the measure [100], [101]. For example, [100] showed that the resultant DFA plot 

will become nonlinear if the minimum window size is too small. Likewise, if window sizes are 

too long, the resultant plot may have “cross-over” points, requiring special analysis techniques 

[98], [102]. Additionally, certain nonstationarities such as periodicity and trends have been 

shown to reduce the accuracy of the algorithm [149], [150]. 

 To address the issue of appropriately-sized windows for DFA (M, Figure 3.3A), we chose 

our smallest window size to be 1 second (200 samples) (Figure 3.4). This exceeds the window 

size in which nonlinearity in the DFA plot occurs [100]. We set our largest window size to 1/10 

of the signal length [99]. Earlier comparison with the autocorrelation function of the amplitude 

envelope in these data showed that correlations were significant up to 100 seconds [151]. Our 

maximum window size was on the order of 120 seconds for both the simulated data and the 

longest control datasets. 

 

3.4.1.2 Time series length 

 We showed that the variance of the Hurst exponent estimate was a function of the length 

of the time series being analyzed. While some DFA studies analyze segments of data that are 
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only several seconds long [104], [152], we showed that the most reliable estimates of 𝛼̂ are 

achieved for segments of data that were several minutes long (Figure 3.6). This is not surprising 

since longer time segments have more time points and hence will result in lower variances in the 

Hurst exponent estimator. We note that estimates of H using short time segments are not 

necessarily incorrect; they may simply be describing the temporal structure of the signal more 

locally and are more subject to variation. However, because the variance in the measure is 

greater with shorter segments of data, more subjects or trials may be necessary to demonstrate a 

significant result. These results also highlight the specific value of the MBB method. For 

example, we can compare the distribution of DFA exponents acquired by simply cutting the time 

series into smaller segments (Figure 3.6A) to the distribution of DFA exponents resulting from 

MBB (Figure 3.10B). The bootstrapped values were closer to the value for the original signal 

than those measured for shorter segments, showing that MBB provided a better estimate of the 

Hurst exponent without sacrificing statistical strength. 

 We found that the variation in 𝛼 − 𝛼̂ stabilized with segments of EEG data five to eight 

minutes long, defining a minimum length to ensure the best attainable estimate of the Hurst 

exponent. This result informed our decision to use global windows (BG) of 1000 seconds: 

because employing a block-bootstrap involved calculating 𝛼 for 500-second segments (8.33 

minutes) of block shuffled data, this choice of global window size ensured that the bootstrapped 

data length still exceeded the minimum data length of five to eight minutes.  

 

3.4.1.3 Parameters for moving block bootstrap 

 We chose a length of 50 seconds for BB because a sufficient binomial coefficient was 

needed to perform 500 iterations of random block sampling. In the simulations, we randomly 
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sampled ten 50-second blocks of data from the 1200 seconds of data (24 blocks, each 50 seconds 

long). In the long-term datasets, we chose ten 50-second blocks of data from the 1000 seconds of 

data in the global window BG (20 blocks, each 50 seconds long). These parameters resulted in 

binomial coefficients of 1961256 and 184756, respectively, exceeding the coefficients needed 

for 500 iterations of sampling (nCk=
𝑛!

𝑘!(𝑛−𝑘)!
). We note that the differences between DFA 

exponent distributions generated for 1200-second datasets and 1000-second datasets were 

negligible (data not shown). 

 

3.4.1.4 Discontinuities and Artifacts 

 Lastly, we showed that discontinuities in the data cause a slight increase in the median 

value and variance of the distributions of DFA exponents in EEG data. An increase in the 

variability reduces the chances that two distributions will be significantly different from one 

other. Minimizing the number of discontinuities can reduce this effect, e.g. if two artifacts are 

separated by a small amount of time, removing them both along with the intervening data will 

introduce one discontinuity instead of two.  

Artifact removal improves confidence in the DFA estimate because it removes data of 

non-neural origin, but the process introduces discontinuities into the data. We showed that the 

presence of artifacts increases the median value of the DFA exponent distribution (Figure 3.8B). 

The introduction of discontinuities due to artifact removal had less of an impact on the estimate 

than the presence of artifacts in the data (Figure 3.8A), substantiating the practice of removing 

artifacts prior to any DFA analysis. However, we must note that removing artifacts alters the 

temporal structure of the data. Ensuring enough data remains for robust estimates of the DFA 
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exponent is imperative. Alternative artifact rejection strategies like Independent Components 

Analysis may provide similar results while reducing the number of discontinuities in the time 

series [118].  

 Previous studies show that the DFA exponent is heavily affected by the introduction of 

discontinuities if the signals are anti-correlated (0<H<0.5) [98]. Chen et al. [2001] demonstrated 

that the estimate of the strength of correlations is skewed toward 0.5 when discontinuities are 

present in anti-correlated signals. However, our results coincided with their findings that the 

exponent estimation remains largely unchanged in the presence of discontinuities in positively-

correlated signals [98]. In previous literature, neural signals have unanimously been described as 

positively correlated [92], [99].  

 

3.4.2 Applications of MBB and DFA 

 We showed that MBB and DFA can be used to track changes in the temporal structure of 

the EEG in a healthy infant during a sleep-wake cycle (Figure 3.12). The time-varying 

distributions of DFA exponents showed the largest differences between wakefulness and sleep in 

the delta frequency band. The results shown here may mirror the work in [153], in which time-

varying DFA exponents are measured via Kalman filtering and covariance calculation.  

We additionally showed that these techniques could be used clinically to compare pre- 

and post-treatment data in two subjects with infantile spasms (Figure 3.13). The two subjects 

were chosen as examples to show the utility of the MBB-DFA method. In one subject, the 

change in 𝛼 is large, while the other shows little change in 𝛼 after treatment. Our previous work 

suggests that the larger increase in 𝛼 in the responding subject may be due to changes in the 

neuronal network associated with treatment response. In that study, we showed that the DFA 
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exponent is statistically significantly lower in infantile spasms patients compared to healthy 

controls, and the value normalizes with successful treatment [91]. However, this effect on DFA 

exponent distributions calculated with MBB will need to be validated with a larger dataset.  

 Other groups have used DFA in clinical applications to investigate EEG changes when a 

patient experiences a stroke [104] and for neonatal background differentiation [121]. In an ECoG 

study in epilepsy patients, long-range temporal correlations measured with DFA were stronger 

when the electrodes were near the epileptogenic zone [105]. These studies show that DFA can 

provide useful information in analysis of group-wise statistics.  

However, DFA has not often been used to describe within-subject changes. Although 

some groups have investigated properties of the DFA algorithm to assess local changes in the 

time series [154], these studies focus on assessing changes in temporal structure at the smallest 

time scales possible [121], [155]. In contrast, our study focused on filtering out local variations 

in the temporal structure to make conclusions about lasting, global changes in the strength of 

correlations in the time series, enabling tracking of slow changes in brain state or in response to 

treatment. 

A moving-block bootstrap technique has been implemented alongside DFA before, but 

has not yet been applied to human neural data [130]. The variation of the DFA exponents in 

bootstrapped distributions of human data bore a strong resemblance to our results for simulated 

data. We hypothesize this is due to the long window sizes being analyzed: though we know brain 

activity is changing on a millisecond time scale, the average correlation strength is consistent 

when analyzed over hundreds of seconds. We hypothesize this to be crucial in the analysis of 

brain state changes, such as wake and sleep staging, as well as comparing pathological and 

healthy activity. 
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Assessing changes in the Hurst exponent over time has the potential for significant 

impact in the fields of cognition, brain stimulation, and medicine. This impact can be broadened 

further with the natural extension to a multivariate moving block bootstrap, enabling analysis of 

spatially-varying DFA exponents with confidence intervals. These methods can be broadly 

applied to longitudinal neurophysiological data, shedding light on cognitive processes and 

progression of mental and neurological diseases and their treatments. More specifically, when 

used as a measurement of the disease state in patients with epilepsy, an increase in the DFA 

exponent for a single patient over time can function as an objective biomarker of treatment 

response [91]. This could guide clinical practice, inform seizure medication selection, and 

ultimately lead to more effective and expeditious treatment. Similarly, the assessment of DFA 

exponents from single subjects over time could describe disease progression in Alzheimer’s 

[156] or depression [157]. The ability to examine the statistical significance of within-subject 

differences allows for an expanded view of DFA and its use in human neural data. 
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CHAPTER 4 

COMPUTATIONAL EEG BIOMARKERS of REFRACTORY INFANTILE 

SPASMS 

 

4.1 Introduction 

Although the presence of hypsarrhythmia is often used as a diagnostic criterion for IS, 

there is low inter-rater reliability for identification of the pattern [34], [35] and it is not a 

predictor of outcome [73]. Computational EEG biomarkers of IS that are independent of the 

presence of hypsarrhythmia would help address these challenges by providing tools for objective 

identification of the disease.  

We investigated four computational EEG metrics that were assessed using a cohort of 

fifty patients treated for infantile spasms at the UCLA Mattel Children’s Hospital. Because 

UCLA is a large referral center, this study included a much higher proportion of patients with 

refractory IS. We describe how the 1) amplitude, 2) power spectrum and spectral edge frequency 

(SEF), 3) Shannon entropy, 4) power-law scaling as measured with detrended fluctuation 

analysis (DFA), and 5) functional connectivity differ between IS patients and healthy control 

subjects of similar ages. We also compare changes in these metrics after successful and 

unsuccessful treatment. This work builds off of a previous pilot study [158] and is improved by 

the inclusion of more subjects, both sleep and awake EEG, multiple measurements per subject, 

and blinded calculation of computational metrics, making it the largest and most comprehensive 

study of its kind. Identification of objective EEG characteristics that describe the disease state 

may improve diagnostic accuracy, specifically in patients with long lead times that need 
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expedited treatment most. Additionally, assessment of these characteristics early in the treatment 

process may identify children that are not responding to treatment, allowing for timely transition 

to a new therapy. 

 

4.2 Methods 

4.2.1 Patient Data and Pre-processing 

 Using a clinical video-EEG database which includes all patients who underwent video-

EEG monitoring at UCLA Mattel Children’s Hospital between February 2014 and July 2018, we 

identified IS patients and controls as follows. Included IS patients fulfilled the following criteria: 

(1) epileptic spasms were observed on a “baseline” overnight video-EEG study, regardless of the 

presence or absence of hypsarrhythmia; (2) a second overnight video-EEG was performed within 

one month of the baseline video-EEG. Using a randomization algorithm, we selected 50 cases 

from those candidates who met the aforementioned criteria (Table 4.1). Two control groups were 

assembled. The first control group (“IS controls”) consisted of children who (1) underwent 

overnight video-EEG to specifically evaluate for suspected infantile spasms, (2) exhibited a 

normal video-EEG, and (3) were deemed neurologically normal (i.e. no known or suspected 

neurological diagnosis as per clinical neurology notes). The second control group (“non-IS 

controls”) consisted of children who (1) underwent overnight video EEG (not for evaluation of 

infantile spasms) and (2) were deemed neurologically normal (as above). Among candidate IS 

controls (first control group) we used a randomization algorithm to select 25 IS controls. Given 

that we also sought to identify controls across a pediatric age spectrum similar to the IS patients 

group, we included all non-IS controls up to the age of the oldest IS case, resulting in the 

addition of 12 subjects (total of n = 37 control subjects).  
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Two clips during wakefulness and two clips during sleep were extracted from the control 

subject recordings and both pre- and post-treatment recordings in IS patients. Each clip contained 

approximately 20-30 minutes of EEG data. We calculated each of the four metrics for both clips 

during wakefulness and during sleep and averaged the two awake metric values and two sleeping 

metric values for each patient to obtain one value for wakefulness and one value for sleep. All 

subsequent analysis was performed with the averaged values. We note that, for all patient 

groups, there was little variation in the metric values between clips for individual patients. 

The four metrics were computed on each clip while the authors were blinded to the 

patient groups, clip numbers, and designation of wakefulness or sleep and pre- or post-treatment. 

After the computational analysis, the data were unblinded and grouped as follows:  All data from 

the IS patients before treatment were designated as the PRE group (n=50 patients) and subjects 

from both the IS control group and the non-IS control group were combined into the CTRL 

group (n=37). After treatment, IS patients that responded to treatment (defined as a resolution or 

absence of hypsarrhythmia, cessation of spasms, and no clinical relapse over the next 28 days) 

were included in the responder (RESP) group (n=28 patients). The patients that did not meet one 

or more of these requirements after treatment were included in the non-responder (NONRESP) 

group (n=22 patients). 

Time periods in the EEG containing artifact were marked using an automatic detection 

algorithm. The algorithm first broadband bandpass filtered the data (1.5-40 Hz, butterworth 

filters). The mean was subtracted from each channel, and the standard deviation was calculated 

from the zero-mean time series. Then time points where the absolute value of the voltage 

exceeded a threshold of 7.5 standard deviations above or below the mean value in any single 
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channel were marked. A buffer of 0.9 seconds was added to both sides of the marked extreme 

amplitude values to ensure that the entire artifact was marked. Data recorded during EEG 

impedance checks were also identified and marked. This method of artifact detection was 

comparable to visual detection of artifacts when assessed with the metrics described in this 

study, with an average of 91% concordance (Appendix A). 

Data were re-referenced to a linked-ear montage for all analyses except functional 

connectivity, in which data were re-referenced to the common average. Data were sampled at 

200 or 500 Hz with impedances below 5 kΩ. Data that were sampled at 500 Hz were 

downsampled to 200 Hz prior to spectral analysis. We broadband bandpass-filtered the re-

referenced data from 0.5-55 Hz for the analysis of EEG amplitude, spectral edge frequency, and 

functional connectivity. We filtered the data into narrow frequency bands for calculation of DFA 

and Shannon entropy (delta band 1-4 Hz, theta band 4-7 Hz, alpha band 8-12 Hz, and beta band 

14-30 Hz). Note that artifactual EEG epochs were identified using broadband filtered data, but 

the segments of data were removed after the band-specific filtering needed for each metric. In all 

cases, artifactual segments of data were excluded from all channels, even if the artifact occurred 

in a single channel. 

 

4.2.2 Amplitude 

 Amplitude is an EEG feature closely monitored in IS, as hypsarrhythmia and other 

interictal patterns are often high amplitude (>200 µV), and diffuse slowing is a common feature 

in both ictal and interictal data [7], [8], [69]. Amplitude values were calculated using the range of 

the broadband filtered data in one second windows for each electrode. The variation of EEG 

amplitude across channels was visualized via topographic maps. We first calculated the median 
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amplitude values in each channel from each clip. We then constructed individual patient maps by 

calculating the average of the two median values from each channel. The group topographic 

maps were constructed from the median of the patient topographic maps within each group. The 

figures were generated using the MATLAB-based EEGLAB function topoplot(). To compare 

amplitude distributions across subjects, we calculated the empirical cumulative distribution 

function (CDF) for the Cz electrode in each dataset. Electrode Cz was chosen because it is 

minimally contaminated by artifact. 

 

Table 4.1. Patient demographics, etiology, treatment, and response status. 
Pt.# M/F Age 

Onset 

Etiology Leadtime 

/UKISS  

AED Pre 

Hyps 

Resp Other 

seizures 

01 F 3.0 PMG 96.66/4 VGB   No  Yes 

02 F 68.9 Dup15q 4.57/4 PRED   Yes  Yes 

03 M 34.2 TSC 3.61/4 VGB   No  Yes 

04 F 73.2 Sturge-Weber syndrome 2.30/4 PRED   No  Yes 

05 M 9.8 ICH, SDH, TBI (NAT) 3.09/4 VGB   No  Yes 

06 F 14.5 PMG 0.99/2 PRED   Yes  Yes 

07 M 5.5 TSC 15.01/4 ACTH   No  No 

08 F 3.9 Unknown 39.75/4 PRED   No  Yes 

09 M 10.2 bilateral cortical 

malformations 

0.59/2 PRED Hyps  No  Yes 

10 F 5.4 Unknown 0.56/2 VGB   No  No 

11 M 3.0 TSC 2.40/4 PRED   No  No 

12 M 9.0 FCD 15.44/4 PRED   No  No 

13 F 0.0 HIE 11.83/4 PRED   Yes  Yes 

14 F 7.6 Meningitis 0.00/0 PRED   Yes  Yes 

15 M 0.1 PVL 7.89/4 PRED   Yes  No 

16 M 12.9 HIE 5.98/4 ACTH   Yes  No 

17 M 6.1 TSC 0.03/0 VGB   Yes  No 

18 M 1.8 VAMP2 2.56/4 PRED Hyps  No  No 

19 M 33.0 47XYY 1.28/3 PRED   Yes  Yes 

20 F 8.4 T21, FCD 2.07/4 PRED Hyps  No  No 

21 M 13.6 IVH 0.13/0 PRED Hyps  Yes  No 

22 F 8.5 Unknown 7.00/4 PRED   Yes  No 

23 F 7.3 Lissencephaly/Pachygyria 0.69/2 PRED   Yes  No 

24 F 3.1 HIE 2.17/4 PRED   Yes  Yes 

25 F 3.4 CDKL5 12.88/4 PRED Hyps  No  Yes 

26 M 5.5 FCD 2.53/4 VGB   Yes  Yes 

27 M 8.2 FCD 2.04/4 PRED   No  No 

28 F 7.0 Unknown 4.17/4 PRED Hyps  Yes  No 

29 M 7.2 Unknown 0.56/4 ACTH   Yes  No 
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30 M 65.5 Unknown 2.46/4 PRED   Yes  No 

31 M 20.4 Dup15q 0.23/0 PRED   No  No 

32 M 17.2 FCD 6.67/4 ACTH   No  No 

33 M 14.9 FCD 5.95/4 PRED   No  No 

34 M 16.1 T21 1.22/3 PRED   Yes  No 

35 M 3.0 Unknown 6.08/4 PRED   Yes  No 

36 F 7.7 Unknown 0.00/0 PRED   Yes  No 

37 F 24.4 HIE 0.00/0 PRED   Yes  Yes 

38 M 8.0 Unknown 2.99/4 PRED Hyps  No  Yes 

39 F 6.0 Unknown 5.16/4 PRED   No  Yes 

40 M 7.5 Unknown 2.89/4 ACTH   No  No 

41 F 5.2 Unknown 0.00/0 PRED   No  No 

42 F 1.0 ACC, PMG, PNH 19.78/4 VGB   No  No 

43 M 8.0 HIE 0.10/0 VGB   Yes  Yes 

44 F 4.8 TSC 0.66/2 VGB   Yes  No 

45 M 7.1 HME 0.00/0 VGB Hyps  Yes  Yes 

46 F 31.0 T21 0.39/1 PRED   Yes  Yes 

47 M 4.0 IVH 3.25/4 VGB, 

ACTH 

Hyps  Yes  No 

48 F 3.0 Aicardi 12.39/4 ACTH   Yes  No 

49 F 4.5 FCD 0.03/0 PRED, 

VGB 

  Yes  No 

50 M 5.1 TSC 0.13/0 PRED   Yes  No 

Leadtime is defined as the time between spasm onset and diagnostic EEG. The UKISS score 

assigns a score of 0 for leadtimes to treatment that are 7 days or less, 1 for 8-14 days, 2 for 15 

days to 1 month, 3 for 1-2 months, and 4 for >2 months [159].  

 

4.2.3 Power Spectrum and Spectral Edge Frequency 

 For each channel, data were divided into 5-second epochs and the power spectrum was 

calculated via the fast Fourier transform. The mean power spectrum was obtained by averaging 

the power spectra over all epochs. We calculated the decibel change to elucidate pathological 

differences from physiological values. The dB change is defined as follows: 

𝑑𝐵𝑐ℎ𝑎𝑛𝑔𝑒 =  20 log10 (
𝐺𝑅𝑂𝑈𝑃

𝐶𝑂𝑁𝑇𝑅𝑂𝐿
) 

where 𝐺𝑅𝑂𝑈𝑃 is the averaged power spectrum from the patient group of interest (PRE, RESP, 

or NONRESP) and 𝐶𝑂𝑁𝑇𝑅𝑂𝐿 is the averaged power spectrum from the CTRL group.  
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The spectral edge frequency (SEF) is defined as the frequency under which 95% of the power 

resides [160]. Topographic maps of the spectral edge frequency were created by calculating the 

SEF value for every channel for each patient. Group topographic maps show the median of the 

SEF values. 

 

4.2.4 Entropy 

Entropy is the amount of information contained in a signal, and it is conceptually related 

to the “disorder” or “disorganization” of the data. Shannon entropy is derived from information 

theory and depends only on the distribution of values in the data; it is independent from the 

temporal structure of the data. The Shannon entropy was calculated for every channel in each 

clip.  

The Shannon entropy H is defined as follows [161]:  

𝐻(𝑋) =  − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

 

where  𝑝(𝑥𝑖) is the probability of observing the 𝑖𝑡ℎ value of the bin series in data 𝑥, and 𝑛 is the 

number of bins [162]. The entropy calculation has units of bits, and higher values indicate more 

stochastic behavior [90], [103], [163]–[165]. Entropy was calculated for every channel based on 

the entire EEG clip and then averaged to obtain a single entropy value per patient. Patient 

entropy values were compared across patient groups.  

Because entropy measures the probability that a certain value will be present in the 

signal, the number of bins used in the calculation must be calculated for individual datasets. We 

calculated the optimal number of bins according to Freedman and Diaconis, 1981 [166] as 

described by Cohen, 2014 [162]: 
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𝑛𝑏𝑖𝑛𝑠 =  ⌈
max(𝑥) − min(𝑥)

2𝑄𝑥𝑛−
1
3

⌉ 

where 𝑥 is the signal being analyzed, 𝑄𝑥 is the interquartile range of the distribution of 𝑥, and 𝑛 

is the total number of data points [162]. We recorded the optimal bin number for every channel, 

then averaged over all channels to obtain an optimal bin number for every patient and averaged 

again over all patients to obtain an optimal bin number. This procedure was repeated for each 

frequency band. 

 

4.2.5 Detrended Fluctuation Analysis 

 Detrended Fluctuation Analysis is a statistical estimation algorithm used to assess the 

strength of long-range temporal correlations in time series [99], [110], [167]. Specifically in 

neural time series, this temporal dependence occurs on the order of tens of seconds and is 

believed to reflect the brain’s ability to control its neuronal synchrony [92]. Detrended 

Fluctuation Analysis (DFA) was implemented using the following algorithm, adapted from Peng 

at al. [110]and Hardstone et al. [99]: 

We first extracted the amplitude envelope by calculating the magnitude of the Hilbert 

transform of the bandpass-filtered signal. The mean of the amplitude envelope was subtracted, 

and we computed the cumulative sum of the zero-mean signal. This signal was divided into 

equally-sized windows with 50% overlap. Within each window, we performed a linear fit of the 

data, subtracted the fit from the time series, and calculated the standard deviation of the 

detrended signal. After computing the standard deviations of the detrended signal for all 

windows of that size, we recorded the median standard deviation for that window size. This 
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process was repeated for logarithmically-spaced window sizes ranging from 1 second to 1/10 of 

the signal length. If the recording exceeded 1200 seconds in length, the maximum window size 

was set to 120 seconds.  

We plotted the median standard deviations on a logarithmic scale against the log-spaced 

window sizes; a linear result indicates power-law scaling in the time series. The slope of this 

line, denoted 𝛼, is a direct estimation of the Hurst parameter and reflects the strength of the 

temporal correlations present in the time series [99]. The 𝛼 value for positively correlated signals 

varies between 0.5 and 1.0.  

We averaged 𝛼 from all individual channels to obtain a single value for each recording. 

The intercept of the DFA plot (𝛽) was calculated by extrapolating on the logarithmic plot to find 

the fluctuation value when window size equaled one sample, the value at which the logarithm of 

the window size equals zero [151]. Similar to the DFA exponent, we averaged 𝛽 from all 

channels to obtain a single value for each patient. 

We hypothesized that the post-treatment values for responder patients would be closer to 

the 𝛼 and 𝛽 values of control patients. To test this, we counted the number of pre-treatment and 

control data points that were within a given region surrounding the post-treatment 𝛼 and 𝛽 

values. For each post-treatment data point positioned at (𝛼𝑖, 𝛽𝑖), we identified all pre-treatment 

and control data points within an ellipse surrounding (𝛼𝑖, 𝛽𝑖) with a semi-minor axis 𝑟𝑥 = 0.05 

and a semi-major axis 𝑟𝑦 = 0.2. These radii were chosen to approximately match the ratio of the 

ranges of the two parameters. Let 𝑃𝐼𝑆 represent the number of PRE data points within the ellipse 

and let 𝑃𝐶𝑇𝑅𝐿 denote the number of CTRL data points within the ellipse. We calculated the “net 

value” within the ellipse, calculated as: 𝑛𝑒𝑡𝑉𝑎𝑙 =  −𝑃𝐼𝑆 + 𝑃𝐶𝑇𝑅𝐿. Thus, if the post-treatment data 
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point was more centered in the PRE data points, 𝑛𝑒𝑡𝑉𝑎𝑙 would be more negative. If the post-

treatment value was closer to the CTRL data point cluster, the 𝑛𝑒𝑡𝑉𝑎𝑙 would be more positive. 

We hypothesized that the responder patients would have a more positive 𝑛𝑒𝑡𝑉𝑎𝑙 and 𝑃𝐶𝑇𝑅𝐿 after 

successful treatment than non-responder patients. 

 

4.3 Results 

4.3.1 High amplitude in ES 

 The EEG amplitude in channel Cz was significantly higher in the PRE group than the 

CTRL group in both wake and sleep (Wilcoxon rank-sum test, p<0.05). The difference between 

PRE and CTRL amplitude empirical CDFs was more pronounced during wakefulness than sleep 

(Figure 4.1). Topographic maps of EEG amplitude revealed that the highest amplitudes were 

situated frontally during wakefulness and more centrally during sleep in both the PRE and CTRL 

groups (Figure 4.2). The amplitude values were significantly higher in all channels in the PRE 

group than the CTRL group in wakefulness and sleep (Wilcoxon rank-sum, corrected via 

Benjamini-Hochberg procedure, adj. p<0.05). 

 Significantly higher amplitudes were observed in the post-treatment NONRESP group 

when compared to the RESP group in wakefulness and sleep (Wilcoxon rank-sum, p<0.05), and 

this was reflected in the empirical CDFs (Figure 4.3). The topographic maps revealed similar 

topographies in wake and sleep as the PRE and CTRL groups, with amplitude slightly higher 

frontally in wakefulness and centrally in sleep (Figure 4.4). The channel amplitudes were 

significantly higher in the NONRESP group than the RESP group in all channels in waking and 

sleep data (Figure 4.4) (Wilcoxon rank-sum, corrected via Benjamini-Hochberg procedure, adj. 

p<0.05). 
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Figure 4.1 Empirical cumulative distribution functions from the Cz electrode in (A) waking data and 

(B) sleeping data from IS patients and control subjects. The solid line indicates the median of the 

group CDF values and the shaded region covers the interquartile range. Red represents the PRE group 

and blue represents the CTRL group. 

 
Figure 4.2 Topographic maps of EEG amplitude for (A) wake PRE patients, (B) wake CTRL subjects, 

(C) sleep PRE patients, and (D) sleep CTRL subjects. Median amplitude values were calculated for 

every patient in every channel, and the topographic maps show the median value of the group in each 

channel. Waking data exhibited higher amplitudes frontally while sleeping data exhibited higher 

amplitudes centrally. 
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Figure 4.3 Empirical cumulative distribution functions from the Cz electrode in (A) waking data and 

(B) sleeping data in patients that did and did not respond to treatment. The solid line indicates the 

median of the group CDF values and the shaded region covers the interquartile range. Blue represents 

the RESP group and red represents the NONRESP group. 

 
Figure 4.4 Topographic maps of EEG amplitude for (A) wake RESP patients, (B) wake NONRESP 

subjects, (C) sleep RESP patients, and (D) sleep NONRESP subjects. 
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4.3.2 Suppression in theta power corresponds with treatment response 

 During wakefulness, the PRE group exhibited higher power in the lower frequency bands 

when compared to CTRL, with power up to 10 dB higher in some channels (Figure 4.5A). In 

sleep, the power was greater for PRE than CTRL across all frequencies, although the increases in 

4-5 Hz and 11-13 Hz power were not as large as in the other bands (Figure 4.5B). For 

comparison, the raw power spectra for PRE and CTRL are shown in Figure 4.6. When averaged 

for all patients in the group, the power spectra in both PRE and CTRL groups exhibit higher 

power in the delta frequency band but lower power in the alpha (8-12 Hz) and beta (13-30 Hz) 

bands during sleep when compared to wakefulness (Figure 4.6).  

We compared the power spectra of the RESP and NONRESP groups to the CTRL group 

to assess how the power spectra changes in response to treatment (Figure 4.7). During 

wakefulness, both the RESP and NONRESP groups exhibited higher power in the delta and beta 

frequency bands and a suppression of power in the theta and low alpha bands (Figure 4.7A and 

Figure 4.7B). The suppression of theta was more pronounced in the RESP than NONRESP 

group, with differences as low as -4 dB (Figure 4.7A and Figure 4.7B). In the RESP group 

during sleep, the suppression of activity increased in magnitude and broadened in frequency, 

covering the entire theta and alpha frequency bands and part of the beta band, with values as low 

as a -8 dB change from CTRL data (Figure 4.7C and 4.7D). In contrast, the NONRESP group 

displayed higher power, reaching a 6 dB increase in almost all frequencies except for theta 

(Figure 4.7C and Figure 4.7D). These results are explained somewhat in the raw power spectra 

of RESP and NONRESP (Figure 4.8). RESP exhibited slightly higher power in the alpha and 

beta frequency bands than NONRESP during wakefulness (Figure 4.8A and Figure 4.8 B).  
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 The spectral edge frequency (SEF) is defined as the frequency under which 95% of the 

power resides. Topographic maps revealed lower SEF values in the medial head regions in both 

sleep and awake EEG in all groups, and the SEF values were much lower in sleep than awake 

data (Figure 4.9 and Figure 4.10). The SEF values in the PRE group were significantly lower 

than the CTRL group in all channels in awake data, but the differences were not significant in 

sleep data in any channels (Figure 4.9) (Wilcoxon rank-sum, corrected via Benjamini-Hochberg 

procedure, adj. p<0.05). The differences in SEF values for the RESP and NONRESP groups 

were less pronounced, with no statistically significant differences in SEF values when comparing 

RESP and NONRESP (Figure 4.10) (Wilcoxon rank-sum, corrected via Benjamini-Hochberg 

procedure, adj. p<0.05). 

 

4.3.3 High entropy in ES 

 Shannon entropy values were significantly higher in the PRE group than the CTRL group 

in the delta, theta and beta frequency bands in awake data, while only the delta band was 

significantly higher during sleep (Wilcoxon rank-sum test, corrected via Benjamini-Hochberg 

procedure, adj. p<0.05) (Figure 4.11). There were no significant differences between the RESP 

and NONRESP entropy values in awake data (Figure 4.12A). However, patients in the RESP 

group exhibited significantly higher entropy values than the NONRESP group in all bands in 

sleep (Figure 4.12B) (Wilcoxon rank-sum test, corrected via Benjamini-Hochberg procedure, 

adj. p<0.05). 
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Figure 4.6 Log-transformed EEG power from 0-30 Hz in all channels for (A) wake PRE patients, (B) 

wake CTRL subjects, (C) sleep PRE patients, and (D) sleep CTRL subjects.  

Figure 4.5 Power spectrum in PRE relative to the power spectrum of CTRL in (A) wakefulness and 

(B) sleep data. The EEG power is higher in IS patients in all frequency bands, with the largest 

increases occurring in the delta and alpha frequency bands during wakefulness and the alpha and beta 

frequency bands during sleep. 
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Figure 4.8 Log-transformed EEG power from 0-30 Hz in all channels for (A) wake RESP patients, (B) 

wake NONRESP patients, (C) sleep RESP patients, and (D) sleep NONRESP patients.  

 
Figure 4.7 Power spectrum of RESP group and NONRESP group relative to control subjects. Plots 

show the decibel change of (A) wake RESP relative to waking controls, (B) wake NONRESP relative 

to waking controls, (C) sleeping RESP relative to sleeping controls, and (D) sleeping NONRESP 

relative to sleeping controls. 
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Figure 4.9 Topographic maps of the spectral edge frequency for (A) wake PRE patients, (B) wake 

CTRL patients, (C) sleep PRE patients, and (D) sleep CTRL patients. The SEF represents the 

frequency under which 95% of the power resides. Lower values indicate higher power in the lower 

frequency bands. The SEF is highest in the medial electrodes. 

 
Figure 4.10 Topographic maps of the spectral edge frequency for (A) wake RESP patients, (B) wake 

NONRESP patients, (C) sleep RESP patients, and (D) sleep NONRESP patients. 
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4.3.4 DFA differentiates responders and non-responders 

 We plotted the DFA intercept, 𝛽, against the DFA exponent, 𝛼 for all groups (Figure 4.13 

and Figure 4.14). The PRE group exhibited higher 𝛽 values and slightly lower 𝛼 values than the 

CTRL group in all frequency bands (Figure 4.13 and Figure 4.14). We used a logistic regression 

 
Figure 4.11 Boxplots of the mean Shannon entropy for pre-treatment IS patients (red) and control 

subjects (blue). Entropy was calculated in every channel and averaged for every patient. Boxplots of 

the mean entropy values are shown for (A) waking and (B) sleeping data. Entropy is significantly 

higher in IS in the delta, theta, and beta frequency band during wakefulness and higher in the delta 

band during sleep. 

 
Figure 4.12 Boxplots of the mean post-treatment Shannon entropy for responding patients (blue) and 

nonresponding patients (red). Boxplots of the mean entropy values are shown for (A) waking and (B) 

sleeping data. Entropy in the RESP group is significantly higher in all frequency bands during sleep, 

and the median of the NONRESP group closely matches that of the CTRL group. 
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classifier with five-fold cross-validation to test the accuracy of the model to new data (Table 

4.2). The beta frequency band provided the highest sensitivity for classification of IS data during 

wakefulness (88%), and the alpha band had the highest sensitivity (86%) during sleep (Table 

4.2). The highest specificity was achieved in the delta frequency band for awake data (89%) and 

alpha frequency band for sleep (89%) (Table 4.2). 

 

TABLE 4.2. Mean sensitivity and specificity in logistic regression classification 

 Delta Theta Alpha Beta 

Wake Sleep Wake Sleep Wake Sleep Wake Sleep 

Sensitivity 86% 82% 80% 82% 82% 86% 88% 78% 

Specificity 89% 74% 80% 71% 86% 89% 74% 77% 

 

 We also investigated whether DFA revealed differences between the RESP and 

NONRESP groups after treatment. Arrows map the trajectory from pre-treatment values to post-

treatment values (Figure 4.15). When the waking post-treatment values were compared with the 

waking PRE values and CTRL values, the RESP group exhibited significantly higher 𝑃𝐶𝑇𝑅𝐿 

(total number of control data points within ellipse) than the NONRESP group in the delta and 

theta frequency band (Figure 4.16) (Wilcoxon rank-sum test, corrected via Benjamini-Hochberg 

procedure, adj. p<0.05). In sleep, the 𝑃𝐶𝑇𝑅𝐿 values were higher in the delta, theta, and alpha 

frequency bands in RESP when compared to NONRESP (Figure 4.16). The post-treatment 

𝑛𝑒𝑡𝑉𝑎𝑙, defined as (−𝑃𝐸𝑆 + 𝑃𝐶𝑇𝑅𝐿), was significantly higher in the RESP group than the 

NONRESP group in the theta and beta frequency bands in wake data, while 𝑛𝑒𝑡𝑉𝑎𝑙 was 

significantly higher in the theta, alpha, and beta frequency bands in sleep (Wilcoxon rank-sum 

test, corrected via Benjamini-Hochberg procedure, adj. p<0.05). Histograms of the significant 

distributions are shown for reference (Figure 4.17).  
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Figure 4.13 Scatterplots of DFA parameters for PRE (red) and CTRL (blue) during wakefulness. 

Points are plotted at (𝛼𝑖, 𝛽𝑖) where 𝛼 is the DFA exponent value and 𝛽 is the DFA intercept value for 

patient 𝑖. Results are shown for the (A) delta, (B) theta, (C) alpha, and (D) beta frequency band. 

 
Figure 4.14 Scatterplots of DFA parameters for PRE (red) and CTRL (blue) during sleep. Results are 

shown for the (A) delta, (B) theta, (C) alpha, and (D) beta frequency band. 
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Figure 4.15 DFA response vectors for RESP (blue) and NONRESP (red) during wakefulness. The tail 

of the arrow corresponds to the pre-treatment DFA parameter values (𝛼𝑃𝑅𝐸𝑖, 𝛽𝑃𝑅𝐸𝑖) and the tip of the 

arrow corresponds to the post-treatment DFA parameter values (𝛼𝑃𝑂𝑆𝑇𝑖
, 𝛽𝑃𝑂𝑆𝑇𝑖

) for patient 𝑖. Results 

are shown for the (A) delta, (B) theta, (C) alpha, and (D) beta frequency band. 
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Figure 4.17 Histograms of significantly different 𝑃𝐶𝑇𝑅𝐿 and 𝑛𝑒𝑡𝑉𝑎𝑙 values between RESP (top panel 

of each subplot) and NONRESP (bottom panel of each subplot). Subplots A-E show histograms of 

significantly different 𝑃𝐶𝑇𝑅𝐿 distributions, while F-J show all significantly different 𝑛𝑒𝑡𝑉𝑎𝑙 
distributions. (A) Wake delta band, (B) Wake theta band, (C) Sleep delta band, (D) Sleep theta band, 

(E) Sleep alpha band, (F) Wake theta band, (G) Wake beta band, (H) Sleep theta band, (I) Sleep alpha 

band, and (J) Sleep beta band. 

 
Figure 4.16 DFA response vectors for RESP (blue) and NONRESP (red) during sleep. Results are 

shown for the (A) delta, (B) theta, (C) alpha, and (D) beta frequency band. 
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4.4 Discussion 

 We quantitatively analyzed EEG in a large cohort of infantile spasms patients and 

identified several computational EEG markers that differ significantly between infantile spasms 

patients and control subjects. Several of these metrics reflected a response to treatment despite 

the refractory nature of the spasms in a large proportion of the patients.  

We previously reported amplitude and spectral characteristics in a cohort of new-onset IS 

patients [168]. In that study, we retrospectively identified 21 IS patients treated at the Children’s 

Hospital of Orange County with varying etiologies, but all patients were of a similar age range 

(median 6.3, IQR 5.2-8.1 months) and most presented with hypsarrhythmia on the pre-treatment 

EEG [168]. In contrast to that study, this cohort of IS patients is much larger, was collected from 

the UCLA Mattel Children’s Hospital, includes multiple clips of both awake and sleep EEG, and 

includes patients from a wider age range (median 11.5, IQR 7.7-20.8 months). Additionally, the 

metrics were calculated by authors (BAL, DWS, and RJS) who were blinded to the patient 

groups. Despite these differences in the patient cohort, the amplitude and spectral results were 

astonishingly consistent [168]. Thus, the differences we have reported in this study are not likely 

due to the presence of hypsarrhythmia and may have value as general biomarkers of infantile 

spasms. For example, amplitude is an EEG feature that is often unusually high in IS [8], [42], 

[69]. Hypsarrhythmia is a high-amplitude pattern, and diffuse slowing is a common feature in 

both ictal and interictal data [7]. Only eight of the fifty patients in this cohort presented with 

hypsarrhythmia on the pre-treatment EEG; however, the amplitude characteristics closely match 

those seen in our previous study [168].  

Consistent with the EEG finding of high amplitudes in IS, the EEG power of IS patients 

was significantly higher than control subjects, especially in the lower frequency bands. This 
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corroborates the clinical findings of diffuse slowing in the pre-treatment EEG [7]. We noted a 

unique suppression of activity in the theta frequency band that is present in both responders and 

non-responders, however the effect is stronger in the responders. In our previous study, patients 

were most commonly treated with ACTH, unless the specific etiology indicated a different 

therapy (such as vigabatrin for a primary IS etiology of tuberous sclerosis complex [46], [169], 

[170]). Vigabatrin and prednisolone were the first-line treatment for patients in this cohort, and 

we find similar suppression effects on the oscillations in the theta frequency band for all patients, 

whether they were treated with ACTH, vigabatrin, or prednisolone. Therefore, this suppression 

of power does not appear to be caused by a specific medication, and it may be an effect of 

changes in neuronal activity due to treatment response. Whether this effect is seen with all 

treatments and whether this suppression may have predictive power should be a subject of 

further study.  

Although we only analyzed frequencies up to 30 Hz in this study, it has been noted that 

fast activity (14-50 Hz) may play an important role in IS [171], [172]. Consistent with prior 

studies, we found that IS patients exhibit higher power in the faster frequency bands during 

sleep, and patients that responded to treatment exhibited a suppression of this fast activity during 

sleep after successful treatment. Even higher frequency ranges (40-150 Hz) may have relevance 

in IS [173], but the sampling rate of our data precluded this analysis. 

Shannon entropy has been reported to be lower in epilepsy patients than healthy subjects. 

From a nonlinear dynamics perspective, this is because epileptic data often exhibits a lower 

dimension than control data, as healthy data is more stochastic in nature [103], [163]–[165]. 

Specifically in IS, it was found that hypsarrhythmia exhibited lower dimension and lower 

entropy than healthy control data, but the time series was not as nonlinear as seizure data [90]. In 
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contrast, we found that the entropy values in the delta, theta, and beta band were higher in pre-

treatment IS patients than control patients in waking data. Although this corroborates clinical 

descriptions of a “disorganized” background in the pre-treatment EEG pattern in IS, it contrasts 

with prior studies of entropy in epilepsy. Further, we found that patients that responded to 

treatment exhibited higher entropy values than non-responding patients in sleep.  

We used detrended fluctuation analysis to compare the temporal structure of the EEG 

data for IS and control subjects, specifically by measuring power-law scaling and long-range 

temporal correlations. We previously showed that long-range temporal correlations were weaker 

in new onset infantile spasms patients when compared with controls, and that the DFA exponent 

values normalized with successful treatment [91]. We also reported that classification of IS data 

and control data using a support vector machine achieved up to 90% accuracy in the delta 

frequency band when the DFA exponent, 𝛼, and DFA intercept, 𝛽, were used as parameters [91]. 

We investigated whether these trends were reproducible in this larger cohort of IS patients, 

which had a higher proportion of refractory cases and longer delays between diagnosis and 

treatment. As in our previous study, when we plotted the 𝛼 and 𝛽 for the PRE and CTRL groups, 

we noted that the DFA exponent and DFA intercept were negatively correlated with each other. 

Interestingly, this correlation is not artificial; different features of the signal influence the DFA 

exponent and intercept independently. The DFA intercept is logarithmically correlated to the 

variation in amplitude of the signal, whereas the DFA exponent is unaffected by this feature [91]. 

We performed a five-fold cross validation of a logistic regression model to test its performance 

in classifying new data. Classification of PRE and CTRL waking data reached 88% sensitivity in 

the beta frequency band, and classification of PRE and CTRL sleeping data reached 86% in the 
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alpha frequency band. Specificity was highest in the delta band during wakefulness and in the 

alpha band during sleep, both achieving 89% specificity.  

We analyzed the post-treatment location (𝛼𝑃𝑂𝑆𝑇𝑖
, 𝛽𝑃𝑂𝑆𝑇𝑖

) of responders and non-

responders in the DFA parameter space and assessed whether that point was closer to the cluster 

of control patient data points or pre-treatment IS patient data points. The 𝑃𝐶𝑇𝑅𝐿 and 𝑛𝑒𝑡𝑉𝑎𝑙 were 

significantly higher for responder patients in various frequency bands, including theta, during 

sleeping and wakefulness (Figure 4.17). This indicates that the temporal structure of responder 

EEG data was more similar to control subjects than pre-treatment spasms patients. Specifically 

for the theta band results, this could be related to the post-treatment theta suppression revealed in 

the power spectrum analysis, further supporting that this is an effect of neuronal activity changes 

in response to treatment. However, a prospective study would be required to test this effect. 

The consistency of the results for IS patients across wide ranges of ages, etiologies, and 

severity (new onset vs. refractory) indicate that these characteristics of the EEG may be specific 

to infantile spasms. As lead time is one of the most predictive prognostic factors in these 

children, stable metrics that quantify disease burden despite long lead times are incredibly 

important diagnostically. Further, we show that these metrics reflect response to treatment, 

suggesting they may be used in clinical treatment assessment. We believe these metrics, in 

conjunction with other clinical tools, may benefit clinicians in their diagnostic and treatment 

decision-making.  
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CHAPTER 5 

TEMPORALLY-EVOLVING FUNCTIONAL CONNECTIVITY 

NETWORKS in INFANTILE SPASMS 

 

5.1 Functional connectivity networks in infantile spasms 

5.1.1 Introduction 

 The brain is an incredibly complex, nonlinear dynamic system. Some estimate this 

system to be a network of around 1010 neurons, with each neuron communicating with around 

104 other neurons [174]. From the level of scalp EEG, these communicating potentials are 

detected from synchronous, summed activity of large groups of neurons. Functional connectivity 

is defined as temporally coherent interactions between these groups of neurons, whether or not 

they are directly anatomically connected [175], [176].  

Epilepsy has come to be understood as a disorder of pathological brain networks [177], 

which can be assessed using computational measures of functional connectivity [178]. However, 

such studies are relatively rare in the pediatric epilepsy population. One study of EEG-based 

functional networks in newly diagnosed childhood epilepsies reported a loss of network 

integration in focal epilepsies in the delta frequency band [179]. However, they also noted that 

generalized epilepsies overall maintained their functional connectivity structure, sparing the 

degradation of the network that was disrupted in focal epilepsies [179]. In Lennox-Gastaut 

syndrome, an EEG-fMRI study showed persistently abnormal functional networks and 

hypothesized the lack of functional integration influenced the cognitive deficits associated with 

the disease [180].   
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Studies in infantile spasms support the theory that very different mechanisms underlie 

hypsarrhythmia and spasms in comparison to other childhood epilepsies. Our previous work 

revealed stronger EEG-based functional connections in infantile spasms than in controls when 

measured with cross-correlation [80]. That study also showed that the network structure is more 

integrated, with more long-range connections than control subjects [80]. This is consistent with 

previous findings using EEG coherence in patients with IS, in which stronger connectivity was 

found in long-range connections and weaker connectivity at short electrode distances [81]. A 

dual EEG-fMRI study implicated deeper anatomical structures in the generation of 

hypsarrhythmia by correlating the slow wave activity to the hemodynamic responses in the 

putamen and brainstem. They further correlated the multi-focal independent spikes to the BOLD 

oscillations on the cerebral cortex, revealing the upstream and downstream pathological events 

that generate these abnormal EEG patterns [84]. A study of directed coherence as a measure of 

functional connectivity found that the occipital lobe was the source of high amplitude delta 

power in patient with IS [85]. They correlated their connectivity findings with EEG-fMRI data 

from the same cohort of patients to reveal similar pathological pathways of aberrant activity from 

the brainstem and putamen and thalamus [84], [85]. 

 We investigated whether functional connectivity measured with cross-correlation in a 

cohort of IS patients with a high proportion of refractory cases corroborated previous findings in 

new-onset patients [80]. This study included a large number of subjects, both awake and sleep 

EEG data, and multiple clips per subject. Consistency between the networks in these two groups 

could imply that functional connectivity networks are a robust marker of disease.  

 

5.1.2 Methods 
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5.1.2.1 EEG data collection and pre-processing 

 EEG data from IS patients and control subjects were retrospectively identified and 

clipped as described in Section 4.2.1.  

 Two clips during wakefulness and two clips during sleep were extracted from the control 

subject recordings and both pre- and post-treatment recordings in IS patients. Each clip contained 

approximately 20-30 minutes of EEG data. We calculated functional connectivity for both clips 

during wakefulness and during sleep and averaged the two awake matrices and two sleep 

matrices for each patient to obtain one matrix for wakefulness and one matrix for sleep. 

Connectivity was computed on each clip while the authors (BAL, DWS, RJS) were 

blinded to the patient groups, clip numbers, and designation of wakefulness or sleep and pre- or 

post-treatment. After the computational analysis, the data were unblinded and grouped as 

follows:  All data from the IS patients before treatment were designated as the PRE group (n=50 

patients) and subjects from both the IS control group and the non-IS control group were 

combined into the CTRL group (n=37). After treatment, IS patients that responded to treatment 

(defined as a resolution or absence of hypsarrhythmia, cessation of spasms, and no clinical 

relapse over the next 28 days) were included in the responder (RESP) group (n=28 patients). The 

patients that did not meet one or more of these requirements after treatment were included in the 

non-responder (NONRESP) group (n=22 patients). 

Time periods in the EEG containing artifact were marked using an automatic detection 

algorithm (see Appendix A). The algorithm first broadband bandpass filtered the data (1.5-40 

Hz, butterworth filters). The mean was subtracted from each channel, and the standard deviation 

was calculated from the zero-mean time series. Then time points where the absolute value of the 

voltage exceeded a threshold of 7.5 standard deviations above or below the mean value in any 
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single channel were marked. A buffer of 0.9 seconds was added to both sides of the marked 

extreme amplitude values to ensure that the entire artifact was marked. Data recorded during 

EEG impedance checks were also identified and marked. This method of artifact detection was 

comparable to visual detection of artifacts when assessed with the metrics described in this 

study, with an average of 91% concordance. 

Data were sampled at 200 or 500 Hz, with impedances below 5 kΩ, and re-referenced to 

the common average. We broadband bandpass-filtered the re-referenced data from 0.5-55 Hz. 

Artifactual segments of data were excluded from all channels, even if the artifact occurred in a 

single channel. 

 

5.1.2.2 Functional connectivity  

Functional connectivity measures the correlation between electrophysiological signals in 

two different brain regions. We calculated functional connectivity networks via cross-correlation 

using the method developed by Kramer et al. [181] and Chu et al. [176] and previously applied 

to IS EEG data in [80]. The algorithm is briefly described below: 

 Data were divided into one-second epochs and normalized to have zero-mean and unit 

variance. We calculated the cross-correlation between every pair of channels within the window 

and identified the time lag associated with the maximum of the absolute value of the cross-

correlation. Windows in which the cross-correlation value was maximal at zero time lag were 

removed to control for volume conduction [176]. A partial correlation with the common-average 

reference time series was performed to test whether the reference induced the correlation 

measured between the channels [80]. If the difference between the partial correlation, accounting 

for the reference, and the correlation value between the channels was greater than 0.25, the epoch 
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was removed from further analysis. Z-values were calculated by dividing the Fisher-transformed 

correlation coefficient value by the estimated standard deviation, taking the autocorrelation of 

each channel epoch into account [176], [181]. The z-values were compared to a baseline 

distribution created via permutation resampling. Permutation resampling was performed by 

selecting 1000 one-second epochs of data from the time series that were at least one second away 

from the epoch of interest and calculating the correlation between the channel of interest to all 

other channels in the new epoch [182]. The standardized correlation values from all iterations 

were sorted and the threshold of significance was defined as the value corresponding to the 95th 

percentile of the distribution for each electrode pair. For each epoch, correlation values between 

channel pairs that exceeded this threshold value were deemed to be a significant connection. The 

overall connection strength between two channels is calculated as the fraction of time series 

epochs in which there was a significant connection between them.  

 Statistical tests were performed on the distributions of channel pair connections. A 

Wilcoxon rank-sum test identified whether distributions of connections for each channel pair 

were significantly different between PRE and CTRL groups or RESP and NONRESP groups. P-

values were corrected via the Benjamini-Hochberg procedure to adjust for multiple comparisons.  

 

5.1.3 Results 

 Overall, the strength of EEG-based functional connections was higher during sleep than 

wakefulness.  The PRE group exhibited significantly stronger connections than the CTRL group 

in 125 of the 171 possible connections (73.1%) during wakefulness, and in 133 of the 171 

possible connections (77.8%) during sleep (Figure 5.1) (one-tailed Wilcoxon rank-sum test, 

corrected via Benjamini-Hochberg procedure, adj. p<0.05). Specifically, cross-hemispheric long-
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range connections were present in the PRE group during wakefulness that were absent in the 

CTRL group (Figure 5.1). 

 After treatment, the RESP functional connectivity map decreased in strength more than 

the NONRESP group and more closely resembled the CTRL group (Figure 5.2). However, when 

we analyzed the group distributions, only 2 electrode pair connections were significantly 

different between the RESP and NONRESP group in the sleep data and none were significantly 

different in the waking data (one-tailed Wilcoxon rank-sum test, corrected via Benjamini-

Hochberg procedure, adj. p<0.05).  
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Figure 5.1 Functional connectivity maps for (A) wake PRE group, (B) wake CTRL group, (C) sleep 

PRE group, (D) sleep CTRL group. Functional connectivity was assessed in one-second epochs, and 

overall connection strength is calculated as the proportion of significant one-second epochs in the 

recording. For visualization, graph edges are displayed if the connection strength between two 

electrodes exceeded 0.1. 
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5.1.4 Discussion 

The EEG patterns in IS have been hypothesized to be sub-cortically driven [80], which 

motivated our analysis of functional connectivity. Indeed, studies with SPECT [82], PET [83], 

fMRI [84], and source localization [85] found that subcortical-cortical interactions may play a 

role in the development of IS [82]. This would also explain how generalized abnormal EEG 

patterns are observed despite focal etiologies. We assessed functional connectivity with cross-

correlation, which has been shown to reveal stable, patient-specific networks in healthy subjects 

[176] as well as IS patients [80]. Previously, long-range, cross-hemispheric connections were 

 
Figure 5.2 Functional connectivity maps for (A) wake RESP group, (B) wake NONRESP group, (C) 

sleep RESP group, (D) sleep NONRESP group. For visualization, graph edges are displayed if the 

connection strength between two electrodes exceeded 0.1. 
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observed in IS patients both with coherence [81] and cross-correlation [80]. We found that 

functional connectivity network strengths were higher in IS in most channel pairs, and we 

observed more long-range cross-hemispheric connections in IS when compared with controls, 

corroborating previous work [80], [81]. After treatment, the mean connectivity maps were 

stronger for non-responding patients when compared with responders, but this was not 

significant when we assessed the group distributions. Across all subject groups, the functional 

connections were stronger during sleep than wakefulness.  
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5.2 Temporal changes in functional connectivity in infantile spasms 

5.2.1 Introduction 

 In Section 5.1, we showed that functional connectivity networks reflect disease burden 

and change in response to treatment over the course of two to four weeks. However, the time 

course of this change during the treatment period is unknown. Because such computational 

measures can detect subtle EEG changes that may not be visually apparent, we hypothesized that 

the strength and structure of the functional networks may provide an early biomarker of 

treatment response. To test this, we must first understand normal physiological changes in these 

networks. The brain’s connectivity network is individualized and stable over periods of hundreds 

of seconds [80], [176], but also changes drastically with falling asleep and waking up in the 

context of the 24-hour circadian rhythm [183] (Figure 5.1 and 5.2). Mapping these changes will 

enable us to separate normal physiological changes from those associated with a response to 

treatment, and this could advance treatment assessment and even predict treatment outcome in 

these high-risk patients. 

 To address this question, we prospectively recorded EEG data from a large cohort of 

infants, each with long-term video EEG monitoring over 24 hours in length. The cohort included 

some patients diagnosed with infantile spasms and some that were neurologically normal. We 

calculated metrics of functional connectivity, namely the network strength and stability, to assess 

how these characteristics evolve over the course of hours and days.  

 

5.2.2 Methods 

5.2.2.1 Patient recruitment and EEG recording  
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We identified and recruited patients as follows:  First, we ensured that patients meeting 

inclusion criteria whose parent(s)/guardian(s) enrolled them in the study continued to receive the 

standard of care for new onset infantile spasms. At CHOC, the standard work-up for newly 

diagnosed infantile spasms includes inpatient consultations from neurology, metabolics, and 

genetics, long-term video EEG monitoring to capture their events of concern (suspected seizures) 

and characterize their baseline EEG activity, laboratory testing (blood, urine, and sometimes 

CSF), neuroimaging (typically MRI with and without contrast, though sometimes CT is utilized), 

and occasionally a diagnostic lumbar puncture. ACTH is the first line treatment for patients with 

infantile spasms at CHOC, and this medication is started immediately upon diagnosis while the 

order for outpatient treatment is processed. The patient remains in the hospital for roughly two 

days in order for (1) their parent(s)/guardian(s) to learn how to give intramuscular injections to 

administer the medication, (2) their initial laboratory testing to be completed, and (3) their home 

supply of ACTH to be delivered. During this time period, patients who were enrolled in our 

study continued to have long-term video EEG monitoring performed until at least 48 hours after 

treatment initiation or until they were discharged from the hospital, whichever came first. EEG 

electrodes were continually assessed by the EEG techs per routine care.  

The specifics of the recording setup were as follows: when a patient was placed on long-term 

video EEG monitoring with concern for infantile spasms, their parent(s)/guardian(s) were 

approached to consider the patient’s enrollment in this study. If they provided informed consent, 

the patient’s EEG was recorded concurrently by two separate systems: (1) the standard clinical 

setup used at CHOC for long-term EEG monitoring, and (2) a secondary research system that 

recorded the same data to a research computer that was disconnected from the CHOC server and 

recorded at a much higher sampling rate than the clinical machines (5,000 Hz vs 1,000 Hz).  
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If the initial EEG recording led to a diagnosis of infantile spasms, the research video EEG 

recording continued for at least 48 hours following initiation of treatment with ACTH, regardless 

of the status of the clinical video EEG recording. If the patient was ready to be discharged from 

the hospital before the 48 hours elapsed, the research recording was stopped, as it could not delay 

the patient’s discharge. The recording was also stopped if necessary for a medical indication. 

Clinical data pertinent to the study was obtained by a study investigator. Patients diagnosed with 

infantile spasms who were enrolled in this study repeated long-term video EEG monitoring 

approximately 2 weeks following treatment initiation to evaluate their treatment response as part 

of their standard care. At that time, their repeat video EEG and follow-up clinical data were 

collected. Further follow-up data collection occurred at 3, 12, and 24 months following study 

enrollment.  

If the patient was not diagnosed with infantile spasms, the research video EEG recording 

continued as long as the clinical video EEG recording was running. Clinical data was collected at 

the time of enrollment. After this data collection and video EEG recording were completed, no 

further follow-up data was directly collected from the patient/parent(s)/guardian(s). Additional 

data was collected retrospectively from the electronic medical record at 3, 12, and 24 months 

after enrollment. 

Patients were subdivided into 1) IS patients, which were those diagnosed and treated for IS, 

2) diseased controls who were not diagnosed with IS but were confirmed to have other 

seizures/neurological abnormalities, and 3) healthy controls, which were subjects who did not 

receive a diagnosis of IS and had no discernable neurological abnormalities or developmental 

delay. In total, we recorded long-term EEG from 13 IS patients, 17 diseased controls, and 27 

healthy controls. The number of datasets analyzed in each group is described in Section 5.2.2.3.  
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5.2.2.2 EEG Pre-processing 

The low sampling rate EEG recordings were used for this analysis of functional 

connectivity. Artifactual time periods were identified with an automatic artifact detector as 

described in Section 5.1.2.1 (see also Appendix A). Data were sampled at 200 Hz with 

impedances below 5 kΩ and were re-referenced offline to the common average. A broadband 

bandpass-filter was applied to the re-referenced data (0.5-55Hz). Signal epochs that were 

identified as artifactual were removed after filtering.  

 

5.2.2.3 Time-varying functional connectivity measurement 

 Connectivity was calculated in one-second epochs as described in Section 5.1.2.2. Let 𝑝 

represent the number of EEG channels used in the calculation. Then the output of the 

connectivity calculation is a binary matrix of dimension 𝑝 × 𝑝 for each epoch, where the element 

at position (𝑖, 𝑗, 𝑘) represents the connection between electrode 𝑖 and electrode 𝑗 in epoch k. This 

element is assigned a value of 1 if the connection is significant and a value of 0 if the connection 

is not significant (see Section 5.1.2.2 for significance testing). To assess time-varying changes in 

the functional connections, we averaged the binary 𝑝 × 𝑝 matrices across a window of 300 

successive epochs, and the window was shifted over time with 90% overlap (i.e. 30-second 

shift). Let 𝑄𝑎𝑣𝑔 represent the 𝑝 × 𝑝 matrix averaged from a 300-second window. The value in 

position (𝑖, 𝑗) of 𝑄𝑎𝑣𝑔 indicates the proportion of epochs in which the connection between 

channel 𝑖 and channel 𝑗 was significant, e.g. a value of 0.3 indicates that channel 𝑖 and channel 𝑗 

were significantly correlated in 30% of the epochs. We chose a window size of 300 seconds 
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because networks were shown to be stable over this amount of time in two separate studies [80], 

[176].  

 

5.2.2.4 Network separation into two states 

 In order to describe how functional connectivity networks evolve over time and between 

brain states, we needed to separate awake data from sleep data. The analysis of such a young 

patient population added an interesting element to this study, as the infants fell asleep and woke 

up on shorter time scales than adults, and their sleep/wake cycles did not follow circadian 

rhythms as closely as adults.  

We separated the networks into two states by performing principle component analysis 

(PCA) on the functional connectivity profiles over time. We calculated 𝑄𝑎𝑣𝑔 in 300-second 

windows with 90% overlap (i.e. 30-second shift), as described in Section 5.2.2.3. 𝑄𝑎𝑣𝑔 was a 

symmetric matrix of dimension 𝑝 × 𝑝. Let 𝑛 represent the number of successive windowed 

epochs. We first made a column vector of all independent channel connections in 𝑄𝑎𝑣𝑔 (171 

channel pair connections in total) and then concatenated 𝑛 successive columns. The connectivity 

values were normalized to zero mean across time by calculating the mean of each column and 

subtracting it from each value in that column. We then subtracted the mean of each row from 

each value, so that the distribution of connections for each channel pair were zero-mean. Next, 

we calculated the standard deviation of each column and divided each value in the column by 

this value, so the matrix had unit variance in time. We performed PCA on the normalized 

functional connectivity time series to ascertain principle components, or latent features, that 

described the most variance in the data. We then calculated the time course of the first principle 
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component, which represents the relative weight assigned to that component as a function of 

time. We often found that the time course of the first principle component would oscillate 

between two values (Figure 5.3), theoretically representing two different brain states. To 

characterize this, we fit a two-component gaussian mixture model (GMM) to the principle 

component time series to determine gaussian parameters for these two states (Figure 5.3).  

To verify that the data was best described by a two-state model, we calculated the 

percentage of overlapping area between the normalized probability distribution functions (PDF) 

of the two distributions. If the percentage of overlapping area was too high (>20%), we discarded 

the dataset due to insufficient confidence in the separation of states. For all other datasets, we 

assumed that the distribution of the first principle component was bimodal in nature and 

accurately modeled by two states.  

The threshold to separate the states was defined as the intersection of the two probability 

density functions (PDFs) of the GMM distributions. To avoid finding intersections at the tails of 

the distributions, we calculated the PDF ratio and identified the index where this ratio was 

closest to 1: 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑛𝑑𝑒𝑥 = min (𝑎𝑏𝑠 (
𝑃𝐷𝐹1

𝑃𝐷𝐹2
− 1)) 

The principle component value assigned to this index became the threshold to distinguish 

between the two states. 

We hypothesized that the two states would correspond to wakefulness and sleep. Thus, 

we visually classified sections of EEG data from each of the GMM distributions to label one as 

awake and the other as sleep.  



124 
 
 

 

 

We validated the correspondence of these two states to sleep and wakefulness using data 

from two control patients and one infantile spasms patient for whom we had visually-marked 

sleep stages. In the infantile spasms patient, the PCA/GMM classification correctly identified 

awake data with a sensitivity of 92% and a specificity of 86%. The accuracy was 89%. In the 

control patients, the average sensitivity for awake data was 87.8%, and sensitivity of sleep data 

was 99.3%. An example plot of visually-determined sleep stages versus the PCA/GMM 

automatic classifications is shown in Figure 5.4. These results confirm that the two states 

extracted via principle component analysis corresponded to wakefulness and sleep. We 

performed all further analyses on sleep and awake states after classification with this method. 

 
Figure 5.3 Time course of the first principal component (PC1), reflecting how much weight is 

assigned to the first principal component in the functional connectivity time series. (A) PC1 oscillates 

between two states, as reflected in (B) the histogram of PC1 values. A two-component Gaussian 

mixture model was derived from these values and used to classify the two states. 
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After exclusion of datasets due to insufficient separation of sleep and wakefulness, there 

remained 35 IS patient datasets, 19 diseased control datasets, and 22 healthy control datasets. We 

note that the IS patients and diseased controls each had multiple EEG recordings, collected for 

diagnosis, treatment assessment, and follow-up, so the number of unique subjects is lower than 

the number of datasets provided above.   

 

5.2.2.5 Sum of strong connections calculation 

 We analyzed the changes in functional connectivity strength over time. To calculate the 

overall strength of the network, we summed the number of connections within 𝑄𝑎𝑣𝑔 that 

exceeded a threshold of 0.1 (significantly connected in over 10% of all epochs). We chose this 

 
Figure 5.4 Automatic classification of two states from the time series of the first principal component 

matches visually-classified sleep stages with over 95% accuracy.  The top horizontal line is colored to 

indicate the sleep state. Red indicates the patient is awake, blue is non-REM sleep, and green is REM 

sleep. The bottom horizontal line reflects the automatic classification of sleep states, with red 

representing wakefulness and blue representing sleep. For sensitivity, specificity, and accuracy 

calculations, REM was classified as sleep. 
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method because the mean and median connection values tend to be  skewed by the large number 

of weak connections with strengths at chance levels [80].  

 

5.2.2.6 Circadian rhythm variation calculation 

 We assessed how the strength of the functional connectivity networks varied as a 

function of the time of day. We calculated the sum of the strong connections for each 𝑄𝑎𝑣𝑔 (as 

described in Section 5.2.2.5) and recorded the summed strength as a function of the time of day 

according to the starting datetime of each 300-second epoch.  For visualization, the mean of all 

subject connection strengths for each datetime point was plotted as a function of the time of day. 

 

5.2.2.7 Calculation of network stability 

 We assessed stability of the connectivity networks by performing 2-dimensional 

correlations between independent averaged connectivity networks. For a given window size 𝑀 

and dataset length of 𝑁 seconds, the binary one-second 𝑝 × 𝑝 matrices were averaged in each 

sequential set of 𝑀 epochs to created 𝑁/𝑀 independent measurements of averaged connectivity 

values. For each window size M, a 2-D correlation was calculated between all independent 

measurements with the MATLAB function “corr2()”. 𝑀 ranged from 10 seconds to 200 seconds, 

and the mean and standard deviation of the 2-D correlation coefficient values were plotted as a 

function of 𝑀. 

 

5.2.3 Results 

5.2.3.1 Higher connection strengths in sleep EEG data 
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  We first compared the network strengths during sleep and wakefulness in IS patients, 

diseased controls, and healthy controls (Figure 5.5). In all three groups, sleep data exhibited 

stronger connectivity than awake data (Wilcoxon rank-sum test, p<0.05). Network strengths for 

sleep and wakefulness were most stratified in the healthy controls and least separated in the IS 

patients; however, the differences were statistically significantly different in all patient groups 

(Wilcoxon rank-sum test, p<0.05) (Figure 5.5). Additionally, the distributions of strength values 

for IS patients were statistically significantly higher than diseased controls and healthy controls 

during both sleep and wakefulness (Wilcoxon rank-sum test, p<0.05). 

 

5.2.3.2 Circadian rhythms affect sleeping and waking connectivity strengths 

 After we verified that the functional connectivity network strengths were significantly 

different between awake and sleep data, we investigated whether the time of day affected the 

network strength, i.e. does a sleep period at 2:00 AM have different network strength than a 

sleep period during a nap at 2:00 PM?  

 We calculated the network strength as the sum of strong (>0.1) connections in 𝑄𝑎𝑣𝑔 for 

each patient dataset, recorded the network strength value as a function of the time of day at 

which 𝑄𝑎𝑣𝑔 began, and averaged these values across all patient datasets. In all patient groups, the 

awake networks had lower mean network strengths (Figure 5.6 A-C) than the sleep networks 

(Figure 5.6 D-F), corroborating the results from Section 5.2.3.1. However, we note that both 

awake and sleep data also show higher connectivity strengths during the night (10:00 PM (20:00) 

to 8:00AM) and lower connectivity strengths during the day (8:00 AM to 8:00 PM (20:00)) 

(Figure 5.6).  This circadian effect was most disrupted in the IS cases and the diseased controls 

(Figure 5.6A, B, D, and E).  
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5.2.3.3 Stronger network stability in sleep and in IS patients 

 We assessed the temporal stability of the networks by computing the 2-D correlation 

between connectivity networks averaged over a fixed window size within a given sleep/wake 

stage. For each patient dataset, we iterated this process for window sizes ranging from 10 to 200 

seconds. We then plotted the mean correlation coefficient of the group as a function of the 

window size (Figure 5.7).  

 Functional connectivity networks measured during sleep exhibited higher network 

stability than awake data in all patient groups (Figure 5.7). There was greater separation between 

sleeping and waking network stability in the diseased and healthy controls than the IS patients 

(Figure 5.7). There was no overlap in the 95% confidence intervals for the mean of the two 

distributions beyond a window size of 20 seconds for all groups. 

 Additionally, IS patients exhibited stronger network stability than both healthy and 

diseased controls in awake data, as the 95% confidence intervals for these groups do not overlap 

(Figure 5.8A). The network stability was similar for healthy and diseased controls during 

wakefulness (Figure 5.8A). The sleep network stability was similar for all groups, with no 

significant differences detected (Figure 5.8B). 
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Figure 5.5 Connection strength over time for awake and sleep data for (A) IS patients, (B) diseased 

controls, and (C) healthy controls. Periods of wakefulness or sleep that were at least ten minutes in 

duration were concatenated and the strength was assessed across the concatenated time series. The 

black line represents the mean of the patient distribution and the shaded area represents one standard 

deviation.  
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Figure 5.6 Circadian changes in connection strength. We separated the data into sleep and awake data 

via the automatic separation method. We calculated the network strength in each dataset and recorded 

it against the starting datetime of each 300-second epoch. The mean of all network strengths is plotted 

as a function of the datetime for (A) awake periods in IS patients, (B) awake periods in diseased 

controls, (C) awake periods in healthy controls, (D) sleep periods in IS patients, (E) sleep periods in 

diseased controls, and (F) sleep periods in healthy controls.  
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Figure 5.7 Network stability as a function of window size (𝑀, see Section 5.2.2.7). We concatenated all 

awake and sleep data identified via the PCA/GMM automated classification and computed the network 

stability for each dataset. The black line shows the mean of the group correlation coefficients and the 

shaded area represents the 95% confidence interval for the mean. Results are shown for (A) IS patients, 

(B) diseased controls, and (C) healthy controls.  
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5.2.4 Discussion 

 Here we have identified EEG-based functional connectivity properties that significantly 

differed between IS patients, diseased controls, and healthy controls as a function of sleep stage 

over a 24-hour period. We first found that functional connections are stronger in sleep than 

wakefulness, corroborating our findings in the refractory patient cohort (Figure 5.5, see also 

Figure 5.1 and 5.2). On the group level, the mean values remained fairly constant over time 

(Figure 5.5); however analysis of individual datasets would need to be performed to address 

stationarity of the connectivity strength within a specific waking or sleeping period. 

Additionally, consistent with our findings in the refractory patient cohort, the strength of the 

networks in IS cases was higher than both the diseased and healthy controls (Figure 5.5).  

  Evaluating the strength of the functional connectivity network for patients with IS may 

have clinical value. It has been shown in previous work that the pre-treatment functional 

connectivity network measured with cross-correlation may predict successful treatment 

 
Figure 5.8 Network stability as a function of window size in (A) wakefulness and (B) sleep. The solid 

line shows the mean of the group correlation coefficients and the shaded area represents the 95% 

confidence interval for the mean. 
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outcomes [80]. In that cohort (described in Section 2.1.2.1) six out of eleven patients that 

responded to therapy exhibited extremely strong functional connections pre-treatment, while 

non-responders did not show elevated pre-treatment connection strengths [80]. These data 

suggest that the pathologically strong connections seen in these cohorts of IS patients may 

indicate a receptivity to drug intervention [80], however a larger prospective study is needed to 

confirm this.  

 We also showed that, although sleep generally exhibited higher connection strengths than 

wakefulness, the time of day simultaneously modulated the strength of the functional 

connections. Nighttime was typically associated with stronger connections, even when the child 

was awake and vice versa. Similar long-term periodicities have been reported in several recent 

studies. One study using functional connectivity network changes to predict the onset of seizures 

found that the physiological functional network changes far outweighed the changes associated 

with seizure onset, but that seizure onset was phase-locked with some of these physiological 

periodicities [183]–[185]. The oscillations had periods of 3.4, 5.6, 12, and 24 hours [183]. In 

intracranial EEG, it was shown that functional networks were assortative before seizure onset 

and switch to dissortative during the seizure, but they also reported 24-hour periodicities in the 

assortativity factor [186], indicating that the pathophysiological activity was modifying the 

network in a process-specific way [186]. Studies of network centrality [187], clustering 

coefficient [188], and average shortest path length [188] all find that daily rhythms dominate 

network dynamics in long-term functional connectivity measurements. In our study, an expanded 

analysis of graph theory metrics may further elucidate some of the circadian changes seen in our 

dataset. 
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It is important to note that our finding of a disrupted circadian rhythm in IS patients 

coincides with literature on infantile spasms. Clinical studies note that sleep/wake cycles, and 

specifically slow wave sleep, are often disrupted IS [189], [190]. The spasms themselves can 

also often be triggered by drowsiness, N1 sleep, REM sleep, or upon arousal [8], suggesting a 

circadian component to ictal time periods.  

Lastly, although the visual appearance of the EEG in infantile spasms is described as 

“chaotic” and “disorganized” [11], we find that these networks are more stable than those of 

healthy age-matched controls (Figure 5.7 and 5.8). This suggests that the pathological substrates 

facilitating the abnormal EEG patterns and hyper-connectivity are robust, implying network 

properties could be used in therapeutic assessment. In future work, we plan to test the hypothesis 

that these network changes can provide a patient-specific and early biomarker of treatment 

response.  
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APPENDIX A 

AUTOMATIC ARTIFACT DETECTION 

 

A.1 Introduction 

 EEG records the brain’s electrical activity via electrodes placed on the subject’s scalp. 

Because the potentials measured from the scalp are on the scale of microvolts, external factors 

such as patient movement and powerline noise can affect the voltage measurements and mask 

neural activity. Non-neural activity that affects the EEG signal are called artifacts. Artifacts can 

rise from subject movement, bad electrode contact, eye blinks, impedance checks, muscle 

activation, and a host of other things. Before making inferences about what is happening in the 

brain, these artifacts must be removed.  

Physiological functions such as breathing, eye-blinking, and heartbeats can contaminate 

the EEG signal. When we are awake, the facial muscles around our scalp become activated and 

pollute the EEG. As such, it is not possible to remove all artifacts completely, but it is important 

to remove artifacts that mask the underlying neural activity. 

 There are several methods that are generally accepted to remove artifacts, but none are as 

thorough as visual identification of artifacts from a trained neurologist or EEG technician. 

However, this process is extremely time-consuming and often unfeasible for long-term studies. 

Thus, automatic artifact detection methods become necessary. We developed an automatic 

artifact detector with the aim to mimic visual marking by a trained clinician.  

We compared our algorithm to visually marked artifacts in a retrospective dataset of 21 

infantile spasms patients recorded at the Children’s Hospital of Orange County (CHOC) (dataset 
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described in Section 2.1.2.1). Knowing that all artifacts could not be removed completely from 

the data, artifactual epochs that masked the underlying neural activity were visually marked. For 

example, muscle artifact and movement artifact that stood out from the background was marked. 

Eye blinks were marked, but smaller eye movements were often not marked. From these 

markings, we noticed that amplitude was a defining factor for whether an artifactual epoch was 

visually marked or not. We designed our artifact detector to match these artifact characteristics. 

 We primarily ensured that artifacts did not alter the results of specific analyses. For 

example, in our study of EEG amplitude, we wanted to remove artifacts that were going to 

inflate/deflate our measure of the amplitude. Thus, instead of testing the sensitivity and 

specificity of detecting the same artifactual time points that were visually-marked, we tested 

whether the data cleaned with our automatic artifact detector produced EEG amplitude results 

that were similar to the values calculated from data cleaned of visually-marked artifacts.  

 

A.2 Methods 

A.2.1 The algorithm 

 The algorithm first broadband bandpass filtered the data (1.5-40 Hz, butterworth filters). 

The mean was subtracted from each channel, and the standard deviation was calculated from the 

zero-mean time series. Then time points where the absolute value of the voltage exceeded a 

threshold of 7.5 standard deviations above or below the mean value in any single channel were 

marked. A buffer of 0.9 seconds was added to both sides of the marked extreme amplitude values 

to ensure that the entire artifact was marked. Data recorded during EEG impedance checks were 

also identified and marked. 
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A.2.2 Validation of the algorithm 

 We validated the automatic artifact detector on the retrospective dataset collected at 

CHOC (see Section 2.1.2.1). The dataset included 21 IS patients with 20-30 minute recordings 

both before and after treatment, resulting in 42 total datasets. Artifacts in these data were visually 

marked by a board-certified epileptologist at CHOC. 

 We calculated our five metrics of interest, namely 1) amplitude, 2) spectral edge 

frequency, 3) detrended fluctuation analysis, 4) functional connectivity, and 5) Shannon entropy. 

We first investigated how much the presence of artifacts affected each metric individually. The 

metric value obtained after removing artifacts that were visually marked will be labeled as 

CLEAN data, data without any artifact removal performed will be called ARTIFACT data, and 

data with automatically-detected artifacts removed will be termed AUTO data.  

 There were two parameters to be optimized in the automatic detection algorithm. First, 

the threshold that defined an “extreme value” was varied from four standard deviations 

above/below the mean to nine standard deviations above/below the mean. Second, the buffer 

time ranged from 0.2 seconds to 1.4 seconds. We calculated the buffer time to be 0.9 seconds via 

sensitivity/specificity measurements with visually-marked artifacts (data not shown).   

 To determine what threshold value would minimize the difference in the metric value 

between CLEAN data and AUTO data, we first calculated all metric values for CLEAN data, 

ARTIFACT data, and AUTO data with the threshold ranging from four to nine standard 

deviations above/below the mean. In every channel, we calculated the difference between the 

CLEAN data and ARTIFACT data as well as between CLEAN data and AUTO data with 

varying thresholds. We summed the absolute value of the differences over all channels and all 

patients to identify which threshold minimized the AUTO and CLEAN difference.  
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For each metric, we also calculated percent concordance for individual patients as the 

average absolute value of the difference between CLEAN and AUTO divided by the range of the 

CLEAN data, multiplied by 100: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 =  100 −

1
𝑘

∑ |𝑎𝑢𝑡𝑜𝑖 − 𝑐𝑙𝑒𝑎𝑛𝑖|𝑘
𝑖=1

max(𝑐𝑙𝑒𝑎𝑛) − min(𝑐𝑙𝑒𝑎𝑛)
∗ 100 

where 𝑘 is the number of channels in the data. 

 

A.3 Results 

 We found that a threshold of 7.5-8 standard deviations above/below the mean minimized 

the difference between the metric values calculated from AUTO data and the metric values 

calculated from CLEAN data for most EEG features (Figure A.1). We chose 7.5 standard 

deviations above/below the mean for the final algorithm threshold. In some instances, the 

summed difference between AUTO data and CLEAN data was greater than the difference 

between ARTIFACT and CLEAN data, such as in the Amplitude calculation (Figure A.1A). This 

can happen when good data is marked, and its subsequent removal alters the metric value more 

than leaving the artifacts in. In the case of amplitude, when the automatic detector threshold was 

set to four standard deviations, the detector was identifying epochs of data that were clean, but 

were simply higher amplitude physiologically. As a result, the median amplitude value severely 

underestimated the true amplitude of the EEG signal and this was reflected in the high value of 

summed difference (Figure A.1A).  

 This effect also depends on the method in which the feature is calculated. In amplitude, 

for instance, we calculate the range of the data in one-second windows for the length of the time 

series and report the amplitude as the median of this distribution. By taking the median and not 
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the mean, we reduce the effect artifactual epochs have on the reported amplitude value (see also 

Figure A.7A).  

We also assessed how ARTIFACT and AUTO data compared with CLEAN data on an 

individual patient and channel basis (Figures A.2-A.6). In each of these figures, panel A 

represents the difference between CLEAN data and ARTIFACT data for each metric calculated. 

Panel B reports the difference between CLEAN data and AUTO data with the threshold set to 

7.5 standard deviations. Note that Patient 2, 6, and 20 had channels that were removed 

completely from the dataset, they are represented by the dark blue elements. Generally, in each 

case, the differences between the CLEAN and AUTO data were closer to zero than the 

differences between CLEAN and ARTIFACT data (Figures A.2-A.6). In some cases, the 

presence of artifacts generally increased or decreased the metric value. The DFA exponent is 

generally inflated by the presence of artifacts (Figure A.4A), but automatic removal of artifacts 

reduced these differences (Figure A.4B) (see also Section 3.3). Entropy was generally much 

lower in artifact data (Figure A.6A), and automatic artifact removal normalized the values to that 

of CLEAN data (Figure A.6B). The largest difference in amplitude between AUTO and CLEAN 

data was 58 µV, the mean absolute value difference was 3.25 µV, and the average percent 

concordance across patients was 95.3%. For SEF, percent concordance was 93.9%, the 

maximum difference was 17.2 Hz, and average difference was 0.84 Hz. For connectivity, the 

percent concordance was 94.0%, maximum difference was 0.66, and average difference was 

0.07. For the DFA exponent calculation, percent concordance was 88.8%, maximum difference 

was 0.28, and average difference was 0.02. For entropy, percent concordance was 81.7%, 

maximum difference was 2.79 bits, and average difference was 0.17 bits.  



149 
 
 

 

 

 Lastly, we report how the metric values vary between channels (Figure A.7). The figure 

shows the values in each channel averaged over all patients for ARTIFACT data (red line), 

CLEAN data (blue line), and AUTO data (green line). For EEG amplitude, as mentioned before, 

the difference between ARTIFACT data and CLEAN data is not large because we report the 

median value and not the mean (Figure A.7A). In other cases, such as entropy, the difference 

between ARTIFACT data and CLEAN data is substantial, and the AUTO data approaches the 

CLEAN line (Figure A.7D).  
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Figure A.1 Sum of differences over all patients and channels between CLEAN data and data with 

artifacts or data cleaned with automatic artifact removal. The sum of deviations is defined as the 

absolute value of the difference between the metric calculated on clean data and the metric calculated 

for artifact/automatically-cleaned data summed over all patient datasets. Data with no artifact removed 

is the red dot inside the grey shaded region, and the line denotes data with artifacts automatically 

removed using a varying threshold. The curves dip around 7.5 standard deviations, minimizing the 

difference between AUTO and CLEAN data metric value differences. 
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Figure A.2 Amplitude differences between clean data and (A) data with artifacts intact and (B) data 

cleaned with automatic artifact detection and removal with the threshold of detection set at 7.5 

standard deviations above the mean and a 0.9 second buffer.  

 
Figure A.3 Spectral edge frequency differences between clean data and (A) data with artifacts intact 

and (B) data cleaned with automatic artifact detection and removal with the threshold of detection set 

at 7.5 standard deviations above the mean and a 0.9 second buffer.  
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Figure A.4 DFA exponent differences between clean data and (A) data with artifacts intact, and (B) 

data cleaned with automatic artifact detection and removal with the threshold of detection set at 7.5 

standard deviations above the mean and a 0.9 second buffer.  

 
Figure A.5 Summed connectivity differences between clean data and (A) data with artifacts intact, and 

(B) data cleaned with automatic artifact detection and removal with the threshold of detection set at 

7.5 standard deviations above the mean and a 0.9 second buffer.  
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Figure A.6 Entropy differences between clean data and (A) data with artifacts intact, and (B) data 

cleaned with automatic artifact detection and removal with the threshold of detection set at 7.5 

standard deviations above the mean and a 0.9 second buffer.  

 
Figure A.7 Differences by channel between clean data (blue line) artifactual data (red line) and data 

with automated artifact detection (green line). Data is shown for (A) amplitude, (B) SEF, (C) DFA 

exponent, and (D) entropy. Threshold of detection for the automatic detector was set to 7.5 standard 

deviations above the mean and buffer was set to 0.9 seconds.  
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A.4 Discussion 

 Although many algorithms exist the identify and remove artifacts, we developed a 

method that identifies artifactual epochs such that our outcome metrics best align with visual 

artifact markings. In the future, other forms of artifact removal such as Independent Components 

Analysis (ICA) should be explored for use in this context. We did not use ICA in these analyses 

because we wanted a method of artifact detection that was completely supervised, but such 

methods may be extremely useful in long-term monitoring studies.  




