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A B S T R A C T   

This paper provides a literature review of methods and modeling techniques to estimate the cost of power system 
outages, along with the value of outage mitigation or system resilience. Regulators, policymakers, and infra
structure owners have a growing need to understand the methods for estimating the benefits of resilience im
provements of electric infrastructure against natural and man-made disasters. There is a broad literature that 
estimates the cost of short-duration outages and a small but developing literature on estimating the cost of long- 
duration outages. This article reviews the models used to estimate the cost of outages and discusses their relative 
strengths. Additionally, this paper identifies key questions from stakeholders regarding resilience investment and 
maps them to the relevant models that would help answer them. We include recommendations for future work to 
include recent advances in regional economic modeling that can estimate region and demographic-specific costs 
and the distributional consequences of potential resilience projects.   

1. Introduction 

Power system resilience research against natural disasters has gained 
momentum as large outages have increasingly impacted the electrical 
grid [1]. The resulting service interruptions1 have spanned from mul
tiple days to weeks [3,4]. Mitigating or avoiding the costs of more 
frequent and longer-duration service interruptions requires significant 
investment to improve the resilience of the electrical grid. Power system 
resilience strategies can include hardened infrastructure, redundant 
systems, or increasing flexibility [5]. Justifying such investment requires 
a rigorous understanding of the value of avoiding long-duration power 
outages. 

The term “long-duration outages”, however, is inconsistently 
defined, often without a clear distinction between short and long- 
duration outages [6–8]. In addition, the costs incurred from long- 
duration outages are not well documented, particularly how cost var
ies by location, duration, and scale. 

Resilience is also inconsistently defined and is frequently conflated 
with reliability and mitigation, yet is important when planning a power 
system [5]. In power systems, reliability is concerned with meeting 
service standards over a prolonged period. In contrast, power system 
resilience is the ability of a system to adapt and recover from acute 
disruptions [9]. The core components of resilience are robustness, 
redundancy, resourcefulness, and rapidity [9]. Mitigation is defined as 

Abbreviations: BPS, Bulk Power System; CBA, Cost-benefit analysis; CDF, customer damage function; CEA, Cost-effectiveness analysis; CGE, Computable General 
Equilibrium; CIC, commercial and industrial customers; CV, contingent valuation; DCE, discrete choice experiments; DER, Distributed Energy Resources; EPRI, 
Electric Power Research Institute; EV, Electric Vehicles; GDP, Gross Domestic Product; GE, General Equilibrium; ICE, Interruption Cost Estimator; IO, Input-Output; 
IRP, Integrated Resource Planning; LEAD, Low-Income Energy Affordability; LOLE, Loss of Load Expectation; LOLP, Loss of Load Probability; REAcct, Regional 
Economic Accounting Tool; VoLL, Value of Lost Load; WTP, willingness to pay. 
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activities implemented exclusively before an event that incur a cost 
regardless of whether a disruption occurs. Intuitively, resilience is un
derstanding the ability of a system to withstand and recover from a 
disaster [10]. Larsen et al. [11] define resilience as actions that are 
implemented before or after an event with costs that can be incurred 
before or after the event also. Additionally, mitigation efforts can 
generally impact the magnitude or frequency of an event while resil
ience can impact the duration and speed of recovery from an event [11]. 

Decision-makers such as government and utility officials are pre
sented with several challenges when attempting to assess the risks and 
costs associated with long-duration outages and resilient investments. 
This is evident in state resilience assessments like Oregon and North 
Carolina [12,13]. In these reports, the problem is clear, but how to 
resolve it is not as well understood. Some of the critical gaps include 
identifying which model(s) are best suited to their needs, what the de
gree of uncertainty is in the models, and how they can address changes 
to society such as climate change and emerging technologies. Stake
holders who may not understand the intricacies and distinctions be
tween different candidate model(s), are left without a clear answer to 
address their problems. 

Given the several unknowns and inconsistencies, attempting to 
invest in a resilient power system that minimizes the damage from long- 
duration outages is difficult. This paper aims to close the gap between 
decision-maker needs and knowledge and the modeling solutions 
available. 

1.1. Overview of outage examples and implications 

Within the United States, many natural disasters cause long-duration 
outages such as hurricanes in the southeast, freezing temperatures 
throughout the country, and wildfires, heatwaves, and earthquakes in 
the west. The impacts of these outages are numerous including financial 
impacts, infrastructural impacts, and societal impacts. Financial impacts 
of outages include the cost to restore electricity to customers, the cost to 
repair generation components, and the indirect costs associated with 
outages such as lost economic activity due to the inability to operate 
commercial and industrial processes. Impacts to infrastructure include 
fallen power lines, damaged generation components due to flooding or 
debris, and damaged transformers. 

Some examples of consequential outages include several days in 
North Carolina [13,14], 2–7 days in Texas [15], 7–51 days in Oregon 
[12], and nearing 14 days in Louisiana due to Hurricane Ida [16], and 
ten months in Puerto Rico due to Hurricane Maria [17]. In 2018, 1.7 
million utility customers in North Carolina were affected by multi-day 
outages from Hurricane Michael [14]. Impacts from a Texas arctic 
blast in 2021 included frozen wind turbines and ice build-up in natural 
gas pipelines that prevented fuel delivery to many gas-powered plants 
[18,19]. At the event's peak, about 40 % of the state's power generation 
capacity was affected [20]. The freeze and subsequent outages affected 
about 4.5 million customers over a week, particularly historically 
disadvantaged demographics and communities [18,19]. Louisiana was 
hit by Hurricane Ida in late August 2021 and dealt with consequential 
outages until mid-September [16]. At their peak, the outages affected 
over 1 million customers [16]. The United States Energy Information 
Administration reported that 30,000 utility poles were damaged, double 
the number damaged during Hurricane Katrina [16]. The power system 
was particularly damaged due to already aging transmission lines and 
damage sustained from storms the previous year [21]. 

Across these events and ones like it, utility customers in vulnerable 
socio-economic classes were hit especially hard [19,22]. Low-income 
communities experience more frequent blackouts and less reliable 
electricity. Determining who pays for reliability and resilience im
provements present difficulties. At-risk communities already pay larger 
proportionate energy bills and have lower willingness-to-pay and 
ability-to-pay for improvements due to lower income. However, 
requiring high-income households to pay for improvements that they 

receive no benefit from may see public backlash [23]. These events and 
their consequences have complex implications for electricity customers 
and further complicate the problem being presented to decision-makers. 

Additionally, the needs of systems vary based on the community 
make up and natural disasters experienced. For example, North Caro
lina's Climate Risk Assessment and Resilience Plan [13] is identifies a 
need for legislators to develop resiliency metrics to quantify the eco
nomic consequences of power outages to inform power sector infra
structure planning, investments, and operations. A major resilience goal 
in North Carolina is to ensure no critical infrastructure, especially hos
pitals, police stations, and fire stations, are left without power for >48 h. 
Similarly, Oregon's Resilience Plan specifies pressing climatological 
risks in the state and outlines potential action to improve the infra
structure resilience against natural disasters for the next 50 years [12]. 
For example, a major earthquake has the potential to cause severe 
infrastructure damage, death, and major economic consequences [8]. In 
Oregon, resilience is highly dependent on the status of the critical energy 
infrastructure hub, which spans 6 miles along the Willamette River, 
where several ports, pipelines, substations, and storage facilities are 
located [3]. Each region has a range of resilience threats and goals but 
addressing them requires an understanding of the value of long-duration 
outages. 

This paper aims to address multi-faceted issues decision-makers face 
about resilience investments to moderate the cost of long-duration 
outages. To do this, we review the types of models used to estimate 
the economic cost of long-duration outages and highlight the strengths 
and weaknesses of the different models. In addition, we include a brief 
discussion of short-duration outages to provide context and contrast 
them to the models used for long-duration outages. We also discuss how 
model estimates can be used for resilience infrastructure planning and 
classify which models are best suited to address stakeholder questions 
identified as part of the literature review. The scope is limited to a re
view of resilience to electricity outages. We do not include literature on 
resilience for other infrastructure such as water supply and sea-level 
rise. We exclude the literature on the economic benefits of electrifica
tion such as in [24–26]. 

The remainder of this paper is organized as follows. Section 2 of this 
paper discusses and explains various models and methods used to esti
mate the economic cost of short-duration outages. Section 3 discusses 
models used to quantify long-duration outage costs. Section 4 outlines 
how model outputs relate to resilience and mitigation infrastructure 
investment. Section 5 links common stakeholder questions with the 
appropriate models to answer them. Finally, Section 6 summarizes the 
gaps and underdeveloped research areas and suggests the next steps. 

2. Models used to estimate the costs of short-duration electrical 
outages 

The direct costs of an electrical outage are defined as the economic 
consequences that result from not having access to electricity, typically 
lost production or consumption [27]. Estimates of direct outage costs are 
generalized and summarized using customer damage functions (CDFs). 
The simplest CDF describes outage costs as a function of the duration of 
the outage. CDFs can also be generalized to be a function of additional 
outage attributes such as time of day, day of the week, season, etc., 
customer characteristics and demographics such as business size, 
household income, presence of backup equipment, and external features 
such as temperature, and whether the outage was caused by a natural 
disaster or is man-made. 

2.1. Commercial and industrial customers 

Outage costs to commercial and industrial customers (CICs) are 
primarily tangible and measurable and are calculated as the lost profit to 
the business caused by the outage. The changes in profit may come from 
additional costs imposed from extra labor costs, replacing damaged 
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equipment, lost revenue from reduced production, and may also include 
some offsets from reduced energy or labor costs [27]. Several studies 
have been conducted that survey businesses on their costs during out
ages. Regression models are then used to estimate the average costs as a 
function of outage duration and other attributes by the size of the 
business [7,25,40]. These estimates can be used for utility planning to 
estimate the benefit of grid improvements to reliability and resilience. 

For a single location, a comprehensive CDF that separates costs into 
fixed, flow, and stock costs can be estimated using a detailed inventory 
[28]. This method is most useful for determining whether installing 
infrastructure at the location being studied would be beneficial. The 
primary difference is that this is a private decision rather than one being 
made by a utility or public planner for many customers. 

2.2. Residential customers - stated preference surveys 

For residential customers, there are significant costs imposed from 
non-monetary and intangible sources such as fear, inconvenience, lack 
of comfort, lost leisure, and inability to heat or cool homes [29]. Stated 
preference (SP) surveys have been developed to assess people's will
ingness to pay (WTP) for goods and services that are not bought and sold 
on markets, so they are well suited to capture monetary and non- 
monetary costs. SP methods have been used in the United States 
[6,30–37], Europe [29,38–40], developing countries [41,42], and else
where [43–45] to estimate short-duration outage costs to residential 
customers. 

SP surveys use a highly structured format to ask respondents whether 
they would prefer to prevent an outage with an associated cost or have 
the outage occur with no additional cost. WTP is then estimated from the 
survey responses using discrete choice models. For more detail on the 
general theory and practice of stated preference surveys, see [46,47]. 
For a discussion of SP surveys related to estimating the cost of power 
outages, see [42,48,49]. The major concern with SP estimates is that 
they may suffer from hypothetical bias, where respondents may not 
answer truthfully or accurately compared to how they may behave in an 
actual outage scenario. Johnson et al. [43] discuss best practices that 
have been developed to mitigate the potential for hypothetical bias. 

2.3. Metrics for resource adequacy 

In power system planning, resource adequacy assessments are 
developed to determine how much investment in capacity is needed to 
achieve specified reliability (and potentially resilience) outcomes [50]. 
There are monetary and non-monetary metrics that can be used to 
determine adequate resource requirements, some of which are discussed 
in this section [51]. 

The most common monetary metric is the Value of Lost Load (VOLL), 
which describes the customers' willingness to pay to avoid the loss of one 
unit of power and is usually expressed in $/kWh or $/MWh [52]. The 
planner will add capacity to the system up to the point where the 
marginal cost of adding capacity matches the VOLL. Fig. 1 shows a map 
of some estimated values from studies across the globe. The values vary 
significantly by country, sector, and outage duration. More dimensions 
of this data are available in the SI-1. 

Alternatively, non-monetary metrics that include the Loss of Load 
Probability (LOLP), the Loss of Load Expectation (LOLE), and the Ex
pected Unserved Energy impose a performance benchmark on the power 
system [53]. The system will be designed then to meet a prescribed level 
of LOLP (e.g., 5 %) or LOLE (e.g., 1 day in 10 years). While both mon
etary and non-monetary metrics are theoretically equivalent, their use 
varies depending on the planning domain – bulk power system (BPS), 
distribution, or demand-side – and on how investment decisions are 
made. 

2.4. Summary of short-duration outage cost estimates 

Küfeoğlu and Lehtonen [54] have reviewed the academic literature 
on short-term outage customer interruption costs based on customer 
surveys, case studies, and power quality events. La Commare et al. [55] 
estimate that the total cost of sustained power interruptions is $44 
billion per year (in 2015$) and that commercial customers bear the 
largest share with 70 % of the costs. Fig. 2 shows the spread of the 
estimated outage values over several years and multiple sectors. A 
general trend in the results is that outage costs increase as outage 
duration increases but that the per-hour costs decrease with longer 
duration. This trend is more visible in the Appendix. 

Sullivan et al. [8] conducted a meta-analysis of studies conducted by 
utility companies in the United States that estimated the value of service 
reliability. They obtained separate estimates for residential, small 
commercial, and medium and large commercial customers. Their results 
show that WTP increases with the length of outage duration for all 
customers. WTP increases with income for residential customers, and for 
commercial customers, WTP increases with the size of the business 
affected, typically measured by electricity demand. However, WTP does 
not increase linearly with firm size. Increasing electricity use by a factor 
of 10 increases the interruption cost by approximately 2.5. 

The meta-analysis and econometric models are the basis for the 

Fig. 1. Value of Lost Load around the world.  

Fig. 2. Value of Lost Load in the United States, by sector, year, and average 
outage duration. 
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Interruption Cost Estimate (ICE) calculator.2 The calculator includes 
costs for the different customer types as well as adjustments for regional 
attributes. The damage function, spanning an approximate 24-hour 
period, is slightly sigmoidal with an inflection point in the 8th hour, 
providing higher expected per-hour outage costs in the convex region 
(first 8 h) than the later hours [56]. Some limitations of the calculator 
are that customer interruption cost surveys that formed the basis of the 
meta-analysis are only in the United States and were limited to certain 
geographical regions and that GDP per industry type, or cost by class, is 
made at the county level. 

3. Models used to estimate the cost of long-duration electrical 
outages 

The cost of long-duration outages includes direct and indirect costs. 
The indirect costs of outages are defined as the spillover effects of dis
ruptions to other sectors and other changes in economic activity, such as 
price increases that result from shortages [57]. This section discusses 
some models that have been used to estimate indirect damages in 
addition to direct damages. The damage is typically measured as a 
change to gross product at the spatial level under consideration (i.e., 
gross domestic product, gross state product, etc.). 

Regional economic models are the most common type of models used 
to estimate indirect costs. Their use in modeling electricity disruptions is 
reviewed in [57,58]. Shuai et al. [59] briefly review models to estimate 
direct and indirect losses of electricity outages. Our review is more in- 
depth, provides more analysis of the models, and addresses resilience 
and how to apply the results to public planning. Regional economic 
models are simulation-based and typically include many sectors of the 
economy interacting through a set of equations. The model types are 
distinguished by how the equations are derived and how the sectors 
interact. These differences are discussed below. 

Long-duration outages have not been studied as completely as short- 
duration outages. Larsen et al. [11] organized an expert workshop in 
2019 to bring the issue of a limited portfolio of research on long- 
duration outages into the limelight and has facilitated meaningful con
versation in these research fields. 

3.1. Surveys for long-duration outages 

Few studies have used SP surveys to estimate the cost of long- 
duration outages. In principle, adjusting the questions to include 
outage durations >24 h is straightforward. However, practitioners have 
concerns that, since few customers have prior experience with long- 
duration outages, their responses are hypothetical rather than retro
spective [6,48]. 

Baik et al. [6] is the first study to use stated preference survey 
methods to value long-duration (>24 h) outages for residential cus
tomers. They assess the WTP for resilience to a 10-day power disruption. 
They use a CV survey method for residents of the northeastern United 
States and find that respondents are willing to pay $1.7–2.3 per kWh to 
sustain their critical electricity demand, defined with a 20A threshold. 
This estimate is on the low end per kWh of estimates reported across 
studies in Sullivan et al. [56] but on the high end of total WTP per 
outage. In addition, the survey asked whether the respondent had 
experienced a long-term outage to determine the potential impact of 
prior experience on WTP. The study finds that WTP does not change 
significantly if the respondent has prior experience with long-term 
outages, an encouraging finding for future studies that assess long- 
duration outage costs using SP methods. 

Another study that uses a stated preference survey to estimate the 
benefits of community resilience to long-duration outages is Hotaling 
et al. [60]. They estimate WTP for a local microgrid. They vary the 

services connected to the microgrid across the survey respondents to 
determine the WTP for different services and levels of operation. 

Hotaling et al. [60] found that respondents had the largest WTP for 
access to water, shelter, and full emergency services at $3.77, $2.80, and 
$4.44 per month, respectively. WTP was lowest for retail services at 
$1.16 per month. They also included intermediate levels of operation in 
the survey for hospitals and emergency services (i.e., partial emergency 
services). They found WTP was not statistically different for the inter
mediate scenarios compared to no service. Two differences between this 
study and Baik et al. (2020) [6] are that (1) the microgrid in Hotaling's 
study would power community services but not the survey takers' 
homes, and (2) Hotaling estimates WTP as an addition to their monthly 
electricity bill, while Baik et al. (2020) [6] estimate the cost after an 
outage has occurred. Comparison of these estimates requires assump
tions about the probability of an outage and preferences over the time 
value of money. 

Recently, there have been efforts to employ commercial and indus
trial cost surveys to estimate costs of power interruptions ranging from 
short- and localized events to widespread and long-duration events. One 
prominent example of these efforts is Baik et al. [6], which used 
customer interruption cost surveys across Cordova Electric Co
operative's service territory. The researchers took the following four 
steps: 1) presenting respondents with power interruption scenarios that 
could occur (ranging from common events to the worst possible sce
nario); 2) eliciting WTP estimates from residential customers and 
calculating the sum of interruption-related costs and savings; 3) con
structing duration-dependent customer damage functions for each 
customer segment, and; 4) using the customer damage functions to es
timate the average interruption costs per customer. 

3.2. Input-Output models 

Input-Output (IO) models are the simplest macroeconomic model 
used to estimate indirect economic losses. IO models use coefficient 
matrices to capture interdependencies across sectors of the economy. 
When used to study electrical outages or natural disasters, IO models 
assume that sector(s) of the economy become inoperable, preventing 
their input to other sectors downstream in the supply chain. Using these 
techniques, the ripple effects of a disaster can be simulated, and the 
direct and indirect losses can be computed and compared [57,61]. 

There are a few significant shortcomings to IO models. First, the 
coefficients in the matrix are fixed, so any adaptive behavior or other 
resilience measures are not captured. Due to this, IO models typically 
overestimate the indirect losses, but their estimates can be used as an 
upper bound on economic losses. Second, IO models are less accurate for 
shorter-duration outages. The minimum required duration to use an IO 
model is 24 h and estimates of outages lasting several days are more 
accurate [57]. 

Rose et al. [62] is an example of using an IO model to estimate the 
economic impact of a long-duration electrical outage. They examine the 
economic impact of an earthquake, and subsequent 15-week loss of 
power in Memphis, TN. Their simulation shows that cross-sector supply 
bottlenecks can reduce output to 79 % below the baseline when indirect 
effects are included during week zero and 8.6 % below baseline over the 
15-week timeframe. They also simulated the same scenario with the 
reallocation of scarce electricity to the sectors with the most significant 
bottleneck, and they found that losses can be dramatically lowered to 
12.5 % in week zero and 0.58 % overall. 

Rose and Lim [63] have used a different IO model to estimate the 
economic impact on businesses in Los Angeles from the Northridge 
earthquake. This paper is one of the first to incorporate resilience 
measures within an IO model analysis. The IO model cannot directly 
incorporate resilience measures but can be run under assumptions such 
as power rationing that allow important industries to remain in opera
tion. They estimate that a 35-hour outage incurs a cost of $227 million 
with no resilience measures, but this can be reduced to $9.2 million with 2 https://icecalculator.com/home. 
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the resilience measures incorporating production shifting, time-of-day 
adjustments, and electricity importance adjustments. This highlights 
the magnitude of the inter-sectoral impacts that resilience infrastructure 
can provide. Restoring power quickly to the most important sectors can 
spillover and alleviate a large portion of the cost to other sectors. 

The city of New York commissioned a study [64] following hurricane 
Sandy that sought to assess the costs of future electrical outages and how 
the costs would change under different climate change scenarios. This 
model bridges some of the gap between Integrated Assessment Models, 
commonly used to assess the long-term costs of climate change, and the 
IO and computable general equilibrium (CGE) models commonly used to 
evaluate singular disaster events. This study estimates electrical losses 
from flooding and varies the probability of these flood events using 
outputs from a climate model. They find that several hardening and 
resilience projects outlined by FEMA would have positive and some
times substantial societal benefits. 

Industrial Economics also conducted a study in New York City [65]. 
They study the resilience benefits of installing a microgrid for one 
neighborhood in Nassau County that includes about 3000 residential 
buildings and 535 commercial and service buildings. Their analysis 
considers the possibility of 100 % economic activity loss compared to a 
microgrid that fully restores economic activity. The area's economic 
output is estimated at $1.2 billion annually, and the benefits of pre
venting outages of 1–7 days are estimated to be $5.5–$36 million. They 
include additional analysis that assumes some percent of power is 
restored during the outage (e.g., 50 % power output after three days 
during a 5-day outage). However, they do not include any analysis 
where the microgrid does not satisfy 100 % of the baseline power needs. 

Bhattacharyya et al. [66] used an Inoperability IO model to estimate 
the cost of power outages in the U.S. Rather than modeling a specific 
scenario, they estimate the GDP loss for 1 % of inoperability to the utility 
sector. They find that each 1 % inoperability results in $11.6 billion of 
GDP losses with a standard deviation of $3.5 billion. They found the 
industries most affected are utilities, professional and technical services, 
wholesale trade, and construction. 

He et al. [67] use an IO model to estimate economic losses due to 
several different levels of hypothetical electrical outages in China. They 
use sectoral data from China's economy to model cross-sector in
terdependencies. They assume an initial shock to production in the en
ergy supply sector and then model the reduction in output in other 
sectors. Their model includes 42 industrial sectors but does not include 
the consumer side of the economy. 

They find that the sectors most affected are those that are electricity- 
intensive and those that generate important inputs to other sectors of the 
economy, such as mining, mineral processing and smelting, and pro
duction and supply of water. They also find that the ranking of which 
sectors are most severely affected does not change with the quantity of 
power lost and that resilience measures such as reserve capacity are 
more effective at reducing costs for smaller outages. 

Sandia National Laboratories developed the Regional Economic Ac
counting Tool (REAcct) tool that uses IO modeling to estimate economic 
losses, expressed in losses in GDP and employment, from natural di
sasters [68–70]. Like ICE, REAcct uses county-level data to assign GDP 
per industry type with the percentage of industry type allocated by 
employment numbers of a specific zip code. Again, high-resolution study 
areas would require greater care in assessing actual losses. The tool uses 
GIS information to provide spatially relevant results to the disaster being 
analyzed. The model uses IO multipliers at the county level that are 
obtained from the U.S. Bureau of Economic Analysis to estimate the 
corresponding industry-level indirect impact [71]. The tool can be used 
for many types of disasters, and a grid outage can be modelled as a 
power plant(s) disruption. The tool is useful for decision-making within 
federal agencies, but other authors have not widely adopted it within the 
peer-reviewed literature. 

3.3. Computable general equilibrium models 

CGE models are another class of models used to estimate indirect 
losses. CGE models use a framework of demand and supply equations for 
various markets in equilibrium. The impacts of outages are simulated by 
changing the relative price(s) and quantities of goods and services. 
Because CGE models use supply and demand relationships, they can 
account for behavioral effects such as price changes and substitution 
among inputs. CGE models are generally considered to provide more 
accurate estimates of long-run losses from disasters than IO models due 
to this flexibility [57,72]. However, it has also been argued that CGE 
models understate costs because they assume a frictionless economy and 
perfectly rational behavior, which may not be realistic, particularly 
during disasters and electrical outages. Because CGE models assume 
frictionless adaptation, their estimates are considered a lower bound on 
economic losses. The range of losses can be estimated by combining the 
lower bound from a CGE model with an upper bound from an IO model 
[57]. 

CGE models face limitations similar to IO models, that they are only 
accurate for longer-duration outages. Additionally, CGE models have 
some disadvantages compared to IO models. First, CGE models are 
typically more complex and computationally demanding, requiring 
considerably more time and money to set up and run. Second, CGE 
models require many input parameters, each requiring a value that must 
be assumed. If the input assumptions are incorrect or measured with 
high uncertainty, the model outputs will not be reliable [73]. Third, the 
assumption that all markets are in equilibrium is tenuous during long- 
duration outage scenarios. 

Rose et al. [74] have used a CGE model to study an outage in Los 
Angeles County caused by a hypothetical terrorist attack. They examine 
indirect effects that increase outage costs and resilience measures that 
can reduce them. They look at resilience measures, including adaptive 
electricity substitution, electricity conservation, electricity importance 
direction, alternative generation, and production rescheduling. They 
find that the indirect effects add 23.8 % to the direct costs but that using 
all resilience options could reduce the negative impacts by 86 % [74]. 
This result highlights again that resilience infrastructure can dramati
cally reduce the cost of outages across multiple sectors. CGE models face 
limitations similar to IO models, that they are only accurate for longer- 
duration outages. Additionally, CGE models have some disadvantages 
compared to IO models. First, CGE models are typically more complex 
and computationally demanding, requiring considerably more time and 
money to set up and run. Second, CGE models require many input pa
rameters, each requiring a value that must be assumed. If the input as
sumptions are incorrect or measured with high uncertainty, the model 
outputs will not be reliable [73]. Third, the assumption that all markets 
are in equilibrium is tenuous during long-duration outage scenarios. 
Rose et al. [74] have used a CGE model to study an outage in Los Angeles 
County caused by a hypothetical terrorist attack. They examine indirect 
effects that increase outage costs and resilience measures that can 
reduce them. They look at resilience measures, including adaptive 
electricity substitution, electricity conservation, electricity importance 
direction, alternative generation, and production rescheduling. They 
find that the indirect effects add 23.8 % to the direct costs but that using 
all resilience options could reduce the negative impacts by 86 % [74]. 

Hu et al. [75] looked at the costs of snowstorms in China in 2008. 
They model the economic losses from a snowstorm using both an IO 
model and a CGE model. Their difference of 29 % demonstrates how 
much price changes and substitution behavior can reduce the impact of 
an outage. Hu et al. [75] claim that the difference between the two 
models represents the benefits of resilience. However, this would only 
represent adaptive resilience, and this method is not useful for esti
mating the benefits of dynamic resilience such as grid or infrastructure 
improvements. 

Timilsina and Steinbuks [76] estimated the cost of electrical load 
shedding in Nepal using a CGE model, and found that losses were >6 % 
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of the country's GDP. This study estimated the impact of electric supply 
shortages over a long-time horizon due to a lack of generation capacity 
rather than a sudden outage. Due to the length of outages, the damages 
are higher in percentage terms than other studies. 

Sue Wing and Rose [77] have developed an analytical general 
equilibrium (GE) model to examine economic losses of long-duration 
power outages and how resilience measures could reduce losses. The 
model is more straightforward than the computable models, using only 
two sectors. However, the analytical tractability clarifies the mecha
nisms involved and highlights the importance mitigation investment 
and substitutability can play in reducing losses. They also compare the 
results of the analytical model to a computable model and show they are 
relatively similar. They also compare the GE model results to summing 
WTP estimates obtained from consumer surveys across the relevant 
population and find that CGE estimates are substantially lower. They 
claim that the survey estimates are likely higher due to the biases 
inherent in survey-based research. 

A recent paper by Baik et al. [78] has outlined a hybrid approach to 
estimating the value of resilient power systems and the costs of outages, 
both long and short term. Utilities rely primarily on customer surveys as 
they require less time and expertise to implement than IO or CGE 
models, even though they do not estimate indirect costs. They propose 
that CGE models calibrated by surveys be used in the future by utilities 
as part of their planning for outage prevention and resilience. They also 
propose the hybrid approach to improve one of the main shortcomings 
of CGE models—that the model requires many input parameters, mostly 
elasticities of production that must be assumed. They propose calibrat
ing these parameters using customer surveys. This would allow the 
model to be more accurate for the specifics of electrical outage studies 
and would also allow the model to capture regional differences in costs 
and input substitution. The paper does not include a case study to 
compare how the numerical results change with the hybrid method, but 
that appears to be forthcoming in subsequent analysis. 

3.4. Other models 

Macroeconometric models such as structural vector autoregression 
have been used extensively to forecast macroeconomic variables (GDP, 
inflation, unemployment, etc.), but their use in estimating losses due to 
disasters and electrical outages, etc. has been more limited. These 
models have seen little use in recent years as they have been supplanted 
by IO and CGE models that are considered more accurate. Greenberg 
et al. [79] provide an example of this type of analysis, looking at the 
costs of a terrorist attack in New Jersey. One feature that their model 
incorporates is the potential relocation of firms. Output typically returns 
to baseline shortly after an outage. However, if the high frequency of 
outages causes firms to relocate, the effects could persist for years. 
Relocation may be an essential regional consideration for areas that may 
be prone to an increase in disasters due to climate change. Areas such as 
the southeastern United States that may expect more frequent and se
vere hurricanes in the future may wish to consider the impact of firm 
relocation in addition to traditional measures of economic loss. 

The losses due to natural disasters are typically more extensive than 
losses solely due to electrical power, including damage to capital and 
infrastructure. However, a significant portion of economic damage 
during a disaster is the reduction in economic activity, similar to the loss 
of activity during long-duration outages. For example, Superstorm 
Sandy cost an estimated $30–50 billion USD. Of the total cost, $7–20 
billion USD (14–66 %) is assumed to be lost economic activity [80]. The 
economic impact of natural disasters has been reviewed by Botzen et al. 
[72]. 

The natural disaster literature can provide a source of innovation for 
estimating the cost of long-duration outages and resilience measures to 
reduce their impact. The natural disaster literature has used similar IO 
and CGE models to estimate the indirect losses. Recent methodological 
innovations in the natural disaster literature have sought to mitigate the 

shortcomings of IO models. Multi-regional impact assessment models 
are a recent advancement in IO modeling that can include spatial sub
stitution effects that allow output to increase in regions that are not 
directly affected [81]. In addition, adaptive regional economics models 
allow for price changes and sector-specific supply constraints to be 
included in the model, helping to bridge the gap between CGE and IO 
models [82]. 

The second type of model innovation that could be transferred from 
the natural disaster literature is the use of empirical models (i.e., [83]). 
These models use microeconometric estimation techniques that attempt 
to isolate the causal effect of a natural disaster on GDP or GDP growth. 
See Lazzaroni and van Bergeijk [84] for a review of these studies. These 
models capture both direct and indirect effects. A major reason why 
these have not typically been used to study electrical outages is that they 
use regression-based models with GDP as the dependent variable, which 
is not typically measured on the finer spatial and temporal scales of 
power outages. Studies using these techniques typically used national 
scale data that would not transfer to the smaller scales of electrical 
outages. Modern empirical studies [85] have begun to explore the use of 
datasets that measure economic output at a finer spatial scale and 
incorporate geography into their estimates. These techniques could 
provide richer outage cost estimates and help understand which loca
tions would benefit the most from resilience infrastructure. 

A significant feature of empirical models is that they identify causal 
estimates from actual outages rather than using simulation [72]. This 
places a limitation on empirical studies. They cannot simulate hypo
thetical changes to determine on the benefits of resilience measures or 
policy responses that have not previously been implemented [72]. The 
other limitation they face is that they cannot disentangle the costs of the 
electrical outage from other tangential costs. However, empirical studies 
could contribute significantly to this field of study by validating esti
mates from IO and CGE models, and helping to determine which input 
assumptions yield the most accurate results [72]. Following up on 
studies such as Timilsina and Steinbuks [76] that simulated costs at a 
national scale with empirical estimation would provide more confidence 
in results from IO and CGE studies and reduce some of their drawbacks. 
Table 1 provides a summary of the models discussed in this section. The 
table briefly describes each model and the duration(s) where it is 
appropriate to use. 

4. How to justify investments based on resilience 
improvements? 

Literature estimating outage costs has a major application in pre
vented economic damage as the benefits of an investment that reduces 
or provides resilience against such losses. Several types of infrastructure 
upgrades can mitigate or provide resilience to electrical outages in 
different ways. Eyer and Rose [86] discuss mitigation and resilience 
trade-offs, specifically within power system planning. They model 
business interruptions to minimize overall impact and measure the 
benefits associated with different options. The difference between the 
outages with resilience measures in place and those without are 
compared and can inform the value of resilience. Estimating the benefits 
of resilience improvements allows decision-makers and public planners 
to make more informed decisions about the optimal level of investment 
in resilience, reliability, or mitigation. This section discusses different 
types of resilience investments. 

4.1. Types of resilience investments 

When identifying resilience improvements, there are a few standard 
options. The first is electrical grid hardening which reduces the risk of 
outages. Some examples of electrical grid hardening strategies include 
reinforcing delicate and vulnerable power system components (ex., 
power lines), undergrounding power lines, and building flood walls for 
nuclear power plants [87]. Panteli and Mancarella [5] used Monte Carlo 

M. Macmillan et al.                                                                                                                                                                                                                            



Energy Research & Social Science 99 (2023) 103055

7

simulations in a time sequential model and found that a hardened 
network was the most resilient compared to redundant or highly 
responsive networks. 

Another power system resilience strategy is islanding or microgrids. 
Microgrids enable an area to maintain access to electricity even if the 
primary power grid experiences a power outage [88]. A Sandia National 
Laboratories report [89] estimated the resilience benefits of 159 pro
posed microgrids in Puerto Rico. Through extensive analysis, they were 
able to determine the optimal microgrids to implement, as well as the 
benefits (both social and economic) they would have provided during a 
resilience-testing event such as Hurricane Maria. If physical changes to 
the electrical grid are not possible, another avenue to explore is load 
management techniques, also known as electrical traffic optimization. 
Though not as commonly explored as a resilience technique in the 
literature, various methods are adopted throughout the United States, 
especially for peak load management [90]. 

Two primary challenges with resilience benefits are that there is no 
“one size fits all” solution and no one way to measure resilience [91]. 
Every system has unique customer breakdowns, load patterns, weather 
patterns, budgets, regulations, and system configurations, and each plan 
must consider the unique factors relevant to a system. When potential 
resilience investments are proposed, their resilience cannot be readily 
quantified and hasn't been in some resilience proposals [92]. Another 
challenge is identifying which resilience efforts will serve which resil
ience concerns. For example, undergrounding power lines may help 
prevent power line failure. However, it may not serve to protect against 
cyberattacks directly [93]. As research in this area advances, the find
ings can be applied to power system models to determine the optimal set 
of investments. 

4.2. Reliability and resilience metric applications in power system 
planning and investing 

BPS investment decisions are determined through (i) regulated 
planning processes in vertically integrated jurisdictions (e.g., integrated 
resource planning or IRP3) or (ii) organized markets in restructured 
states. A key difference between both processes is that organized mar
kets procure energy and capacity in separate markets, while regulated 
planning processes are used to procure both simultaneously. This has led 
to IRP generally utilizing non-monetary metrics to determine adequacy, 
as the monetary metrics are used to determine an optimal energy mix 
[94]. In contrast, some organized markets use the VOLL to directly or 
indirectly set or guide the capacity price, which, as described earlier, is a 
commonly used monetary metric to identify power system investment 

needs. Midcontinent Independent System Operator (ISO) utilizes the 
VOLL as a cap for their energy and operating reserve market prices [95], 
while Electric Reliability Council of Texas uses a VOLL to set its scarcity 
price [96]. However, other entities such as ISO-New England and 
Pennsylvania New Jersey and Maryland ISO use non-monetary metrics 
to define capacity needs and build a residual demand curve for capacity 
to procure these needs on a capacity market. In general, the risk of 
choosing an incorrect VOLL – underinvestment in capacity that could 
lead to interruptions – and the complexity of determining the VOLL that 
changes across customers, seasons, and time of day, limits its use in BPS 
planning processes. 

The VOLL remains scarcely utilized outside the bulk power system 
planning process [97]. In theory, distribution system planning could use 
the VOLL to determine optimal investments. However, similarly to IRP, 
distribution system planning is a least-cost exercise in which the utility 
looks to meet prescribed levels of reliability and service. Distribution 
utilities use metrics such as the System Average Interruption Duration 
Index and its equivalent in frequency to plan their investments. Demand- 
side management planning uses cost-benefit analysis to identify 
demand-side resources for implementation. Five U.S. states' guidelines 
for cost-benefit analysis recognize reliability and resilience benefits; four 
of these states – Connecticut, Massachusetts, Rhode Island, and New 
York – use the VOLL to assess the reliability benefits of technologies 
[97]. In contrast to least-cost planning processes, cost-benefit analysis is 
more amenable to using the VOLL to monetize the benefits of im
provements in reliability. More comprehensive application of the VOLL 
may require more granular estimates across customers and methods to 
extend its application from reliability to resilience by reflecting the 
impacts of widespread and long-duration events. 

4.3. Energy justice and equity 

Another avenue for research is the development of energy justice and 
its application to resilience assessments. A consistent shortcoming of 
existing results is the lack of estimates differentiated based on socio- 
economic factors. Carvallo et al. [98] combined blackout data with 
demographic data at the census block group level and found that areas 
with a high share of minority population were more than four times 
more likely to suffer a blackout, but that income was not a factor. Future 
studies should further investigate this finding to explore whether this 
effect is persistent across other outages and locations. If the effects are 
persistent, multi-regional versions of IO and CGE models could be used 
to predict the economic consequences to various communities. 

Even though the same resources may serve multiple communities 
from the same utility, some communities are more vulnerable to greater 
economic and social losses than others. Various factors such as elec
tricity dependency and private infrastructure unique to the customer 
(ex. solar panels and backup generators) can influence these disparities. 
Some data that could help inform analyses in this field are available in 
the Low-Income Energy Affordability Data Tool (LEAD) [99]. Existing 
models used for energy resilience analysis could be used with LEAD, and 

Table 1 
Summary of models used to estimate costs of long-duration outages. *X indicates the model possesses the characteristic.   

Residential surveys - stated 
preference 

Commercial and industrial 
surveys 

Input-output 
(IO) 

Computable general equilibrium 
(CGE) 

Empirical 

Simulation-based method   X X  
Empirical-based method X X   X 
Estimation across multiple 

industries  
X X X X 

Long-duration outages  X X X X 
Short-duration outages      
Time/data intensive   X X X 
Costs calculated as function of 

duration 
X X    

Adaptive behavior incorporated X X  X  
Resilience measures incorporated X X     

3 IRP determines the least-cost and risk-managed expansion portfolio for a 
given utility for a 10-to-20-year horizon. IRP implements a capacity expansion 
modeling process to determine the least-cost portfolio, and an accompanying 
resource adequacy assessment to ensure this portfolio complies with reliability 
standards. 
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other energy justice-focused data could provide much-needed examples 
of the distributional consequences of outages. 

Another challenge with energy justice is determining who pays for 
resilience investments. For example, all utility customers paying for 
resilience investments that will only serve specific entities or commu
nities may frustrate those who front the cost without reaping the ben
efits. Additionally, Baik et al. [6] find that WTP is increasing with 
income, indicating that requiring a flat fee for all households would 
disproportionately burden low-income households. This introduces an 
important distinction between WTP and ability to pay – customers who 
may want to pay more to avoid interruptions may not be able to do so 
given financial restrictions limiting what they can afford. Another Baik 
et al. study [6] found that although the WTP increased with income 
levels, the proportion of the WTP amount to the household income 
decreased with income levels. Implementing a per-usage charge rather 
than a flat fee can help alleviate this issue but may still require some 
households to bear a cost burden greater than their WTP. Despite 
varying WTP values across income levels, all customers deserve the 
services the same. Therefore, determining how to equitably distribute 
the cost burden for investments that provide mitigation and resilience to 
power outages is a challenging but important research question. 

4.4. Community resilience 

The current capabilities to restore power supply mostly rely upon a 
top-down restoration approach. The “Last mile” recovery, which de
pends upon the repairs in low/mid voltage power distribution systems, 
often takes several days. The delayed restoration especially affects low- 
income and underserved communities, which may lack backup options 
[98,100]. Fortunately, recent advances in distribution systems 
[101,102], including integrating distributed energy resources (DERs) 
such as distributed solar and storage, provide a potential means to 
improve system resilience if applied purposefully and methodically. 
Potential solutions include using DERs and microgrids to form flexible- 
boundary islands in preparation for an upcoming event and continue to 
supply critical loads within the island [103,104]. The proactive isola
tion/islanding feeder sections can also prevent cascading failures and 
reduce the number of affected customers. Several studies have also 
investigated the use of DERs to provide operational flexibility for resil
ience by enabling automated bottom-up restoration [105–110], and 
examined the use of grid-forming inverters in providing black-start 
services and other critical bulk-grid services such as frequency and 
voltage support [111]. 

Effective management of critical infrastructure systems disruptions 
requires long-term resilience planning [112,113]. The existing resilience 
planning methods propose different stochastic optimization models that 
aim to identify optimal investments for disruption management to 
reduce the grid impacts of extreme weather events [114]. However, the 
existing studies on using DERs to improve resilience primarily focus on 
technical solutions rather than the cost-benefit tradeoffs of the proposed 
solutions. These tradeoffs are even more important to analyze when 
extreme weather events are of concern, and the planning solutions need 
to be driven by resilience requirements and not persistent costs. To this 
end, incorporating DERs/microgrids into utilities' portfolio of infra
structure planning activities requires appropriate models for quantifying 
the risk of future events on the power grid and determining how those 
risks can be reduced cost-effectively. Additional work is needed on 
evaluating the value propositions to quantify direct cost savings and the 
value of improved service levels that DERs provide. The solutions to 
these problems should also provide important insights regarding the 
tradeoffs of the disparate planning activities to reveal their risk- 
avoidance potential. 

5. Mapping stakeholder questions to the most appropriate 
model 

When stakeholders such as utility owners and operators, policy
makers, and regulators ask resilience-related questions, they need a 
guide for how they can begin to get answers and link questions to 
models. These answers may be unclear for modeling-based questions, 
such as determining which model(s) are appropriate for a specific 
resilience assessment. There is often a disconnect between the knowl
edge needed to ask stakeholder questions and the knowledge needed to 
execute the answers. This section aims to provide a clear map from 
stakeholder questions to appropriate model(s). The questions included 
in this analysis were selected based on a review of resilience and risk 
assessment reports [12,13,115], as well as common research gaps the 
authors identified. These questions were chosen based on frequency in 
state resilience reports and author expertise and experience from 
working directly with customers with resilience concerns. Additionally, 
the selected questions represent decision-maker concerns in instances 
where they are familiar with the problem and possible solutions but are 
unfamiliar with the models and tools available to appropriately and 
effectively value, assess, and identify the best solution given their sys
tem. Table 2 introduces the question themes and presents an overview of 
our findings linking valuation methods previously discussed in this 
paper to a discussion of their general capabilities. 

5.1. What are the distributional and environmental justice impacts of 
resilience strategies? 

An important consideration of any project with community impacts 
is how the project will serve people across varying socio-economic de
mographics [115]. It is best practice to design and implement equitable 
solutions. Environmental justice has not been explored in the context of 
estimating the cost of electrical outages or the benefits of resilience 
infrastructure. There are two distinct intersections for how environ
mental justice and electrical outages intersect. 

The first intersection is estimating the costs to different populations 
and socio-economic groups at sufficient granularity to discern disparate 
impacts meaningfully [116]. The models previously discussed that have 
been used to quantify the cost of outage events have separated costs by 
industry. There have been advancements in IO modeling to include 
regional-specific estimates [82] that could be applied to long-term 
electrical outages. There have also been studies that extend CGE 
models to estimate regional and distributional impacts of policies and 
economic shocks [117] that have the potential to be applied to future 
studies of electrical outages. Region-level cost estimations can 

Table 2 
Mapping valuation methods to general stakeholder questions. This table sum
marizes which models are suitable for addressing the stakeholder question. “✔” 
Indicates the model is suitable for addressing the stakeholder concern, “×” de
notes the model cannot address the concern, and “~” indicates “situational,” 
where the model does not directly address the issue but can provide some insight 
with ex-post analysis.  

Stakeholder concern Residential 
surveys 

IO CGE C&I 
surveys 

Empirical 

Accounts for energy and 
environmental justice 

~ ~ ~ × ×

Uncertainty and future × ✔ ✔ ✔ ×

Estimates inter-sectoral 
effects 

× ✔ ✔ × ~ 

Suitable for customer- 
level analyses 

✔ × × ✔ ×

Suitable for economy- 
wide analyses 

× ✔ ✔ × ✔ 

Considers transportation 
networks and impact of 
electric vehicles 

✔ ✔ ✔ × ×
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unintentionally camouflage disparate impacts on marginalized or 
disadvantaged population segments. 

The second intersection is how to apply equity concerns within a 
cost-benefit analysis (CBA). A CBA is a commonly used tool to quantify 
all benefit streams to estimate both the costs and benefits and determine 
the optimal level of investment where the net benefits of a policy 
(benefits-costs) are maximized [118]. CBA in the U.S. government does 
not typically include distributional weights, but it has been adopted by 
the World Bank and in the UK [119]. There are different functional 
forms for weights that can be used within a CBA framework that provide 
more prominence to values from lower income demographics 
[119–121]. An alternative approach to a CBA is a cost-effectiveness 
analysis (CEA) which typically do not include all benefit streams, 
namely social benefits. Ward et al. [122] discuss some metrics that 
extend CEA to incorporate equity concerns. Projects that are considering 
justice and equity concerns will need to ascertain whether to pursue 
these alternative approaches to CBA or to provide unweighted quanti
tative CBA results accompanied by qualitative distributional estimates. 

5.2. Considering the uncertainties of the future, how will resilience 
initiatives implemented in a system today continue to contribute to the 
resilience of the same system in the future? 

The frequency and intensity of severe weather are uncertain due to 
climate change. Further, a system designed to be resilient to a fixed 
climate may be insufficient to handle increased threats of severe 
weather. The long-term and complicated relationship between resilience 
and climate change has been explored in some disciplines, such as bridge 
performance [123] and coral survivability [124], and more recently 
explored for energy systems. Di Maio, Tonicello, and Zio [125] analyze 
future climate change horizons with varying severity in 2040, 2070, and 
2100 to flooding impacts. They assess the impacts to an energy system 
operating under a variety of capabilities i.e., the ability of the system to 
be islanded or use bidirectional energy conversion, etc. [125]. They find 
that more integrated systems withstand climate change more effectively 
[125]. However, they do not conduct economic analysis to determine 
the costs or benefits of the various systems [125]. 

None of the models discussed include risk or uncertainty directly as 
model inputs. However, it is often possible to include uncertainty by 
running the model multiple times with different input assumptions 
surrounding the probability and severity of adverse events. This can be 
done with specific scenarios or with Monte Carlo analysis, where input 
variables are assigned a probability distribution and each model run 
samples a value from that distribution [64]. For example, Rose and Lim 
[126] and He et al. [67] have modelled resilience using IO models. They 
modelled some sectors remaining operational during an outage and 
compared those results to a full outage. This concept could be extended 
to exploring hypothetical future outages under forecasted climate sce
narios. This could help policymakers discern which sectors would 
benefit the most from scarce funds over the long term. The main concern 
with this type of analysis is that there may be a high degree of error if the 
current model inputs and assumptions would not represent future con
ditions. See Brockway et al. [127] for a discussion of the models and 
techniques used to characterize uncertainty for the electric grid. 

5.3. What are inter-sectoral impacts resilience investments might have? 

In an increasingly connected world, understanding interactions be
tween various sectors is of growing importance. There are dependencies 
between the energy, communications, and transportation sectors, to 
name a few. As a result, it is often of interest to the stakeholders how 
changes in one sector may affect other sectors [13]. 

IO and CGE models were designed to estimate inter-sectoral impacts 
and are good candidates when this type of analysis is needed. The pri
mary consideration is ensuring all desired sectors are included in the 
model and with sufficient accuracy. For example, transportation is likely 

to become more dependent on the electrical grid as electric vehicle 
penetration increases, so the internal model assumptions need to be 
updated with recent estimates. The U.S. Department of Energy is 
currently looking at sector coupling challenges expected as more end- 
uses are electrified. In the case of electrification of transportation, cur
rent research is addressing the mutual reliability interdependencies and 
how mutual reliability can be realized technically.4 

5.4. What model is most appropriate for a large system? What model is 
most appropriate for a smaller system? 

Resilience projects vary in scope and size. Some models may be 
better suited to serve larger or smaller projects. The compatibility of a 
model with the size of the system being analyzed is vital to stakeholders 
at all levels (local, regional, federal, etc.). 

The data collection method employed in Ericson and Lisell [28] can 
be highly accurate for a single business or campus seeking to determine 
the benefits of adding resilience. A private business may find this 
method useful as they would not be concerned with indirect costs or 
consequences to other sectors. However, this method is less useful for 
public policy or utility-scale investments as they do not consider indirect 
costs and are difficult to scale up. 

IO and CGE models are best suited for estimating large systems that 
include multiple sectors of the economy. They are best suited when the 
estimates of the indirect consequences and costs are large. They are 
difficult to scale down and are not recommended for small-scale 
analysis. 

Empirical studies typically provide estimates at very-large scales. 
Therefore, their greatest potential is to estimate the costs at a country or 
state level as well as any costs that may endure over long periods of time. 
As these studies require measures of gross product at the national or 
state level and are not currently suitable for localized outages. 

Stated preference surveys can fill a niche for medium-scale projects 
that utility companies would undertake. They are the most appropriate 
method to estimate the cost for outages that are more focused on resi
dential customers rather than commercial customers and can easily be 
scaled up to the number of customers that may be affected. This method 
cannot estimate indirect or intersectoral costs needed for large and long 
outages that public projects would address. While the SP literature on 
long-duration costs is nascent, future studies may help determine how 
costs scale from short-duration to long-duration. 

5.5. How might an increase in the adoption of electric vehicles affect the 
resilience of and the ability to model a system? 

There has been a sharp increase in the adoption of electric vehicles 
(EVs) around the world, and forecasts anticipate this trend continuing 
[128,129]. As these vehicles become increasingly common, it is useful to 
understand their role in energy resilience and the capabilities of models 
to consider these changes. 

The increased adoption of EVs creates a unique situation regarding 
resilience to power outages. With appropriate bi-directional electricity 
infrastructure in place, EVs can partially be used as reserve capacity to 
offset the outage costs for short-duration outages. Critical appliances can 
be powered for a short time using the vehicle's battery. Some studies 
have analyzed the benefits and support provided to energy systems in 
the event of an outage [130–134]. However, the inability to charge EVs 
during long-duration outages has the potential to significantly increase 
societal costs due to major disruptions to the transportation network, 
especially if long-haul commercial freight is converted to EVs. 

A few studies have examined the potential consequences of being 

4 U.S. Department of Energy, Office of Electricity, initiated research with 
Pacific Northwest National Laboratory to explore the mutual interdependencies 
between electricity and transportation sectors. 
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unable to charge EVs during a natural disaster [135,136]. These focus 
primarily on the physical constraints rather than the economic costs. 
Future research on outage costs should incorporate transportation 
network costs and EVs' impacts. Studies that use IO and CGE models 
should look to update the sectors and industries by adding trans
portation networks as a new sector to the model or by updating the 
cross-industry coefficients and supply-demand equations to reflect a 
transportation network with higher dependence on the grid. Stated 
preference surveys could incorporate questions about transportation 
network costs such as in Collins et al. [137]. 

6. Conclusions 

This paper has reviewed some of the models used to estimate the 
costs of electrical outages and outlined which models are suited for 
stakeholder questions. We highlight some of the strengths and weak
nesses of several models. Some of the limitations of this review is that 
the focus in on resilience more than reliability, the conclusions may not 
generalize to setting other than electrical outages, and that quantitative 
estimates were not systematically presented for meta-analysis. 

We reviewed stated preference survey methods, IO, CGE, empirical, 
and other macroeconomic models. More SP surveys with questions on 
long-duration outages will help estimate longer-duration outage costs. 
However, these types of studies cannot account for indirect “spillover” 
costs. Beyond surveys, some economic models may lend themselves to 
estimating these outage values independently or by improving the 
extrapolation from short-duration surveys. IO models, CGE models, and 
commercial and industrial surveys all have strengths for calculating 
values of long-duration outages, and each has its respective limitations. 
Future work can explore how to leverage the strengths of recent 
modeling advancements to overcome some of the limitations. For 
example, IO models do not capture adaptive behavior, CGE models as
sume unrealistic market conditions, and survey methods do not capture 
indirect effects. 

A relatively nascent area of research is implementing empirical 
models to estimate power outage losses. Further investigating this po
tential application of empirical models can offer an alternative to 
valuing resilience that has the potential to corroborate the simulation- 
based models. Recent research has begun to explore the use of these 
models to estimate the distributional consequences and equity concerns 
of outages. Improved outage value estimation methods can help improve 
our understanding of the resilience values of a system, allowing for more 
informed spending on resilience. 

Some recommendations for future research are:  

• Standardizing the units of measurement. Different Studies report 
values per kWh, per event, or as added to a monthly bill. Monthly 
WTP can be difficult to compare to total economic losses from 
regional models. Reporting estimates by duration and per kWh 
would allow for better meta-analyses, increasing reliability and ac
curacy of estimates.  

• Standardization and generalization of estimates for long-duration 
outages. Most of the studies reviewed analyze a single event and 
do not include how their results would generalize to a different 
location or a different incident. Resilience planning could be 
dramatically improved if estimates could be transferred to new 
projects under consideration without requiring an original study.  

• Incorporating distributional and regional differences in the estimates 
for regional economic models (IO and CGE) to capture environ
mental justice and equity concerns. This will allow policymakers to 
make decisions on resilience projects that incorporate information 
on distributional consequences.  

• Estimates from IO and CGE models need to be validated by empirical 
estimates. The simulation-based IO and CGE models have not been 
compared to estimates from empirical methods or case studies of 
economic damages to determine the accuracy of their estimates or 
the validity of their input assumptions.  

• Similarly, the estimates from stated preference surveys need to be 
validated by estimates from revealed preference methods. Stated 
preference studies that estimate the cost of long-duration outages 
compare their estimates to short-duration stated preference studies 
to establish reliability. However, neither short-duration nor long- 
duration cost estimates have been validated by comparison to 
revealed preference techniques. This type of validation has been 
done for other research domains that use stated preference tech
niques and has provided greater confidence that the stated prefer
ence estimates do not suffer major hypothetical bias [138–140]. 

Answering these questions and obtaining more estimates of long- 
duration outage costs will serve many stakeholders, such as states that 
have developed resilience plans for their electrical grids. Better 
informed planning and reduced outage costs can be achieved through 
improved resilience valuation. 
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Appendix A 

Table A1 includes estimates from various studies that have estimated the cost of short-duration electricity outages that were used to construct the 
map in Section 3.4. These estimates show that the value varies significantly by customer type, duration, and location. Results are reported in the 
original currency measured. A comparison of these WTP estimates should consider variation in exchange rates and country-specific inflation over 
time. Several studies report more estimates than what is listed in this table. Many studies report the variation in WTP across demographic attributes of 
the survey respondents.  
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Table A1 
Summary of estimates for short-duration outages.  

Author Year Country Outage duration Customer type Survey 
type 

Value 

Carlsson and 
Martinsson [38]  

2008 Sweden 4 h Residential DCE 8.53–28.40 SEK 

Abdullah and 
Mariel [41]  

2010 Kenya 3 h Residential DCE 62 Ksh 

Ozbafli and 
Jenkins [141]  

2016 North Cyprus 1 h Residential DCE £0.06–0.28 

Pepermans [39]  2011 Belgium 1 h Residential DCE €26.40–39 
Accent [142]  2008 UK 1 h Residential DCE £4.20 
Hensher et al. 

[43]  
2014 Australia 8 h Residential DCE $AU60 

Bliem [40]  2009 Austria 4 h Residential DCE 16 % 
Amador et al. [45]  2013 Canary Isles 1 h Residential DCE 4.2 % (£1.99 per month) 
Blass et al. [44]  2010 Israel 1 min reduction in 1 

hour outage 
Residential DCE $0.42 

Morrissey et al. 
[29]  

2018 UK 1 h Residential DCE £1.57–31.37 

Hubana and Ljevo 
[42]  

2019 Bosnia and 
Herzegovina 

1 h Residential and business CV $1.81 (residential)-$63.20 (business) 

Baik et al. [6]  2020 USA 10 days Residential CV $1.7–2.3/kWh for critical private demand, $19–26/day for 
communities 

Baik, Davis, and 
Morgan [30]  

2018 USA 24 h Residential CV $0.35–0.51/kWh for non-critical demands, $0.75–1.2kWh- 
1.2/kWh for critical demands on average. Ranges vary by 
the level of information about the outage. 

Layton and 
Moeltner [31]  

2005 USA Momentary - 24 h Residential CV $2.06–5.34/kWh 

Chowdhury et al. 
[32]  

2004 USA 1 h Residential, commercial, 
industrial, and 
government 

CV $0.53 (res), $37.52 (commercial), $23.41 (industrial), 
$21.20 (non-profit/government) per kWh 

Lawton et al. [33]  2003 USA Momentary - 12 h Residential, commercial, 
and industrial 

CV WTP/WTA: $6.9–7.14/$10.52–12.49 (residential, per 
event). See images 8 and 9 for commercial and industrial 

Yin et al. [34]  2003 USA Momentary - 24 h Industrial CV $5.25 (momentary)–$682 (8 h) 
Sullivan et al. 

[35]  
1996 USA Momentary - 4 h Residential, commercial, 

and industrial 
CV $5.38–10.10/kWh (system-wide), $2.07/kWh (residential), 

$45.82/kWh (commercial), $7.61/kWh (industrial) 
Burns and Gross 

[36]  
1990 USA Not specified Residential, commercial, 

agricultural, and 
industrial 

CV $4.05/kWh (res), $39.69/kWh (commercial), $6.78/kWh 
(industrial), $3.53/kWh (agriculture) 

Hartman, Doane, 
and Woo [37]  

1991 USA Momentary-12 h Residential CV $0.16–38.03 

Woo et al. [143]  2014 Hong Kong 15 min–1 h Residential CV HK$90–350 
Kim et al. [144]  2015 S. Korea 2 h rolling blackout Residential CV KRW3900 (sudden), KRW3100 (announced) per month 
Amoah et al. 

[145]  
2019 Ghana 24-hour service. 

Baseline not specified. 
Residential CV GHS 67 per month 

Abrate et al. [146]  2016 Italy 1 min-6 h Residential DCE €25.37/kWh 
Oseni [147]  2017 Nigeria Reduce incidences to 

half present level (72 h/ 
week) 

Residential CV $0.15–0.41/kWh 

Broberg et al. 
[148]  

2021 Sweden 5 30-minute blackouts 
per month 

Residential CV SEK3,000–4200  
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