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Relativistic Plasmas with Atomic Transformations
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Abstract

A parallel, relativistic, three-dimensional particle-in-cell code SPACE has been developed for the simulation of electro-
magnetic fields, relativistic particle beams, and plasmas. In addition to the standard second-order Particle-in-Cell (PIC)
algorithm, SPACE includes efficient novel algorithms to resolve atomic physics processes such as multi-level ionization
of plasma atoms, recombination, and electron attachment to dopants in dense neutral gases. SPACE also contains a
highly adaptive particle-based method, called Adaptive Particle-in-Cloud (AP-Cloud), for solving the Vlasov-Poisson
problems. It eliminates the traditional Cartesian mesh of PIC and replaces it with an adaptive octree data structure.
The code’s algorithms, structure, capabilities, parallelization strategy and performances have been discussed. Typical
examples of SPACE applications to accelerator science and engineering problems are also presented.

Keywords: Particle-in-Cell, Particle-in-Cloud, Laser-plasma interaction, Beam-plasma interaction, Atomic physics
algorithms
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1. Introduction

The study of high intensity lasers or relativistic particle
beams interacting with plasmas is important for numer-
ous applications ranging from high energy density physics
and accelerator science and technology to industrial appli-
cations. With the advent of new laser technologies, there
has been a dramatic increase in achieved laser energies and
intensities over the last decade. Electromagnetic fields of
such high intensities lead to a variety of complex, highly
nonlinear, and relativistic processes in plasma [1]. Simi-
larly, relativistic particle beams traveling in neutral gases
induce the ionization of gas molecules and the formation
of plasma, a spectrum of atomic processes, and wakefields
in plasma [2, 3]. An accurate description of such pro-
cesses and understanding of the interplay between them
in a self-consistent manner requires high-fidelity computa-
tional methods and tools.

Particle-in-Cell methods have been an attractive choice
in the field of computational plasma physics due to their
simplicity and ability to self-consistently resolve highly
nonlinear physics processes. Over last few decades a num-
ber of PIC codes have been developed, tested, and applied
to the simulation of processes in plasmas. These include
OSIRIS [4], VORPAL [5], Warp-X [6], and QuickPIC [7]
to name a few. While the field of numerical simulations
of plasmas interacting with lasers and relativistic particle
beams is relatively mature, new quantitative and quali-
tative algorithms are needed to address challenges of real
world applications. These are associated with the need to
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resolve new physics processes, achieve sufficient numerical
resolution in large 3D domains, perform simulations over
long time intervals, and take full advantage of modern su-
percomputer architectures.

In this paper, we describe a parallel, fully relativis-
tic, three-dimensional particle-in-cell code SPACE for the
simulation of electromagnetic fields, relativistic particle
beams, and plasmas with the focus on atomic physics pro-
cesses. In addition to the standard PIC algorithm, SPACE
includes new atomic physics algorithms, an efficient method
for highly relativistic beams in nonrelativistic plasma, sup-
port for simulations in relativistic moving frames, and a
special data transfer algorithm for transformations from
moving frames to laboratory frames that resolves the prob-
lem of individual times of particles. SPACE contains li-
braries of atomic physics processes such as the generation
and evolution of plasma, including multiple ionization of
ions, recombination of plasma, and electron attachment
on dopants in dense neutral gases. The code also con-
tains a highly adaptive and artifact-free particle method,
called Adaptive Particle-in-Cloud (AP-Cloud) [8], for solv-
ing Vlasov-Poisson problems with optimal numerical res-
olution.

Since its development, SPACE has been successfully
used in several projects in the area of plasma science and
particle accelerator science and engineering. These include
experiments on high-pressure radio frequency cavity at
Fermi National Accelerator Laboratory [9, 10], coherent
electron cooling program at Brookhaven National Labo-
ratory [11], and the laser wakefield acceleration experi-
ments driven by CO2 laser at the Accelerator Test Facility
(ATF) of Brookhaven National Laboratory [12, 13]. The
AP-Cloud module of SPACE has been extensively used for
the simulation of coherent electron cooling of relativistic
ion beams [11, 14].

The remainder of the paper is organized as follows. In
section 2, mathematical models and numerical algorithms
implemented in the code will be described in detail. In
section 2.4, main ideas of the Adaptive Particle-in-Cloud
algorithm for solving Vlasov-Poisson problems with au-
tomatically adjusted optimal numerical resolution is pre-
sented. Atomic physics algorithms such as ionization by
high energy particle beams and lasers, recombination of
plasma, and electron attachment on dopant molecules will
be presented in section 2.5. Implementation of various al-
gorithms, code structure and parallelization strategies for
the use of multi-core machines will be detailed in section
3. Some typical applications of SPACE are presented in
section 4. We conclude the paper with a summary of our
results and perspectives for the future work.

2. Models and algorithms

2.1. Main Governing Equations

The standard governing equations for collisionless plasma
are the Vlasov-Maxwell equations [15] for distribution func-
tions fe(r,p, t) and fi(r,p, t) for electrons and (positive)

plasma ions:

∂fe
∂t

+ ve · ∇rfe − e (E + ve ×B) · ∇pfe = 0, (1)

∂fi
∂t

+ vi · ∇rfi + Zie (E + vi ×B) · ∇pfi = 0, (2)

∂E

∂t
− 1

ε0µ0
∇r ×B = − 1

ε0
J, (3)

∂B

∂t
+∇r ×E = 0, (4)

∇r ·E =
1

ε0
ρ, (5)

∇r ·B = 0. (6)

Here r and p are vectors of coordinates and momenta,
e is the electron charge, Zi is the ionization state of an
ion, and E and B represent collective self-consistent elec-
tromagnetic field created at point r at time moment t by
all plasma particles. The charge density, electric current
density, and particle velocity are computed as follows:

ρ = e

∫
(Zifi − fe) d3p,

J = e

∫
(Zifivi − feve) d3p,

vα =
p/mα√

1 + (p/mαc)2
,

where α denotes charged particle species.
In the case of non-relativistic, zero-magnetic field limit,

the Vlasov-Maxwell equations reduce to the Vlasov-Poisson
system of equations

∂fα
∂t

+ vα · ∇rfα + Zαe (E + ve ×B) · ∇pfα = 0, (7)

∇2
rφ = − 1

ε0
ρ, (8)

where φ is the electrostatic potential, E = −∇rφ, Zα is
the charge (in terms of the elementary charge) for particle
species, and Zα = −1 for electrons.

A standard numerical method for solving the Vlasov-
Maxwell and Vlasov-Poisson system of PDE’s is the particle-
in-cell (PIC) method [16]. In PIC, a fixed mesh is used for
the discretization of electromagnetic fields, and the par-
ticle density distribution function is represented by La-
grangian particles that move through the mesh by the
Newton-Lorentz force equation, generating electric cur-
rent. Since the PIC method eliminated the need to com-
pute derivatives in the momentum space, we omit the in-
dex r

¯
at the operator ∇ and assume in the reminder of

this paper that it represents derivatives in the geometric
space.

The core PIC algorithm for solving the Vlasov-Maxwell
equations in SPACE is typical and similar to most of PIC
codes; for completeness, some details of its implementation
in SPACE are presented in the next section. In addition
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to the standard PIC implementation of the Vlasov-Poisson
system of PDE’s, SPACE implements a novel Adaptive
Particle-in-Cloud (AP-Cloud) method [8], described in Sec-
tion 2.4.

2.2. Finite Difference Time Domain Method

The finite difference time domain (FDTD) method [17]
has been a common choice for solving Maxwell’s equations
numerically. It employs the Yee grid, where the electric
field components are located on the edges and the mag-
netic field components on the faces of the cell. The loca-
tion of components of the EM field and the computation
sequence in time, as implemented in SPACE, are shown in
figure 1.

(a) (b)

Figure 1: (a) Yee cell and the location of EM field components as
implemented in SPACE and (b) Computation sequence in time.

Equations (3) and (4) are discretized using second or-
der accurate central difference approximations and the re-
sulting finite difference equations are advanced in a leapfrog
manner:

En+1 −En

∆t
=

1

µ0ε0
∇×Bn+1/2 − 1

ε0
Jn+1/2 (9)

Bn+1/2 −Bn−1/2

∆t
= −∇×En+1/2. (10)

Here different components of E, B and J are defined at
different grid points and at different times as

En = (Ei+1/2,j,k, Ei,j+1/2,k, Ei,j,k+1/2)n (11)

Bn+1/2 = (Bi,j+1/2,k+1/2, Bi+1/2,j,k+1/2, Bi+1/2,j+1/2,k)n+1/2

(12)
and

Jn+1/2 = (Ji+1/2,j,k, Ji,j+1/2,k, Ji,j,k+1/2)n+1/2. (13)

where (i, j, k) are grid indices for (x, y, z) coordinates, re-
spectively, and the time step size ∆t satisfies the CFL
stability condition c∆t <

√
∆x2 + ∆y2 + ∆z2.

2.3. Dynamics of Particles and Current

The particle mover solves the Newton-Lorentz equation
to advance each macroparticle using the EM field calcu-
lated by the field solver:

dpα
dt

= qα(E(xα) + vα ×B(xα)). (14)

Here pα = γmαvα is the relativistic momentum of a parti-
cle with mass mα, velocity vα, and charge qα at the loca-
tion xα, where γ = 1/

√
1− v2α/c2 is the relativistic factor.

EM field values at the location of each particle are
obtained by interpolating the field components from the
grid to the particle location using a second order interpo-
lation scheme to maintain the second order overall accu-
racy. Equation 14 is solved numerically using the following
leapfrog discretization :

xn+1
α − xnα

∆t
= vn+1/2

α (15)

p
n+3/2
α − p

n+1/2
α

∆t
= qα(En+1(xn+1

α )+

v
n+3/2
α + v

n+1/2
α

2
×Bn+1(xn+1

α )) (16)

This algorithm has been implemented following the cor-
rection to the Boris scheme [18] in the method proposed
by J.-L. Vay [19]. Vay’s particle pusher is O(∆t2) and
provides a Lorentz invariant velocity update.

Current Deposition
Since each macroparticle in a PIC method typically

represents a large number of real particles, it is neces-
sary to choose a spatial distribution of particle weight-
ing throughout the volume occupied by a macroparticle.
PIC codes employ shape functions belonging to a family
of B-spline basis functions. In SPACE, one of the three
lowest order shape functions can be selected : nearest
grid point (NGP), cloud-in-cell (CIC), and triangle shaped
cloud (TSC). The TSC shape function defined in equation
(17) maintains the overall second order accuracy.

W 2(xi) =


3
4 − δ

2 if |δ| < 1
2 ,

1
2 ( 3

2 − |δ|)
2 if 1

2 ≤ |δ| <
3
2 ,

0 otherwise,

(17)

where xi is the location of a grid point, xp is the location
of a macroparticle, and δ = (xp − xi)/∆x.

In order to maintain the momentum conservation and
avoid artificial self-forces, the computation of field values
at particle positions and the charge density on the mesh
must use the same interpolation technique. In the second
order method, the charge density on the mesh is calculated
using the following expression

ρ(xi) =
∑
p

qpnpW
2(xp − xi) (18)

where qp is the charge of the macroparticle and np its
number density.

In SPACE, currents produced by the motion of charged
macroparticles are calculated using two different methods.
For CIC shape functions, the code implements the rigorous
charge conservation algorithm developed by Villasenor and
Buneman [20]. Higher order shape functions are known
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to reduce discrete particle noise significantly. Density de-
composition method proposed by Esirkepov [21], which is
a generalization of the method developed by Villasenor
and Buneman [20], works with arbitrary shape functions
of any order. Currently SPACE implements Esirkepov’s
method for second order shape functions and can be ex-
tended to support higher order shape functions. Current
density thus calculated, satisfies the discrete form of the
continuity equation ∂ρ

∂t + ∇ · J = 0. As a consequence,
the divergence of E always remains equal to ρ/ε0 and the
divergence of B remains zero.

2.4. AP-Cloud method

In this section, we describe numerical algorithms for
solving the Vlasov-Poisson system (7 - 8). In addition to
the traditional electrostatic PIC method, widely used in
the majority of codes, SPACE implements a novel Adap-
tive Particle-in-Cloud (AP-Cloud) method [8] for optimal
solutions of the Vlasov-Poisson equations. AP-Cloud is
an adaptive, fully particle-based replacement of PIC. AP-
Cloud replaces the Cartesian grid in the traditional PIC
with adaptive computational nodes or particles, to which
charges of physical macroparticles are assigned by a weighted
least-square approximation. The partial differential equa-
tion is then discretized using a generalized finite difference
(GFD) method and solved with fast linear solvers. The
density of computational particles is chosen adaptively, so
that the error of GFD and that of the source integration
are balanced and the total error is approximately mini-
mized. The method is independent of geometrical shape
of computational domains and free of artificial parame-
ters. The development of AP-Cloud was motivated by the
problem of achieving an optimal adaptive resolution for
numerical solutions of the Vlason-Poisson system contain-
ing large variations of sources (charges).

2.4.1. Error Analysis of Traditional PIC Method

The convergence of traditional PIC depends on the bal-
ance of the Laplacian operator discretization error, which
reduces with the mesh refinement, and the Monte-Callo
error of the charge evaluation, which increases with the
mesh refinement if the total number of macroparticles re-
mains constant. The total error for the second-order finite
difference discretization is

O
(

(N∆xD)−1/2
)

+O(∆x2), (19)

where N is the number of macroparticles, ∆x is the cell
size, and D is the space dimension. The error is minimized
[8] if

∆x = O
(

(ρ(xk)N)
− 1

4+D

)
, (20)

where ρ is the charge density at grid point xk. Since it is
impossible to achieve such a balance if a uniform mesh is
used for a highly nonuniform particle distribution, the use
of block-structured adaptive mesh refinement approaches
(AMR-PIC) has been investigated [22, 23]. It has been

shown [22] that AMR-PIC suffers from significant numer-
ical artifacts that exhibit themselves in unphysical image
charges reflected by physical particles across interfaces be-
tween coarse and fine mesh patches. A mitigation method
for this phenomenon was proposed in [24]. AP-Cloud
method achieves an optimal numerical resolution without
suffering from artifacts described in [22]. The analog of
formula (20) for AP-Cloud is given in the next section.

2.4.2. Main algorithms of AP-Cloud

AP-Cloud uses computational particles (nodes) instead
of Cartesian grid, the distribution of which is derived using
an error balance criterion. Instead of the finite difference
discretization of the Laplace operator, the framework of
weighted least squares approximation, also known as the
generalized finite-difference (GFD) [25], is applied. The
framework includes interpolation, least squares approxi-
mation, and numerical differentiation on a stencil in the
form of cloud of computational nodes in a neighborhood
of the point of interest. It is used for the charge assign-
ment scheme, numerical differentiation, and interpolation
of solutions.

The Particle-in-Cloud method operates as follows:

• Given a distribution of physical macro-particles, op-
timally select a subset of computational nodes from
this distribution by constructing an octree and ap-
plying the error balance criterion

h = O
(

(ρ(xk)N)
1

2(1−P )−D

)
, (21)

where h is the local averaged distance between com-
putational nodes and P is the order of interpolation
polynomial in the GFD method.

• Place computational particles on the boundary

• Enforce the 2:1 balance of inter-node distances in the
case of extreme density changes. The 2:1 balance
requires that the difference between the levels of re-
finement of two neighbors is at most one, improving
the smoothness in the placement of computational
particles.

• Assign physical states to computational nodes and
approximate differential operators in the location of
computational nodes using GFD.

• Solve the corresponding linear system using a fast
parallel solver.

• Calculate the solution gradient on computational nodes
using the same GFD stencils.

• Interpolate gradients back to the location of macropar-
ticles using Taylor expansion.
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2.5. Atomic physics algorithms

A distinct feature of SPACE is its ability to resolve the
dynamics of complex atomic transformations, sometimes
called plasma chemistry. SPACE algorithms support ion-
ization and recombination, multi-level ionization in high-
Z gases, secondary ionization by electron impact, electron
attachment to neutral atoms with the formation of neg-
atively changed ions and the subsequent ion-ion recom-
bination etc. Three examples of distinct atomic physics
processes are given below.

2.5.1. Long-time scale atomic processes in gaseous mix-
tures

Consider, for example, a high-energy proton beam prop-
agating through dense hydrogen gas that contains a small
amount of oxygen as dopant. This example is relevant to
the representative SPACE application to the plasma load-
ing of high-pressure RF cavities, described in more detail
in Section 4. When an electronegative gas such as oxygen
is added to the hydrogen gas, a three-body attachment
process takes place in the plasma, which is significantly
faster than the electron - ion recombination [26]. The neg-
ative ions produced by the attachment process recombine
with hydrogen ions. The governing equations are

dne
dt

= Ṅe − βenenH+ − ne
τ

dnH+

dt
= Ṅe − βenenH+ − ηnH+nO−

2
(22)

dnO−
2

dt
=
ne
τ
− ηnH+nO−

2

where ne, nH+ , and nO−
2

denote the number density of

electrons, positive hydrogen ions, and negative dopant ions,
respectively, and Ṅe denotes the production rate of elec-
trons. βe is the recombination rate of electrons on ions,
τ , η, and nO−

2
are the attachment time, effective ion - ion

recombination rate, and the number density of dopant gas
ions, respectively. The averaged hydrogen ion cluster that
represents the sum

∑
j βjnHj

+ is denoted as βenH+ .
As the recombination and attachment rates depend on

the external field, they are functions of spatial coordinates
and time. The attachment time and the ion - ion recombi-
nation rate have been measured experimentally, but only
over a narrow range of RF field amplitudes. Based on mea-
sured values, simulations establish accurate fit functions
for the attachment time and the ion - ion recombination
rate.

2.5.2. Laser tunneling ionization in gases

Laser field ionization effects such as the creation of
plasma through tunneling ionization, frequency up-shifting
of the laser, harmonic generation and scattering instabil-
ities have been shown to have important macroscopic ef-
fects in laser-matter interaction studies[27]. Several ioniza-
tion models have been proposed and implemented in PIC
codes and comparative studies have been performed and

it has been shown that different models are more accurate
in different cases [28].

Tunneling ionization algorithms based on the ADK for-
mula have been implemented in SPACE. For the general
case of multi-level ionization of high-atomic-number gases,
the ionization probability is given by the following ADK
formula [30, 28]

Wlm = ωα

√
3n∗3EL
πZ3Ea

Z2

2n∗2

(
2e

n∗

)2n∗

exp

[
− 2Ea

3EL

(
Z

n∗

)3
]
× (23)

(2l + 1)(l + |m|)!
2πn∗2|m|(|m|)!(l − |m|)!

(
2
EaZ

3

ELn∗
3

)2n∗−|m|−1

Here, ωa = α3c/re = 4.13 × 1016s−1 is the atomic unit
frequency. Ea = 510GV/m is the atomic unit of Electric
field. EL (GV/m) represents the local strength of laser
pulse. l and m are the electron’s orbital quantum number
and projection number respectively, n∗ = Z

√
UH/Uion

is the effective principle quantum number, and UH and
Uion are the ionization potential of Hydrogen and ions in
a principal quantum number state of the material inter-
acting with the laser, respectively. Z is the charge number
after ionization.

Let’s consider first ionization in hydrogen-type atoms.
The ionization probability expression (23) reduces to

W (s−1) ≈ 1.52e15
4n

?

U(eV )

n?Γ(2n?)

(
20.5

U1.5(eV )

E(GV/m)

)
×

exp

(
−6.83

U1.5(eV )

E(GV/m)

)
(24)

where U(eV ) is the ionization energy of neutral atoms and
n? = 3.69Z/

√
U(eV ) is the effective principal quantum

number. At every time step, the number of electron-ion
pairs to be generated is calculated using fractional ioniza-
tion formula 1− exp

(
W (s−1)dt

)
, which is the solution to

the following equation:

dn0
dt

= −W (t)n0(t), (25)

where n0 is the neutral atom density and W (s−1) is calcu-
lated from (24). Since the characteristic time scales of rel-
evant laser-plasma interactions are short (on the order of
10 picoseconds), the recombination processes are ignored.

Most PIC codes utilize Monte-Carlo style routine to
choose whether to ionize a neutral particle or not by cal-
culating the rate from equation 24 and comparing it with a
random number in [0, 1] [28, 29]. SPACE, however avoids
this expensive routine, and progressively charges the re-
gion around each grid point by creating number of electron-
ion pairs calculated using the rate equation 24.

Ionization of hydrogen by a CO2 laser pulse was simu-
lated using SPACE. A linearly polarized laser (wavelength

5
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Figure 2: Ionization of hydrogen by the electric field of CO2 laser.
Red curve shows the normalized electric field of the laser pulse along
the direction of propagation. Green curve shows the theoretically
predicted rate of ionization. Blue curve shows the normalized plasma
distribution along the axis of propagation of the laser pulse as com-
puted by code SPACE. Simulation uses 32 particles per cell and a
longitudinal resolution of 20 cells per wavelength of the laser pulse.

= 10 micrometers) pulse with Gaussian transverse and lon-
gitudinal profile was used. Figure 2 shows the comparison
between the theoretically predicted rate of ionization and
that computed by SPACE. For a longitudinal resolution of
20 cells per wavelength and 32 particles per cell, simulated
rate of ionization is in good agreement with the theory.

The following system of equations governs multi-level
ionization dynamics in high-atomic-number gases:

dn0
dt

= −W0 ∗ n0(t),

dn+

dt
= W0 ∗ n0(t)−W1 ∗ n+(t),

dn(Z−1)+

dt
= WZ−2 ∗ n(Z−2)+(t)−WZ−1 ∗ n(Z−1)+(t),

(26)

dnZ+

dt
= WZ−1 ∗ n(Z−1)+.

In this system, ionization probabilities are computed using
(23) The system can be written in the matrix form:

ṅ0
ṅ+

ṅ2+

...
ṅ(Z−1)+

ṅZ+

 = (27)



−W0 0 0 ... 0 0
W0 −W1 0 ... 0 0
0 W1 −W2 ... 0 0
... ... ...

. . .
...

...
... ... ... WZ−2 −WZ−1 0
0 ... ... 0 WZ−1 0




n0
n+

n2+

...
n(Z−1)+

nZ+



We found an analytic solution to this system of equations
in terms of the eigenvalues and eigenvectors of the corre-
sponding matrix for constant ionization probabilities [31].
Using the ionization probabilities updated at the begin-
ning of each time step in code SPACE, we compute new
analytic solutions in every computational cell and update
the population of ionization levels at the end of the time
step by the analytic solution.

The implementation of multiple ionization in SPACE
resolves several modeling and computational challenges.
The first challenge is associated with strong dependence
of ionization probabilities on the orbital quantum numbers
and their projections for electrons being ionized. SPACE
properly assigns quantum numbers during the ionization
process. The second challenge is related to the multiscale
nature of ionization. In particular, the characteristic ion-
ization time scale may be incompatible with the time step
of the main code. This problem is effectively resolved by
using analytic solutions at each time step. The third chal-
lenge is associated with a significant increase of memory
allocation for computing ionization processes. To store
all ionization levels in krypton, 36-floating point numbers
must be added to each computational cell (or at least 10-
12 numbers, if ionization beyond 10+ is unlikely at given
laser parameters). Studying the ionization dynamics of
each level under varying electric field strength, we con-
cluded that only 2-3 intermediate levels were populated
at any moment of time, with the population of lower and
higher levels effectively approaching zero. This allowed
us to replace the full system of equations for all ioniza-
tion levels by a locally reduced-order system containing
only 3 or 4 ionization levels. The active ionization lev-
els are shifted to the higher ones independently in each
computational cell when the population of the lowest level
drops below a prescribed threshold. SPACE code can also
use tabulated data base that provides averaged number of
electrons based on local values of the electric field. While
this approach is accurate for low-frequency processes, we
mostly use analytic solutions for locally-reduced systems
of 4-level equations to maintain high accuracy in laser-
plasma simulations. Details of the algorithm can be found
in [31].

3. Implementation

3.1. Overview and code structure

SPACE contains two main modules : the electrostatic
(ES) module which implements the AP-Cloud method for
solving the Vlasov-Poisson problems and a more tradi-
tional electrostatic PIC solver, and the electromagnetic
(EM) module which implements the EM-PIC method with
atomic physics support. Figure 3 shows the overall struc-
ture of the code. Written in C++, it utilizes an object-
oriented design to achieve a flexible and efficient structure.

The ES module consists of two major classes, the Interpolator
class which selects computational nodes and interpolates
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Figure 3: SPACE code structure

states from computational nodes to the location of macropar-
ticles using the Taylor expansion, and the APcloud solver

class which builds linear systems by approximating differ-
ential operators in the location of computational nodes
using GFD and solves linear systems using fast parallel
solver libraries.

The EM module consists of three major classes: (1)
FieldSolver class, (2) ParticleMover class, and (3) Controller
class. The FieldSolver class contains the FDTD solver,
and the interpolation routines for getting field informa-
tion at particle locations. The ParticleMover class con-
tains solvers for the Newton-Lorentz equation. This class
also includes various physics models describing particle
interactions and transformations by atomic physics pro-
cesses. The code is capable of tracking particles of nu-
merous species. The Controller class controls the above
two classes and other miscellaneous classes such as the vi-
sualization class, which outputs the electromagnetic fields
and particle data in a desired format to use the software
VisIt [32] optimized for the parallel remote visualization.
Due to the SPACE code structure, implementation of ad-
ditional physics models and new features is fairly simple.
SPACE supports input files written in eXtensible Markup
Language (XML).

Both the electromagnetic and electrostatic solvers in
SPACE implement a number of boundary conditions. In
particular, the electromagnetic code includes the perfect
electric conductor boundary condition, perfectly matched

layer in the longitudinal direction, for simulation of elec-
tromagnetic signals passing through the computational do-
main, and the periodic boundary condition. The AP-
Cloud code implements the Dirichlet, Neumann, and pe-
riodic boundary conditions for the Poisson problem. It is
important to emphasize that AP-Cloud works with com-
putational domains of arbitrary shape.

3.2. Implementation of atomic physics algorithms

Generation of plasma macroparticles. Two algo-
rithms for the dynamic generation of plasma have been
implemented in SPACE. The first algorithm dynamically
creates plasma macroparticle pairs and the second algo-
rithm changes the representing number of macroparticles.
Consider an example of neutral gas ionization by a high en-
ergy particle beam. As each beam particle passes through
the gas, it loses energy and ionizes the medium by creating
electron-ion pairs. The amount of energy lost by the beam
through ionization processes, or the beam stopping power,
is described by the Bethe-Bloch equation. This process is
directly implemented in the code: the energy loss of ev-
ery beam macroparticle is computed in real time, and a
macro-electron-ion pair is numerically created when the
beam particle energy loss exceeds the ionization energy.
Each pair of electron and ion macroparticles is created in
the same spatial location to satisfy the initial local charge
neutrality. In numerous applications, the mobility of ions
is very low throughout the simulation and the motion of
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ions can be ignored. As stationary particles have no effect
on the solutions of the Maxwell equations, we need to cre-
ate only electron macroparticles with zero initial electric
field (due to plasma neutrality) in such a case. The initial-
ization of only electrons with no electric field is equivalent
to the presence of stationary positive ions by the conser-
vative property of the numerical algorithm. As a result,
the electric field due to stationary ions is present in simu-
lations. In simulations with strong electromagnetic fields
ions are explicitly evolved. The schematic of processes is
shown in Figure 4.

Figure 4: Schematic of the ionization algorithm by particle beam.

Variable representing number. In many applica-
tions, the plasma density can change by several orders
of magnitude during physically relevant times of interest.
The method described in the previous section may lead to
numerical difficulties due to the extreme increase of the
number of macroparticles in high density plasma regions
while still achieving poor accuracy in low density regions
represented by a small number of macroparticles. This
method also leads to numerical oscillations caused by re-
combination processes. Initially overlapping electron and
ion macroparticles, created by the ionization process, be-
come spatially separated by dynamic processes at a later
time. When a recombination event occurs at some point
in space and time, triggered by the computed probability
of recombination, the two closest but spatially separated
charges must be eliminated, causing numerical noise. This
problem is effectively eliminated by using a variable rep-
resenting number of macroparticles. In this algorithm, a
preset cloud of massless, neutral plasma macroparticles
(with zero representing number) is created at the initial
simulation time with a number density sufficient for nu-
merical accuracy. At a later time, such macroparticles are
charged proportionally to ionization processes by increas-
ing their representing number, and decreasing the repre-
senting number proportional to the recombination rate.
The ionization and recombination rates are computed on
the PIC mesh, and the corresponding changes are interpo-
lated to the location of all macroelectrons and are kept on
PIC mesh nodes for ion components (as ion particles are
not physically present). This algorithm keeps the num-
ber of computational macroparticles at the optimal level,
reduces the numerical noise caused by recombination pro-
cesses, and eliminates a need for a complex “bookkeep-
ing” algorithm that records the lifetime of every plasma

macroparticle and calculates the probability of its recom-
bination or attachment to a dopant molecule. Figure 5
shows the schematic description of the stopping power
computation by a particle beam. By the movement of
a beam particle (blue), its energy loss in gas is estimated
and distributed to the FDTD mesh (green). At the same
time, the energy loss of the beam particle is counted and
used to update its velocity. After that, the number of new
plasma ionization and recombination events is computed
on the mesh. Their difference in each mesh point is in-
terpolated to the plasma macroparticles contained within
the domain of dependence of the interpolation scheme and
used for changing of their representing number.

Figure 5: Schematic diagram illustrating ionization algorithm with
variable representing number of plasma macroparticles.

3.3. Parallelization of Vlasov-Maxwell Solver

PIC codes have been used to model complex field-
particle interactions which require simulations of large num-
ber of particles on a very fine mesh requiring large compu-
tational resources. Different parallelization strategies have
been used to take advantage of modern, distributed mem-
ory machines to enhance the performance. Parallelization
of PIC codes is more complicated than purely mesh-based
or particle based codes because of the need to account for
the interactions between fields on the grid and particles.

SPACE utilizes the Message Passing Interface (MPI)
and OpenMP for parallelization. Two different paralleliza-
tion methods have been used. In the first method, all
the particles, irrespective of their positions, are distributed
equally among available MPI processes and each process
redundantly keeps the copy of entire mesh. Within each
MPI process, particles are equally distributed to available
OpenMP threads. The field solver utilizes OpenMP par-
allelization as well. This method is fairly simple to imple-
ment. Particles can be moved independently as each pro-
cess has access to the entire field information. Particles are
distributed uniformly among processes in the beginning
and since they never change processes, there is no issue
of load balance. The main disadvantage of this method is
that it requires a large amount of time for communications
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between the FieldSolver and the ParticleMover modules.
In addition, the maximum number of MPI processes that
can be used is limited by memory constraints, limiting
scalability.

In the second method, FieldSolver utilizes a spatial
domain decomposition and the particles are distributed
among the processes based on their positions. Since, the
processes now have the field and particle information lo-
cally available, the communication time is minimized. Par-
ticles can move across subdomain boundaries in this case,
and this information is communicated using MPI. Charge
conserving current deposition algorithm requires the field
communication near subdomain boundaries, accomplished
via buffer cells on either side of each subdomain boundary.
Implementation in this case is more complicated compared
to the previous method, in particular the implementation
of current update algorithms near subdomain boundaries.

Because of typical computational domain geometries
in laser-plasma interaction problems - long and narrow
domains with open boundary conditions in the longitu-
dinal direction, accomplished via the use of the perfectly
matched layer algorithm [33], a one-dimensional domain
decomposition with options of uniform and non-uniform
divisions among processors has been used in SPACE. In
simulations with a very non-uniform distribution of parti-
cles in the longitudinal direction, a finer domain decom-
position in denser particle regions leads to a significant
performance enhancement.

We now present weak scalability results for performance
evaluation of a 3D laser-plasma interaction simulation with
a linearly polarized CO2 laser (energy = 1 J, duration = 2
ps, waist = 20 µm) interacting with hydrogen plasma with
the density of ne = 7.5×1017cm−3. Table 1 shows the sim-
ulated settings and Figure 6 shows the average CPU time
per iteration in normalized units plotted against the num-
ber of MPI cores. An almost perfect scaling was achieved
for hundreds of cores.

Cells Particles MPI processes Time per iteration
200× 200× 200× 20 80 million 5 1.00
200× 200× 200× 21 160 million 10 1.05
200× 200× 200× 22 320 million 20 1.20
200× 200× 200× 23 640 million 40 1.21
200× 200× 200× 24 1.28 billion 80 1.21
200× 200× 200× 25 2.56 billion 160 1.23
200× 200× 200× 26 5.12 billion 320 1.23

Table 1: Scalability test settings.

3.4. Parallelization of Vlasov-Poisson Solver

The AP-Cloud code uses K-tree data structures to store
particles and selects centers of K-tree cells as computa-
tional nodes. Major K-tree algorithms, such as construct-
ing, refining, and searching, significantly affect performance
of the code. The AP-Cloud code utilizes p4est (”parallel
forest of K-trees”)[34], a parallel library that implements
a dynamic management of a collection of adaptive K-trees

Figure 6: Weak scalability test for 3D laser-plasma interaction sim-
ulation.

on distributed memory supercomputers. Given a distribu-
tion of macroparticles, the Interpolator calls p4est par-
allel routines to construct the K-tree, adaptively refine the
K-tree until the error balance criterion (21) is met by all
K-tree cells, and enforce the 2:1 K-tree balance to improve
the smoothness in the placement of computational parti-
cles. In order to achieve computational load-balance, K-
tree cells are distributed evenly among processes, together
with macroparticles inside them. This approach optimizes
the main computational task: discretization of differen-
tial operators and solving of linear systems for computing
stencil coefficients in the location of computational nodes.
We use the p4est ”Ghost” routine to collect several layers
of ghost cells (off-process K-tree cells touching the process
boundary) to give the complete parallel neighbourhood in-
formation for processes. Hence, the neighbour searching
algorithm involved in building GFD stencils is performed
locally, eliminating the difficulties of point-to-point trans-
fers of numerical information.

The APcloud solver class uses PETSc [35] library of
Krylov subspace solvers and preconditioners to solve the
large sparse linear systems resulting from the AP-Cloud
discretization of a Vlasov-Poisson problem. The above
mentioned partitioning also results in the optimal matrix
storage among processes for PETSc matrix initialization
routines, since each computational node corresponds to a
row in the matrix. The interpolation of states from nodes
to macroparticles is also performed locally because K-tree
cells and macroparticles inside them are stored on the same
processes.

We first investigate the strong scalability of AP-Cloud
code. We evaluated the performance of simulation for
the following Poisson problem: a Gaussian distribution
of 108 macroparticles (mean µ = [0, 0, 0] and standard
deviation σ = 0.01) were generated in a unit cubic do-
main with Dirichlet boundary condition along all bound-
aries. The distrubuiton of physical macroparticles resuted
in 5,809,343 computational nodes. The scalability of just
AP-Cloud algorithms (without the final PETSc solver step)
were tested as well as the scalability of the complete time
step including the PETSc solver and the results are plot-
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ted in Figure 7a. While the slope of the linear fit to nu-
merical data points differs from the ideal speedup, the
numerical results demonstrate a liner speedup, without
reaching saturation at 240 cores. For the weak scaling, we
performed the same test problem on 240 CPU cores and
scaled down both the number of macroparticles and com-
putational nodes proportionally to the reduction of CPU
cores. Figure 7b shows the corresponding numerical re-
sults for the weak scaling study. As expected, the weak
scaling is closer to the ideal scaling and it also does not
reach the saturation at 240 cores.
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Figure 7: Speedup of AP-Cloud code using a Poisson problem with
the Gaussian particle distribution. For strong scaling studies, 108

macroparticles and 5,809,343 computational nodes were used.

4. Representative Applications

SPACE is currently being used in a variety of applica-
tions in the area of particle accelerator design as well as
fundamental and applied problems of laser-plasma inter-
action.

The AP-Cloud code is extensively used at the Brookhaven
National Laboratory for the study of coherent electron
cooling cooling (CeC), a novel technique developed for
rapid cooling of high-energy, high-intensity hadron beams
[36]. CeC consists of three main components: a modula-
tor, where each ion imprints a density wake on the elec-
tron distribution, a free electron laser (FEL) or another
electromagnetic device as an amplifier, where the density
wakes are amplified, and a kicker, where the amplified
wakes interact with ions, resulting in dynamical friction

for the ion that leads to cooling of ion beams. Compre-
hensive numerical studies of the modulator, performed in
[11], include various verification tests and their compari-
son with simplified analytic solutions as well as detailed
simulations at conditions of the BNL experiment. Simu-
lations of coherent electron cooling with two types of am-
plifiers, the free electron laser and plasma cascade ampli-
fier, were performed in [14]. In both cases, AP-Cloud was
used as a component of a coupled simulation. To evaluate
the performance of the plasma cascade amplifier (PCA),
AP-Cloud simulation of the modulator and the kicker was
coupled to the electromgnetic SPACE simulation of PCA.
AP-Cloud was also coupled to the GENESIS free electron
laser code for a start-to-end simulation of CeC with the
FEL amplifier.

The capability of SPACE to resolve long-time-scale atomic
physics transformaitons in gases interacting with high en-
ergy particle beams was critical for the simulation support
of the experimental program on the high-pressure hydro-
gen gas-filled RF cavity (HPRF cavity) in the Mucool Test
Area (MTA) at Fermilab. The project studied processes
relevant to muon cooling devices. We have investigated the
plasma dynamics in the RF cavity including the process
of power dump by plasma (plasma loading), recombina-
tion of plasma, and plasma interaction with dopant mate-
rial. By comparison with experiments in the MTA, simula-
tions suggest several unknown properties of plasma such as
the effective recombination rate, the electron attachment
time on dopant molecule, and the ion – ion recombination
rate in the plasma [9]. As muon beams were not available
at Fermilab, all experiments used proton beams. SPACE
simulations, validated agains experimental data from the
HPRF cavity driven by proton beams, performed predic-
tion for muon beams [10].

SPACE has been extensively used for the study of laser-
matter interactions and wakefield acceleration. Numeri-
cal studies of the interaction of a CO2 laser with hydro-
gen jets have been performed in [12] as a part of laser
wakefield acceleration program at BNL’s Accelerator Test
Facility. The upgraded laser system is capable of deliv-
ering pulses with parameters suitable for self-modulated
laser wakefield acceleration (SM-LWFA). Simulations re-
produced both Stokes and anti-Stokes shifts in the spec-
trum of the pump laser, similar to those observed in ex-
periments in the spectrum of the probe laser. Good agree-
ment has been achieved with the experiments on the ef-
fect of variation in gas density on Stokes/anti-Stokes in-
tensity. In addition, self-injection and trapping of elec-
trons into the self-modulated wakes have been observed
and analyzed. In our recent work [13], long wavelength in-
frared laser-driven plasma wakefield accelerators were in-
vestigated in the self-modulated laser wakefield accelera-
tion and blowout regimes via SPACE simulations. Simu-
lation results showed that in the SM-LWFA regime, self-
injection arises with wave breaking, whereas in the blowout
regime, self-injection is not observed under the simulation
conditions. The wave breaking process in the SM-LWFA
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regime occurs at a field strength that is significantly below
the 1D wave-breaking threshold. This process intensifies
at higher laser power and plasma density and is suppressed
at low plasma densities (≤ 1× 1017 cm−3). The produced
electrons show spatial modulations with a period match-
ing that of the laser wavelength, which is a clear signature
of direct laser acceleration. SPACE has also been used for
simulations of laser-plasma wakefields at realistic super-
sonic hydrogen jet conditions [37] using input data from
the Lagrangian particle hydrodynamic code [38].

5. Conclusion

SPACE, a parallel, relativistic, three-dimensional particle-
in-cell code for the simulation of electromagnetic fields, rel-
ativistic particle beams, and plasmas is described in this
paper.

The electromagnetic module of SPACE implements a
parallel, fully relativistic, second-order FDTD algorithm
for electromagnetic fields and particle beams. In addition
to the standard PIC algorithm, SPACE includes an effi-
cient method for highly relativistic beams in nonrelativis-
tic plasma, support for simulations in relativistic moving
frames, and a special data transfer algorithm for trans-
formations from moving frames to laboratory frames that
resolves the problem of individual times of particles.

SPACE includes efficient novel algorithms to resolve
atomic physics processes such as multi-level ionization of
plasma atoms, recombination, and electron attachment to
dopants in dense neutral gases. The multi-level ioiniza-
tion algorithm in high-atomic-number gases is highly effi-
cient, featuring several improvements compared to the pre-
viously published methods. In particular, it effectively re-
solves the multiscale nature of ionization processes, which
may occur at time scales significantly different compared
to the main code time step of the code, by using analytic
solutions to the system of differential equations describ-
ing ionization evolution. The code eliminates the need to
store multiple ionization states in every cell of the numer-
ical mesh by using a locally-reduced system of equations.

For the electrostatic (Vlasov-Poisson) problems, SPACE
implements a highly adaptive particle-based method, called
Adaptive Particle-in-Cloud (AP-Cloud) in addition to the
more traditional PIC algorithm. AP-Cloud eliminates the
traditional Cartesian mesh of PIC and replaces it with an
adaptive octree data structure. It adaptively selects com-
putaitonal nodes in a cloud of physical macroparticles in
such a way that the discretization error of the differen-
tial operator is of the same magnitude as the Monte-Carlo
error of the source evaluation, thus solving the problem
with an optimal numerical resolution. It is also free of
the artifacts typical for the (unmitigated) adaptive mesh
refinement in an electrostatic PIC method. AP-Cloud is
applicable to arbitrary geometrical shape domains and it
is parallelized for distributed memory supercomputers us-
ing p4est, a parallel library that implements a dynamic
management of a collection of adaptive K-trees.

SPACE has been extensively used in a variety of appli-
cations in the area of plasma physics and accelerator de-
sign, in particular for simulations of coherent electron cool-
ing of relativistic ion beams, interaction of proton beams
with high density gas in support of the muon cooling ex-
perimental program, and the laser-plasma wakefield accel-
eration.

In the future, we plan to enhance SPACE with mod-
els and algorithms for high-density collisional plasma and
extend the spectrum of its applications.
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