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Shadowgraph Measurements of Rotating Convective
Planetary Core‐Style Flows
Jewel A. Abbate1 and Jonathan M. Aurnou1

1Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, USA

Abstract The local scale of rotating convection,ℓ, is a fundamental parameter in many turbulent geophysical
and astrophysical fluid systems, yet it is often poorly constrained. Here we conduct rotating convection laboratory
experiments analogous to convecting flows in planetary cores and subsurface oceans to obtain measurements of
the local scales of motion. Utilizing silicone oil as the working fluid, we employ shadowgraph imagery to
visualize the flow, from which we extract values of the characteristic cross‐axial scale of convective columns and
plumes. These measurements are compared to the theoretical values of the critical onset length scale,ℓcrit, and the
turbulent length scale, ℓturb. Our experimentally obtained length scale measurements simultaneously agree with
both the onset and turbulent scale predictions across three orders of magnitude in convective supercriticality
(102 ≲ R̃a ≲ 105) , a correlation that is consistent with inferences made in prior studies. We further explore the
nature of this correlation and its implications for geophysical and astrophysical systems.

Plain Language Summary Turbulent convection occurs within the liquid metal, water, and gaseous
fluid layers of planetary interiors such as Earth's molten iron outer core, the subsurface oceans of icy moons, and
the deep atmospheres of gas planets, respectively. The flow in each of these systems is strongly affected by the
rotation of the planetary body. This rotation organizes the convecting flow into columnar structures elongated in
the direction of the rotation axis. The horizontal width of the columnar flows is known as the local length scale
of rotating convection, and is crucially the scale at which important planetary phenomena are driven, such as the
induction of Earth's magnetic field. However, this quantity is not well known for geophysical systems. Here we
conduct rotating convection laboratory experiments analogous to the convecting flows in planetary interiors, in
which the local length scale is measured using a visualization technique called shadowgraph imaging. We
compare our measurements to theoretical scaling arguments for laminar and turbulent rotating flows, and find a
simultaneous agreement with both. This heretofore unappreciated correlation with both theoretical scales
presents difficulties when interpreting laboratory and numerical experimental results in the context of more
extreme geophysical flows, a challenge we address in the discussion.

1. Introduction
Buoyancy‐driven convection plays a vital role in shaping many geophysical and astrophysical flow phenomena,
such as magnetic field‐generating dynamo action in planetary and stellar interiors and the transport of materials
within subsurface oceans of icy moons (e.g., Soderlund, 2019; Yadav, Gastine, Christensen, Wolk, & Poppen-
haeger, 2016). In these systems, convection, fueled by density imbalances of compositional or thermal origin,
takes the form of rotating columnar flows elongated in the direction of the planetary rotation axis (e.g., Aurnou
et al., 2015; Sprague et al., 2006). For laminar flows, the axially aligned columnar flows can extend all the way
across the fluid layer, and may attain the “global” axial length scale H. This quantity is well known for Earth's core
via seismological measurements (e.g., Dziewonski & Anderson, 1981; Kennett, 2020), and can be broadly
estimated for subsurface oceans of icy satellites from spacecraft data (see Nimmo & Pappalardo, 2016). The
horizontal cross‐axial width of the convective flow structures is defined by the local flow dynamics, and is called
the “local” convective scale, ℓ. It is likely that convective energy is injected into planetary fluid layers at this scale
(Calkins, 2018; Calkins et al., 2021; Schwaiger et al., 2019). Further, these local scale convective flows likely
drive the formation of large‐scale phenomena such as jets and vortices (Böning et al., 2023; Lonner et al., 2022;
Stellmach et al., 2014), and generate local‐scale induction that can cascade upscale to form planetary and stellar‐
scale magnetic fields (Aubert et al., 2017; Roberts & King, 2013; Tobias, 2021; Yan & Calkins, 2022).

Geophysical values of ℓ, however, are not well‐constrained. This quantity cannot be directly observed for
planetary interior fluid layers, nor sensed indirectly with typical remote sensing techniques. Rather, fluid
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dynamical models built from theory and laboratory‐numerical results are used to probe what physical balances
persist, and to ascertain how those balances yield local scale dynamics capable of generating the large‐scale flows
observed at the surface (e.g., Aubert et al., 2017; Aurnou & King, 2017; Calkins et al., 2015; Christensen, 2010;
Davidson, 2013; Guervilly et al., 2019). Laboratory experiments are often used to measure flow characteristics
like heat transfer and flow velocity across a wide parameter range to generate scaling laws that can be extrapolated
to planetary settings (e.g., Abbate & Aurnou, 2023; Aubert et al., 2001; Cheng et al., 2015, 2020; Gillet
et al., 2007; Hawkins et al., 2023; King et al., 2012; Liu & Ecke, 1997; Lu et al., 2021; Rossby, 1969; Vogt
et al., 2021; Wedi et al., 2021). Spatial velocity scales are far less often measured due to challenges in rotating
flow imaging. However, constraints on ℓ are essential to produce accurate models of core dynamics.

Here we examine flow length scales within rotating convection laboratory experiments, which serve as analogs to
convecting flows in planetary interior fluid layers. A schematic demonstrating our laboratory geometry relative to
the typical spherical shell geometry considered for planets is presented in Figure 1. Shown is a snapshot of a
rotating, convecting, hydrodynamic spherical shell simulation from Gastine et al. (2016). Inset at the pole, aligned
with the rotation axis, is an image from a laboratory experiment conducted at similar dimensionless parameters in
a water‐filled cylindrical tank from Abbate and Aurnou (2023). The pink bottom boundary indicates the source of
heating for the experiment, the blue top indicates cooling, and the black arrow represents the rotation vector Ω

→
.

The global and local length scales are marked in white as H and ℓ, respectively. When the global scale of the
laboratory image (cylinder height) is scaled to match that of the simulation (shell thickness), the cross‐axial scale
of the convective flows, as well as the overall flow patterns, compare remarkably well to one another. The
convection experiments conducted here can thus serve as analogs for the flows that persist in the polar regions of
systems with spherical shell geometry, such as planetary cores or subsurface oceans (cf. Gastine & Aurnou, 2023).

We focus our study on the cross‐axial convective length scale ℓ, which is challenging to extract in laboratory
settings. Early experiments employed visualization methods such as long‐exposure particle tracing and ther-
motropic liquid‐crystals (e.g., Nakagawa & Frenzen, 1955; Sakai, 1997). More recently, particle image veloc-
imetry (PIV) has been implemented to quantitatively characterize the horizontal flow field (Kunnen et al., 2010;
Madonia et al., 2021; Shi et al., 2020). However, these measurements are difficult to make in a closed, no‐slip,
rapidly rotating convection cell. Here, we choose to adopt a qualitative visualization‐based approach. Utilizing

Figure 1. Schematic demonstrating the scales of a cylindrical laboratory experiment relative to a spherical shell numerical
simulation of a planetary core. The cylinder outline at the pole of the sphere represents the aspect ratio Γ ≃ 1 convection cell
used in this study, where the black arrow indicates the rotation vector Ω

→
. A laboratory flow visualization conducted using

water seeded with Kalliroscope particles is inset within the cylinder to demonstrate the flow patterns produced by cylindrical
rotating convection relative to those of a spherical shell simulation of comparable dimensionless parameters. The global length
scale, H, is drawn as a vertical white scale bar spanning the height of the convection cell and the spherical shell thickness. The
local length scale, ℓ, is drawn as a horizontal scale bar for each the laboratory and numerical case indicating the width of a
convective flow structure. The laboratory case is from Abbate and Aurnou (2023) with Pr ≃ 6, Ra ≃ 2 × 109, E ≃ 3 × 10− 6,
Roc ≃ 0.05. The numerical simulation is from Gastine et al. (2016) with Pr = 1, Ra ≃ 3 × 109, E = 1 × 10− 6, Roc ≃ 0.05.
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shadowgraph imagery, we extract measurements of the cross‐axial scale of convective columns and plumes to
compare with theoretical predictions. Silicone oil is used as the working fluid, because its strongly temperature‐
dependent refractive properties enable the visualization of shadow patterns as relatively warm and cool plumes
move through the background fluid. Further, silicone oil is defined by moderate to large thermal Prandtl numbers
(Pr ≈ 101–103; defined in Section 2), which makes it a good proxy for compositional convection in Earth's outer
core (Pr ≈ 102–103) and for thermal convection in magma oceans (Pr ≈ 101–102) (Abbate & Aurnou, 2023;
Bouffard et al., 2019; Calkins et al., 2012).

2. Rotating Rayleigh‐Bénard Convection (RRBC)
The canonical model employed to study these flows is that of rotating Rayleigh‐Bénard convection (RRBC), in
which a fluid layer is heated from below, cooled from above, and rotated about a vertical axis. The RRBC system
has been studied extensively in the laboratory (Cheng et al., 2015, 2020; Hawkins et al., 2023; King et al., 2012;
Kunnen et al., 2010; Lu et al., 2021; Madonia et al., 2023; Weiss & Ahlers, 2011). Its dimensionless control
parameters are the Rayleigh number, Ra = αgΔTH3/(νκ), defined as the strength of thermal buoyancy over
diffusion; the Ekman number, E = ν/(2ΩH2), defined as the strength of viscous diffusion over the Coriolis force;
and the Prandtl number, Pr = ν/κ, defined as the ratio of viscous to thermal diffusion. Here, α is the thermal
expansivity, ν is the kinematic viscosity, κ is the thermal diffusivity, g is gravitational acceleration, H is the fluid
layer height, ΔT is the temperature difference across the fluid layer, and Ω is the angular rotation rate. Sum-
marized definitions of the system parameters are provided in Table 1.

RRBC is further characterized by the convective Rossby number, Roc = (RaE2 ⁄Pr)1⁄2, which estimates the
strength of rotational effects acting on the scale of the convection ℓ (Aurnou et al., 2020). Convective flows with
Roc ≪ 1 are strongly influenced by rotation, whereas those with Roc ≫ 1 are largely uninfluenced by rotation (e.
g., Camisassa & Featherstone, 2022; Gastine et al., 2013). The effect of rotation is additionally characterized by
the supercriticality of the convective flow, R̃a = Ra/Rac, where Rac is the critical Rayleigh number, which
defines the minimum Rayleigh number (buoyancy forcing) required for convection to occur given a fixed Ekman
number (rotation period). In low E, Pr > 0.68 planar systems with no‐slip top and bottom boundaries, convective
supercriticality varies as Rac = (8.7 − 9.63E1/6) E− 4/3 (Kunnen, 2021; Niiler & Bisshopp, 1965). Therefore, a
system is subcritical to convection if R̃a< 1, and it is convectively supercritical if R̃a> 1.

Theoretical RRBC predictions can be determined from a local torque balance between relevant terms in the
vorticity equation (Abbate & Aurnou, 2023; Aubert et al., 2001; Cardin & Olson, 1994; Ingersoll & Pollard, 1982;
Madonia et al., 2023; Nicoski et al., 2024). Here, predictions are presented for the local cross‐axial convection
scale, ℓ, to compare with our experimentally measured values in Section 5. At the onset of convection ( R̃a ≈ 1) ,
inertial advection is weak, and a balance between the viscous and Coriolis terms dominates in moderate Pr fluids.

Table 1
Non‐Dimensional Parameter Definitions for the Rotating Rayleigh‐Bénard Convection (RRBC) System

Parameter Definition Meaning

Rayleigh Ra = αgΔTH3/(νκ) (thermal buoyancy)/(visc. and therm. diffusion)

Ekman E = ν/(2ΩH2) (viscous diffusion)/(Coriolis)

Prandtl Pr = ν/κ (viscous diffusion)/(thermal diffusion)

Nusselt Nu = qH/(kΔT ) (total heat flux)/(conductive heat flux)

Global Reynolds ReH = uH/ν (inertial advection)/(viscous diffusion)

Global Rossby RoH = u/(2ΩH) = ReHE (inertial advection)/(Coriolis)

Convective Rossby Roc = (RaE2 ⁄Pr)1⁄2 (thermal buoyancy)/(Coriolis)

Local Reynolds Reℓ = uℓ/ν = ReH(ℓ/H) (local‐scale advection)/(viscous diffusion)

Local Rossby Roℓ = u/(2Ωℓ) = RoH(H/ℓ) (local‐scale advection)/(Coriolis)

Note. The variables and units used in the definitions are the following: ν (viscosity, m2/s), κ (thermal diffusivity, m2/s), α
(thermal expansivity, 1/K), g (gravitational acceleration, m/s2), ΔT (vertical temperature drop, K), H (layer height, m), Ω
(rotation rate, rad/s), q (total heat flux, W/m2), k (thermal conductivity, W/m/K), u (flow velocity, m/s), ℓ (local scale of
convection, m).
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In this regime, rotating convective flow develops with a cross‐axial width estimated to follow the “critical” onset
length scale given by

ℓcrit = 2.4E1/3H (1)

for fluids with Pr > 0.68 (Chandrasekhar, 1961; Horn & Aurnou, 2022; Julien & Knobloch, 1998). This scale
width decreases with decreasing rotation period (decreasing E). Far from the onset of convection ( R̃a≫ 1) , fluid
motion is expected to be highly turbulent such that the viscous term is negligible, and a vorticity balance between
the inertia and Coriolis terms dominates. In this regime, the characteristic width is expected to follow a “tur-
bulent” length scaling given by

ℓturb ∼ Ro1/2
H H (2)

(Aurnou et al., 2020; Featherstone & Hindman, 2016; Guervilly et al., 2019; Hide, 1974; Ingersoll &
Pollard, 1982; King & Buffett, 2013; Stevenson, 1979), where RoH is the global‐scale Rossby number. This
dimensionless parameter is defined as RoH = u/(2ΩH), where u is the characteristic flow velocity, and represents
the strength of inertial advection on large scales relative to the Coriolis force. Thus, the turbulent scale increases
with fluid inertia and decreases with decreasing rotation period.

3. Laboratory Experiment
The experimental setup, pictured in Figure 2a, utilizes a 3D cylindrical convection cell to generate flows
representative of those occurring in the polar regions of planetary cores (e.g., Gastine & Aurnou, 2023). The
laboratory device used in this study is the same as that described in detail in Abbate and Aurnou (2023) (referred
to in‐text as AA23 from here onwards). Experiments are conducted using two cylindrical tanks, each with internal
diameter D = 19.29 cm. One tank measures H = 19.05 cm tall (yielding aspect ratio Γ = D/H ≃ 1) and the other
measures H = 38.10 cm tall (Γ ≃ 1/2). The transparent sidewall is made of cast acrylic (thermal conductivity
k = 0.19 W/m/K) and the top and bottom boundaries are T6061 aluminum (k = 167 W/m/K). A non‐inductively
wound, PID‐controlled heat pad warms the bottom boundary to a fixed temperature (Tbot), while a recirculating
chiller plumbed to an aluminum heat exchanger plate maintains a fixed cool temperature at the top boundary
(Ttop). These temperatures are varied to generate different vertical thermal gradients (ΔT = Tbot − Ttop) and
therefore different values of Ra. The convection cell is mounted on a rotary platform programmed to run at a
desired angular rotation velocity (Ω), which is varied to investigate multiple E values.

Figure 2. Rotating convection experimental setup with shadowgraph visualization. (a) A diameter D ≈ 20 cm wide by height
H ≈ 20 cm tall cylindrical convection cell is mounted on a rotating platform and filled with silicone oil. A heating pad warms
the bottom of the cell and a recirculating chiller cools the top to drive convection. A point light source positioned at mid‐height
shines through the silicone oil, casting shadows of the convective plumes' warmer/cooler density contrast onto an imaging
plane, which are captured by a camera mounted within the rotating frame of the experiment. (b) Camera point‐of‐view. The
center of the image is over‐exposed due to the localized brightness of the point light source and cylindrical distortion.
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Three different silicone oils, each with a different viscosity (and therefore differing Pr value), are used as the
working fluids in the experiments. These oils were chosen specifically for use with our shadowgraph visualization
technique detailed in Section 4. The mean temperature of the fluid, measured as T = (Tbot + Ttop)/2, is used to
determine temperature‐dependent material properties (i.e., density, viscosity, thermal diffusivity). The mean
temperature ranges from 25.5 ≤ T ≤ 51.8°C across experiments, such that Pr varies by up to 25% within each fluid
data set. The mean values of Pr, calculated as Pr ≈ 39, 178, and 836, are therefore used to label the data sets in the
figures below. Case‐specific parameter values are given in Table B1.

For every experiment, ΔT is measured using six thermistors each embedded within the convection cell's top and
bottom thermal blocks. The heating power, P = IV, is determined through direct measurements of input voltage,
V, and current, I, at the location of the heat pad. The heat flux through the cell is calculated as q = P/A, where
A = πR2 is the active area of the fluid and R = D/2 is the internal radius of the convection cell. The non‐
dimensional heat transfer efficiency, Nusselt number Nu = qH/(kΔT ), is calculated using the input heating
flux (q) and the vertical temperature drop across the cell (ΔT ). The cell sidewall is not encased in an insulating
thermal blanket in order to enable flow visualization. This allows some of the input heating power to be lost to the
surrounding environment, the magnitude of which was not directly measured in this study. Consequently, the
determined Nu are artificially increased relative to the actual heat transfer efficiency within the cell (see
Figure A1), and are thus not included in the formal analysis. Importantly, however, the experiments were con-
ducted until q and ΔT were constant, allowing for thermal equilibration and accurate Ra number measurements
despite sidewall losses.

Flow velocities are estimated for our shadowgraph experiments using the extensive suite of laser Doppler
velocimetry measurements made using the same fluids in AA23. Velocities are nondimensionally characterized
via the global Reynolds number, ReH = uH/ν, which defines the strength of inertial advection relative to viscous
diffusion. From over 200 rotating convection experiments conducted at varied Ra, E, Pr, and Γ, AA23 report an
empirical scaling prediction for the global Reynolds number of

ReH = (0.24 ± 0.03)Ra0.56±0.01E0.21±0.01Pr− 0.94±0.01. (3)

Here we use Equation 3 with our control values of Ra, E, and Pr to estimate ReH for each case. The global Rossby
number is calculated via RoH = u/(2ΩH) = ReHE. A notable difference between the experiments of AA23 and
those presented here is the lack of thermal insulation in the latter. We thus choose to use the Ra‐based best‐fit
given by Equation 3 to ensure error from thermal losses is not introduced into the ReH prediction. As such,
these velocity estimates are assumed accurate to within the uncertainties reported in Equation 3 for Reynolds
numbers ReH ≳ 10, which is the lowest value of ReH measured in AA23. These uncertainties, denoted as δReH , are
given in Table B1.

Figure 3 summarizes the parameter space covered in this study. The Ra‐E‐Pr space is shown in Figure 3a, where
color indicates the mean Prandtl number for the fluid data set and dashed lines connect points of approximately
constant Ekman number. Boldly colored circular markers show parameters for the Γ ≃ 1 cell, and faded triangular
markers show those for the Γ ≃ 1/2 cell. Experiments cover dimensional ranges of 8 ≲ ΔT ≲ 74 K and
0.2 ≲ Ω ≲ 5.1 rad/s, corresponding to 108 ≲ Ra ≲ 3 × 1011 and 3 × 10− 3 ≳ E ≳ 10− 6. Figure 3b shows Roc versus
R̃a. All experiments are convectively supercritical with 102 ≲ R̃a ≲ 105. A dotted line at Roc = 1 marks the
predicted regime boundary between weakly rotating and strongly rotating dynamics. Of our 41 experiments, eight
cases in the Pr ≈ 178 and 836 data sets are found to lie in the Roc ≳ 1 weakly rotating regime. Figures 3c and 3d
show the estimated ReH and RoH values, respectively. Cases with estimated velocities at ReH < 10 are shown as
hollow circles, since Equation 3 only applies to velocities with ReH ≳ 10. Figure 3d shows that the global scale
Rossby numbers are all well below unity, implying that any large scale motions are strongly affected by rotation.
All of the Ra, E, Pr values and the estimated ReH ± δReH values for our experiments are reported in Table B1.

4. Shadowgraph Flow Visualization
We utilize a shadowgraph imaging setup to visualize flow within the cylindrical convection cell. This technique
has been implemented in non‐rotating laboratory convection experiments utilizing high viscosity oils and syrups
(Huang & Xia, 2016; Li et al., 2021; Shang et al., 2003; Xi et al., 2004), but has not been previously employed in a
rapidly rotating setup. Shown in Figure 2a, a point light source located approximately 13 cm outside of the cell
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sidewall shines through the silicone oil, illuminating the 3D space of the tank. The convex curvature of the
cylindrical sidewall bends the light emanating from the point source into relatively parallel lines as it passes
through the tank, which mitigates distortion effects for the majority of the tank volume. This is demonstrated
using the online interactive 2D ray tracing tool from Tu (2016). At https://bit.ly/ray‐cyl, we provide an example
with our setup parameters. The silicone oil's high coefficient of thermal expansion (α ≈ 10− 3 1/K) promotes
strong temperature‐dependent density and index of refraction variations (e.g., Settles & Hargather, 2017).
Consequently, the relatively warm or cool convective structures refract the light such that shadows of their shape
are cast onto an imaging plane. Here, the imaging plane is a sheet of tracing paper wrapped around the tank's
sidewall. The projected shadows are then captured by a camera mounted within the rotating frame, shown in
Figure 2b.

Shadowgraph imaging works best when the density‐dependent refractive contrasts of the working fluid are high.
As such, experiments are largely conducted at high ΔT (and therefore relatively high Ra) to maximize the visual
contrast. If ΔT is too low (≈10 K or less), the structures appear too faint to analyze. Similarly, water (Pr ≈ 6) is not
considered here due to its relatively low coefficient of thermal expansion α ≈ 10− 4 1/K. With its α value a full
order of magnitude lower than that of silicone oil, water experiments yielded no discernible shadowgraph signals.

Images captured from each experiment are analyzed to extract a measured characteristic cross‐axial length scale,
ℓmeas. Example images from each Pr and Γ data set are shown in Figure 4. From the projected shadows, we see
strongly anisotropic rotating convective flow structures, with longer scales in the axial, vertical direction and
smaller scales in the cross‐axial, horizontal directions. For each case, approximately Nℓ = 5–20 of these smaller
scale structure widths are hand‐measured for a single image, examples of which are highlighted in yellow in
Figure 4. Distortion of light is minimal throughout, but increases close to the lateral edges of the illuminated
portion of the image, resulting in horizontally squished structures. This region is excluded from the analysis.

Figure 3. (a) The Ra‐E‐Pr parameter space of the experiments conducted; (b) Values of Roc for the experiments versus the
supercriticality R̃a; (c) The global Reynolds numbers ReH and (d) global Rossby numbers RoH calculated from Equation 3
using the control parameters of Ra, E, and Pr, each versus the supercriticality. In all panels: marker color indicates Prandtl
number, where bold circular points are data with Γ ≃ 1 and faded triangular points are Γ ≃ 1/2. Hollow points are at estimated
ReH < 10. Dashed lines connect points of approximately constant Ekman number. Vertical error bars in panels (c) and (d) are
determined from uncertainties reported in Equation 3. All other error bars are smaller than the marker size.
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Further, the outer 20% of the tank diameter is unlit due to the setup geometry. The number of pixels across each
structure is converted to a length by assuming the width of the illuminated portion of the image is equal to
d = 0.8D, where D is the internal diameter of the cell. This assumption does not mathematically account for all
lateral distortion, nor spatial variation of the plumes within the tank volume, and is therefore less accurate than
comparable particle image velocimetry measurements (e.g., Shi et al., 2020). The measured widths are then
averaged for each image to yield the mean length scale estimate, ℓmeas. The error for this measurement is
determined as the standard deviation, σℓ, of the counted widths. Values of ℓmeas ± σℓ and the number of structures
used in the calculation Nℓ are reported in Table B1.

We additionally use ℓmeas to estimate the local convection‐scale flow velocities for the experiments. These are the
local‐scale Reynolds number, given by

Figure 4. Shadowgraph flow visualization. Panels (a), (b), and (c) show images from the Γ ≃ 1 cell. Panels (d), (e), and
(f) show images from the Γ ≃ 1/2 cell. Flow structures are visible due to the dark/light contrast of relatively cool/warm
regions of the flow as plumes move through the cell. For example, a warm plume originating at the lower boundary moves up
through relatively cooler bulk fluid such that a distinct light‐shaded curve marks its location as it traverses the tank. Yellow
lines demonstrate examples of length scale measurements, ℓmeas. The illuminated portion of the image laterally covers tank
radii s ≲ 0.8R. Approximately Nℓ= 5–20 structure widths are measured for each case, where the average constitutes the final
measurement, ℓmeas, and the standard deviation represents the error, σℓ, for the measurement. The theoretical predictions for
the onset and turbulent length scales, given by Equations 1 and 2, are included as teal and green scale bars, respectively. The
parameters for the displayed cases are italicized in Table B1.
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Reℓ = uℓ/ν = ReH(ℓ/H), (4)

and the local‐scale Rossby number, given by

Roℓ = u/(2Ωℓ) = RoH(H/ℓ) = ReHE(H/ℓ). (5)

In these calculations, ReH is given by Equation 3 and ℓ = ℓmeas. Errors are computed as a combination of the
uncertainty in ReH and ℓmeas, given by δReH and σℓ, respectively.

5. Scaling Results

The measured length scales ℓmeas, normalized by the theoretical predictions of ℓcrit and ℓturb, are plotted as a
function of the convective supercriticality R̃a in Figures 5a and 5b. Vertical error bars in panel (a) depend solely
on the shadowgraph length scale errors, σℓ, whereas error bars in (b) additionally depend on our use of Equation 3
in calculating ℓturb, and are thus larger. Points with estimated ReH < 10 are denoted with hollow markers in both
panels for consistency, however, we note that the result shown in panel (a) does not rely on the ReH estimate.
There is a visible offset between the Γ ≃ 1 (boldly colored circles) and the Γ ≃ 1/2 (faded triangles) data sets,
particularly noticeable in panel (b) (as well in Figure 7a below). This may indicate an aspect ratio dependence for
the local scale, however, the imaging setup was altered slightly between experiments conducted with each tank in
order to accommodate the taller convection cell. Consequently, the projection of structures' shadows may not be
directly comparable between the two Γ data sets, limiting interpretation of this offset.

Figure 5. Length scale measurement results. Panels (a) and (b) show the measured scales, ℓmeas, normalized by the theoretical
predictions, ℓcrit and ℓturb, respectively, plotted against the supercriticality, R̃a. The solid black line indicates ℓmeas = ℓtheory.
Vertical error bars in panel (a) account for the standard deviation, σℓ, calculated for each scale measurement, whereas those in
panel (b) additionally account for uncertainty reported in Equation 3. Panels (c) and (d) show the local Reynolds number, Reℓ,
and local Rossby number, Roℓ, respectively. Error bars are calculated as the error in the estimated ReH calculation given by
Equation 3 propagated with σℓ. Marker notation is the same as that in Figure 3.
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Notably, the results in Figures 5a and 5b demonstrate that the measured length scales are simultaneously near both
the onset and turbulent cross‐axial scaling predictions. Both ratios, ℓmeas/ℓcrit and ℓmeas/ℓturb, remain well within
an order of magnitude of unity across all experiments which span 102 ≲ R̃a ≲ 105. A close correlation with the
onset scale may seem unexpected for this parameter range given the large values of supercriticality, yet many
cases are scaling with ℓcrit directly, in good agreement with the arguments of Nicoski et al. (2024). The turbulent
scale provides an excellent prediction for the Pr ≈ 39 flows at Γ ≃ 1, with decreasing agreement as Pr increases.
Although the supercriticalities are high for the Pr ≈ 178 and 836 flows, the Reynolds number estimates indicate
that they are still rather laminar (e.g., Figures 3c and 5c where Reℓ ≈ 1 − 10). This implies that the supercriticality
needed to yield turbulent rotating convection scales increases significantly with Prandtl number.

Figures 5c and 5d show the estimated values of the local Reynolds number (Reℓ) and the local Rossby number
(Roℓ), respectively. Most rotating E ⋘ 1 geophysical systems are expected to be characterized by a high local
Reynolds number (strong turbulence) and low local Rossby number (strong rotation). In our study, this regime is
best achieved with experiments conducted at Pr ≈ 39. However, these measurements are also the most closely
matched to both the onset and turbulent scale predictions, with each yielding excellent agreement with the
predictions for much of the Pr ≈ 39 data set as shown by Figures 5a and 5b. Thus we interestingly find a
simultaneous co‐scaling with both the onset and turbulent scales even at our most geophysically relevant
parameters.

6. Discussion
6.1. Co‐Scaling Arguments

The ℓmeas co‐scaling behavior generates ambiguity in how we can interpret the presence of these theoretical scales
in physical experiments relevant to geophysical and astrophysical systems (Abbate & Aurnou, 2023; Guervilly
et al., 2019; Hawkins et al., 2023; Nicoski et al., 2024; Oliver et al., 2023; Schwaiger et al., 2021). Alternatively
put, the correlation of our measured length scales, ℓmeas, with both the critical onset scale, ℓcrit, and the turbulent
scale, ℓturb, poses a rotating convective conundrum. Accurate extrapolations are built upon robust experimental
and theoretical congruence. However, one cannot disambiguate the two theoretical scalings in the experimental
data. Our coverage is relatively wide across supercriticality (102 ≲ R̃a ≲ 105), convective Rossby number
(10− 1 ≲ Roc ≲ 101), and predicted Reynolds number (101 ≲ ReH ≲ 103), and is generally representative of typical
parameters considered in laboratory‐numerical rotating convection studies. Here we extend the arguments of
AA23 and Hawkins et al. (2023), who demonstrate a link between the two theoretical scales upon finding the
same length scale ambiguity in velocity‐based studies.

Following Hawkins et al. (2023), we examine the criterion that yields an approximate equivalence between the
onset and turbulent length scales, ℓturb ≃ ℓcrit. First equating their definitions,

Ro1/2
H ≃ 2.4E1/3, (6)

then substituting RoH = ReHE and simplifying yields

ReHE1/3 ≃ 2.42. (7)

Taking E1/3 = ℓcrit/(2.4H), Equation 7 becomes

ReHℓcrit/(2.4H)≃ 2.42. (8)

Assuming ℓturb ≃ ℓcrit ≡ ℓ defines ReHℓcrit/H ≡ Reℓ. Substituting this into Equation 8 gives

Reℓ ≃ 2.43 = 14. (9)

Thus, we show that ℓturb ≃ ℓcrit when Reℓ ≈ O(10) in fluids with Pr > 0.68. The local Reynolds numbers for our
study exist over the range 0.47 < Reℓ < 76 (see Figure 5c). Experiments here are therefore effectively within the
regime in which the two scales are likely indistinguishable, consistent with Figures 5a and 5b. The local Reynolds
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number must be Reℓ ≫ 1, while maintaining Roℓ ≪ 1, in order for scale separation to occur in RRBC (e.g.,
Nicoski et al., 2024).

Figure 6 provides a direct comparison of the turbulent and onset scales by plotting their ratio, ℓturb/ℓcrit, against
supercriticality, following AA23. Consistent with the local Reynolds number scaling arguments, the ratio remains
near unity to within an order of magnitude across the range of Pr and R̃a considered here. In order to analyze
behavior at an extended parameter range, AA23 report a best‐fit collapse for this ratio of

ℓturb ⁄ℓcrit = (2.0 ± 0.2)R̃a0.21±0.01Pr− 0.48±0.02. (10)

This relation demonstrates a shallow dependence on supercriticality. Extreme values of R̃a are thus needed to
achieve a significant separation of the turbulent and onset length scales (ℓturb/ℓcrit ≫ 1), consistent with the need
for high local Reynolds numbers. Such high supercriticalities are generally unattainable in rapidly rotating
(E ≪ 1) convection experiments. Even in Earth's outer core at E ≃ 10− 15 and Ra ≃ 1024 (Cheng & Aurnou, 2016),
Equation 10 predicts a scale separation of only ℓturb/ℓcrit ≃ 10 when using the turbulent Prandtl number estimate
of Pr ≈ 1.

Alternatively, we present an equation for the co‐scale ratio built from the result of our length scale measurements
shown in Figures 5a and 5b. The measurements do not deviate far from the theoretical predictions, so we
formulate the ratio with pre‐factors of unity for simplicity:

ℓturb/ℓcrit = Ro1/2
H / (2.4E1/3). (11)

This formulation enables direct predictions of the scale separation in planetary systems given an estimated flow
velocity.

6.1.1. Local Scales in Earth's Core

In Earth's outer core, flow speeds determined via inversion of geomagnetic secular variation data typically yield
RoH ≈ 10− 6 (Jackson & Finlay, 2015). Given an outer core thickness of H ≃ 2,255 km, we calculate the turbulent
length scale as ℓturb = Ro1/2

H H ≃ 2 km. In contrast, the critical length scale is found to be ℓcrit = 2.4E1/3H ≃ 50 m,
assuming E ≃ 10− 15 for the core. The scale separation in Earth's core would thus be ℓturb/ℓcrit ≃ 40, exceeding the
estimate provided by Equation 10.

In contrast to both Equations 10 and 11, the low Pr quasi‐geostrophic spherical models by Guervilly et al. (2019)
suggest an even larger separation, with ℓturb/ℓcrit ≃ 103 in the core. They report a turbulent scale dependence of
ℓ/R = 11Ro1/2

H , where R is the spherical radius defining the global length scale for their model. Assuming the

Figure 6. Co‐scaling of ℓturb and ℓcrit across supercriticality, where ℓturb/ℓcrit = Ro1/2
H / (2.4E1/3) . Vertical error bars

account for the uncertainty in Equation 3 used to estimate RoH.

Journal of Geophysical Research: Planets 10.1029/2024JE008471
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onset scale in Earth's core follows ℓcrit/R ∼ E1/3, they derive a ratio 11Ro1/2
H /E1/3 ≃ 103. Here, we find that the

length scales measured in our lowest Pr data set are well described by ℓ/H = Ro1/2
H with a pre‐factor just under

unity (see Figure 5b). Additionally, the plane layer onset prediction ℓcrit/H = 2.4E1/3 adequately describes this
same data set (see Figure 5a). Plane layer theory has been shown to agree well with the polar regions of spherical
shells (Gastine & Aurnou, 2023). As such, we formulate our ratio as Ro1/2

H / (2.4E1/3)≃ 40. To resolve the
discrepancy between the findings of Guervilly et al. (2019) and our study, it may be necessary to acquire
convective length scale measurements in rotating low Prandtl number liquid metals.

6.1.2. Local Scales in a Subsurface Ocean

The dimensions of liquid water subsurface oceans within the icy satellites of our solar system are not tightly
constrained, though the thicknesses are known to be significantly less than that of Earth's outer core. Estimates
range from H ≈ 10–500 km, depending on the ocean world and the models used in the prediction (Soder-
lund, 2019). Using Jupiter's moon Europa as an example, its ocean is estimated to be approximately H ≈ 100 km
thick (Anderson et al., 1998), with a viscosity comparable to that of seawater (ν ≃ 1.8 × 10− 6 m2/s, Nayar
et al., 2016), and a global rotation rate of Ω = 2 × 10− 5 s− 1. The Ekman number is then estimated as E = ν/
(2ΩH) ≃ 10− 12 and the onset length scale is ℓcrit = 2.4E1/3H ≃ 24 m, not dissimilar from that of Earth's core.

Estimating the turbulent scale is more challenging because flow speeds are even less constrained. One method for
predicting flow speed is to use a rotating convection scaling equation, such as that given by Equation 3, to
determine the global Reynolds number given known Rayleigh, Ekman, and Prandtl numbers. The Rayleigh
number is also unconstrained for subsurface oceans. Though it is estimated for Europa to be in the range of
1020 ≲ Ra ≲ 1022 (Soderlund, 2019) based on heat transfer scaling laws from Gastine et al. (2016). Substituting
these values for Ra, E ≃ 10− 12, and Pr ≃ 11 into Equation 3 yields a global Reynolds number prediction of
107 ≲ ReH ≲ 108 and a global Rossby number prediction of 10− 4 ≳ RoH ≳ 10− 5. Notably, this extrapolation
implies that the global Rossby number in Europa's ocean is far below unity (cf. Soderlund et al., 2014). The
turbulent length scale is then calculated to be ℓturb= Ro1/2H ≃ 102–103 m, and the ratio of scales is ℓturb/ℓcrit ≃ 5–
50, values also similar to that of Earth's core. Results from the Europa Clipper (Pappalardo et al., 2024) and JUICE
(Grasset et al., 2013) missions will likely provide better constraints to improve estimates of the local scales and
associated ocean dynamics for the Jovian ocean worlds.

6.2. Comparison to Asymptotic Scaling Predictions

Many studies of geophysical and astrophysical rotating convection systems employ yet another set of turbulent
length and velocity scales (Aurnou et al., 2020; Vasil et al., 2021) that are based on fully diffusivity‐free,
asymptotic theoretical predictions (Julien et al., 1998, 2012; Sprague et al., 2006). Unlike the inviscid scaling
arguments that lead to ℓturb, these asymptotic estimates further assume that rapidly rotating convection is in-
dependent of the fluid's thermal diffusivity. Thus, the heat transfer in this regime is controlled solely by the
rotating turbulence in the fluid bulk; the boundary layers are then thermally inert (cf. Bouillaut et al., 2021; Julien
et al., 2016).

We denote this turbulent, rapidly rotating asymptotic limit as the “diffusion‐free” (DF) scaling, as in AA23. In
this regime, the global‐scale Rossby number scales as

RoH ∼ Ro2
c ≡ RoDF, (12)

such that the turbulent length scale prediction then follows

ℓ ∼ Ro1/2
H H ∼ RocH ≡ ℓDF. (13)

The ratio of turbulent to onset length scales is then

ℓDF/ℓcrit ∼ Roc/E1/3 (14)

Journal of Geophysical Research: Planets 10.1029/2024JE008471
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for Pr > 0.68 fluids. Re‐writing the definition for the convective Rossby number, Roc = (RaE2 ⁄Pr)1⁄2, in terms of

the asymptotic supercriticality, R̃a = RaE4/3, gives Roc = ( R̃a⁄ Pr)1⁄2E1⁄3. Substituting this definition into
Equation 14 and simplifying yields

ℓDF ⁄ℓcrit ∼ ( R̃a⁄ Pr)
1⁄2

(15)

(cf. Nicoski et al., 2024). Thus, the asymptotic limit of diffusiont‐free heat and momentum transfer predicts a
supercriticality dependence of R̃a1/2 and a Prandtl number dependence of Pr− 1/2 for the scale separation ratio.

Comparing Equations 10–15, we see a comparable Prandtl number dependence of Pr− 0.48, but a weaker super-
criticality dependence of R̃a0.21. This less efficient R̃a scaling is consistent with other RRBC studies (e.g.,
Hawkins et al., 2023), and is a byproduct of boundary layer throttling of the heat transfer (Aurnou et al., 2020;
King et al., 2009; Oliver et al., 2023). In diffusivity‐free systems, rotating convective heat transfer is expected to
scale as Nu ∼ Ra3/2 (Bouillaut et al., 2021; Julien et al., 2012). Our measured heat transfer for these experiments
instead follows the much less efficient classical, boundary layer controlled heat transfer scaling of Nu∼ Ra1/3 (see
Figure A1).

In non‐rotating convection systems, the asymptotic diffusivity‐free scale is often referred to as the “mixing
length” (Kraichnan, 1962; Spiegel, 1963, 1971). Without rotational constraint, the non‐rotating, diffusivity‐free
convection freely crosses the vertical length of the system. This turbulent mixing thus defines the convection scale
as equivalent to the global convective scale,

ℓ≃H. (16)

The associated non‐dimensional velocity prediction is commonly called the “free‐fall” (ff) Reynolds number,

ReH ≃(Ra⁄Pr)1⁄ 2 ≡ Ref f (17)

Figure 7 shows our (a) shadowgraph length scale measurements and (b) estimated flow velocities plotted relative
to the asymptotic scaling predictions given by Equations 12, 13, 16, and 17. Data is shown as colored markers in
both Figures 7a and 7b. Solid black lines denote the asymptotic estimates for ℓ and ReH versus the convective
Rossby number, thus marking the upper bounding values of these quantities in rotating convection systems.

For Roc < 1, the value of ℓ is predicted to follow that of the rapidly rotating limit, ℓ = RocH, marked as a solid
diagonal line in Figure 7a. In low aspect ratio Γ ≤ 1 cells where H is the largest scale in the system, the predicted

Figure 7. Asymptotic scaling comparison. (a) The measured local length scale, ℓmeas, normalized by the mixing length, H,
and (b) the global Reynolds number estimate, ReH, normalized by the free‐fall (or mixing length) Reynolds number, Reff,
each against the convective Rossby number, Roc. The diagonal black lines indicate the rotating asymptotic scaling
predictions, Equations 12 and 13, plotted here for Roc < 1. The horizontal black lines indicate the non‐rotating asymptotic
predictions, Equations 16 and 17, plotted for Roc > 1. The dotted diagonal line in panel (a) denotes the high Γ, high Roc
scaling, which cannot develop in our Γ ≤ 1 experiments (but that we include for completeness).
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value changes to that of the non‐rotating limit ℓ = H when Roc ≥ 1, shown as
a solid black horizontal line. In very wide aspect ratio Γ ≫ 1 fluid layers (such
as shallow atmospheres), the Coriolis force wraps the flow into large inertial
circles with radii of order RocH even when Roc ≥ 1 (e.g., Vieweg et al., 2022).
This horizontal scale is referred to as the internal Rossby deformation radius
in the oceanic and atmospheric dynamics literature (Cushman‐Roisin &
Beckers, 2011), and is marked with a dotted diagonal line in Figure 7a.
However, the flow scales in our Γ ≃ 1 and 1/2 experiments cannot exceed
ℓ=H, so this extended Γ ≫ 1, Roc ≥ 1 scaling cannot develop here. The solid
black lines in Figure 7b show that similar asymptotic trends exist for ReH as a
function of Roc.

The measured length scales and estimated velocities in Figure 7 all plot below the asymptotic predictions. This is
unsurprising as the asymptotic predictions approximate the upper bounding values of these quantities. Further,
this behavior is expected since the heat transfer in our RRBC experiments is boundary layer limited (see
Figure A1), and is thus affected by the fluid's microscale diffusivities in the boundary layers. This limits the
energy available to drive convective velocities and to generate larger turbulent flow scales. Interestingly, the
positive slope of each Pr data set demonstrates a Roc‐dependence that implies the presence of rotational effects,
even at large Pr ≈ 103 and relatively high E = 10− 3.

Figure 7 additionally shows that the non‐rotating mixing length predictions (ℓ ≃ H and ReH ≃ Reff) cannot
adequately describe the properties of rotating Roc ≪ 1 convection systems. The disparity between the rapidly
rotating and the non‐rotating predictions need not be inconsequential. For instance, in Earth's core we estimate
that Roc∼ 10− 3. Such a scaling factor can be of great importance, for instance, when modeling turbulent mixing in
stellar and planetary interiors (e.g., Hindman & Fuentes, 2023; Vasil et al., 2021) or dynamo action in planetary
cores and magma oceans (e.g., O’Rourke, 2020; Stixrude et al., 2020).

6.3. Planetary Core Magnetohydrodynamic Implications

The local length scales in our experiments are well‐predicted by both ℓcrit/H ≃ 2.4E1/3 and ℓturb/H ≃ Ro1/2, with
prefactors near unity (see Figures 5a and 5b). This is especially true for the lowest Pr data set considered. As such,
we use these local scale predictions to estimate the local‐scale magnetohydrodynamic quantities in Earth's core,
values which are significant to understanding the driving dynamics behind the geodynamo. These estimates are
summarized in Table 2.

On the global scale, the magnetic Reynolds number defines the ratio of magnetic induction to magnetic diffusion
across the core and is given by

RmH = uH/η, (18)

where η is the magnetic diffusivity. Flow speeds in the core are estimated from secular variation to be
u ≃ 4 × 10− 4 m/s (Jackson & Finlay, 2015). Using an outer core thickness of H ≃ 2,255 km and a magnetic
diffusivity of η = 0.7 m2/s (Roberts & King, 2013), the global magnetic Reynolds number is estimated as
RmH ≃ 103, defining Earth's core as a high RmH system. The local‐scale magnetic Reynolds number is instead
defined with the local scale following

Rmℓ = uℓ/η = RmH(ℓ/H). (19)

We calculate Equation 19 with both ℓ = ℓcrit and ℓ = ℓturb to find a range of Rmℓ supported by our data's
simultaneous agreement with both predictions. From the critical scaling, we estimate ℓ= 2.4E1/3H ≃ 60 m, where
E = ν/(2ΩH2) is computed with ν ≃ 10− 6 m2/s and Ω ≃ 7.29 × 10− 5 1/s (Roberts & King, 2013). From the
turbulent scaling, we estimate ℓ = Ro1/2

H H ≃ 2500 m, where RoH = u/(2ΩH). Substituting these length scale
values into Equation 19 estimates a range of 0.03 ≲ Rmℓ ≲ 1.4, defining Earth's core as a moderately low Rmℓ

system.

Table 2
Estimated Nondimensional Local‐Scale Parameters for Earth's Core

ℓ/H ℓ (m) Roℓ Reℓ Rmℓ Λℓ

Ro1/ 2
H 2,500 10–3 106 1.4 10

2.4E1/3 60 5 × 10− 2 2 × 104 3 × 10− 2 60

Note. Values are calculated using: u ≃ 4 × 10− 4 m/s (Jackson & Fin-
lay, 2015), H ≃ 2,255 km, ν ≃ 10− 6 m2/s, η ≃ 0.7 m2/s, ρ ≃ 1.1 × 104 kg/m3,
Ω ≃ 7.29 × 10− 5 1/s (Roberts & King, 2013), and B ≃ 4 mT (Gillet
et al., 2010).

Journal of Geophysical Research: Planets 10.1029/2024JE008471

ABBATE AND AURNOU 13 of 20

 21699100, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JE

008471 by Jonathan A
urnou - U

niversity O
f C

alifornia, L
os , W

iley O
nline L

ibrary on [03/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The traditional Elsasser number, which estimates the quasi‐static Rm ⋘ 1 Lorentz force relative to the Coriolis
force, is given as

Λ = B2
/ (2μoηρΩ), (20)

where B is the strength of the magnetic field, μo is the magnetic permeability, and ρ is the fluid density (Dormy,
2016; Soderlund et al., 2015). Using B = 4 mT (Gillet et al., 2010) and ρ = 1.1 × 104 kg/m3 (Roberts &
King, 2013), we calculate Λ ≃ 11 for Earth's outer core. We further define the local‐scale dynamic Elsasser
number:

Λℓ ∼ (Λ2
/Rmℓ)

1/2
(21)

(Aurnou & King, 2017; Dormy, 2016; Soderlund et al., 2015). The dynamic Elsasser number estimates the ratio of
Lorentz to Coriolis forces acting on the convective scale ℓ and, unlike Λ, is not limited solely to quasi‐static low
Rm settings. Substituting the predicted range of Rmℓ into Equation 21 estimates a dynamic Elsasser range of
60 ≳ Λℓ ≳ 10. These Λℓ values are large, suggesting that local‐scale core convective flows operate in the
magnetostrophic regime in which Lorentz forces must also be accounted for in addition to rotational effects. Thus,
our extrapolations imply that magnetostrophic dynamics must be included in next‐generation models of local‐
scale core turbulence (e.g., Grannan et al., 2022; Guervilly et al., 2019; Horn & Aurnou, 2022; King & Aur-
nou, 2015; Yadav, Gastine, Christensen, Duarte, & Reiners, 2016).

Table 2 summarizes estimates of a number of the local‐scale, non‐dimensional parameters in Earth's core. The
local Rossby number Roℓ is small consistent with rapid rotation, while the local Elsasser number Λℓ is relatively
large, indicating strong magnetic effects. The local Reynolds number Reℓ is large, indicating strong small‐scale
turbulence, while the local magnetic Reynolds number Rmℓ is small. This Re− 1

ℓ <Roℓ <Rmℓ ≲ 1 ordering sug-
gests that deep‐seated, convectively driven dynamo generation in Earth's core is likely to occur predominantly via
turbulent, mean‐field induction processes (e.g., Krause & Rädler, 2016; Moffatt & Dormy, 2019). Planetary
dynamo modeling in this regime remains at the edge of what is currently computationally achievable (cf.
Schaeffer et al., 2017).

It should further be noted that in the presence of a strong magnetic field, such that the Lorentz force becomes
comparable to Coriolis force, the local convective length scale is predicted to increase markedly (Aurnou &
King, 2017; Dormy, 2016; Grannan et al., 2022; Horn & Aurnou, 2022; Soderlund et al., 2015; Stellmach &
Hansen, 2004; Yadav, Gastine, Christensen, Wolk, & Poppenhaeger, 2016). Such a change in length scale could
alter a number of the arguments made herein. Detailed local‐scale models of magnetohydrodynamic core tur-
bulence are necessary to investigate this predicted effect, and subsequently compare to hydrodynamic estimates.

7. Conclusions and Open Questions
This work presents the first shadowgraph‐based investigation of the scale of local, rotating convective flows in
geophysical and astrophysical fluid systems. Using highly refractive silicone oils as the working fluid, our
qualitative image analysis demonstrates that the characteristic cross‐axial convective scale is comparable to both
the critical scale ℓcrit and the turbulent scale ℓturb. This correlation holds in our data over three orders of
magnitude in convective supercriticality. Further, our visualization measurements corroborate the estimated
length scales from previous laboratory studies in which the flow velocities (but not the length scales) were
directly measured via laser Doppler methods (Abbate & Aurnou, 2023; Hawkins et al., 2023). Our data addi-
tionally allows for comparison with the results of direct numerical simulations and laboratory flow imaging
techniques such as particle image velocimetry.

This co‐scaling behavior represents a troubling conundrum: How do rotating convection scales extrapolate out to
planetary cores and stellar convection zones? Are the scales closer to the onset scale (Calkins, 2018; Nicoski
et al., 2024) or are they better estimated via turbulent arguments (Aurnou et al., 2020; Featherstone & Hind-
man, 2016; Guervilly et al., 2019)? Further, if these scales do not separate from one another, what does that mean for
the dynamo and convection physics in planetary interiors (cf. Rädler, 1980; Schrinner, 2011)? Following Equation
15, on what scale must future laboratory experiments be built (e.g., Cheng et al., 2018) to achieve a factor of 102 to
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103 separation between the hypothetically distinct turbulent and critical rotating convection length scales? Finally,
if these scales refuse to be disambiguated, then their inseparability will require that new theories of rapidly rotating
convection physics be developed (e.g., Julien et al., 1998; Oliver et al., 2023).

Appendix A: Measured Heat Transfer
Figure A1 shows global heat transfer measurements acquired during our shadowgraph experiments. The y‐axis
shows Nu multiplied by Pr− 0.047, which is the best‐fit Pr dependence determined from non‐rotating convection
data in AA23. The x‐axis shows the Rayleigh number Ra. The solid black line indicates the non‐rotating best‐fit
reported in AA23. The solid gray line indicates the best‐fit to the data from this study, which follows:

NuPr− 0.047 = (0.096 ± 0.013)Ra0.319±0.006. (A1)

The pre‐factor of 0.096 is 28% higher than the 0.075 prefactor found in AA23. This 28% increase is due to heat
that is systematically lost through the shadowgraph setup's uninsulated sidewall (Figure 2a), which is not
accounted for in the calculation of Nu.

The Ra0.319 scaling dependence is in excellent agreement with the results of AA23, indicating that the system is
performing as expected despite shadowgraphically necessitated sidewall losses. This Nu ∼ Ra1/3 heat transfer
scaling is also in good agreement with prior convection studies in which boundary layer diffusive properties act
to throttle the heat transfer across the fluid bulk (Cheng et al., 2015; Funfschilling et al., 2005). This diffusive
throttling acts to limit the convection, leading to lower velocities and smaller turbulent length scales than are
predicted for diffusivity‐free, turbulent rotating convective flows (e.g., Aurnou et al., 2020; Oliver et al., 2023).

Appendix B: Data
Table B1 shows the data collected for this study. The first four columns are RRBC experimental control pa-
rameters (see Section 2). The fifth column displays Reynolds numbers estimated from the work of Abbate and
Aurnou (2023) (see Section 3). The sixth and seventh columns show the convective length scale measurements
extracted from shadowgraph images and the standard deviation of the extracted widths, respectively (see
Section 4).

Figure A1. Nondimensional heat transfer efficiency, Nu, versus nondimensional buoyancy forcing, Ra. The y‐axis shows Nu
compensated by the best‐fit Pr− 0.047 dependence found in AA23. The solid black line indicates the best‐fit trend from AA23;
the solid gray line indicates the best‐fit to this study's data. The Nu measurements are systematically higher than those in
AA23 due to heat losses through the cell's sidewall, which are uninsulated here to allow for the acquisition of shadowgraph
imagery.
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Table B1
Rotating Convection Data for Γ ≃ 1 (H = 19.05 cm) and Γ ≃ 1/2 (H = 38.10 cm) Cells

Γ Pr E Ra ReH ± δReH (ℓmeas ± σℓ)/H Nℓ

1.01 40.7 9.82E− 05 2.78E+09 212 ± 36 (1.08 ± 0.26)E− 01 7

1.01 40.7 3.02E− 05 2.76E+09 164 ± 26 (5.53 ± 2.15)E− 02 11

1.01 40.3 2.99E− 05 4.84E+09 227 ± 37 (6.62 ± 2.45)E− 02 9

1.01 39.8 2.96E− 05 8.60E+09 316 ± 53 (7.15 ± 1.30)E− 02 8

1.01 40.7 9.82E− 06 2.74E+09 129 ± 20 (2.81 ± 0.66)E− 02 9

1.01 40.3 9.73E− 06 4.80E+09 178 ± 28 (2.97 ± 1.26)E− 02 15

1.01 39.8 9.61E− 06 8.54E+09 248 ± 40 (4.62 ± 1.15)E− 02 15

1.01 35.9 8.70E− 06 1.58E+10 378 ± 62 (4.24 ± 0.91)E− 02 16

1.01 201 1.30E− 03 4.89E+08 30 ± 5 (1.45 ± 0.18)E− 01 5

1.01 150 9.64E− 04 3.01E+09 105 ± 18 (1.53 ± 0.10)E− 01 4

1.01 201 4.32E− 04 4.88E+08 24 ± 4 (9.67 ± 1.94)E− 02 8

1.01 180 3.86E− 04 1.64E+09 52 ± 8 (8.69 ± 1.78)E− 02 7

1.01 163 3.49E− 04 2.33E+09 68 ± 11 (1.19 ± 0.13)E− 01 5

1.01 201 9.96E− 05 4.84E+08 18 ± 3 (6.29 ± 0.83)E− 02 9

1.01 179 8.88E− 05 1.62E+09 38 ± 6 (6.31 ± 1.56)E− 02 18

1.01 149 7.39E− 05 2.99E+09 61 ± 10 (6.37 ± 1.19)E− 02 20

1.01 955 3.17E− 03 1.57E+08 4.5 ± 0.7 (1.21 ± 0.23)E− 01 4

1.01 858 2.87E− 03 2.90E+08 6.8 ± 1.1 (1.47 ± 0.24)E− 01 4

1.01 698 2.36E− 03 5.37E+08 11 ± 2 (1.34 ± 0.27)E− 01 5

1.01 953 9.74E− 04 1.56E+08 3.5 ± 0.5 (1.09 ± 0.23)E− 01 6

1.01 857 8.81E− 04 2.89E+08 5.3 ± 0.8 (1.31 ± 0.17)E− 01 3

1.01 696 7.23E− 04 5.36E+08 8.8 ± 1.4 (1.22 ± 0.22)E− 01 6

1.01 857 3.95E− 04 2.89E+08 4.5 ± 0.7 (9.54 ± 0.21)E− 02 6

1.01 695 3.24E− 04 5.34E+08 7.4 ± 1.1 (1.02 ± 0.21)E− 01 5

0.51 40.1 1.08E− 05 4.81E+10 667 ± 115 (3.68 ± 1.14)E− 02 6

0.51 39.2 1.05E− 05 8.63E+10 943 ± 166 (3.16 ± 1.06)E− 02 6

0.51 33.7 9.10E− 06 1.64E+11 1,514 ± 272 (4.03 ± 1.12)E− 02 6

0.51 40.0 3.23E− 06 4.80E+10 517 ± 85 (1.71 ± 0.34)E− 02 4

0.51 39.2 3.16E− 06 8.64E+10 731 ± 123 (2.19 ± 0.74)E− 02 12

0.51 33.7 2.73E− 06 1.64E+11 1,173 ± 202 (2.13 ± 0.86)E− 02 11

0.51 28.6 2.33E− 06 2.80E+11 1,785 ± 313 (2.18 ± 0.90)E− 02 11

0.51 28.6 1.43E− 06 2.79E+11 1,604 ± 276 (2.10 ± 0.58)E− 02 10

0.51 196 1.05E− 04 8.74E+09 93 ± 15 (5.15 ± 1.63)E− 02 5

0.51 168 9.00E− 05 1.68E+10 150 ± 25 (5.33 ± 1.70)E− 02 4

0.51 138 7.40E− 05 3.04E+10 242 ± 42 (5.55 ± 1.68)E− 02 10

0.51 196 2.86E− 05 8.68E+09 70 ± 11 (3.64 ± 1.15)E− 02 7

0.51 168 2.45E− 05 1.67E+10 114 ± 18 (3.86 ± 1.37)E− 02 6

0.51 138 2.02E− 05 3.03E+10 183 ± 30 (3.86 ± 1.59)E− 02 9

0.51 793 3.80E− 04 2.92E+09 18 ± 3 (5.71 ± 1.05)E− 02 7

0.51 619 3.00E− 04 5.69E+09 31 ± 5 (6.80 ± 1.79)E− 02 7
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Data Availability Statement
The laboratory data, analysis scripts, outputted figures, case images, and Table B1 are available online through
Zenodo (Abbate & Aurnou, 2024, https://doi.org/10.5281/zenodo.12193776). An image of the ray tracing
simulation with our case parameters is included in the repository. The software used to generate it is also publicly
available (Tu, 2016, https://doi.org/10.5281/zenodo.6386611).
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