UC Berkeley UC Berkeley Electronic Theses and Dissertations

Title

Peptide Repertoire Changes Caused by Defects in Antigen Processing

Permalink

https://escholarship.org/uc/item/7r90p3c0

Author

Lind, Kristin

Publication Date 2013

Peer reviewed|Thesis/dissertation

Peptide Repertoire Changes Caused by Defects in Antigen Processing

By

Kristin Camfield Lind

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Molecular and Cell Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in Charge:

Professor Nilabh Shastri, Chair Professor Ellen Robey Professor Greg Barton Professor Fenyong Liu

Spring 2013

Abstract

Peptide Repertoire Changes Caused by Defects in Antigen Processing

By

Kristin Camfield Lind Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Nilabh Shastri, Chair

MHC I molecules display peptides derived from intracellular proteins on the cell surface for recognition by CD8+ T cells. Presentation of these peptide:MHC I complexes (pMHC I) is important for elimination of viruses and transformed cells. In order to generate an effective CD8 T cell response, a high-quality set of pMHC I must be presented. However, the editing mechanisms that select these optimal pMHC I are not clear. In these studies, we used biochemical and immunological methods to examine the role of two ER-resident pMHC I editors, tapasin and ERAAP in shaping the pMHC I repertoire.

Analysis of tapasin-deficient mice revealed a qualitative loss as well as gain of some pMHC I. However, these changes did not overlap with the ERAAP-unedited pMHC I repertoire, indicating that tapasin edits peptides in a distinct way. Sequencing of peptides unique to tapasin-deficient cells revealed altered C-termini, suggesting that tapasin determines the peptide C-terminus while ERAAP shapes the peptide N-terminus.

We separately examined the allele-specific effects of ERAAP-deficiency on the H-2^d pMHC I repertoire. In addition to K^d and D^d, these mice express L^d, an MHC I molecule which is particularly affected by loss of ERAAP. We found that ERAAP-deficiency has distinct effects on the peptide repertoire presented by each MHC I molecule. Analysis of the peptide sequences revealed unique peptides bound to all three MHC I, although long, structurally unique peptides were only found on D^d and K^d. Furthermore, using a T cell hybridoma specific for loss of ERAAP function, we identified and characterized an ERAAP-unedited peptide presented by D^d. Together, these findings highlight the importance of both tapasin and ERAAP in determining an optimal pMHC I repertoire.

Table of Contents:

Chapter 1: Introduction

Overview:

The immune system distinguishes between self and non-self to protect from infection and tumors...1 CD8 T cells protect against viral infection and cancer...1 MHC I molecules present a diverse set of antigenic peptides....2 beta2-microglobin deficiency ... 3 The effects of MHC I deficiency... 3

The generation of antigenic peptides for MHC I

Antigenic Peptide Sources ... 4 The Proteasome/Immunoproteasome is responsible for the breakdown of proteins into antigenic peptide precursors ... 4 The limited role of cytoplasmic proteases in antigen presentation ... 6 Chaperones: getting the peptides from the cytoplasm to the ER ... 8

Loading Antigenic Peptides onto MHC I: The PLC

Chaperones calnexin and calreticulin facilitate MHC I folding...10 TAP transports peptides into the ER...11 ERp57 facilitates MHC I folding and tapasin action...12 Tapasin stabilizes the PLC and edits pMHC I ...13

ER-resident Proteases:

ERAAP defines the final pMHC I repertoire ...14 ERAP2 complements ERAP1 in human cells ...16 Angiotension Converting Enzyme (ACE) edits the C-terminus...17

Altered ER-editing in disease

Altered ERAAP processing and disease...17 Altered tapasin editing and disease...17

Thesis Research...17

Chapter 2: Tapasin-deficient cells present alternative pMHC I repertoire

Summary...21

Loss of antigenic peptide editors decreases surface pMHC I presentation...21 Thymic development in ERAAP and tapasin double-deficient cells is phenotypically similar to tapasin-deficient cells...23

ERAAP and tapasin differentially influence generation of endogenous pMHC I...23 Tapasin-deficient T cells respond to WT pMHC I...26

WT T cells respond to novel pMHC I presented by tapasin-deficient cells...23 Distinct ligands are used *in vivo* for rejection of tapasin or ERAAP-deficient cells...29 Discussion...31

Chapter 3: Mass Spectrometry of the Tapasin-deficient Peptide Repertoire Summary...32

Tapasin-deficient cells present peptides lacking canonical consensus motif...32 Peptides unique to tapasin-deficient cells form less stable pMHC I...36 Discussion...38

Chapter 4: H-2^d ERAAP KO cells present altered pMHC I on K^d, D^d and L^d

Summary...39 ERAAP-deficiency affects pMHC I expression on professional APCs...39 ERAAP KO cells are missing WT pMHC I...42 ERAAP KO T cells are not tolerant to WT L^d pMHC I...42 H-2^d ERAAP KO cells present novel peptides...42 All MHC I present unedited peptides in ERAAP-deficient mice...44 Discussion...46

Chapter 5: Characterization of the ERAAP KO pMHC I repertoire by mass spectrometry

Summary...47

 L^d -bound peptides have canonical length and consensus motifs in ERAAP-deficient cells...47 L^d MHC I are empty in ERAAP-deficient cells...51

ERAAP-deficient peptides from K^d are longer and bind with distinct conformations...51 ERAAP-deficient peptides from D^d are longer and bind with distinct conformations...57 D^d and K^d bind extended peptides...57 Discussion...57

Chapter 6: Characterization of immunogenic ERAAP-deficient pMHC I repertoire

Summary...61

Fusion of FEko T cell lines to generate a WT anti-ERAAP KO hybridoma...61 FEko7Z is restricted to H-2D^d...64 RPL17 cDNA contains the antigenic epitope for FEko7Z...64 Identification of SSI9 as the minimal antigenic peptide required for FEko7Z response...67 SSI9 and its N-terminally extended variants bind to Dd...67 SSI9-D^d complex is immunologically significant...70 Discussion...70

Chapter 7: Future Directions

What is the mechanism of tapasin action? ... 69 Allele-specific effects of ER-editors: consequences for immunity ... 70 Targeting ER-editing to evade immune detection ... 71

Chapter 8: Materials and Methods...73

Chapter 9: References...79

List of Tables and Figures:

Chapter 1:

Table 1: Summary of deficiencies in antigen presentation factors...17-20

Chapter 2:

Figure 1: Tapasin and ERAAP differentially affect surface pMHC I expression...22

Figure 2. Development of T cell subsets in tapasin-deficient and ERAAP-tapasin doubledeficient mouse strains ... 24

Figure 3. Tapasin and ERAAP differentially affect presentation of endogenous pMHC I by spleen cells ...25

Figure 4. Tapasin-deficient mice respond to pMHC I expressed by WT cells...27

Figure 5. Tapasin-deficient cells elicit CD8⁺ T cell responses in wild-type mice ...28

Figure 6. Different ligands are used for rejection of tapasin- or ERAAP-deficient cells by WT mice *in vivo* ... 30

Chapter 3:

Figure 7. D^b MHC I in WT and tapasin-deficient cells present unique peptides ...33 Figure 8. K^b MHC I in WT and tapasin-deficient cells present unique peptides ...34 Figure 9: Comparison of the source of Tpn0 and WT peptides shows no significant differences ...35

Figure 10. Peptides from tapasin-deficient cells form less stable pMHC I on the surface and decay faster...37

Chapter 4:

Figure 11. H-2^d pMHC I are differentially affected by ERAAP-deficiency ... 40

Figure 12. ERAAP-KO T cells respond to pMHC I expressed by WT cells ... 41

Figure 13. WT cells respond to novel pMHC I expressed by ERAAP-deficient cells ...43

Figure 14. WT T cells respond to novel pMHC I presented by K^d , $D^d L^d \dots 45$

Chapter 5:

Figure 15. L^d-bound peptides have canonical length in ERAAP-deficient cells ... 48

Figure 16. L^d peptides from ERAAP KO and WT maintain the canonical consensus motif...49

Figure 17. Intracellular L^d is empty in ERAAP-deficient cells ...50

Figure 18. Unique ERAAP KO peptides presented by K^d longer than WT K^d peptides ... 52

Figure 19. Unique ERAAP KO peptides presented by D^d are longer than WT D^d peptides...53

Figure 20. D^d and K^d eluted peptides 8-10 amino acids in length maintain the consensus binding motif ...54

Figure 21. Long D^d and K^d peptides bind with N-terminal or central bulges ...55

Table 8. Notable N-terminally extended nested peptide sets identified from D^d ...56

Figure 22. Long peptides from ERAAP KO D^d and Kd bind with similar affinity ...58

Figure 23. Schematic depicting the allele-specific changes to the unedited pMHC I repertoire in H-2^d ERAAP KO cells ...59

Chapter 6:

Figure 24. T cell hybridoma FEko7Z is specific for ligands presented by $H-2^{d}$ cells in the absence of ERAAP function ... 62

Figure 25. FEko7Z is restricted to D^d ...63

Figure 26. The RPL17 gene is the source of a new antigen presented by Dd in the absence of ERAAP function...65

Figure 27. SSI9 peptide presented by D^d is the ligand for Feko7Z...66

Figure 28. N-terminally Extended variants of SSI9 bind D^d and stimulate FEko7Z responses...68

Figure 29. FEko T cells kill SSI9 pulsed targets in vitro...69

Appendix:

- Table 2. H-2K^b peptides eluted by mass spectrometry...99
- Table 3: H-2D^b peptides eluted by mass spectrometry...107
- Table 4: Selected peptides used for Tapasin stability and decay assays...113
- Table 5: H-2L^d peptides eluted by mass spectrometry...114
- Table 6: H-2D^d peptides eluted by mass spectrometry...123
- Table 7: H-2K^d peptides eluted by mass spectrometry...136

Acknowledgements

This work was not done in a bubble. I would like to recognize the colleagues, friends and family that made completing this journey possible.

First and foremost, I would like to thank Nilabh for giving me the opportunity to work in his lab and steering me through this process. You gave me the space to make my mistakes and the guidance to grow intellectually so that I could overcome them. Thank you for always having an open door - even when I know you were busy – for questions big or small.

I would also like to thank the past and present members of the Shastri Lab who made coming in to work something to look forward to even when the science wasn't going my way. Thanks to the Postdocs (Shelley, Nico, Takayuki and Soo Jung) whose helpful comments helped keep me on the right track and remember my controls. Fellow Shastri lab graduate students Harshi, Sharanya and Keling for commiserating when the going got tough and celebrating when things were good. My bay-mate Arne for your friendship and opinions on things both science and non-science. Fred for keeping the lab running and for making sure nobody's head got unduly big. And, of course Niranjana – My mini-PI – for taking me under your wing to guide me in all things ERAAP. Thanks for always being there to offer advice and friendship. Here's to many more coffee and lunch dates in the future!

I would also like to thank my family for inspiring a love for science and, in particular, biology. To Mom and Dad, thanks you for your unwavering support for me and my passions and for always encouraging me to do my best. Who else would let their kid grow frogs in her bedroom? I hope one day to be as good a parent to my kids as you were to me. To my sister, and fellow science nerd, Katie for always finding the positive in any situation. And for being the only other person I know who remembers way too many lines from Spaceballs and Wayne's World.

To my husband and best friend Nick, for encouraging me to fulfill my ambitions and for being my rock. There is no way I could have finished grad school without you. You are the best best! And of course to little Philip – for just being amazing and for all his writing 'help' in completing this thesis.

Chapter 1: Introduction

Overview

The immune system distinguishes between self and non-self to protect from infection and tumors

The immune system is responsible for protecting the host from infection by a wide variety of non-self pathogens, such as protozoans, bacteria and viruses. To this end, it has a number of ways to distinguish self from the non-self invaders. Our immune system has both an innate and adaptive branch. By working together, both arms of the immune system protect the host from microbial invaders.

The innate immune defenses depend on pattern recognition receptors encoded by germline DNA to detect conserved microbial associated molecular patterns (MAMPs). Generally, these are features of microbes distinct from our own cells. Diverse receptor families have evolved to recognize these conserved patterns, and can be found in the cytosol, on the cell surface or are secreted (1). Using these receptors, the immune system can either eliminate invading pathogens or contain them until the infection can be fully cleared by the adaptive immune system.

Stimulation of some innate immune receptors, such as toll-like receptors, is important for activating B and T cell-mediated adaptive immunity. The hallmark of the adaptive immune system is its ability to generate non-germline encoded receptors to recognize microbial pathogens. Furthermore, the adaptive immune system has the ability to form memory responses such that it can recognize and respond to re-infection with the same microbe more robustly.

In addition to protection from infection, the immune system also eliminates malignant cells. Recognition of altered-self, such as the intracellular changes that often accompany the transformation of a healthy cell to a potentially tumorogenic one, can serve to protect the host.

CD8 T cells protect against viral infection and cancer

CD8+ T cells are important components of the adaptive immune system. They are key in protection from a wide range of assaults, notably viruses, intracellular parasites, bacteria and tumors. However, due to their potent cytotoxic abilities, misregulation of CD8+ T cells can cause autoimmune disease, and as such, it is important to tightly manage their responses.

CD8+ T cells express T cell receptors (TCR) that recognize small peptide antigens presented on the cell surface by MHC I molecules. In the thymus, T cells undergo an education process that selects cells with TCRs capable of recognizing peptide-MHC I complexes (pMHC I), termed positive selection. However, in a process termed negative selection, T cells that express TCRs with a high affinity for self-pMHC I are deleted, thus eliminating potentially autoreactive cells. Although this process removes a majority of potential T cells, a large T cell pool with TCRs capable of recognizing diverse pMHC I remain. These exit the thymus and enter into the periphery(2).

To become activated, peripheral CD8+ T cells require encounter with antigen presenting cells (APCs), resulting in stimulation through their specific TCR, co-stimulation via CD28 as well as other cytokine signals. This activation step generally occurs in the secondary lymphoid organs, and is followed by a rapid clonal expansion of the responding T cells. Upon encounter with an infected cell in the periphery, CD8+ T cells utilize an arsenal of effector mechanisms to eliminate compromised cells, including production of effector cytokines such IFN- γ and release

of granules containing cytotoxic material like perforin and granzyme B. After clearance of the pathogen, a majority of the CD8+ T cells die, although a subset of memory cells remain to protect from future rechallenge with the same pathogen(3).

MHC I molecules present a diverse set of antigenic peptides:

The MHC I antigen presentation pathway generates peptides that are presented on MHC I molecules as peptide:MHC I complexes (pMHC I). These pMHC I are expressed on the surface of almost all cells in the body. They serve as ligands for CD8+ T cell recognition, and are important for immune surveillance.

Humans co-dominantly express allelic variants of three MHC I molecules: HLA-A, HLA-B and HLA-C, which are encoded on chromosome 6. Murine homologs of these MHC I molecules, H-2D, H-2K and H-2L are found on the mouse chromosome 17. The peptides generated by the MHC I antigen presentation pathway can be of endogenous origin (self) or foreign (non-self) origin. Recognition of a non-self pMHC I by a CD8+ T cell results in subsequent release of cytotoxic granules that kill the presenting cell.

In 1987, the first crystal structures of MHC I molecules were published by Wiley and colleagues(4). The MHC I molecule resolved consisted of two alpha helices upon eight antiparallel beta strands, representing the peptide binding groove. Between the two alpha helices was electron dense material, presumed to be the source of antigenic activity. We now understand that this material represents peptides, and it could not be resolved because of the large diversity of peptides each MHC I can present. Work from Rammensee and colleagues determined that peptide binding motifs for MHC I molecules have a fixed length (5). In addition, for any given MHC I molecule, there are 2-3 residues that are called 'anchor residues' that serve to bind the peptide to the MHC I. There are some preferences for certain residues outside of the anchor positions, however, by and large almost any amino acid can fill these positions. This means that MHC I molecules are capable of presenting a broad repertoire of peptides to CD8+ T cells.

A second class of MHC I molecules, the non-classical or MHC Ib molecules, have a role in both innate and adaptive immunity (6). This is a diverse group of molecules, which is varied in function. They share structural similarities with MHC I, often require TAP and beta2M and several are found linked to the MHC loci. Unlike classical MHC I, which is highly polymorphic, these molecules are relatively conserved between individuals. While some of these non-classical MHC I molecules present peptides, many present different classes of antigen to both T cells and innate immune cells, like NK cells. Alternative classes of antigen include lipids presented by CD1 or microbial vitamin metabolites presented by MR-1 (7, 8).

Beta2-microglobin deficiency

Beta2 microglobin (beta2M) is a small molecule that binds the MHC I heavy chain in the ER prior to entry into the PLC and is required for expression of most MHC I on the cell surface (9). To determine the importance of beta2M in antigen presentation, cells and mice deficient in this protein were analyzed.

Beta2M-deficiency causes a pronounced immune phenotype. Examination of beta2Mdeficient cell lines R1E (mouse) and Daudi (human) demonstrated that they are highly deficient in MHC I surface expression. D^b and L^d were exceptions to this beta2M dependence, as they were found at very low levels on the cell surface after transfection(10-12). Although beta2M-deficient mice were viable and otherwise healthy in other aspects (13, 14), beta2M is required for optimal cell surface expression of MHC I molecules, including both classical and non-classical MHC I. The diminished levels of MHC I also affected selection of CD8+ alpha/beta T cells. In beta2M-deficient mice, the percentage of peripheral CD8+ T cells was only 0.2% relative to a typical 11% found in TAP +/- cells (15), reflecting a defect in positive selection(13). Interestingly, the small percentage of CD8 T cells in these mice is sufficient to reject tumors and allogeneic splenocytes in an MHC I-specific manner (16), indicating that a subset of T cells can be selected on the highly restricted pMHC I repertoire available. Beta2M-deficient mice may also have a defect in negative selection, as beta2M-deficient T cells had enhanced responses to self-MHC I complexes.

Overall, these mice are highly deficient in antigen presentation and CD8 T cell responses. They have been an invaluable tool for the study of MHC I antigen presentation and the contribution of CD8+ T cells relative to other immune cells in protection from a variety of different pathogens and tumors.

The effects of MHC I deficiency

Due to their important role in both thymic selection of T cells and mediating peripheral immune responses, it is not surprising that loss of MHC I has severe effects on the CD8+ T cell compartment. Single K^b or D^b-deficient mice were generated and characterized with varying degrees of difference(17). Loss of D^b did not lead to significant reduction in peripheral CD8+ T cells, while Kb-deficient mice had about half as many mature T cells. However, mice lacking both K^b and D^b only had about 10% of both their peripheral and thymic CD8+ T cells (17, 18). Non-classical MHC I molecules, including Qa-1, were not deficient in their expression (17). Qa-1 is notable as it primarily presents the peptide ligand Qdm derived from the signal sequence of some MHC I molecules which is absent in K^bD^b-deficient mice. These double-deficient mice have subsequently been used to study the role of non-classical MHC I molecules in response to various pathogens, including viruses (19, 20).

The generation of antigenic peptides for MHC I

Formation of pMHC I complexes has two major steps: generation of the antigenic peptide and selection and loading of that peptide onto MHC I molecules. In this section, I will discuss the factors involved in the origination of antigenic peptides and the effects of deficiency in these factors on the quality of the pMHC I repertoire and CD8 T cell immunity.

Antigenic Peptide Sources

Peptides presented by MHC I molecules provide the immune system with a cellular status report, allowing for detection of any problems caused by infection or mutation. Antigenic peptides presented on MHC I molecules typically originate from endogenously synthesized cellular proteins. To ensure any detrimental change is detected, it is important that the immune system can sample a diverse set of the components and cellular processes.

Initially it was thought that antigenic peptides resulted as byproducts of normal cellular turnover. In support of that hypothesis, introduction of full-length protein into cells was sufficient for presentation of its known antigenic peptide(21). However, it was observed that peptides from viral proteins were presented faster than would be expected based on the stability of the source protein, which suggested that normal turnover was not the only source of antigenic peptides(22). Furthermore, a considerable fraction of newly synthesized proteins are rapidly

degraded (23, 24). A recent study in which the stability of a protein can be controlled by drug treatment indicated that a higher fraction of short-lived peptides are presented relative to the more stable version. Together, the evidence now suggests that the majority of antigenic peptides come from rapidly degraded sources. This faster rate of sampling allows the immune system to detect infected or transformed cells before they become a problem.

Exactly what conditions determine which proteins are destined to become antigenic peptides is not well understood. However, it is of great interest as these define the set of peptides available for presentation to T cells. Diverse cellular sources of antigenic peptides have been reported. For example, mistakes in mRNA translation, protein folding or truncated proteins can result in presented peptides (25-27). These are broadly referred to as Defective Ribosomal Products, or DRiPs(28). Cryptic sources of antigenic peptides also exist, including the use of alternative reading frames or non-AUG start codons (29, 30). While the exact contribution of each of these remains unclear, it should be appreciated that such diverse sources for antigenic peptides allows the immune system to broadly sample the intracellular state.

The Proteasome/Immunoproteasome is responsible for the breakdown of proteins into antigenic peptide precursors

The multicatalytic proteasome is a large enzymatic complex responsible for degrading cellular proteins. It contains a core catalytic domain consisting of four stacked rings made up of fourteen subunits (alpha1-alpha7 and beta1-beta7). The alpha subunits make up the outer rings and are responsible for regulation of the proteins that enter the inner catalytic core, which is made up of the beta subunits. Three of the subunits (beta1, beta2 and beta5) have defined catalytic activity (31, 32).

The proteasome is responsible for breaking down a majority of cellular proteins targeted for degradation into smaller peptide fragments. Most of these proteins are targeted to the proteasome by ubiquitin side chains (33). The resulting peptides are generally between 3 and 25 amino acids in length (34). While a majority of the peptide fragments generated from these cytoplasmic proteolytic events are destroyed (35) a small percentage are shuttled into the MHC I antigen presentation pathway as antigenic peptide precursors.

Identification of the proteasome as the major enzyme responsible for generating peptides presented by MHC I was demonstrated using chemical inhibitors. Treatment of cells with proteasome inhibitors lead to overall decreases in antigen presentation due to an inability to process the full-length protein, as reflected by the failure of MHC I heavy chain molecules to dimerize with beta2M and to generate the antigenic SIINFEKL epitope from full-length OVA protein (36).

In response to the cytokine IFN- γ , new proteasomal components and regulators are expressed and are preferentially integrated into assembling proteasome complexes, forming the immunoproteasome. These include beta-1i (LMP2), beta-2i (MECL-1) and beta 5i (LMP7). These new subunits increase the rate of processing and change the cleavage preferences of the proteasome (37-40). In this state, the peptide fragments released tend to favor either a hydrophobic or basic residue at the C-terminus (41), which is in line with MHC I binding preferences. Further evidence of the relation of the proteasome to antigen presentation is demonstrated by the fact that two of these subunits, LMP2 (beta-1i) and LMP7 (beta-5i) are found in the MHC II locus (42, 43). Several studies have examined how loss of the

immunoproteasome affects MHC I antigen presentation by examining how loss of each of the immunoproteasome subunits affects MHC I presentation and T cell responses.

Loss of MECL-1 (beta-2i) did not significantly affect MHC I surface expression, however, there were about 20% fewer T cells in the periphery (44). There were no changes in thymic populations. When MECL-1-deficient T cells were tested for their ability to respond to LCMV epitopes, a slight decrease in response to GP276 and NP205 were detected, however, the amount of these peptides generated was not noticeably different from MECL-1 sufficient cells. This indicates that any difference in the response is likely a result of altered T cell development.

LMP2 (beta-1i)-deficient mice were generated almost 20 years ago (45). Using fluorogenic substrates, changes in peptidase activity from lymphoblasts lacking LMP2 were observed. While K^b and D^b surface expression of these mice was not different from WT, 20-50% fewer CD8+ T cells were detected. In addition, decreased CTL responses against an influenza epitope were observed, and there were fewer responding T cells upon influenza virus infection. These altered T cell responses may have reflected changes in thymic selection of CD8+ T cells. However, no differences were seen in responses or antigen immunodominance hierarchies between LMP2-deficient and WT mice upon LCMV infection (46). This suggests that any effects of the single LMP2 KO may be compensated for by other components *in vivo* or may be specific to generation of particular yet untested epitopes.

A similar analysis was performed on LMP7 (beta-5i)-deficient mice which resulted in a stronger phenotype. As seen with LMP2-deficiency, LMP7-deficient proteasomes have altered proteolytic activity and cleavage site preferences (41, 47). Furthermore, LMP7-deficient mice had a 50% decrease in K^b and D^b MHC I surface expression, although normal numbers of B and T cells were reported, and presentation of an endogenous H-Y antigen was affected in these mice (48). Subsequent studies identified broader qualitative changes to endogenous pMHC I in LMP7-deficient cells. T cell lines from LMP7-deficient mice were raised which lysed WT cells, indicating that some WT pMHC I need LMP7 for their presentation (49). Furthermore, Osterloh et al demonstrated that optimal positive selection of OT-I T cells required LMP7(50).

The above single-knockouts of the immunoproteasome subunits MECL-1, LMP2 and LMP7 showed variable effects on antigen presentation. To examine whether some of these results were complicated by compensation from remaining subunits, Kincaid et. al. made triple-mutant mice which lack all three subunits. They observed surface MHC I decreases of about 50%, similar to those seen in LMP7-deficient mice. However, there were decreased responses to both self and viral epitopes by the triple-KO T cells relative to WT or single KO and the changes in endogenous peptides were significant enough to result in rejection of triple-KO cells by WT hosts (51).

Together, the evidence suggests that the proteasome is key in generating antigenic peptide precursors for MHC I antigen presentation. Although several other cytoplasmic proteases have been tested for their ability to generate antigenic peptides, no other enzyme has thus far been discovered that can fully compensate for proteasome function (52), as is discussed below.

The limited role of cytoplasmic proteases in antigen presentation

The proteasome is responsible for general recycling of cellular proteins, and its products vary in length from approximately 7-20 amino acids. Additional cytoplasmic proteases are necessary for further breakdown of proteasome-generated fragments into amino acids. Some studies have suggested that these cytoplasmic proteases can also participate in generating and destroying antigenic peptides, although their overall effect seems to be limited. Individual cytoplasmic proteases and the evidence supporting their involvement in antigen presentation is discussed below.

Tripeptidyl peptidase II (TPPII): TPPII is a large cytoplasmic protease which removes amino acids in groups of three from oligopeptides and may also have some endopeptidase activity (53). It was identified from cells adapted to proteasome inhibitors and it was hypothesized that it might be capable of replacing some functions of the proteasome, including the generation of peptides for MHC I(53). While some studies show TPPII may participate in processing for a subset of peptides, the relative contribution of TPPII to overall antigen presentation remains unclear.

Studies using inhibitors and *in vitro* trimming assays with purified components have found that TPPII can generate individual epitopes (54, 55). At least *in vitro*, TPPII cooperated with LAP to generate one antigenic peptide (56)and generated the C-terminus of another(55), presumably through its endopeptidase activity. In these studies, TPPII favored peptides longer than 16 amino acids. However, results from knockdown of TPPII by siRNA indicated that while it had a role in generating epitopes from long peptides, TPPII is not essential for most antigen presentation (57).

A limited role for TPPII was further supported by *in vivo* studies which examined the effects of TPPII-deficiency on antigen presentation. Cells from TPPII-gene trapped mice, in which TPPII expression was decreased by 90%, were able to elicit similar T cell responses against LCMV epitopes (58). Furthermore, TPPII-knockout mice had slightly increased surface expression of MHC I molecules, suggesting that TPPII may negatively regulate overall antigen presentation. Although the T cell compartment in TPPII-deficient mice has increased cell death(59), CD8+ T cells from these mice responded similarly to LCMV infected cells(60). Together, it seems that, while TPPII can participate in antigen presentation for a subset of antigens, it is not important for most pMHC I and T cell responses.

Thimet Oligopetpidase (TOP): TOP is a cytoplasmic protease that cleaves 3-5 amino acids off the C-terminus of peptides in the cytoplasm (61). This carboxypeptidase activity contributed to the hypothesis that TOP might be responsible for generating some C-termini of antigenic peptides. Indeed, one study suggested that TOP could work in concert with the cytoplasmic metalloprotease nardylisin to release one epitope which does not contain a typical proteasomegenerated C-terminus(62). However, this enzyme is thought to have an overall negative effect on antigen presentation by destroying epitopes (63, 64). Overexpression of TOP led to decreased MHC I surface expression and destruction of the model SIINFEKL epitope(64). These results suggest a limited role for TOP in general antigen presentation and CD8+ T cell immunity. *Bleomycin Hydrolase (BH):* BH is a cytoplasmic aminopeptidase with broad substrate specificity. Purified BH and BH-containing fractions from soluble cell extracts are capable of trimming N-terminally extended precursors of the VSV-NP epitope (65), suggesting BH may participate in generating antigenic peptides. Furthermore, treatment of cells with aminopeptidase inhibitors blocked presentation of this same VSV-NP epitope to T cells. However, as with other cytoplasmic proteases, the overall contribution of BH to antigen presentation appears limited. A subsequent study examining the ability of BH, among other proteases, to generate a final epitope from extended precursors found that the residual proteasome activity was still required for this process.

In human cells expressing a variety of MHC I, siRNA knockdown of BH identified allele-specific differences in which surface expression of some alleles was affected while others were not(66). However, no change in surface expression of K^b and D^b MHC I was seen in BH-deficient mice(67). In addition, there was no difference in the ability of WT or BH-deficient cells to generate the final SIINFEKL peptide from extended epitopes. Although BH alone may not be sufficient to generate epitopes, it may work with other cytoplasmic proteases to do so on some set of antigenic peptides. Future studies should seek to further understand the allele-specific effects of BH on generation of antigenic peptides.

Leucine Aminopeptidase (LAP): Another cytoplasmic aminopeptidase is LAP. An initial report identified LAP from HeLa cell cytoplasmic extracts as an IFN-γ inducible aminopeptidase capable of trimming N-terminally extended model peptides (68). Furthermore, injection of LAP into cells increased the overall trimming of peptides(69). However, when the effects of LAP-deficiency on antigen presentation were examined through *in vitro* siRNA knockdown or in cells from LAP-knockout mice no defects were found(70). To test whether the lack of effect is due to compensation by other cytoplasmic aminopeptidases, BH and LAP mice were crossed together and CTL responses against several known epitopes were examined(67). The only epitope tested that showed a difference was increased relative to WT, suggesting that it is normally destroyed by BH and LAP. It appears that, while LAP has the ability to trim antigenic peptides in vitro, it does not play a significant role in editing the N-termini of antigenic peptides

Puromycin-Sensitive Aminopeptidase (PSA): A third cytoplasmic aminopeptidase with a putative role in antigen trimming is PSA. As with BH, PSA was biochemically isolated from cytoplasmic extracts as a peak of aminopeptidase activity capable of cleaving fluorogenic substrates (65). Purified PSA was also able to trim extended precursors to final products. However, analysis of PSA-deficient mice suggested that, *in vivo*, PSA may actually degrade antigenic peptide precursors rather than generate them, as increased MHC I surface expression was found on dendritic cells(71). In addition, no differences in the overall T cell compartment or responses to viral epitopes were observed. As with BH, there may be some allele-specific effects, as siRNA knockdown caused decreased expression of HLA-A68 but increased expression of HLA-B8 and HLA-B15(66). Again, while it is possible that PSA is required for a small subset of antigens, overall it does not appear to be a major player in the generation of antigenic peptides.

Chaperones: getting the peptides from the cytoplasm to the ER

Proteasomal degradation of proteins results in a large number of peptide fragments, only a small number of which are of suitable length for presentation on MHC I (72, 73). Shortly after the peptides have left the proteasome, most are rapidly degraded into single amino acids for new protein synthesis by cytoplasmic proteases such as TOP (63). For efficient presentation, antigenic peptide precursors must be protected from cytoplasmic degradation and shuttled to the TAP transporter and the MHC I antigen presentation pathway. This section details the roles of cytoplasmic chaperones in protecting peptides and facilitating MHC I antigen presentation.

Heat Shock Protein 90, Heat-shock protein 70 and gp96: HSPs, including HSP90, HSP70 and gp96, which are discussed individually in more detail below, have long been known to associate with a variety of antigenic peptides. HSP90, HSP70 and gp96 may all play a role in antigen presentation by directly binding either the final peptide or peptide precursors(74). A growing body of literature suggests that this association appears to be important for cross-presentation of antigens in addition to endogenous antigen presentation (75-77).

Heat-shock protein-90 (HSP90) is a cytoplasmic chaperone that is abundantly expressed in cells. Antigenic peptides introduced into the cytoplasm in complex with HSP-90 or HSP-70 were more highly presented to specific CTLS (78) than free peptides, linking HSP90 to antigen presentation by suggesting it protects peptides from degradation by binding them. Furthermore, knockdown of the alpha isoform of HSP90 by siRNA resulted in the intracellular loss of a series of C-terminal proteolytic intermediates and decreased presentation of the final pMHC I on the cell surface (79). Treatment of cells with HSP inhibitors, such as geldanamycin and radcicol, reduced overall surface pMHC I levels of H-2^b and H-2^d MHC I by approximately 50% (80) as well as association of HSP90 with N-terminally extended peptide precursors. HSP90a may also indirectly affect peptide generation, as it is may participate in chaperoning the folding of subunits of the 26S proteasome.

As with HSP90, immunization of peptide complexed with HSP70 increased the efficiency of the CTL response than when mice were immunized with peptide alone (81). Immunization of mice with these complexes is also sufficient to break tolerance and induce autoimmunity (82).

In contrast to HSPs 70 and 90, gp96 is an ER-resident chaperone which has been suggested to play an analogous role in shielding antigenic peptides from destruction in the ER. In support of this, gp96 has been shown to be capable of binding to peptides transported by TAP (83). Furthermore, gp96 purified from TAP-deficient cells was unable to prime CTLs, whereas when it was purified gp96 from TAP-sufficient cells was able to do so (84). As with the other HSPs, immunization of mice with gp96 complexed with peptide generated an adjuvant effect, suggesting it is able to protect the antigenic peptides from destruction (Li H, 2005 JI). However, examination of gp96-deficient cell lines found no impact on surface expression of K^b (85).

These chaperones may have redundant functions in protecting antigenic peptides from destruction (75), making the task of identifying the individual contributions of each chaperone difficult. Additional studies examining the effects of loss of some or all of these chaperones in MHC I antigen presentation are needed to clarify their role in endogenous antigen presentation, including whether some sequences are favored over others, as this could be an important

selection step that determines which peptides are available to the MHC I antigen presentation pathway.

Tailless Complex Polypeptide-1 Ring Complex (TRiC): TRiC is a large cytoplasmic chaperone which facilitates peptide folding (86). It also has a secondary but important function to protect antigenic peptide precursors from destruction by cytoplasmic proteases. This protection was established by Kunisawa et. al. who used biochemical methods to identify model proteolytic intermediates bound to TRiC(87). Further supporting a role in antigen presentation, they found that TRiC was essential for optimal HLA surface expression and presentation of endogenous peptides by K^b. Administration of TRiC-peptide complexes was found to stimulate efficient cross-presentation(88), demonstrating the protection of peptides by TRiC in a different way. Future studies should examine whether any sequence specificity exists for TRiC binding of antigenic peptides and clarify the role of TRiC in endogenous antigen presentation.

Loading Antigenic Peptides onto MHC I: The PLC

Cytoplasmic peptide fragments are transported into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP)(89). Upon entering the ER, the peptides encounter the peptide loading complex (PLC) which facilitates optimal peptide loading onto MHC I(90, 91). The PLC consists of TAP, tapasin, calreticulin, the thiol oxidoreductase ERp57, beta2M and the MHC I heavy chain. As the mediator of the final loading step, the PLC determines which peptides make the cut for surface presentation to CD8+ T cells. In this section, I will detail the role that individual PLC components play in MHC I antigen presentation, particularly with respect to determining which peptides are presented.

Chaperones calnexin and calreticulin facilitate MHC I folding

As new MHC I heavy chain molecules are synthesized into the ER, chaperones calnexin and calreticulin bind to them, protect them from misfolding and deliver them to the PLC (89). Both chaperones bind to monoglucosylated N-linked glycans, although not necessarily the same ones (92, 93). Calnexin is reported to bind to the heavy chain right after translocation into the ER, prior to binding of peptide . Calreticulin, on the other hand, was found in complexes with other PLC components (94-96), presumably indicating it chaperones the MHC I during peptide binding. Thus, it seems that these two chaperones have successive, yet distinct, roles in antigen presentation (93, 97). Mice and cell lines deficient in either calnexin or calreticulin have provided insight into the role of these chaperones.

Prior to examination of calnexin-deficient mice, it was found that overexpression of calnexin leads to decreased expression of MHC I, indicating that it retains MHC I molecules in the ER (98). This effect on antigen presentation, coupled with biochemical evidence that calnexin binds the MHC I heavy chain (99)implied an important role in antigen presentation. Surprisingly, examination of calnexin knockout cell lines (100)and calnexin gene-trapped mice (101)indicated that the loss of calnexin does not result in an immune phenotype. There was normal assembly and retention of MHC I molecules in the cell lines (98)and there were no major changes in the CD4/CD8 profiles of these mice in either the spleen or the thymus (101). One

explanation for this discrepancy may be that other chaperones, such as BiP, are able to compensate for calnexin's absence.

Calreticulin, on the other hand, has a stronger link to antigen presentation and peptide selection. Unfortunately, calreticulin-deficient mice are not viable, which has limited the study of the effects of loss of calreticulin on immunity. Broadly, calreticulin has two primary roles: to regulate calcium homeostasis in the ER in and to facilitate folding of glycoproteins. The inability to regulate calcium affects heart development (102), and is embryonic lethal unless the chaperone calcineurin is overexpressed to compensate for its loss (103). As mentioned above, calreticulin is found in the PLC and directly binds to ERp57 and glycans on the MHC I heavy chain (104). Loss of calreticulin leads to decreased surface presentation of MHC I (93). This appeared to be due to a general instability of the calreticulin-deficient MHC I molecules, as they were more rapidly transported from the ER yet were found at decreased levels on the cell surface. When examination of the effects of calreticulin-deficiency on presentation of particular epitopes was examined, epitope-specific effects were identified. B3Z hybridoma cells recognized calreticulin-deficient and sufficient cells equally, although lower SL8/Kb complexes were detected by antibody staining. Furthermore, when two separate CTL clones specific for different MCMV epitopes were tested for the ability to kill calreticulin-sufficient or deficient cells, one killed the calreticulin-sufficient cells better while the other killed both equally, suggesting that some antigens are capable of being presented in the absence of calreticulin. The likely model for calreticulin's contribution is that it maintains a lower threshold for peptide binding, thus facilitating antigen presentation (105).

TAP transports peptides into the ER

Peptides are transported from the cytoplasm into the endoplasmic reticulum by a protein heterodimer called the Transporter Associated with Antigen Processing or TAP. Using different methods, four groups independently identified the TAP genes at about the same time (106-109). Genes for TAP1 and TAP2 are both located in the MHC locus and their expression is rapidly increased in response to IFN- γ treatment(110). When expressed, TAP1 and TAP2 heterodimerize to form an ABC-like transporter. They each have multiple transmembrane domains and a C-terminal ATP-binding domain, characteristic features of an ABC transporter. TAP resides primarily in the ER-membrane and requires ATP hydrolysis to pump peptides from the cytoplasm to the ER lumen (111). The ER-lumen side of the TAP heterodimer is linked to the peptide loading complex (PLC) by tapasin. This association brings the transport of peptides in close proximity to the empty MHC I molecules and stabilizes TAP expression.

Prior to transport, peptides bind to membrane-spanning domains on the cytoplasmic side of both TAP1 and TAP2 (112). Because a large majority of the peptides presented by MHC I require TAP for their transport, the selectivity is an important determinant of what will actually be presented, thus a broad specificity is important. Interestingly, human and mouse TAP transporters have slightly different peptide preferences which correspond with the binding preferences of their respective MHC I molecules. Human TAP translocates peptides with either basic or hydrophobic C-termini more efficiently, and peptide binding is primarily dictated by the three N-terminal and the C-terminal position of the peptide (113, 114). The presence of a proline at the first or second N-terminal position was found to be strongly deleterious for peptide transport by human TAP (113). As with its human analog, mouse TAP favors transport of peptides with hydrophobic C-termini and it does not favor peptides with a proline at positions 13 (114, 115). Furthermore, inefficient peptide translocation could be overcome by the substitution of the proline at position 3 or addition of flanking amino acids (116).

The inability to transport peptides with a proline at the beginning of the sequence, particularly at position 2 (P2), has consequences for several MHC I molecules, such as the murine L^d and human HLA-B07 among others (117). The consensus motif for these MHC I is an X-P-X_n motif, which is not favored by TAP. This means that in order for these epitopes to be presented efficiently, TAP would need to transport an N-terminally extended version that is subsequently trimmed in the ER, likely by ERAAP. This is further discussed below.

Loss of TAP is devastating for surface expression of MHC I molecules. Human cell line 721.134, which lacks the TAP1 gene, had almost undetectable levels of MHC I which could be rescued by transfection of TAP1 cDNA (106, 118). Similarly, TAP2 deficiency in RMA-s cells was rescued by addition of the TAP2 cDNA, supporting the hypothesis that the two molecules form a heterodimer, as they cannot compensate for one another. The decreased surface expression was also found *in vivo*, as TAP1 deficient mice showed striking surface expression loss (119).

While most antigens are absent in TAP-deficient cells, TAP-independent pMHC I do exist. Some antigens derive from signal sequences, which are removed when peptides enter the ER (120). Interestingly, T cell lines specific for endogenous TAP-independent peptides identified CTL lines restricted to K^b, D^b and Qa-1b, suggesting that all MHC I are capable of presenting TAP-independent peptides (121). Furthermore, several endogenous peptides from TAP1-deficient LCL721.174 cells were sequenced by quantitative mass spectrometry and about half came from other sources other than signal sequences, indicating that some antigens use alternative pathways to be presented (122). Notably, these peptides had lower predicted binding affinity than their TAP-sufficient counterparts, again suggesting that these may only be presented when more optimal peptides are missing.

As might be expected, the severe effects seen on the pMHC I also affect CD8+ T cell selection and responses. Although the percentages of DP thymocytes are similar between TAP-deficient and sufficient mice, the percentages of CD8+ T cells in TAP1-deficient mice are decreased 30-40%, suggesting altered positive selection (119). In further support of defects in pMHC I presentation, TAP-deficient APCs require 25-times as many CTLs for lysis.

ERp57 facilitates MHC I folding and tapasin action

Also part of the PLC is ERp57, a member of the protein disulphide isomerase family. It is known to participate in disulfide bond oxidation and isomerization during the folding of newly synthesized glycoproteins through its interactions with calnexin and calreticulin (123, 124). It binds to the MHC I heavy chain and mediates formation of disulfide bonds prior to binding of beta2M and entry into the PLC (125). Upon entry into the PLC, ERp57 interacts with tapasin via a disulfide linkage, forming a stable dimer, for which the crystal structure was recently solved (126, 127). Indeed, a growing body of evidence suggests that many functions of tapasin, including editing and PLC formation, require the presence of ERp57 (128). The crystal structure indicates that tapasin binds both active sites on ERp57, preventing it from mediating disulfide bond formation within the PLC. Therefore, once in the PLC, ERp57 likely acts to recruit and stabilize the empty MHC I and calreticulin rather than as a thioloxidoreductase.

Constitutive ERp57 knock-out mice are not viable, however, Garbi et al generated B-cell specific conditional knock-out cell lines that enabled study of the effects of ERp57-deficiency on antigen presentation (129). Surface expression of K^b was decreased about 50%, and expression

of D^b was down about 20%. These moderate decreases did not fully phenocopy the effects of tapasin-deficiency, in which surface expression is diminished by about 90% relative to WT (130), but they are substantial. Furthermore, both presentation of endogenous antigens to the Des TCR transgenic T cell line and transfected OVA to the B3Z hybridoma were diminished in ERp57-deficient cells (129). Together, this data suggests that, ERp57 may, at least indirectly, be required for the presentation of certain antigens.

Tapasin stabilizes the PLC and edits pMHC I

Tapasin is known to play several key roles in presentation of peptides on MHC I. Through its interactions with TAP, MHC I heavy chain and ERp57 it anchors together the components of the PLC to keep the empty MHC I close to the source of incoming peptides (90, 91, 131, 132). Thus, in many ways, loss of tapasin reflects a loss of the PLC. (91, 126, 127, 132-135). Additionally, tapasin upregulates the peptide transport function of TAP, presumably by stabilizing it (136).

Consistent with these functions, K^b and D^b surface expression in mice is decreased by 90% in the absence of tapasin (Tpn⁰). Similar dependence on tapasin for optimal MHC I expression is seen with some HLA alleles, such as HLA-B4402 and HLA-B3501 when expressed in the tapasin-deficient cell line 720.221. However, expression of other HLA molecules, such as HLA-B2705 and HLA-A0201, is unaffected in the absence of tapasin. This allele variability has been linked to residues in the peptide binding groove of MHC I (137).

To examine the role of tapasin in the PLC, the structure of the ERp57/tapasin heterodimer was solved (126). Tapasin contains two domains: An N-terminal domain with an Ig-like fold fused with a beta-barrel and a C-terminal domain which is also an Ig-like fold. From this structure, a functionally significant interface was identified which is required for surface expression of tapasin-dependent allele HLA-B*4402. This binds the MHC I molecule at the N-terminal segment of helix alpha-2. It has been hypothesized that tapasin functions to stabilize an open conformation of the MHC I molecule, which is supported by molecular modeling studies and the fact that tapasin is found associated most predominantly with an intermediately-folded MHC I molecule (138, 139).

In addition to its role in the PLC, tapasin also edits the pMHC I repertoire through mechanisms that are not yet fully understood. Evidence from the study of several human MHC I molecules (HLA) has indicated that pMHC I in Tpn⁰ cells dissociate more quickly than WT (140, 141). This suggests the presence of an altered, suboptimal set of peptides that are presented when tapasin function is lost. Furthermore, based on molecular modeling, it was reported that tapasin destabilizes peptide binding at the C-terminus to promote dissociation of low-affinity peptides (142). Similar support for changes to the pMHC I repertoire was also found with mouse K^b and D^b. Furthermore, when a series of SIINFEKL mutants with varied C-termini were tested for presentation in the absence of tapasin, it was found that WT cells presented the variant with the highest affinity, whereas Tpn⁰ cells favored a variant with a moderate affinity (143). The precise nature of these pMHC I changes has not yet been described, as peptides from K^b and D^b in their endogenous context have not been sequenced. Further characterization of the effects of tapasin-deficiency on the pMHC I repertoire will better define tapasin's role in peptide presentation.

ER-resident Proteases:

Many antigenic precursors are longer in length than the preferred 8-10 amino acids needed to form stable complexes with MHC I molecules. Furthermore, peptides that have the X-P-X_n motif are not readily transported by TAP, despite it being a common consensus motif used by many MHC I, including L^d. Together, these suggest a need for further trimming of antigenic peptide precursors after entry into the ER. Below, enzymes known to participate in this role are discussed.

ERAAP defines the final pMHC I repertoire

ERAAP is a member of the M1 family of zinc metalloproteases (144). This family is characterized by the exopeptidase-specific GAMEN and the H-E-X-X-H-(X)₁₈-E zinc binding motifs which are part of the catalytic domain. There have been reports that ERAAP has functions outside of antigen processing pathway, such as in shedding of TNF receptors(145) as well as in regulating blood pressure (146, 147). However, ERAAP has been best characterized for its role in trimming N-terminal extensions from antigenic peptides. ERAAP is expressed most highly in cells with active antigen presentation, such as the lungs, liver, spleen and thymus, and its expression is upregulated by IFN-gamma(144).

Two recently published structures of human ERAP1 have provided insight into the mechanism by which peptide substrates are trimmed(148)(Kochan, Krojer et al. 2011). Both structures identify four domains in ERAP1, similar to those found in the structures of related aminopeptidases. The catalytic domain II is responsible for cleaving the N-terminal amino acid of the substrate. Domain I and Domain IV interact to form the substrate binding pocket. Domain III is the smallest of the four and acts as a hinge or lever to open domain IV, allowing it to capture substrates. The substrate binding pocket of ERAP1 is deeper as compared to other aminopeptidases which may account for the long substrates, 9-16 amino acids in length that ERAP1 favors. From the structure, Nguyen et. al. proposed a model for the mechanism by which ERAP1 trims its substrates which are consistent with the independent findings of Kochan, Krojer et al. In the open structure of ERAP1, the residues are disordered and not in close contact. Peptide substrates are 'captured' by ERAP1 in the open conformation, which causes domains I and IV to close around the substrate. The resulting conformational change brings the catalytic residues into an active position and cleaves the N-terminal amino acid from the peptide. The peptide must be released and re-bound in order to remove the next amino acid. Mouse and human ERAAPs are similar (86% amino acid similarity), and it is likely that the mouse version acts in an analogous fashion.

The structure of ERAAP informs its substrate specificity. It is important that ERAAP be able to trim a large range of substrates in order for it to generate the variety of antigenic peptides presented on all types of MHC I molecules. Although the mechanism of ERAAP trimming is not entirely known, reports have indicated that ERAP1 more efficiently trims substrates 9-16 amino acids in length and with a hydrophobic C-terminus(149). Hearn et. al. looked at the N-terminal substrate specificity of ERAAP and found that some residues are favored while others can negatively affect the generation of antigenic epitopes. Using *in vitro* trimming of ER-targeted constructs that have the OVA derived SL8 peptide with a variety of N-terminal amino acids, Hearn et. al. showed that, while many different amino acids were capable of being removed, a Leucine, Methionine or Tyrosine in front of the antigenic peptide released it more quickly than other amino acids. Having a Proline was the least favorable in terms of greater epitope production. Trimming assays with model peptides demonstrated that mutating the

internal residues affected their trimming, indicating that ERAAP has some preferences with regard to the internal sequence of its substrate(150).

Simply trimming peptides is not the whole story of how ERAAP shapes the peptide repertoire. The importance of MHC I molecules in the composition of peptides has been established for several years(5). Browenstein et. al. identified N-terminally extended precursors of the Ova-derived peptide SIINFEKL bound to K^b(151). In living cells, Kanaseki et. al. (152) showed that the type of MHC I available determined which peptide was generated. They used a system in which a single peptide could lead to the generation of either a K^b or a D^b epitope. In the presence of K^b, that epitope was generated, but not the D^b epitope and vice versa. These findings indicate that ERAAP and MHC I molecules synergize to establish the pMHC I repertoire. While these findings point to a model in which ERAAP and the MHC I interact closely, it remains to be determined whether there is a direct interaction between the two.

To test the importance of ERAAP for presentation *in vivo*, ERAAP-deficient (ERAAP KO) mice were generated. The Shastri lab made a targeted deletion in the ERAAP locus in mice in which exons 4-8, those that maintain the enzymatic activity, were deleted(153). When compared to WT mice, ERAAP KO mice have decreased expression of MHC I molecules, but not MHC II molecules. In addition, the pMHC I complexes are less stable in ERAAP KO cells. As had been previously observed using RNAi knock-down of ERAAP expression(144), the levels of some epitopes increase, while others decrease or stay the same. When the pMHC I repertoire of endogenous peptides was examined in these mice, Hammer et. al. identified extensive differences in the peptide repertoire (154). C57BL/6 (B6) T cells respond to altered peptides presented by ERAAP KO APCs on K^b and D^b and vice versa. In addition, the ERAAP KO pMHC I are more unstable, as the optimal peptide repertoire is unable to be generated in the absence of ERAAP.

While classical MHC I presents many novel and unstable peptides, when the WT anti-ERAAP KO T cell response was examined, the dominant response was against a novel peptide, FL9, presented by a non-classical MHC I, Qa-1. This pMHC I complex was not presented in WT cells and was highly immunogenic, dominating the anti-ERAAP KO CD8+ T cell response in B6 mice (155). Immunogenic peptides presented by classical MHC I were not readily detected due to the dominant nature of the non-classical anti-ERAAP KO response. Future studies using alternative mouse strains, such as H-2^d, may provide insight into *the in vivo* effects of ERAAP-deficiency.

Three other groups have independently generated ERAAP-deficient mice, and also examined the ERAAP KO pMHC I repertoire(156-158). Overall, these groups found similar effects on pMHC I expression as was seen by Hammer and colleagues. These groups studied antiviral responses and found that responses varied. York et. al. looked at expression of vaccinia and LCMV epitopes and found that ERAAP-deficiency prevented the generation of some epitopes while others were unaffected. Yan et. al. examined generation of the gp33 epitope in ERAAP KO and WT mice and found that it was increased upon ERAAP-deficiency, indicating that it is an ERAAP-sensitive peptide. Finally, Firat et. al. found no significant change in anti-LCMV CTL hierarchies or compromised *in vivo* anti-viral immunity.

The molecular basis for the pMHC I differences in K^b and D^b due to loss of ERAAP function was determined when peptides from ERAAP KO and WT were sequenced by mass spectrometry. Analysis of unedited peptides from ERAAP-deficient cells revealed peptides with increased length at the N-terminus or middle of the peptide but with a strongly conserved C-terminus(159).

ERAP2 complements ERAP1 in human cells

Humans have an additional ER aminopeptidase, ERAP2 (formerly known as L-RAP), which does not have a murine homolog. However, similar to ERAP1, it is a member of the M1 family of metalloproteases and its expression is induced by IFN-gamma (160). Examination of the substrate specificity of ERAP2 indicated that, distinct from ERAP1, it preferentially cleaves basic residues (160). *In vivo*, ERAP1 and ERAP2 are thought to form heterodimeric complexes with complementary activity, which would allow for efficient trimming of a wider set of substrates (161, 162). These substrate preferences were supported by the ERAP2 crystal structure (163). Future studies should better characterize the effects of ERAP2 deficiency on immunity.

Angiotension Converting Enzyme (ACE) edits the C-terminus

The proteasome is responsible for generating a majority of the antigenic peptide Ctermini, however, there has also been reports that ER-resident carboxypeptidase ACE may participate in trimming the C-termini of antigenic peptides. ACE has a broad expression pattern (164), consistent with its role in many different physiological functions, ranging from vascular biology to kidney function. ACE is also expressed in antigen presenting cells such as dendritic cells and inflammatory macrophages (165-167) suggesting it has an immunological function.

Surface expression of MHC I molecules on DCs, macrophages and whole spleen appears to be affected by changes in ACE expression. If ACE is overexpressed, then there is a slight decrease in MHC I expression, however, in ACE-deficient cells there is a slight increase in K^b and D^b pMHC I surface expression. Using a viral overexpression system, Eisenlohr et. al. had demonstrated that increased ACE can enhance presentation of TAP-dependent endogenous antigens (168). ACE was also shown to have the ability to destroy model epitopes, which is also seen in other antigen presentation editors. There is some evidence that ACE can act as an editor, much like ERAAP does (167). Cross-immunization experiments using ACE-deficient cells elicited T cell responses from ACE-WT mice, suggesting that ACE-deficient cells present a new set of pMHC I.

Current evidence suggests that, while ACE clearly affects presentation of some antigens, it primarily works on products already cleaved by the proteasome rather than whole proteins. Questions remain about the overall contribution of ACE to the peptide repertoire and whether it is part of the PLC, since the current dogma is that the antigenic C-termini are generated by the proteasome.

Altered ER-editing in disease

The importance of expressing a quality pMHC I repertoire is highlighted by the fact that so many pathogens and transformed cells target the antigen presentation machinery to evade the immune system. In doing so, they prevent presentation of non-self peptides and subsequent elimination by CD8+ T cells. Herpes viruses are notorious for targeting antigen processing in order to establish latent infections within cells, and they encode several genes that specifically downregulate antigen presentation machinery. Misregulation of antigen processing can also affect pMHC I presentation causing development of autoimmune disease. Below, I discuss more specifically the targeting of ER-resident peptide editors ERAAP and tapasin in relation to development of disease.

Altered ERAAP processing and disease

As ERAAP is an important editor of pMHC I quality, its down-regulation can prevent expression of some pMHC I, potentially allowing evasion of CD8 responses. To this end, ERAP1 is inhibited by HCMV as part of its immune evasion strategy (169). A microRNA, miR-US4-1, encoded by the virus specifically targets ERAP1, leading to decreased expression and affecting susceptibility to virus-specific CD8+ T cells. In contrast, examination of ERAP1 expression in various non-lymphoid transformed cell lines revealed a heterogeneous expression pattern (170). Although it is not a clear link, it seems that some tumors may find downregulation of ERAP1 advantageous for avoiding detection while others use a different route.

ERAAP has also been associated with autoimmunity, as several recent studies have found associations between variants of the human homolog of mouse ERAAP (ERAP1), particular MHC I molecules and autoimmune disease. A link between polymorphisms in ERAP1 and Ankylosing Spondylitis (AS) is the best established of these (171) (172), although GWAS studies have also suggested a link between psoriasis and ERAP1 SNPs. The genetic link found between ERAP1 and these autoimmune diseases begs the question of whether the disease might result from alterations in the processing of peptides for in affected individuals. It is imperative that we better understand the MHC I allele specific effects of ERAP trimming on the pMHC I repertoire.

Altered tapasin editing and disease.

Tapasin is a target for inhibition by viruses as they seek to avoid CD8+ T cell detection. Human cytomegalovirus blocks both tapasin transcription, through mechanisms that are not yet clear, and tapasin stability via the inhibitor US3 (173, 174). Furthermore, the murine γ 2-Herpesvirus 68 expresses mk3 which leads to ubiquitination and subsequent degradation of tapasin (175), resulting in subsequent downregulation of susceptible MHC I alleles. Finally, loss of tapasin in human cancer, such as squamous cell carcinoma, is associated with a poorer prognosis (176). Because tapasin generally leads to decreases in MHC I presentation, this downregulation presumably prevents immune detection.

Thesis Research:

The MHC I antigen presentation pathway selects for optimal pMHC I in order to enable a robust T cell response. Many cellular factors are involved in the generation of antigenic peptides and the loading of these peptides onto MHC I. Indeed, many potential peptides are generated which never make it to the surface. Many questions still exist regarding how ER-resident editors ERAAP and tapasin shape the peptide repertoire. How do they work together? Do they have over-lapping or distinct functions? As allele-specific differences in surface expression of MHC I have been demonstrated upon deficiency of either editor, do further differences exist when surface expression is the same? The following studies seek to examine these questions.

Antigen Presentation Factor Lost		MHC I Surface expression	MHC I Peptide Presentation	CTL Responses	CTL Selection
MHC I	₹ ⁶	No K ^b expression. D ^b and nonclassical MHC I show no deficiency	Presentation normal for all but K ^b ?		30-50% reduction of T cell compartment
	D	No D ^b expression. K ^b and nonclassical MHC I show no deficiency	Presentation normal for all but D ^b ?	Development of a K ^b -restricted anti- LCMV CTL response upon infection	10-20% reduction of T cell compartment
	К ^р D _р	No K ^b or D ^b expression. Nonclassical MHC I show no deficiency	Primarily presentation by non-classical MHC I	CTLs do not respond to allogeneic MHC Ia expressing APCs unless primed first	90% reduction of T cell compartment
beta2M		no detectable MHC I expression (except verv low D ^b and L ^d)	Peptide-free MHC I heavy chains?	CTLs from beta2M- deficient hosts can reject tumors and allogeneic cells after priming	98% reduction of CD8 Tcell compartment. Selection mediated by low levels of fre heavy chains?
Proteasome/ Immunoproteasome	MECL-1 (beta-2i)	no defect	normal amouts of model peptides generated from MECL-1 deficient cells	Slight decrease in response to some LCMV epitopes	20% fewer T cells in peripher (normal thymus compartmen
	LMP2 (beta-1i)	no defect	altered peptidase activity affects generation of model epitopes	decreased responses against one model influenza epitope but not against LCMV epitopes	20-50% reduction in CD8 T cells
	LMP7 (beta-5i)	50% reduction in K ^b and D ^b surface expression	decreased presentation of endogenous H-Y epitope and altered presentation of endogenous antigens	CTL lines from LMP7-deficient cells capable of lysing WT APCs	normal numbers of CD8 T cel
	MECL-1/LMP- 2/LMP-7 Triple knockout	50% reduction in K ^b and D ^b surface expression	altered presentation of endogenous antigens	decreased responses against self and viral epitopes	50% reduction in CD8+ T cel

Table 1: Summary of deficiencies in antigen presentation factors

Г

			Cytoplasmic proteases	Antigen Presentation Factor Lost
PSA	LAP	ВН	ТОР	
allele-specific effects of siRNA knockdown on various HLAs	Normal	No change with siRNA knockdown	TPPII downregulation causes increased MHC Ia and TPPII overexpression decreases Kb and Db surface levels. TOP overexpression decreases MHC I surface levels	MHC I Surface expression
Can trim model epitopes <i>in vitro</i> . Deficient mice show no change in response to viral epitopes	Can trim model eptiopes in vitro. Presentation appears normal	Can trim model VSV epitope <i>in vitro</i> . Cells with siRNA knockdown fully able to generate SIINFEKL epitopes	Reported to participate in generation of some model epitopes. No changes in viral epitope generation in gene- trapped mice Reported to distroy model SIINFEKL epitopes but also participate with nardilysin to generate other epitopes	MHC I Peptide Presentation
No difference in T cell responses to viral epitopes	?	Towne et al tested 8 epitopes and saw a slight increase in response against one of them.	similar responses to LCMV infected cells.	CTL Responses
No defect	ر	No defect?	··J ··J	CTL Selection

Table 1: Summary of deficiencies in antigen presentation factors

			PLC	Cytoplasmic Chaperone	Antigen Presentation Factor Lost
ERp57	ТАР	Calreticulin	Calnexin	HSPs	
K ^b decreased 50% and D ^b 20% in ERp57- deficient B cells	no detectable MHC Ia	Calreticulin-deficiency decreases MHC I surface expression	overexpression decreases MHC I surface expression	Cells treated with HSP inhibitors have a 50% decrease in surface expression of H-2b and H-2d MHC I. Gp96-deficient cell lines have normal Kb expression. TRiC expression is requried for optimal HLA surface expression	MHC I Surface expression
diminished presentation of endogenous and transfected antigens	lower affinitly peptides - some derived from signal sequences	Decreased K ^b /SL8 complexes relative to WT cells via antibody staining but B3Z hybridomas see no difference. MCMV epitopes show epitope- dependent response	Ś	siRNA knockdown of HSP90 decreases expression of model antigens Necessary for optimal presentation of endogenous peptides by K ^b	MHC I Peptide Presentation
?	25x more APCs required for Cr51 lysis (see Van Kaer 1992 cell)	ć	Ś	چ ج	CTL Responses
2	>90% reduction of T cell compartment	.~J	Knockout mice show no defect in selection)	CTL Selection

 Table 1: Summary of deficiencies in antigen presentation factors

																				Antigen Presentation Factor Lost	
ACE				1	ERAAP/ERAP							Tapasin									
surface expression	decreases Kb and Db	overexpression		decreased 20-30%	Kb and Db both							expression.	optimal surface	dependence for	of tapasin	alleles show a range	by 90%. Various HLA	expression decreased	Both K ^b and D ^b	expression	MHC I Surface
model epitope <i>in vitro</i>	repertoire. Distroyed	endogenous peptide	altered, unstable	complex	immunogenic FL9/Qa-1	repertoire including	endogenous peptide	altered, unstable				more unstable	lower affinity and be	alleles tend to have a	tapasin-dependent	Peptides presented by				Presentation	MHC I Peptide
to pMHC I	ACE CTLs respond			pMHC I	some WT K ^b and D ^b	CTLs respond to	complexes. ERAAP	FL9/Qa-1	responses against	ERAAP CTL	Endogenous anti-	viral epitopes.	cells expressing	responses against	Decreased CTL					CTL Responses	
No defect in CD8 compartment?				No defect in CD8 compartment								compartment	\sim 90% reduction in T cell							CTL Selection	

 Table 1: Summary of deficiencies in antigen presentation factors

Chapter 2: Tapasin is a C-terminal editor of antigenic peptides.

Summary:

Tapasin is the central factor in the PLC and is believed to play a key role in maintaining PLC integrity and optimal antigen presentation. Loss of tapasin in B6 mice leads to severely decreased levels of surface expression of K^b and D^b MHC I, (130, 177). Non-classical MHC Ib molecules Qa-1 and Qa-2 are also affected (178). In addition to these quantitative changes, qualitative changes have also been observed for some MHC I molecules (179), including presentation of suboptimal pMHC I, suggesting that tapasin may also have a peptide editing function (91, 134, 137, 140, 143, 177, 180). The goal of these studies is to better characterize how pMHC I editing by tapasin affects presentation of endogenous pMHC I. Using immunological approaches, we found that tapasin-deficiency causes qualitative changes in the pMHC I repertoire, including loss of some pMHC I found on WT cells as well as presentation of new pMHC I. These studies were done in close collaboration with Takayuki Kanaseki when he was a postdoctoral fellow in the Shastri lab.

ERAAP-deficiency has also been shown to cause pMHC I losses and gains. How ERAAP edits peptides and whether editing requires interaction with the PLC is not known. Because tapasin is required to maintain the PLC, we reasoned that the peptide editing events in the PLC might be evident in cells lacking tapasin and ERAAP. Using immunological assays, we found that tapasin-unedited pMHC I were distinct from ERAAP-unedited pMHC I. Thus, we conclude that tapasin and ERAAP shape the pMHC I repertoire in different ways.

Results:

Loss of antigenic peptide editors decreases surface pMHC I presentation

Perturbation of MHC I antigen processing pathway components is often manifested as altered surface expression. For example, loss of peptide supply due to TAP1 or TAP2-deficiency results in severe surface expression decreases and limited T cell selection. In tapasin-deficient mice (Tpn^{0}) , the expression of K^b and D^b pMHC I are decreased by about 90% of WT (130) while the effects of ERAAP-deficiency (ERAAP⁰) is less severe, with K^b and D^b surface expression reproducibly diminished by 20-30% (154). Our own examination of surface expression of K^b and D^b from Tpn⁰ and ERAAP⁰ mice replicated these findings. To examine the effects of loss of both ERAAP and tapasin on pMHC I expression, splenocytes from doubledeficient mice (ERAAP⁰Tpn⁰) were stained with MHC I anti-K^b and anti-D^b antibodies or control MHC II anti-A^b antibody and analyzed by flow cytometry. These results were compared with wild-type (WT), which has normal surface expression, or ERAAP, tapasin and TAP single knockouts to better estimate the general effects of deficiency (Fig 1a-c). Interestingly, ERAAP⁰Tpn⁰ K^b and D^b expression was slightly below Tpn⁰ but was above TAP⁰. Therefore, it appears that loss of both tapasin and ERAAP lead to separate and independent decreases in pMHC I expression. Whether these decreases are a result of pMHC I instability due to the inability to select quality peptides or whether there is overall decreased trafficking to the cell surface remains to be determined.

Figure 1: Tapasin and ERAAP differentially affect surface pMHC I expression. (a-c) Surface expression of (a) H-2D^b, (b) H-2K^b and (c) H-2A^b expression on spleen cells derived from WT, ERAAP⁰, Tpn⁰, ERAAP⁰Tpn⁰, TAP⁰, K^bD^b dKO mice. Bar graphs summarize the mean fluorescence intensity (MFI). Top panels show representative data and bottom panels show combined data from 3 independent experiments.

Thymic development in ERAAP and tapasin double-deficient cells is phenotypically similar to tapasin-deficient cells

As pMHC I complexes play an important role in T cell selection, altered expression also affects T cell development. For example, in beta2M deficient mice, in which no significant expression of MHC I can be detected, the CD8+ cells are absent from both the thymus and the periphery. To examine the effects of deficiency in both tapasin and ERAAP on CD8 T cell development, we examined the frequency of CD8 single-positive (SP) T cells from ERAAP⁰Tpn⁰ double-deficient mice relative to single tapasin or ERAAP-deficient or WT mice (**Fig 2a-b**). As was previously reported, loss of ERAAP alone did not affect the percentage of SP CD8+ T cells (153). However loss of tapasin (130) or both tapasin and ERAAP led to similar, striking decreases in percentages of SP CD8+ T cells. Similar trends were observed in the spleen. It is important to note the presence of a small population of T cells in ERAAP⁰Tpn⁰ mice. Even with severely diminished MHC I expression, there is still sufficient pMHC I to mediate positive selection. The exact nature of the selecting pMHC I, and whether it overlaps with the tapasin-deficient pMHC I, should be further explored.

ERAAP and tapasin differentially influence generation of endogenous pMHC I

Previous studies characterized the effect of ERAAP-deficiency on generation of specific pMHC I and found that in the absence of ERAAP, some pMHC I are enhanced while others are diminished. As we were interested in testing whether ERAAP and tapasin have a shared editing role, we wanted to examine whether tapasin-deficient cells expressed similar types of losses and gains of the same pMHC I.

To assess the influence of ERAAP and tapasin on the generation of specific peptides bound to MHC I, we measured the presentation of a panel of endogenously processed peptides on the surface of spleen cells from wild-type B6, Tpn⁰, ERAAP⁰ or ERAAP⁰Tpn⁰ mice (**Fig 3**). As expected, ERAAP-deficient APCs failed to stimulate the 11P9Z and LPAZ hybridomas, while presentation of pMHC I to the 30NXZ, 1AZ and BEko8Z hybridomas was enhanced. In contrast, hybridoma responses against Tpn⁰ splenocytes were diminished for all pMHC I ligands tested, suggesting that tapasin is required for presentation of these pMHC I.

To examine the effects of ERAAP⁰Tpn⁰ double-deficiency on generation of these pMHC I, ERAAP⁰Tpn⁰ APCs were tested using the same set of hybridomas. Consistent with the strong surface down-regulation seen in the double-deficient splenocytes (**Fig 1**), ERAAP⁰Tpn⁰ APCs showed a striking overall decrease similar in magnitude to Tpn⁰. Upon closer examination, however, ERAAP⁰Tpn⁰ APCs stimulated slightly higher responses in 30NXZ and slightly lower responses in LPAZ relative to Tpn⁰, showing a similar pattern as is seen with ERAAP⁰ relative to WT but on a different scale (**Fig 3**). These results highlight the importance of tapasin for presentation of many endogenous pMHC I and suggest that tapasin and ERAAP may differentially affect pMHC I.

Figure 2. Development of T cell subsets in tapasin-deficient and ERAAP-tapasin doubledeficient mouse strains. (a) Thymus and (b) Spleen from C57BL/6 (WT), ERAAP-deficient (ERAAP⁰), tapasin-deficient (Tpn⁰) or ERAAP and tapasin-double deficient (ERAAP⁰Tpn⁰) were harvested. A single cell suspension was stained with anti-mouse CD4 and CD8. Data are representative of two independent experiments.

Figure 3. Tapasin and ERAAP differentially affect presentation of endogenous pMHC I by spleen cells.

Splenocytes from indicated male mice were stimulated with 200ng/ml LPS overnight prior to incubation with CD8⁺ T cell hybridomas 27.5Z, LPAZ, 11P9Z, 1AZ, 30NXZ, or BEko8Z. Hybridomas specifically recognize peptides encoded by the indicated genes and presented on H-2D^b, H-2K^b, or Qa-1^b. Hybridoma response is determined by assessing conversion of the colorometric substrate CPRG to chlorophenol red measured at absorbance at 595 nm (A595). Data is representatives of three independent experiments.

Tapasin-deficient T cells respond to WT pMHC I

To further define the changes that occurred in pMHC I repertoire of tapasin-deficient mice, we took advantage of the immune systems' ability to detect differences between self- and non-self. If some WT pMHC I were not expressed in tapasin-deficient mice, then the Tpn⁰ T cells would not encounter them during selection, and would therefore not be tolerant to the missing pMHC I. Immunization of tapasin KO mice with WT APCs would then result in the recognition of these missing pMHC I as foreign. In contrast, if there is simply a quantitative decrease in all pMHC I without the qualitative loss, then Tpn⁰ T cells would be tolerant to all WT pMHC I as are normal self pMHC I.

To test for a qualitative loss of WT pMHC I in tapasin-deficient mice, Tpn^0 mice were immunized with wild-type spleen cells expressing the normally diverse pMHC I repertoire. For all immunizations, female mice were injected with male cells as they express H-Y antigens that can provide T cell 'help' to enhance CD8+ T cell responses. After ten days, splenocytes from recipient mice were restimulated for a week with WT spleen cells. The cultures were then analyzed for presence of CD8⁺ T cells that produced IFN- γ in response to the indicated APCs. The Tpn⁰ anti-WT CD8⁺ T cells responded strongly to WT APCs but not to self APCs, suggesting that tapasin-deficiency did cause a selective loss of pMHC I(**Fig 4a-b**). As with a majority of peptides that bind MHC I, TAP is required for presentation, as TAP⁰ APCs do not stimulate the Tpn⁰ anti-WT T cells (**Fig 4b**).

To evaluate which MHC presented the tapasin-dependent peptides, we used spleen cells from K^b and D^b (K^bD^b dKO) double-deficient mice as APCs. The Tpn⁰ anti-WT T cells did not respond to K^bD^b dko spleen cells indicating that tapasin-dependent peptides were primarily presented by the K^b and D^b MHC I in WT cells, rather than non-classical MHC I molecules (**Fig 4b**). To further define the MHC I molecules presenting the immunogenic peptides, we used anti-K^b or anti-D^b blocking antibodies prior to incubation of APCs with Tpn⁰ anti-WT T cells (**Fig 4c**). Of the three T cell lines tested, IFN- γ responses were decreased with K^b blocking and in one line with D^b blocking as well, indicating that immunogenic pMHC I were presented by either K^b or D^b MHC I.

WT T cells respond to novel pMHC I presented by tapasin-deficient cells

In addition to the qualitative loss of peptides from Tpn^0 cells, we hypothesized that if tapasin edits MHC I peptides then the loss of tapasin would result in presentation of new peptides. To test whether Tpn^0 cells present novel pMHC I, we immunized WT mice with Tpn^0 cells. The recipient T cells were restimulated *in vitro* as above and analyzed for responses to WT or Tpn^0 APCs. WT anti- Tpn^0 T cells produced IFN- γ in response to Tpn^0 , but not to WT APCs, indicating presence of unedited pMHC I in Tpn^0 cells (**Fig 5a-b**). Tapasin expression appears to affect TAP stability and could thus influence peptide transport into the ER(136) Therefore, it was possible that the novel peptides presented in the absence of tapasin could be due to a TAP deficiency (121, 181).

Figure 4. Tapasin-deficient mice respond to pMHC I expressed by WT cells.

(a) Intracellular IFN- γ produced by Tpn⁰ anti-WT CD8⁺ T cell lines in response to WT or Tpn⁰ APCs. Numbers indicate percent IFN- γ positive cells of total CD8⁺ T cells. (b) Tpn⁰ anti-WT CD8⁺ T cell IFN- γ + response against WT, Tpn⁰, TAP⁰ or K^b and D^b double-deficient (K^bD^b dKO) APCs. Each point represents an individual mouse. (c) Tpn⁰ anti-WT CD8⁺ T cell responses towards WT APCs previously treated with blocking antibodies to MHC I H-2K^b (α -K^b) or H-2D^b (α -D^b) or to MHC II H-2A^b (α -A^b). Percentages of CD8⁺ IFN- γ ⁺ cells were normalized to no antibody control. Data are from one of two independent experiments (a and c) or pooled from two independent experiments (b).

Figure 5. Tapasin-deficient cells elicit CD8⁺ T cell responses in wild-type mice.

(a) IFN- γ response of WT anti-Tpn⁰ CD8⁺ T cell lines against WT or Tpn⁰ APCs. Numbers indicate percent IFN- γ positive cells of total CD8⁺ T cells. (b) WT anti-Tpn⁰ CD8⁺ T cell responses against WT, Tpn⁰ or TAP⁰ APCs. Each point represents an individual mouse. (c) WT anti-Tpn⁰ CD8⁺ T cell responses against WT APCs previously treated with blocking antibodies to MHC I K^b (α -K^b) or D^b (α -D^b) or to MHC II A^b (α -A^b). Percentages of CD8⁺IFN- γ ⁺ cells were normalized to no antibody control (No Ab).

However, when we used TAP⁰ cells as APCs, WT anti-Tpn⁰ T cells did not produce IFN- γ (**Fig 5b**), indicating that peptide transport is required for presentation of these pMHC I and that this presentation is not a consequence of TAP-deficiency. Furthermore, while blocking the A^b MHC class II molecule or the K^b MHC I molecule did not inhibit IFN- γ production in any of the five lines tested, blocking with the anti-D^b antibody inhibited T cell responses more effectively than blocking with anti-K^b (**Fig 5c**). The possible contribution of CD8⁺ T cells restricted by other non-classical MHC I to the overall CD8⁺ T cell response is presently unclear. Alternatively, some ligands may represent novel pMHC I conformations that are not recognized by conventional anti-MHC I antibodies. Together, these results show that loss of tapasin not only caused a profound loss of pMHC I, it also allowed generation of new and immunologically distinct pMHC I.

Distinct ligands are used in vivo for rejection of tapasin or ERAAP-deficient cells.

Identification of pMHC I losses and gains in tapasin-deficient cells echoes the unedited pMHC I repertoire found in ERAAP-deficient cells and suggests that the function of these two editors could be linked. For example, ERAAP's role in trimming peptides for MHC I molecules could be more effective if it interacted with the PLC, thus providing access to incoming peptides and empty MHC I. If such an interaction exists, then we hypothesized that some ERAAP-unedited peptides might also be presented by Tpn⁰ cells.

To rigorously determine whether there is an immunological distinction between tapasin or ERAAP-dependent ligands, we assessed the ability of WT mice to eliminate ERAAP⁰ or Tpn⁰ target cells *in vivo* (**Fig 6**). We primed WT mice with splenocytes from ERAAP⁰, Tpn⁰ or WT mice as a negative control. Seven days later, the mice were challenged with a cell mixture containing an equal number of WT, ERAAP⁰ and Tpn⁰ spleen cells as targets (**Fig 6b**). We depleted NK cells in host mice prior to immunization and challenge to obviate the possible effect of these cells in targeting Tpn⁰ or ERAAP⁰ cells with lower MHC I expression (177) (182). To distinguish the three populations of donor cells recovered from host animals *in vivo*, each target cell population was labeled with a different fluorescent dye as shown schematically (**Fig 6a**). After 20 hours, spleens from host WT mice were analyzed for the presence of each labeled cell population (**Fig 6b, OUTPUT**). A decrease in the percentage of cells recovered relative to the WT (self) targets indicates elimination of individual populations by the immune system of WT hosts.

Mice primed with ERAAP⁰ cells efficiently eliminated ERAAP⁰ targets, but did not influence the recovery of tapasin-deficient or self-WT cells (**Fig 6c**). In contrast, WT mice primed with Tpn⁰ splenocytes eliminated Tpn⁰ targets but not ERAAP⁰ or WT targets. Finally, there was no specific loss of any of these target cells in mice primed with self-WT cells. Furthermore, the requirement for prior immunization for the *in vivo* elimination of ERAAP⁰ or Tpn⁰ targets suggests that these responses are mediated by the adaptive immune system. The *in vitro* and *in vivo* assessment of WT anti-Tpn⁰ and WT-anti ERAAP⁰ T cell lines demonstrates that the unedited peptide repertoires in cells deficient in ERAAP versus tapasin were distinct without any detectable overlap.

Figure 6. Different ligands are used for rejection of tapasin- or ERAAP-deficient cells by WT mice *in vivo*.

T cells from WT mice primed seven days earlier with male WT, Tpn^0 or ERAAP⁰ splenocytes were assessed for their ability to specifically eliminate WT, Tpn^0 or ERAAP⁰ female targets *in vivo*. Targets were given distinct labels so they could be compared in the same host mouse: WT = CFSE (high-dose; green); $Tpn^0 = CFSE$ (low-dose; blue); ERAAP⁰ = CMAC (red). (a) Schematic indicating the populations which represent ERAAP⁰, Tpn^0 and WT (b) Representative FACS plots of labeled targets before (input) and after (output) challenge. Input refers to proportion of each labeled cell type prior to challenge while output refers to the labeled populations identified 20 hours post-transfer (c) Summary of *in vivo* killing assay from b. Negative loss (gain) is plotted as zero. Data are representative of two independent experiments (b) or are pooled from two independent experiments (c).

Discussion:

The set of peptides presented by MHC I molecules in WT cells is incredibly diverse, such that a wide variety of self and foreign peptides are presented. However, there are certain key features, such as a length of 8-10 amino acids and the presence of conserved anchor residues, shared by almost all MHC I-bound peptides. Editing of the pMHC I by the PLC is crucial to ensure that only the most stable pMHC I reach the surface and are capable of triggering CD8⁺ T cell responses. However, the mechanisms by which the PLC selects stable, high-affinity peptides for presentation on MHC I are not fully understood. Peptide editing by ERAAP is important for generating high-quality pMHC I (154). In its absence, many WT pMHC I are lost while new, unstable pMHC I are expressed. Using T cell lines specific for differences in pMHC I between Tpn⁰ and WT, we determined that Tpn⁰ cells have pMHC I losses and gains analogous to those seen in ERAAP⁰ cells, suggesting that tapasin is also a key editor of pMHC I.

In this study, we also established that ERAAP and tapasin are distinct peptide editors required for generation of the optimal pMHC I repertoire. Given that the lack of pMHC I editing is reflected in the repertoire of self-peptides presented, we compared the pMHC I of ERAAP⁰ with Tpn⁰ to determine whether there were any similarities which would indicate overlapping editing functions. However, we found that the new pMHC I from Tpn⁰ were immunologically distinct from ERAAP⁰ peptides. WT T cells specific for either ERAAP⁰ or Tpn⁰ were highly specific and do not cross-react. Together, these results strongly indicate that loss of tapasin or ERAAP editing causes immunologically distinct changes to endogenous pMHC I that echo their role in peptide editing.

Chapter 3: Mass Spectrometry of the Tapasin-deficient Peptide Repertoire

Summary:

MHC I molecules present a diverse set of peptides derived from endogenous proteins to CD8+ T cells to allow for surveillance of the intracellular state of the cell. The nature of antigenic peptides, including length and sequence requirements, was identified by sequencing peptides from several different mouse and human MHC I molecules using mass spectrometry (183). The peptide editing mechanisms that define these motifs are not yet entirely clear, however, peptide selection by tapasin and the PLC is likely be key in this process.

The use of mass spectrometry to identify peptides has been extended from characterization of the normal repertoire to the elucidation of the changes in pMHC I upon defects in the antigen processing pathway (51, 159). The cross-immunization experiments discussed in chapter 2 indicated that tapasin-deficient cells express new pMHC I not found on WT cells. In this chapter, I discuss the use of mass spectrometry to characterize the molecular nature of these differences and what they tell us about how tapasin shapes the pMHC I repertoire.

Mass spectrometry analysis of the tapasin-deficient peptide repertoire revealed several differences from WT peptides. First, there was an overall increase in peptide length and a decrease in binding affinity for K^b and D^b peptides eluted from tapasin-deficient cells. Strikingly, the changes were often found at the peptide C-terminus (P Ω). These findings highlight an important role for tapasin in ensuring that peptides containing compatible P Ω residue are presented.

Results:

Tapasin-deficient cells present peptides lacking canonical consensus motif

To define the tapasin-dependent changes in the peptide repertoire, we isolated K^b and D^b pMHC I from WT as well as Tpn⁰ splenocytes, eluted the bound peptides and determined their amino acid sequences by tandem mass spectrometry. From WT cells, we identified 210 and 163 peptides bound to D^b and K^b respectively. In contrast, the lower pMHC I expression in tapasin-deficient cells allowed recovery of fewer peptides; 63 and 22 peptides bound to D^b and K^b respectively. We did not find any obvious differences in the intracellular localization of the source proteins for these peptides (**Fig 9**). Many peptides in Tpn⁰-deficient splenocytes were also found in WT mice (**Fig 7a; Fig 8a; Table 2-3**).

Remarkably, comparison of the unique peptides in Tpn⁰ cells with their WT counterparts revealed significant differences. First, peptides in Tpn⁰ cells were markedly longer than those in WT cells (**Fig 7b; Fig 8b**). Second, the canonical asparagine (N) residue at the p5 position of D^b bound peptides was virtually absent

Figure 7. D^b MHC I in WT and tapasin-deficient cells present unique peptides.

The H-2D^b MHC I were immunoprecipitated from WT and Tpn-deficient spleen cells. Eluted peptides were sequenced by mass spectrometry and manually validated. (a) Numbers of distinct or shared peptides found in pMHC I expressed by WT or Tpn-deficient cells. (b-d) Analysis of the unique peptides from WT and tapasin-deficient cells. (b) The average lengths of peptides recovered from WT or Tpn-deficient cells. The indicated p-value was calculated by two-tailed t-test. (c) Conservation of p5 and C-terminal anchor residues (P Ω). Plots represent frequency of Asn (N) at P4-6 or the frequency of indicated amino acids at P Ω of H-2D^b peptides. (d) Logo representation of H-2D^b peptides eluted from WT or Tpn-deficient cells. Peptides are grouped according to their lengths, and the numbers of peptides in each group is indicated. The height of each letter composing the column is proportional to its frequency at the given position. Amino acids are colored as follows: hydrophobic (black), aromatic (purple), acidic (red), basic (blue), neutral (green).

Figure 8. K^b MHC I in WT and tapasin-deficient cells present unique peptides.

The H-2K^b MHC I were immunoprecipitated from WT and Tpn-deficient spleen cells. Eluted peptides were sequenced by mass spectrometry and manually validated. (a) Numbers of distinct or shared peptides found in pMHC I expressed by WT or Tpn-deficient cells. (b-d) Analysis of the unique peptides from WT and tapasin-deficient cells. (b) The average lengths of peptides recovered from WT or Tpn-deficient cells. The indicated p-value was calculated by two-tailed t-test. (c) Conservation of p5 and C-terminal anchor residues (P Ω). Plots represent frequency of Phe or Tyr (F or Y) at P4-6 or the frequency of indicated amino acids at P Ω of H-2K^b peptides. (d) Logo representation of H-2K^b peptides eluted from WT or Tpn-deficient cells. Peptides are grouped according to their lengths, and the numbers of peptides in each group is indicated. The height of each bar is proportional to the frequency of amino acid conservation and the height of each letter composing the column is proportional to its frequency at the given position. Amino acids are colored as follows: hydrophobic (black), aromatic (purple), acidic (red), basic (blue), neutral (green)

Figure 9: Comparison of the source of Tpn⁰ and WT peptides shows no

significant differences. Each slice of the pie chart represents the percentage of peptide source-proteins from a given cellular location as determined using GO terms. Both peptides shared between Tpn^0 and WT and unique peptides are included in each chart. Only peptides that were assigned a cellular location were included.

in peptides produced in absence of tapasin (**Fig 7c**). A loss of the conserved phenylalanine or tyrosine residues (F/Y) at the p5 anchor position was less obvious in peptides bound to K^{b} (**Fig 8c**).

The most striking difference in the amino acid sequences was found in the C-terminal (P Ω) position of K^b and D^b peptides eluted from Tpn⁰ samples. Typically, the C-terminal position is occupied by an aliphatic amino acid; Met (M), Ile (I), Leu (L) or Val (V), as seen in peptides found in WT cells (**Fig 7c; Fig 8c**). However, in the Tpn⁰ samples, a higher frequency of abnormal amino acids was identified at P Ω . These included Lysine (K), Ser (S), Asn (N), Pro (P) and Ala (A) for D^b (**Fig 7c**) and Thr (T) and Pro (P) for K^b (**Fig 8c**). In contrast, the ability to choose the appropriate C-terminal amino acid - a key determinant of pMHC I stability - was lost in the absence of tapasin. These changes are easily visualized using Weblogo software (**Fig 7d; Fig 8d**). The size of each letter is proportional to the frequency with which it is found at a particular position. While WT peptides contain the consensus P5 and P Ω residues, Tpn⁰ peptides are missing these residues, particularly at the C-terminus. Thus, in contrast to the striking influence of ERAAP on the N-termini, tapasin primarily influenced the C-termini peptides presented by MHC I.

Peptides unique to tapasin-deficient cells form less stable pMHC I

The MHC I binding characteristics of a few representative peptides (**Table 4; Fig 10**) were verified by assessing their ability to stabilize D^b or K^b on the surface of TAP-deficient RMA/s cells. The set of peptides chosen included those with and without canonical lengths and anchor residues. Peptides at various concentrations were incubated with the TAP-deficient cell line RMA/s which had been left at room temperature overnight to enable surface expression of empty MHC I molecules. Peptides that can bind exogenously stabilize the MHC I molecules on the surface, allowing for detection by flow cytometry, while peptides that are unable to bind do not. Each peptide tested bound to its respective MHC I, although the binding was lower than the canonical K^b (LYL8) and D^b (WI9) binding peptides (**Fig 10**). Interestingly, even the peptides that contained both anchor residues, such as FSPLNPVRV (D^b) and SLNRFIPL (K^b), were suboptimal binders of MHC I. To examine this in a different way, the duration by which the peptides were able to stabilize MHC I on the surface was analyzed. Similar to the stability assay, the decay was faster for the Tpn⁰ peptides than for the control LYL8 and WI9 peptides.

Figure 10. Peptides from tapasin-deficient cells form less stable pMHC I on the surface and decay faster.

(a). Stabilization of H-2D^b MHC I with Tpn⁰ peptides. RMA/s cells, incubated overnight to stabilize empty pMHC I on the surface, were incubated with indicated Tpn⁰ peptides (top of each graph) or control LTFNYRNL (LYL8, K^b-binding) or WMHHNMDLI (WI9, D^b-binding) peptides for 1 hour at 22°C followed by incubation at 37°C for 3 hours prior to analysis by flow cytometry. (b) Decay of H-2D^b surface expression. RMA/s cells were pulsed with 20 μ M peptide prior to treatment with brefeldin A (BfA). Recovery time represents time at 37°C after Bfa treatment and prior to staining for H-2D^b. MFI for each sample is normalized to 0hr recovery time. (c) Stability of K^b peptides performed as in (a). (d) Decay of K^b peptides as in (b). Data are representative of three independent experiments (a and c) or contain pooled data from at least three independent experiments (b and d).

Discussion

Mass spectrometry analysis of ERAAP⁰ and Tpn⁰ peptides provided a molecular explanation for the immunogenic differences seen in their unedited pMHC I repertoires. In the absence of tapasin, the most distinct changes were found at the C-terminus where non-canonical amino acids at P Ω were much more frequent than in WT. In contrast, K^b and D^b peptides from ERAAP⁰ mice contained additional amino acids either at the N-terminus or between the two anchor residues, but never at the C-terminus which always contained a canonical residue. Thus, even without ERAAP, tapasin edits all peptides and ultimately ensures they contain the correct C-terminal amino acid.

Previous studies have shown that enzymes such as the proteasome are important for generating peptides with a canonical C-terminal residue. However, this data suggests that tapasin is the editor that ultimately ensures that these peptides with the correct C-terminal residue are presented. Consistent with a role for tapasin-mediated editing at the C-terminus, the region of tapasin:MHC I interaction is believed to be the alpha-2 helix where the peptide C-terminus binds (141). While the direct mechanism by which tapasin edits peptides remains unclear, putative models for peptide optimization

via tapasin include accelerated dissociation of unfavorable peptides (184)or maintenance of the MHC I in an peptide-receptive conformation until binding of a high-affinity peptide (142). Further studies are required to better define the mechanism of tapasin action.

These results indicate that the effects of tapasin-deficiency are not equal across all MHC I alleles, even when they have similar surface expression. Although both K^b and D^b are only expressed at about 10% of WT levels, we identified further differences. Many more peptides were recovered from D^b by mass spectrometry and several of them lacked the canonical P5 anchor. The same was not true for K^b . K^b pMHC I appear to be highly unstable in the absence of tapasin, which may account for the decreased number of sequences recovered, as unstable pMHC I are likely to dissociate during the affinity purification step of the mass spectrometry. Previous studies involving several human HLA molecules concluded that there is a range of tapasin-dependence based on the amount of pMHC I downregulation in Tpn⁰ cells. Our findings suggest that a more comprehensive analysis is required to detect the subtle pMHC I changes caused by the loss of PLC editing.

Chapter 4: H-2^d ERAAP KO cells present altered pMHC I on K^d, D^d and L^d

Summary

In addition to the presence of certain amino acids, MHC I molecules have a strong preference for peptides with a length of between 8 and 10 amino acids. This length allows the peptide to fit into the peptide binding groove. However, longer versions of many antigenic peptides are transported into the ER by TAP, necessitating further trimming of these precursors to generate final peptides of appropriate length. To date, the aminopeptidase ERAAP is the only ER-resident enzyme identified to carry out this function.

Recent genome-wide association studies have found significant association with polymorphisms in human ERAAP, ERAP1, with the presence of particular MHC I molecules and disease. Most notable is the link between ERAP1 polymorphisms, HLA-B27 and the autoimmune disease ankylosing spondylitis. These associations suggest that altered antigen processing by ERAAP may contribute to this disease and underscores the need for further study into the mechanisms by which ERAAP edits the pMHC I repertoire. In particular, it is key to understanding the allele-specific effects of ERAAP-deficiency.

Mice have three MHC I molecules: K, D and L. In the H-2^d background they all bind peptides via an anchor residue at position 2 (P2) but they differ in terms of amino acid preference. The goal of these studies was to understand how loss of ERAAP editing affected peptide presentation by these three MHC I molecules.

Our examination of the effects of ERAAP-deficiency on surface expression confirmed previous findings: expression of all three MHC I is decreased and L^d is the most affected (144, 153). Reciprocal-immunization experiments with H-2^d ERAAP KO and WT cells indicated a qualitative loss of some WT pMHC I from ERAAP-deficient cells, primarily L^d, and a qualitative gain of a new, unedited set of pMHC I presented by all three MHC I. Together, these findings suggest that the effects of ERAAP-deficiency are not limited to loss of surface expression but also alter the peptide repertoire.

ERAAP-deficiency affects pMHC I expression on professional APCs

Loss of ERAAP for antigen processing results in diminished surface presentation of murine pMHC I (153), suggesting that ERAAP is required for optimal expression. To examine in detail whether these decreases are consistent for H-2^d pMHC I on all professional antigen presenting cell (APC) types, splenocytes isolated from B10.D2 ERAAP-deficient (ERAAP KO) or B10.D2 (WT) mice were co-stained with cell-type specific and MHC I antibodies and analyzed by flow cytometry. Consistent with previous results, L^d expression is decreased by about 50% on spleen cells without cell-type specific staining (**Fig 11a**), while changes in K^d and D^d expression were less striking, with 20-30% decreases (**Fig 11a-b**). However, when distinct cell populations were differentiated based on surface markers, MHC I specific differences were observed. For all cell types examined, L^d expression was similarly and profoundly decreased (**Fig 11a**). In contrast, D^d and K^d expression were less affected in dendritic cells than in B cells and macrophages (**Fig 11b**). Together, these results suggest that in some cell types, such as dendritic cells, K^d and D^d are better able to compensate for loss of ERAAP whereas L^d expression is dependent on ERAAP in all cell types. This finding identifies cell-type specific, in addition to MHC I specific, effects of ERAAP-deficiency.

Figure 11. H-2^d pMHC I are differentially affected by ERAAP-deficiency. Spleen cells isolated from either WT or (a-c) Surface expression on spleen cells derived from H-2^d WT or ERAAP-deficient (ERAAP KO) mice. (a) Representative surface staining of L^d on all splenocytes (whole spleen), dendritic cells (B220-CD11b+CD11c+), macrophages (B220-CD11b+F4/80+) or B cells (B220+). (b) Bar graphs summarize the mean fluorescence intensity (MFI) of ERAAP KO samples relative to WT samples for all H-2^d MHC I. Data are representative of 3 or more experiments.

Figure 12. ERAAP-KO T cells respond to pMHC I expressed by WT cells. (a) IFN- γ^+ response of EkoF CD8⁺ T cell lines against WT or ERAAP-deficient (ERAAP KO) APCs. Numbers indicate percent IFN- γ^+ positive cells of total CD8⁺ T cells. (b) EkoF CD8⁺ T cell responses against ERAAP KO or WT APCs in the presence of indicated MHC I blocking antibodies. Responses are normalized to WT. (c) EkoF responses against RMA APCs stably expressing indicated MHC I molecules. Responses are normalized to RMA.

ERAAP KO cells are missing WT pMHC I:

The surface pMHC I decreases for K^d, D^d and L^d may reflect a general quantitative loss of pMHC I complexes or may represent a qualitative loss of certain pMHC I. To distinguish between these two possibilities, we utilized the ability of CD8+ T cells to identify and respond to pMHC I repertoire differences (**Fig 12**). We reasoned that if some WT pMHC I were not expressed in ERAAP-deficient cells, then ERAAP KO T cells would not be tolerant to them and would recognize them as non-self. To test this, we generated ERAAP KO anti-WT, or 'EkoF', T cell lines, by immunizing female ERAAP-deficient mice with male WT splenocytes, as done with the Tpn⁰ anti-WT T cell lines. These lines were assessed for their ability to respond to either ERAAP-KO (self) or WT (non-self) APCs through measurement of production of the effector cytokine IFN- γ . The EkoF T cells responded robustly to WT APCs, which caused 30% of the T cells to produce IFN- γ whereas only 5% of the EkoF T cells responded to self APCs (**Fig 12a**). Therefore, we conclude that ERAAP-deficient cells are missing a set of pMHC I that are expressed in WT cells.

ERAAP KO T cells are not tolerant to WT L^d pMHC I.

Based on the drastic changes in surface expression, L^d is the most inhibited by ERAAPdeficiency. We hypothesized that this sharp decrease may reflect a qualitative loss of a number of pMHC I complexes, which would be manifested by the lack of tolerance of EkoF T cells for these L^d pMHC I.

To determine the MHC I restriction of the EkoF T cells, two approaches were used. First, APCs were incubated with purified anti-MHC I antibodies shown to be capable of blocking TCR:MHC I interactions. T cell lines were tested for IFN- γ production in the presence of one of these blocking antibodies. Consistently, addition of the L^d antibody diminished IFN- γ production, while the K^d and D^d blocking antibodies did not affect the response (**Fig 12b**), suggesting that the EkoF T cells are indeed responding to ligands presented by L^d.

To test the restriction in a different and independent assay, EkoF T cells were examined for their ability to respond to RMA cells stably expressing only K^d , D^d or L^d (**Fig 12c**). Again, the EkoF T cells responded most dramatically to L^d rather than K^d or D^d . Therefore, ERAAP KO anti-WT responses are primarily directed against L^d pMHC I.

H-2^d ERAAP KO cells present novel peptides.

Finding a qualitative loss of pMHC I in H-2^d ERAAP-deficient cells led us to ask whether there was also a qualitative gain of a novel, unedited set of pMHC I. In B6 mice, ERAAP limits presentation of certain pMHC I and enhances presentation of others, including some which are normally not presented (154). To determine whether ERAAP has a similar editing role for H-2^d MHC I, we tested whether ERAAP-deficient cells presented an altered pMHC I repertoire that was immunogenic to

WT T cells. As CD4 T cell help is important for optimal CD8 T cell responses, we chose to utilize F_1 cross of B6 and B10.D2 as our WT host mice. Alone, H-2^d mice lack endogenous H-Y antigens which are important for generating CD4 help (185), however, these can be supplied by the H-2^b MHC I in our F1 mice to enhance the quality of the CD8 response, as was done previously on the B6 background (154). All subsequent stimulations were done using H-2^d ERAAP KO cells to direct the CTL response toward antigens presented by D^d, K^d or L^d.

To determine whether ERAAP KO cells present unedited pMHC I, FEko T cells were analyzed for their ability to produce IFN- γ in response to B10.D2 WT or ERAAP KO APCs. Robust FEko T cell responses were directed against ERAAP-deficient (48%) but not WT (3%) APCs (**Fig 13a-b**).

The mice used in these experiments are a F1 cross and therefore have several minor histocompatability differences. To confirm that the FEko T cell responses are due to loss of ERAAP function rather than these genetic differences, WT spleen cells treated with the chemical aminopeptidase inhibitor Leucinethiol (LeuSH) were used as APCs in the IFN- γ assay. FEko T cells made robust responses against LeuSH-treated APCs (17%), although they were not as stimulatory as the ERAAP KO APCs (**Fig 13a-b**). Therefore, ERAAP-deficiency results in presentation of a novel, immunogenic pMHC I repertoire.

The importance of CD4 T cells for the FEko responses was confirmed by depleting CD4 T cells from F1 mice prior to immunization, which resulted in a diminished FEko T cell response (**Fig 13c**).

All MHC I present unedited peptides in ERAAP-deficient mice

To assess whether each MHC I molecule contributes equally to the FEko T cell response, or whether only certain MHC I molecules present the immunogenic peptides, a blocking antibody approach was utilized as above. ERAAP KO APCs were incubated with individual blocking antibodies that inhibited recognition of MHC I prior to addition of the FEko T cells. The T cells were then assessed for production of the effector cytokine IFN- γ . Adding the K^d blocking antibody led to the greatest decrease in IFN- γ production, indicating that a majority of the T cells respond to unedited peptides presented by K^d (**Fig 14a**). The L^d-blocking antibody led to partial inhibition of the response as well. In contrast, the D^d-blocking antibody did not prevent IFN- γ production, and actually enhanced it, suggesting that FEko T cells either do not respond to D^d peptides or that the D^d pMHC I are structurally distinct and thus are not blocked by the conformation-dependent blocking antibody.

As an alternative approach that is independent of the blocking antibodies, RMA cells expressing K^d , D^d or L^d were treated with Leucinethiol and used as APCs for FEko T cells. T cells responded to all three RMA cell types, although to different extents. RMA-K^d cells elicited the highest response (**Fig 14b**), suggesting that a majority of FEko T cells are specific for altered peptides presented by K^d, which is consistent with the results of the blocking antibodies. RMA-L^d and RMA-D^d cells also stimulated T cell responses, but to a lower degree than RMA-K^d cells. Together, these findings indicate that all MHC I molecules present unedited peptides upon ERAAP-deficiency, but that some pMHC I are more immunogenic than others.

Figure 14. WT T cells respond to novel pMHC I presented by Kd, Dd Ld. (a) FEko CD8⁺ T cell responses against ERAAP KO or WT APCs in the presence of indicated MHC I blocking antibodies. Responses are normalized to ERAAP KO (b) FEko CD8+ T cell responses against RMA APCs stably expressing indicated MHC I molecules. As indicated, cells were treated overnight with Leucinethiol to inhibit ERAAP prior to incubation with FEko T cells. Responses are normalized to RMA treated with Leucinethiol.

Discussion:

Overall, these findings indicate that loss of ERAAP has allele-specific effects. L^d is highly downregulated on all ERAAP-deficient cells. Because many WT pMHC I are not expressed, and are therefore not available during selection, T cells from ERAAP-deficient mice are primarily restricted to these missing L^d pMHC I. In contrast, WT T cell lines respond to novel, unedited pMHC I presented by all three MHC I in H-2^d ERAAP-deficient cells. However, not all MHC I molecules are equally immunogenic, as a higher percentage of T cells recognize unedited peptides presented by K^d than D^d or L^d. Based on surface expression, K^d and D^d are downregulated to a similar extent, this suggests that further allele-specific differences in the types and immunogenicity of peptides presented exist.

Interestingly, although loss of ERAAP results in presentation of new pMHC I in the RMA-D^d cells, unedited peptides presented by D^d were not detectable with the antibody blocking experiments. The same D^d blocking antibodies were capable of efficiently inhibiting T cell hybridoma AI9Z recognition of its D^d/AI9 epitope (**Fig. 25**), ruling out a problem with the reagents. Furthermore, the same result was seen with an additional anti-D^d clone, 34-2-12 (data not shown). One intriguing explanation is that the immunogenic peptides presented by D^d are structurally distinct, possibly due to N-terminal extensions, and therefore lack the epitope required for the antibody to bind.

 K^d and L^d -restricted T cells were blocked by their corresponding antibodies, which may indicate that similar altered pMHC I conformations are not found, or are not immunogenic, in these cells upon ERAAP-deficiency. This finding would further suggest that loss of ERAAP has distinct effects on different MHC I alleles.

In B6 mice, the anti-ERAAP KO response is almost exclusively restricted to a nonclassical MHC Ib molecule, Qa-1, presenting the ligand FL9 (155). In contrast, FEko T cells respond to all three classical MHC I molecules, suggesting that ERAAP-deficiency on the H-2^d background causes wide-ranging changes to the pMHC I repertoire. Subsequent chapters will discuss the molecular nature of these unedited pMHC I.

Chapter 5: Characterization of the ERAAP KO pMHC I repertoire by mass spectrometry

Summary:

ERAAP-deficiency leads to immunogenic changes to the pMHC I repertoire that differ for each MHC I molecule. Using mass spectrometry to sequence and compare peptides from ERAAP-deficient and WT MHC I molecules, we sought to understand the molecular basis for these differences. These experiments were done in collaboration with the Delgado Lab at the University of Utah. K^d, D^d and L^d pMHC I complexes were isolated from primary spleen cell lysates using affinity purification. Peptides were eluted from the MHC I molecules and sequenced by tandem mass spectrometry. Recovered sequences were manually validated and pooled into three groups for each MHC I: those unique to WT, those unique to ERAAPdeficiency and those peptides shared by both WT and ERAAP-deficient samples. The findings revealed distinct sets of peptides, some with N-terminal extensions, bound to K^d and D^d. These may reflect direct endogenous ERAAP substrates. Very few peptides eluted from L^d and in both WT and ERAAP-deficient samples, and these maintained the consensus length and motif. Together, these results suggest that ERAAP-deficiency affects the peptides bound to each MHC I molecule differently.

L^d-bound peptides have canonical length and consensus motifs in ERAAP-deficient cells:

The severe decrease in surface expression of L^d indicates that it requires ERAAP for optimal presentation. The L^d motif is distinguished by a proline at the P2 position and an aliphatic amino acid at the C-terminus, P Ω . Similar consensus motifs are found for several human MHC I molecules(186). To determine the nature of the ERAAP-deficient Ld pMHC I, the 28-14-8 antibody clone was used to affinity purify pMHC I complexes and peptides were sequenced by tandem mass spectrometry.

Consistent with the diminished L^d surface expression (**Fig 11; Table 5**) very few peptides were recovered from ERAAP-deficient L^d samples relative to WT. From WT samples, 81 peptides were found that were unique to WT and an additional 54 peptides were found in both the ERAAP KO and WT sets (**Fig. 15a**). However, only 18 peptides unique to ERAAP-deficient L^d were found. This decreased recovery is likely due in part to the high degree of instability found in L^d complexes (153).

Closer comparison of the composition of the peptides unique to WT and ERAAP KO yielded surprising results. First, peptides recovered from both sets did not contain N-terminal extensions and instead strongly conformed to the typical peptide length of 8-10 amino acids (**Fig. 15 b-c**). Furthermore, a majority (78%) of the peptides unique to ERAAP KO contained a proline at P2 (**Fig 15d**), although it is slightly lower than the percentage found in WT (91%) or shared (95%) sample sets. The strong conservation of the proline at this position can be seen when peptides are analyzed using the Weblogo Program (**Fig 16**). As TAP is thought to be limited in its ability to transport peptides with a proline at this position (187) and ERAAP is believed to be the only aminopeptidase in the ER(144), the mechanism by which these peptides encounter L^d is unclear.

Figure 16. L^d peptides from ERAAP KO and WT maintain the canonical consensus motif. Logo representation of H-2L^d peptides eluted from WT or ERAAP-deficient cells. Peptides are grouped according to their lengths (left). The height of each bar is proportional to the frequency of amino acid conservation and the height of each letter composing the column is proportional to its frequency at the given position. Amino acids are colored as follows: hydrophobic (black), aromatic (purple), acidic (red), basic (blue), neutral (green).

Figure 17. Intracellular L^d is empty in ERAAP-deficient cells. Comparison of the relative amounts of peptide-bound L^d versus empty L^d in indicated cell lines. Cells were stained intracellularly with conformation-dependent antibodies prior to analysis by flow cytometry. 30-5-7 antibody detects folded L^d with bound peptide and 64-3-7 antibody detects empty L^d. (a) WT J774 cells or J774 cells stably expressing the UL49.5 TAP inhibitor. GFP marker was used to identify positive cells. (b) BMDCs from B10.D2 ERAAP KO or WT mice.

L^d MHC I are empty in ERAAP-deficient cells

To further explore the state of L^d in ERAAP-deficient cells, Margret Veltman, a UC Berkeley undergraduate under my supervision, performed intracellular staining on cells using conformation-dependent L^d antibodies. As a control, J774 cells were transfected with the TAPinhibitor UL49.5 in a plasmid with a GFP marker. Thus, GFP-positive cells express UL49.5 while GFP-negative cells do not. These cells were stained intracellularly using 30-5-7 antibody, which is specific for peptide-bound L^d , or 64-3-7 antibody, which recognizes unfolded, 'empty' L^d . As expected, TAP-inhibited cells contained less peptide-associated L^d and more empty L^d relative to WT cells (**Fig 17a**). When BMDCs from ERAAP-deficient or WT cells were stained with these antibodies, the same phenotype is observed, indicating that L^d tends to remain unassociated with peptide in ERAAP KO cells (**Fig 17b**). It will be interesting to determine whether expression of the L^d peptides identified by mass spectrometry into ERAAP-deficient cells would rescue this phenotype.

ERAAP-deficient peptides from K^d are longer and bind with distinct conformations.

Unlike L^d , surface expression of K^d is only moderately affected by ERAAP-deficiency. However, FEko T cells were primarily restricted to ERAAP KO peptides presented by K^d , suggesting that K^d presents an alternative pMHC I repertoire. To determine the nature of these alterations, K^d pMHC I were affinity purified using the SF1-1.1.1 antibody and sequenced by tandem mass spectrometry.

Similar numbers of K^d-bound peptides were recovered from ERAAP KO (101) and WT samples (98), as well as from the shared set (114) (**Fig 18a; Table 7**). The comparable recovery is consistent with the more moderate surface pMHC I decreases found for K^d (**fig 11**). When the lengths of the peptides were more closely examined, a majority of the peptides from both sets unique to WT and to ERAAP KO were between 8-10 amino acids (**Fig 18b-c**). Strikingly, there were also several long peptides that were recovered only from ERAAP KO. These extended peptides ranged in length from 11-16 amino acids (**Fig 18b-c**).

In addition to length, we also examined changes in the composition of the peptides. As is readily seen from the weblogo analysis (**Fig 20a**), peptides of canonical length overwhelmingly contained the K^d consensus motif. Long peptides from ERAAP KO also contained a tyrosine or phenylalanine, but not always at P2. They were grouped into two catagories: those expected to bind with a 'central bulge' phenotype, meaning that the anchor remained at P2 and the additional length comes from residues between the two anchor positions or those with N-terminal extensions, in which the residue expected to be used as the P2 anchor is in the middle of the peptide and the additional residues are at the N-terminus (**Fig 21a**). No significant changes were observed at the C-terminus.

Figure 18. Unique ERAAP KO peptides presented by K^d longer than WT K^d peptides. (a-c). Analysis of H-2K^d peptides from WT and ERAAP-deficient (ERAAP KO) spleen cells identified by tandem mass spectrometry. WT-unique peptides (black); ERAAP KO unique (red) and shared (white) (a) Numbers of distinct or shared peptides recovered from WT or ERAAP KO cells. (b) Analysis of the non-overlapping peptides from WT and ERAAP KO cells represented as single vertical bars and plotted according to amino acid length. (c) Lengths of recovered non-overlapping peptides represented as percentage of the total peptides.

Figure 19. Unique ERAAP KO peptides presented by D^d are longer than WT D^d peptides. (a-c). Analysis of H-2D^d peptides from WT and ERAAP-deficient (ERAAP KO) spleen cells identified by tandem mass spectrometry. WT-unique peptides (black); ERAAP KO unique (red) and shared (white) (a) Numbers of distinct or shared peptides recovered from WT or ERAAP KO cells. (b) Analysis of the non-overlapping peptides from WT and ERAAP KO cells represented as single vertical bars and plotted according to amino acid length. (c) Lengths of recovered non-overlapping peptides represented as percentage of the total peptides.

Figure 20. D^d and K^d eluted peptides 8-10 amino acids in length maintain the consensus binding motif. Composition of canonical length peptides eluted from (a) K^d or (b) D^d was analyzed with Weblogo program to determine frequency of amino acids at each position. Peptides are grouped according to their lengths, and the numbers of peptides in each group is indicated. The height of each bar is proportional to the frequency of amino acid conservation and the height of each letter composing the column is proportional to its frequency at the given position. Amino acids are colored as follows: hydrophobic (black), aromatic (purple), acidic (red), basic (blue), neutral (green).

Figure 21. Long D^d and K^d peptides bind with N-terminal or central bulges. Composition of canonical length peptides eluted from (a) K^d or (b) D^d was analyzed with Weblogo program to determine frequency of amino acids at each position. N/D is not detected. Peptides are grouped according to their lengths, and the numbers of peptides in each group is indicated. The height of each bar is proportional to the frequency of amino acid conservation and the height of each letter composing the column is proportional to its frequency at the given position. Amino acids are colored as follows: hydrophobic (black), aromatic (purple), acidic (red), basic (blue), neutral (green).

Sequence in ERAAP KO	Sequence in WT	Gene Name
AAFPGPLKEENL AFPGPLKEENL	FPGPLKEENL	CREB-regulated transcription coactivaor 3
KAAGPDRFVLL AAGPDRFVLL AGPDRFVLL	AGPDRFVLL	Zinc finger CCCH-type antiviral protein 1
VSVPDSSGPERLISI SVPDSSGPERLISI PDSSGPERLISI DSSGPERLISI SSGPERLISI SGPERLISI	VPDSSGPERLISI PDSSGPERLISI DSSGPERLISI SSGPERLISI SGPERLISI GPERLISI	Heterogeneous Nuclear Ribonucleoprotein K

Table 8. Notable N-terminally extended nested peptide sets identified from D^d

ERAAP-deficient peptides from D^d are longer and bind with distinct conformations:

The final MHC I molecule analyzed was D^d . The consensus binding motif for D^d is distinct from K^d and L^d in that it has three anchor residues: Both the P2 and P3 position as well as the P Ω position (XGPXXXXXL). As with K^d , ERAAP-deficient cells show a moderate ~25% decrease in D^d expression.

As seen with K^d, similar numbers of peptides were recovered from D^d in WT and ERAAP KO samples, with 90 individual sequences unique to WT, 77 unique to ERAAP KO and 89 shared between the two (**Fig 19a; Table 6**). As observed in K^d, peptides that were 9 amino acids were the most frequent in the ERAAP KO-unique set and there was also an overall shift toward longer peptides relative to WT (**Fig 19 b-c**). Unlike the peptides recovered from K^d, however, there were also long peptides observed in the WT-unique group (**Fig 19 b-c**). Weblogos illustrated that canonical length peptides maintained the consensus motif while longer peptides did not (**Fig 20b**). As with K^d-binding peptides, the long peptides presumably bound with N-terminal extensions or a central bulge phenotype, but tended to have the correct C-terminal amino acid (**Fig 21b**).

More so than the K^d and L^d data sets, several N-terminally extended nested sets were recovered from D^d (**Table 8**). As ERAAP trims the N-terminal end of peptides, these intermediates may represent endogenous ERAAP substrates. The most prominent of these nested peptide sets contained the entire range from 8 (GPERILSI) to 15 (VSVPDSSGPERILSI) amino acids. Interestingly, several of the intermediates were shared by WT and ERAAP KO sets, although the very longest peptides were only found in ERAAP KO samples. Other nested sets had fewer intermediates, but shared the same pattern with the N-terminally extended versions limited to ERAAP KO.

D^d and **K**^d bind extended peptides:

While examples of long peptides have been identified from MHC I molecules(188) the prevailing wisdom is that this increase in length comes at a cost to the overall stability of the pMHC I complex. Binding algorithms, such as that used by IEDB, are not able to assess the predicted binding of these long peptides. To test whether the long peptides from K^d and D^d were able to bind MHC I molecules, a RMA/s stability assay was performed. Briefly, a set of short and long peptides from the K^d (TYAPPKPRSEL)/ (TYQDIQNTI) and D^d (SGPERLISI)/PDSSGPERLISI) ERAAP KO data sets were chosen for analysis. These peptides were tested for their ability to stabilize MHC I by exogenously binding empty K^d or D^d stably expressed by RMA/s cells. The long peptides tested bound their appropriate MHC I molecule at similar concentrations as the canonical length peptides (**Fig 22**). Therefore, for those peptides tested, increased length is not inhibitory to peptide binding.

Discussion:

Sequencing peptides by mass spectrometry revealed the molecular nature of the altered peptide repertoire presented by K^d , D^d and L^d MHC I in the absence of ERAAP. Loss of ERAAP function has differential effects on each MHC I, as depicted by the schematic in **figure 23**. Consistent with the overall instability and decreased surface expression of L^d , very few peptides were recovered. Those peptides that were identified contained canonical lengths and consensus sequences. In contrast, while many of the

Figure 22. Long peptides from ERAAP KO D^d and Kd bind with similar affinity. (a-b). Stabilization of H-2Dd MHC I with peptides. RMA/s cells, incubated overnight to stabilize empty pMHC I on the surface, were incubated with ERAAP-unique peptides or control AGPPRYSRI (AI9, D^d-binding) or SIINFEKL (SL8, K^b-binding) peptides for 1 hour at 22°C followed by incubation at 37°C for 3 hours. Cells were then fixed, stained with Kd or Dd fluorescently-conjugated antibodies and analyzed by flow cytometry. (a) D^d-binding peptides SGPERLISI (SI9) and PDSSGPERLISI (PI12). (b) K^d peptides TYQDIQNTI (TI9) and TYAPPKPRSEL (TL11).

Figure 23. Schematic depicting the allele-specific changes to the unedited pMHC I repertoire in H-2^d ERAAP KO cells. The top represents the endogenous WT pMHC I repertoire and the bottom represents the ways in which ERAAP-deficiency changes that repertoire. L^d expression is decreased significantly, and the peptides presented are of canonical length. K^d and D^d surface expression is also decreased upon ERAAP deficiency. K^d and D^d present new peptides, many that have the canonical length and others which are extended. Extended peptides can bind with a bulge phenotype or may be N-terminally extended.

peptides recovered from K^d and D^d were of canonical length, there were also several examples of long peptides. These peptides either bound to the MHC I with a 'bulge' phenotype or with an N-terminally extended phenotype.

The use of mass spectrometry to sequence antigenic peptides has been invaluable for characterizing what peptides bind MHC I under normal and abnormal conditions. However, there are some caveats to this methodology that may affect interpretation of the results. First, the absence of a particular peptide sequence in a given data set may reflect the fact that it is below the limit of detection for the assay, but not necessarily that it is not present. As T cells are highly attuned to detect even small amounts of a given pMHC I complex, peptides that are not detected by mass spectrometry may still have immunological consequences. Along similar lines, immunodominance of certain antigens over others depends on several factors, and even peptides that are unique to ERAAP-deficient cells may not be immunologically significant. Nonetheless, the data obtained provides broad and important insights into the types of changes in the peptide repertoire caused by loss of ERAAP editing.

Chapter 6: Characterization of immunogenic ERAAP-deficient pMHC I repertoire

Summary:

In chapters 4 and 5, I identified and characterized the presence of novel, unedited pMHC I presented on the surface of ERAAP-deficient cells by K^d , D^d and L^d . Although mass spectrometry revealed the presence of longer, structurally unique peptides, this analysis does not reveal whether these longer peptides are presented on the cell surface or are capable of eliciting the WT anti-ERAAP KO T cell responses.

T cells are tolerant only to self-peptides and recognize changes in the pMHC I repertoire with specificity. Thus, one way to detect the presence of novel pMHC I is to generate T cell responses against the altered pMHC I which are missing from WT cells. Using this property, we sought to immortalize FEko T cells and characterize the molecular nature of their immunogenic ligands.

To immortalize the FEko T cells, I fused them with the BWZ.36 fusion partner in which TCR signaling results in expression of beta-galactosidase. These cells can be used in a colorometric assay in which CPRG cleavage is associated with the presence of the pMHC I ligand(189). Using an expression cloning strategy, we found that the resulting hybridoma, FEKo7Z, was specific for a peptide presented on D^d from ribosomal protein L17 only in the absence of ERAAP function. The nonamer SSPCHIEMI is sufficient to elicit FEko7Z hybridoma responses and to cause lysis by FEko T cells. Consistent with the D^d peptides identified via mass spectrometry, this antigen may be N-terminally extended and is missing the P2 anchor.

Fusion of FEko T cell lines to generate WT anti-ERAAP KO hybridoma:

In order to identify the nature of the immunogenic pMHC I from ERAAP KO mice, FEko T cell lines (Chapter 4) were fused with the BWZ.36 fusion partner (Mendoza et. al.). Resulting hybridomas went through three rounds of subcloning by limiting dilution to select for a stable cell specific for ERAAP-deficient H-2^d cells. Each round of subclones was screened against ERAAP KO spleen cells to confirm that the hybridoma maintained specificity for ERAAP KO H-2^d APCs.

To assess whether FEko7Z maintained the same specificity as the FEko T cell lines, we tested its ability to respond to various spleen cell APCs (**Fig 24a**). As with the FEko T cells, responses were only observed against B6.bBy ERAAP-deficient or B10.D2 ERAAP-deficient APCs, which both contain K^d , D^d and L^d . In contrast, WT H-2^d APCs, B6 ERAAP KO APCs, which express allelic variants of K and D MHC I, and K^bD^b ERAAP KO APCS, which lack classical MHC I molecules, are not capable of stimulating FEko7Z responses. Furthermore, chemical inhibition of ERAAP function in WT spleen cells using the aminopeptidase inhibitor LeuSH is sufficient to result in presentation of the unedited pMHC I (**Fig 24b**). Interestingly, although chemical inhibition led to presentation of FEko7Z's ligand on WT cells, these inhibited responses are never as high as when ERAAP-knockout cells were used as APCs. One explanation could be incomplete inhibition by LeuSH. Therefore, we conclude that FEko7Z is specific for an unedited pMHC I ligand presented only in the absence of ERAAP trimming by either K^d, D^d or L^d.

Fig 24. T cell hybridoma FEko7Z is specific for ligands presented by H-2^d cells in the absence of ERAAP function. (a) FEko7Z responds to spleen cells from ERAAP-deficient H-2^d mouse strains. FEko7Z hybridoma was incubated for 14-16 hours with LPS-treated spleen cells from the indicated ERAAP KO or WT mouse strains (b) FEko7Z is specific for loss of ERAAP function. WT cells treated with DTT alone or DTT and various doses of the ERAAP-inhibitor Leucinthiol (LeuSH) were incubated with FEko7Z for 14-16 hours before measurement of hybridoma response. WT and ERAAP KO spleen cells not treated with DTT or LeuSH were used as controls. Hybridoma response was determined by CPRG substrate cleavage measured at absorbance 595.

Figure 25. FEko7Z is restricted to D^{d} (a-c) Antibody blocking to determine hybridoma restriction. (a) Test of FEko7Z restriction.

WT or ERAAP KO splenocytes were incubated with the indicated blocking antibodies for 30 minutes on ice before addition of FEKo7Z hybridoma. (b-c) Controls for antibody specificity. (b) AI9 or (c) HF10 peptides were added to WT spleen cells before addition of blocking antibodies as in (a) and T cell hybridoma AI9Z (b) or CTgEZ.4 (c). T cell hybridoma responses were measured by CPRG substrate cleavage. Data is representative of 3 independent experiments.
As the F_1 mice likely have several minor histocompatability differences with B10.D2, it was possible that the FEko7Z hybridoma recognizes those differences. To confirm that FEko7Z recognition is specific for loss of ERAAP-function, APCs were

treated with varying dilutions of the aminopeptidase inhibitor L-leucinethiol (LeuSH) prior to incubation with FEko7Z hybridoma (**Fig 24b**). B10.D2 WT APCs treated with LeuSH are sufficient to stimulate FEko7Z responses, suggesting that this hybridoma is specific for ERAAP-deficient H- 2^{d} cells.

FEko7Z is restricted to H-2D^d

CD8+ T cells maintain a T cell receptor specific for a single restricting MHC I and peptide antigen. To determine which MHC I molecule presents the immunogenic peptide recognized by FEko7Z, we utilized blocking antibodies to inhibit recognition of each individual MHC I. Varying concentrations of spleen cells were treated with blocking antibodies specific for individual MHC I. After blocking, the FEko7Z hybridoma was added and a CPRG assay was performed. Incubation of APCs with anti-K^d, anti-L^d and anti-A^d did not inhibit the FEko7Z response, however, blocking D^d with either the 34-2-12 (not shown) or 34-5-8 antibodies did diminish the response, suggesting that Feko7Z recognizes an antigen presented by D^d (**Fig 25a**). To establish the specificity of the antibodies, the 34-5-8 antibodies were tested for the ability to block the HF10/CTgEZ.4 response (L^d-restricted) or the AI9/AI9Z response (D^d-restricted). As the antibody blocked AI9Z but not CTgEZ.4, the specificity was confirmed (**Fig 25b-c**).

RPL17 cDNA contains the antigenic epitope for FEK07Z

To identify the antigen presented by D^d and recognized by FEko7Z an expression cloning strategy was utilized. I generated a cDNA library in collaboration with F. Gonzalez using mRNA harvested from LPS-treated B10.D2 ERAAP-deficient spleen cells, which are potent stimulators of the FEko7Z hybridoma.

To screen for cDNAs containing antigenic activity, pools of these cDNAs were transfected into L cells stably expressing $D^{d}(D^{d}-L \text{ cells})$. The transfected cells were given 48 hours to allow expression of the genes, before ERAAP was inhibited by LeuSH treatment and a CPRG assay was performed with the FEKo7Z hybridoma.

Screening of several library pools resulted in the detection of antigenic activity in one 96 plate well at about two-fold above background (**Fig 26a**). To fractionate the various cDNAs in the positive well, the pool was re-transformed into competent bacteria and individual colonies were selected. When these individual cDNAs were expressed in D^d-L cells, several wells came up as positive. Of 5 individual cDNAs tested, 3 stimulated FEko7Z upon transfection in a dose-dependent manner (**Fig 5d**). Wells containing antigenic activity were sequenced, and all positive wells were found to contain the complete Ribosomal Protein L17 (RPL17) cDNA, including some 5' UTR. In contrast, the fractions that did not have antigenic activity were found to encode the TCR beta chain. Therefore, RPL17 cDNA contains the antigenic activity, and thus the peptide epitope, required for FEKo7Z activation.

Figure 26. The RPL17 gene is the source of a new antigen presented by Dd in the absence of ERAAP function. (a and b) Pools of cDNA from ERAAP KO spleen cells were transfected into L cells stably expressing D^d. Cells were treated with the ERAAP inhibitor Leucinethiol and FEKo7Z hybridoma response was assessed by CPRG substrate cleavage. (a) A well containing antigenic activity was identified (b) Representative FEko7Z response to transfected cDNAs from well A3 fractionation.

Figure 27. SSI9 peptide presented by D^d is the ligand for Feko7Z. (a) Schematic of deletion mutants from RPL17 cDNA generated by restriction digest or PCR. Boxed regions indicate possible epitopes identified by prediction algorithm (IEDB) (b-d) Results of transfection of deletion mutant constructs into D^d-L cells. Leucinethiol and DTT were added to cells 48hr after transfection unless otherwise indicated followed by incubation with FEko7Z hybridoma (b) Cloned EcoRV fragment (grey bar from (a)) contains FEko7Z antigenic activity. (c) Longest PCR product 5a/3f contains antigenic activity in D^d-L cells treated with Leucinethiol (LeuSH), but shorter fragments 5a/3h and 5a/3g do not. (d) SSI9 minigene(SSPCHIEMI) in Ubiquitin-release vector stimulates ERAAP-independent FEko7Z response.

Identification of SSI9 as the minimal antigenic peptide required for FEko7Z response

To identify the peptide sequence responsible for FEKo7Z activity, deletion mutants of the RPL17 cDNA were generated. When the RPL17 cDNA sequence is analyzed with the D^d epitope prediction algorithm from the Immune Epitope Database (IEDB), several putative antigens were found. As none of these epitopes contained the ideal XGPXXXXXL D^d motif, we utilized a deletion mutant approach to detect the sequence of the antigenic peptide presented by D^d to FEko7Z.

First, I took advantage of existing EcoRV restiction sites near the 3' end of the RPL17 cDNA and upstream from the cDNA in the vector. Cutting with this enzyme and ligating the 5' portion resulted in a cDNA missing the final 55bp of RPL17 sequence. This portion was tested by transient transfection into D^d-L cells which were subsequently treated with LeuSH and used in a CPRG assay with FEko7Z. This region contained antigenic activity, indicating that FEko7Z's epitope does not include the final 18 amino acids (**Fig 27b**).

Next, several deletion constructs were generated using various sets of PCR primers. Various reverse primers were paired with a shared forward primer that placed the RPL17 initiating methionine in frame (see schematic **Fig 27a**). The reverse primers were designed such that the C-terminal end of the translated polypeptide will contain one of the most likely epitopes predicted based on IEDB analysis. The PCR products were digested and cloned into the pcDNA1 vector. The constructs were tested for antigenic activity by transfection in D^d -L cells as above. While the 5a/3g and 5a/3h constructs did not stimulate FEko7Z responses, the 5a/3f construct did (**Fig 27c**), which suggested that the sequence encoding FEko7Z's epitope was between amino acids 91 and 147.

The 3' end of this construct encoded the peptide SSPCHIEMI, which was a strong candidate for D^d binding based on IEDB prediction. To test whether this peptide was sufficient to stimulate FEko7Z hybridoma responses, DNA coding for the SSI9 peptide was expressed in the cytosol of D^d -L cells using a ubiquitin-release construct as previously described(56). This peptide robustly stimulated FEko7Z independently of LeuSH treatment, suggesting that this peptide alone is sufficient to stimulate FEko7Z response (**Fig 27c**).

SSI9 and its N-terminally extended variants bind to D^d

Based on the above results, we concluded that the SSI9 peptide is sufficient to generate the FEko7Z hybridoma response. However, as ERAAP trims peptides *in vivo* and several extended peptides unique to ERAAP KO were identified by mass spectrometry, the actual antigenic peptide may be an N-terminally extended variant of SSI9. To further characterize the MHC I binding and antigenic activity of N-terminally extended SSI9 variants, I utilized synthetic peptides made by David King (UC Berkeley). Each variant has the addition of a single amino acid at the N-terminus which corresponds to the natural amino acid sequence of the RPL17 protein, such that the sequence of the longest variant was NPYMSSPCHIEMI.

To test ability of N-terminally extended variants to bind D^d MHC I, a RMA/s stability assay was performed. RMAs-Dd cells, which have diminished MHC I expression due to TAP-deficiency and stably express D^d, are left overnight at room temperature so that empty D^d stabilizes on the cell surface. The following day, SSI9,

Stability of SSI9 N-terminally extended Peptides

Figure 28. N-terminally Extended variants of SSI9 bind D^d and stimulate FEko7Z responses. (a). Stabilization of H-2D^d MHC I with synthetic peptides. RMAs-D^d cells, incubated overnight to stabilize empty pMHC I on the surface, were incubated with indicated SSI9 N-terminally extended peptides or control AGPPRYSRI (AI9) peptides for 1 hour at 22°C followed by incubation at 37°C for 3 hours. Cells were fixed, stained for D^d and analyzed by flow cytometry for D^d expression. (b) FEko7Z recognizes all SSI9 variants, but to different extents. FEko7Z hybridoma and D^d-L APCs were added to titrated synthetic SSI9 variants. Hybridoma responses were assessed by measuring cleavage of CPRG substrate at absorbance 595 (A595).

Figure 29. FEko T cells kill SSI9 pulsed targets *in vitro*. (a) WT anti-ERAAP KO T cell line was incubated with labeled ERAAP KO targets, unpulsed WT targets or WT targets pulsed with SSI9 or PI12 synthetic peptide for 2 hours at indicated effector to target ratios (E:T). Cells were then co-stained with Yo-Pro-1 viability dye and analyzed by flow cytometry. Percent specific lysis of target cells at each E:T ratio was determined. Data is pooled from one experiment with 5 replicates and is representative of 2 independent experiments.

MI10, YI11, PI12 or NI13 peptides are added to the RMAs-Dd cells and left at room temperature to allow the peptide to exogenously bind the empty D^d molecules. After 1 hour, excess peptide was removed and the plates were put at 37°C. After 3 hours, cells were analyzed for remaining D^d surface expression levels. The SSI9 and MI10 peptides were able to stabilize D^d to a similar extent as the established high-affinity D^d -binding peptide AI9. Variants YI11 and PI12 had slightly lower than the shorter peptides and NI13 stabilization activity was substantially reduced (**Fig 28a**). Although a clear hierarchy of stability based on length was seen, all peptides were capable of binding D^d .

To determine the extent to which these variants are recognized by the FEko7Z hybridoma, peptides were exogenously loaded on D^d-L cells and a CPRG assay was performed. Similar to the RMA/s stabilization assay, a hierarchy of FEko7Z response was observed (**Fig 28b**). SSI9 and MI10 triggered the best FEko7Z response, followed by YI11 and PI12. Lmtk-(L) cells lacking the D^d MHC I molecule did not stimulate the hybridoma, confirming that the FEko7Z response is D^d specific.

SSI9-D^d complex is immunologically significant

As the FEko7Z hybridoma was generated from a responding T cell line, its ligand likely has immunologically significance. To determine whether SSI9 is important in FEko T cell responses, FEko T cell lines were tested for their ability to kill target cells pulsed with the SSI9 peptide variants *in vitro*. Exogenously presented SSI9 and PI12 resulted in similar lysis of target cells (**Fig 29**), as did the other N-terminally extended variants (data not shown). While they were well above the background WT control, none of the variants was as efficient at stimulating lysis as ERAAP KO APCs. This suggests that SSI9 is an immunologically significant ligand, however, there are likely other unedited pMHC I important for this response *in vivo*.

Discussion

CD8+ T cell hybridomas have proven to be valuable tools for identifying and characterizing immunogenic changes to pMHC I that occur under a variety of circumstances. In this work, I have generated a T cell hybridoma, FEko7Z, which is specific for loss of ERAAP function in cells containing D^d. Through expression cloning, the SSI9 peptide was found to contain sufficient antigenic activity to stimulate FEko7Z responses, although the actual epitope *in vivo* may be an N-terminally extended variant of SSI9. Interestingly, although the SSI9 peptide was not found in the mass spectrometry data sets, it appears to be consistent with ERAAP KO D^d peptides as it is suboptimal and is missing the P2 anchor residue.

Identification of the final epitope recognized by FEko7Z has been challenging. Detection of exogenous loading or with tetramers requires an unusually high concentration of peptide. RPL17 has been reported to be phosphorylated on both serines in the antigenic peptide sequence *in vivo*, so it is possible that our synthetic peptides don't properly mimic the phospho-peptide ligand. Another challenge has been that the SSI9 peptide is not presented in all cells, despite being a ubiquitous translation factor.

It remains unknown whether to classify SSI9 as an ERAAP-unedited peptide or an ERAAP-sensitive peptide. Is FEKO7Z's ligand only found in ERAAP KO cells? This would indicate that this SSI9 variant is typically destroyed by ERAAP *in vivo*. Alternatively, it may also be found in WT cells and, due to competition with other peptides in the ER, simply not be presented.

To determine the endogenous peptide found in ERAAP KO cells and presented to FEko7Z, one method would involve fractionating ERAAP KO splenic cell extracts by HPLC follwed by analysis of the peptides present using the FEko7Z hybridoma. Resulting positive fractions could be identified with synthetic peptides run under the same conditions. Although it would be challenging to isolate enough material, this would allow identification *in vivo* of an ERAAP-unedited peptide.

Overall, the generation of this hybridoma has allowed us to identify an example of pMHC I only presented in the absence of ERAAP. Future applications of FEko7Z include detection of loss of ERAAP function in transformed cells or due to viral inhibition.

Future Directions

What is the Mechanism of tapasin action?

Using immunological and biochemical methods, we have determined that tapasin is indeed an editor of the endogenous pMHC I repertoire. Our data suggests that it is responsible for ensuring that a high-affinity peptides are presented by editing out peptides with inappropriate C-termini or overall low binding affinities. However, the direct mechanism of tapasin action remains unclear.

The foremost challenge preventing the establishment of a model of action is that it is difficult to distinguish between any direct role of tapasin-editing versus overall PLC function. Tapasin is the key adaptor which holds the PLC together, so its absence may prevent other factors from carrying out their roles. In particular, tapasin-deficiency decreases TAP stability, and therefore overall peptide supply (136). Generation of soluble tapasin molecules, which do not interact with TAP, were assessed for ability to mediate pMHC I presentation to attempt to distinguish between the roles for TAP and tapasin. The results were mixed, however, with rescue of surface expression for human HLA-B8 but not murine K^d , K^b or L^d (93, 190).

Tapasin interacts with MHC I at the alpha-2 helix where the peptide C-terminus binds. This fits with a putative role in editing the P Ω amino acid to ensure an optimal residue is used, and is consistent with our finding that tapasin-deficient cells present an increased frequency of peptides with altered C-termini. Several possible models for how tapasin might edit at the C-terminus exist, and include maintaining the MHC I molecule in an open, peptide-receptive conformation (191), such that several peptides can be tried until a high-affinity match is found or accelerated dissociation of unfavorable peptides (142, 184, 192). However, questions about tapasin's mechanism of action still remain. What constitutes an acceptable peptide? How does tapasin identify the presence of a high-affinity peptide? One possible hypothesis is that conformational changes in the MHC I upon binding of an optimal C-terminal amino acid allow release of tapasin, although this has yet to be tested (193).

Also unknown is whether tapasin interacts with other PLC editors. We tested for a functional interaction between ERAAP and tapasin, but were unable to identify any overlap in the unedited pMHC I from ERAAP or tapasin-deficient cells, thus leading us to conclude that ERAAP-editing shapes the N-terminus while tapasin-editing shapes the peptide C-terminus. What about carboxypeptidases such as ACE? Perhaps ACE requires tapasin to finalize the C-termini of a subset of antigenic peptides. Similar types of cross-immunization experiments as were performed here with tapasin and ERAAP would allow this hypothesis to be tested.

These findings provide broad insight into the effects of tapasin-deficiency on the endogenous peptide repertoire. Further large-scale analyses coupled with biochemical and structural data will allow us to continue refining the models for tapasin's mechanism of action. It will be particularly important to continue getting data from several different MHC I molecules, as, based on surface expression, some alleles are more affected by tapasin-deficiency than others (179, 194).

Allele-specific effects of ER-editors: consequences for immunity

Our study highlights that the effects of both tapasin-deficiency and ERAAP-deficiency are not equal across all MHC I molecules and suggests that a comprehensive analysis is required to detect subtle pMHC I changes caused by the loss of PLC editing.

Tapasin: In tapasin-deficient mice, although surface expression of K^b and D^b is similarly reduced, we find that there are further differences. Assessment of the WT anti-Tpn⁰ lines showed that D^b was more immunogenic than K^b (**Fig 5**). In addition, many more peptides were recovered from D^b by mass spectrometry, suggesting that some D^b peptides may be less tapasin-dependent (**Fig 7**). While we identified several D^b peptides that lacked the canonical P5 anchor, the same was not true for K^b (**Fig 8**). In the absence of tapasin, K^b pMHC I appear to be highly unstable, such that they are unable to be recognized by WT anti-Tpn⁰ T cells and difficult to recover through affinity purification.

Studies with several human HLA molecules have concluded that there is a range of tapasin-dependence based on the amount of surface pMHC I downregulation in Tpn⁰ cells (195). For example, it was found that tapasin was required for optimal surface expression of HLA-A1, HLA-B8 and HLA-B*4402 while surface expression of HLA-A_0201 and HLA-B*2705 was unaffected in the absence of tapasin (179, 194). However, it is possible that, just as we found further differences exist with K^b and D^b, they may also be immunologically significant differences might be present on HLA molecules which that have normal surface expression upon loss of tapasin editing. More thorough immunological and biochemical analyses, such as the mass spectrometry analysis of peptides from chapter 3, should be performed for a broader set of HLA molecules.

ERAAP: Strong evidence supports the participation of MHC I molecules in shaping the composition of peptides that are presented in the presence of ERAAP (5, 151, 152). However, *in vitro* studies indicated that ERAAP can also trim peptides without MHC I, meaning that ERAAP-deficiency also affects the pool of peptides available for presentation on MHC I.

Our studies indicate that loss of ERAAP affects each allele and the composition of peptides it presents in different ways. Although all three MHC I molecules presented novel pMHC I, long peptides, some with N-terminal extensions, were found bound to K^d and D^d but not L^d. Furthermore, we showed that these allele-specific differences have immunological consequences. FEko T cell responses were not equally distributed in their restriction, but rather a larger fraction of the response was directed at K^d than at D^d or L^d. Furthermore, an immunologically-significant ligand from RPL17 was found to be presented by D^d. Future studies should aim to better understand the consequences of the allele-specific effects of ERAAP-deficiency. The link between ankylosing spondylitis, an autoimmune disease tightly linked to a particular MHC I molecule, and ERAP1 highlights the need to better understand the allele-specific effects of ERAAP-editing of pMHC I.

 L^d should be a particular focus of future studies. It was previously hypothesized that the reason for decreased L^d expression was that it had a limited peptide pool, as TAP must transport peptides with extended versions of its consensus motif. However, although few ERAAP-deficient peptides were identified, most of the ones that were found contained the consensus

motif. How and where does L^d encounter these peptides? Furthermore, why were D^d and K^d capable of accommodating N-terminally extended peptide but Ld was not? These questions can be addressed with straight-forward biochemical experiments. Additionally, it will be interesting to determine whether L^d is more dependent on ERAAP for more than generation of peptides. This may demonstrate a direct interaction of ERAAP and MHC I, and would be important for future disease studies.

Targeting ER-editing to evade immune detection

In order to prevent detection by the host immune system, viruses employ various immune evasion strategies. Because they seek to establish long-term infections within host cells, herpes viruses in particular, are notorious for targeting the MHC I antigen presentation pathway and encode several genes to this effect (196). ER-editors tapasin and ERAAP have both been shown to be targets of viral inhibition, although the consequences of this inhibition are not fully understood. A better characterization of how and why tapasin and ERAAP are targeted can teach us both about their function, the biology of the virus, and interactions between host and pathogen.

Tapasin: A better understanding of the nature of the unique peptides presented in the absence of tapasin may provide insight into how this escape can be diminished. Human cytomegalovirus (HCMV) expresses inhibitor US3 (174) which directly binds tapasin and prevents it from participating in peptide loading onto MHC I. Murine herpes virus-68 (MHV-68) also contains a gene, mk3, (175) which inhibits tapasin, in this case causing its ubiquitination and subsequent degradation. Our findings demonstrated that in the absence of tapasin-editing, D^b MHC I present new pMHC I complexes capable of stimulating T cell responses. One open question whether viral inhibition of tapasin is sufficient to generate these complexes. If so, this begs the question of whether WT anti-tapasin T cells recognize mk3-expressing cells and, if so, whether the presence of these pMHC I are sufficient for protection from MHV-68 infection.

ERAAP: The human homolog of mouse ERAAP, ERAP1, is also targeted by HCMV. Early in infection, HCMV expresses a microRNA found to target ERAP1 and cause its degradation (169). Analogous downregulation by a murine herpes virus has not yet been identified, and it would be of interest because mouse models are more tractable to characterize the *in vivo* effects of ERAAP deficiency. The FEko T cell lines and hybridoma will be invaluable to detect immunologically significant loss of ERAAP function. While murine herpes viruses are a natural place to start, it is possible that other viruses or pathogens have independently developed methods to inhibit ERAAP expression, and these should be tested as well. Furthermore, if loss of ERAAP is found, it will be important to then look at *in vivo* infection models to determine whether it is sufficient to generate T cell responses and whether there are any allele-specific effects.

Chapter 8: Materials and Methods:

Mice: B6 ERAAP-deficient mice(153), tapasin-deficient mice(130), TAP1-deficient mice(119) and K^b -D^b double-deficient mice(17) have been described elsewhere. ERAAP-deficient mice and tapasin-deficient mice were crossed to generate ERAAP and tapasin double-deficient mice. To generate ERAAP-deficient mice on the H-2^d background, B6 ERAAP-deficient mice were crossed with B10.D2 or B6.bBy. Crossing C57Bl/6 mice with B10.D2 mice generated F1 mice and F₁ ERAAP KO mice were made by crossing B6 ERAAP-deficient mice with B10.D2 ERAAP-deficient mice. C57BL/6J, B10.D2 and B6.bBy mice were purchased from the Jackson Laboratory (Bar Harbor ME). Use of all mice was done with the approval of the Animal Care and Use Committee of the University of California at Berkeley.

Antibodies: The following antibodies used for flow cytometry analysis were purchased from BD Biosciences: anti-H-2K^b (AF6-88.5); anti-H-2A^b (25-9-17); anti-H-2K^d (SF1-1.1.1); FITC IgG2a isotype control; anti-CD8 α (53-6.7); anti-CD4 (RM4-5); B220 (RA3-6B2) and anti-IFN- γ (XMG1.2). Antibodies CD16/32 (Fc Block, clone 93); anti-H-2L^d/D^b (28-14-8); Gr-1 (RB6-8C5) and F4/80 (BM8) were purchased from ebiosciences. Anti-H-2E^d (14-4-4) and anti-H-2D^d (34-5-8) for surface expression staining were made by southern biotechnology associates.

For *in vivo* depletions, purified anti-NK1.1 antibody (PK136) and anti-CD8α (2.43) from BioXcell or anti-CD4 (GK1.5) and isotype control Rat IgG2b (LTF-2) from the UCSF hybridoma core were used.

To block presentation by MHC I to anti- tpn^0 T cell lines, the following culture supernatants were used: anti-H-2K^b (5F1.5), anti-H-2D^b (B22.249) or anti-H-2A^b (M5/114). To block presentation by H-2^d MHC I molecules, anti-H-2K^d (SF1-1.1.1) and anti-H2D^d (34-5-8) made by the Delgado lab, anti-H-2L^d (30-5-7) supernatant generated in house, or anti-H-2D^d (34-2-12) or anti-H-2A^d (39-10-8) from BioLegend were used.

In the immuno-affinity purification of pMHC I complexes for mass spectrometry, anti-H- $2K^{b}$ (Y3) and anti-H- $2D^{b}$ (B22.249) were used in the tapasin experiment and anti-H- $2D^{d}$ (34-5-8), anti-H- $2L^{d}$ (28-14-8) and anti-H-2Kd (SF1-1.1.1) were used in the ERAAP experiment. Antibody supernatants for mass spectrometry were made by the Delgado Lab at the University of Utah.

Conformation-dependent antibody supernatants were made using the 30-5-7 or 64-3-7 hybridoma cell lines (ATCC). Antibodies were dialyzed in PBS (6 total liters) prior to use in flow cytometry assay.

Peptides:

Peptides used in tapasin-stability assays (Chapter 3) were generated by Anaspec Inc. and resuspended to make 1mM stocks. ERAAP K^d and D^d long and short peptides from mass spectrometry were also generated by Anaspec Inc. but were resuspended in DMSO. David King generated all the N-terminally extended SSI9-variant synthetic peptides and their purity was found to be greater than 95%. They were resuspended in purified water.

DNA Constructs: MSCV-IRES-GFP was a gift of Dr. William Sha. To clone in D^d and K^d , a PCR method was used to generate DNA with adaptors containing XhoI and SalI sites. These

were then digested and ligated into cut MSCV-IRES-GFP vector. L^d was subcloned from the pRSV.5neo backbone using BamHI as well as blunt cutters PvuII (insert)/PmeI (MSCV vector). MHC I expression was verified by transfection into COS7 cells and flow cytometry analysis. pLZRS.UL49.5-IRES-GFP vector was a gift from the Wiertz Lab.

To generate the RPL17 EcoRV fragment pSport:RPL17 was digested with EcoRV and cloned into SAP treated pcDNA1 that had also been digested by EcoRV. To make PCR product deletion mutants of RPL17, PCR primers flanking the desired regions were generated: 5a: CCGAAAAGGATCCAAAATGGTTCGCTACTCTCTTGAC 3f: GATGGCCTCTAGATTAGATCATCTCAATGTGGCA 3g: GATGGCCTCTAGATTAAAATTCAGCACTCTTTTT 3hGATGGCCTCTAGATTAGATATGCATTCCCTTGAT

RPL17 in pSport-6 was used as a template for PCR. PCR products were gel purified, digested with BamHI and XhoI and ligated into pcDNA1.

Ubiquitin-release vector was a gift from Frederic Levy. The SSI9 peptide was cloned into the SacII and Not I sites for release of the complete epitope.

For cloning, all gel purification was done using the PureLink Gel Extraction Kit (Invitrogen). Ligations were done with T4 high-concentration DNA ligase (NEB). Chemically competent bacteria MC1061 (for pcDNA1 backbone plasmids) or Top 10' (all other plasmids) were used (Invitrogen).

Cell Lines: ERAAP and TAP double-deficient fibroblasts were previously reported and immortalized ERAAP and tapasin double-deficient fibroblast cell lines were generated in the same manner as previously described(153). The use and generation of b-galactosidase (lacZ)–inducible T cell hybridomas B3Z, 30NXZ, 1AZ, 11P9Z, LPAZ, 27.5Z, BEK08Z, AI9Z and CTgEZ.4 have been described elsewhere (153, 155, 159, 197). Hybridoma activation was determined by measurement of CPRG (Chlorophenyl red-b-D-galactopyranoside; Roche). Splenocytes from indicated mice treated with 200ng/ml LPS (sigma) for 14-16 hours were used as APCs for T cell hybridomas. D^d-L cells expressing B7-2 were made by N. Blanchard. BWZ.36 fusion partner was previously described (198).

Bone Marrow-derived Dendritic Cells were generated using a syringe to harvest marrow from murine leg bones, making a single-cell suspension, washing, and then plating $2x10^6$ cells in a 6-well dish with GM-CSF (10 ng/ml; Peprotech) in cRPMI. Cells were used between days 6-8.

To make RMA and RMA/s cell lines expressing single MHC I molecules, retroviral supernatant from K^d, D^d or L^d MSCV-GFP transfected (fugene, Roche) phoenix cells was harvested 2 days after transfection. Viral supernatant was filtered and a spin-infection of either RMA or RMA/s was performed in the presence of 8ug/ml polybrene for 2hr at 850xg. When GFP expression was detectible, GFP-positive cells were single-cell sorted, expanded and subsequently checked for surface expression of Dd, Kd or Ld.

To make J774 cells stably expressing UL49.5, phoenix cells were transfected with the pLZRX.UL49.5-IRES-GFP (fugene, Roche) and supernatant was used to spin-infect J774 cells plated one day prior as done for the RMA cells above. After 2 days, cells were bulk sorted based on GFP expression.

Generation of FEko7Z Hybridoma: was generated by fusing BWZ.36 fusion partner with an equal number of FEko T cells using the established protocol (Malarkannan et al). Cells were plated at 3 per well for the first subclone, followed by 1 cell/well for subsequent subclones. Each subclone was screened with 1×10^6 ERAAP-deficient or WT spleen cells blasted overnight with 200 ng/ml LPS as APCs. CPRG cleavage was used as a readout for hybridoma response.

Expression Cloning to Identify FEko7Z's epitope: Library was made as in Mendoza et al. by Fred Gonzalez(189). mRNA harvested from B10.D2 ERAAP-deficient spleens that had been blasted overnight with LPS was the source of the cDNA. Plasmid DNA prepared from bacterial pools was transfected into LMtk- cells stably expressing Dd and B7-2 (Dd-L) using the DEAE/dextran transfection method(189). After 48 hours, the plates were treated with Leucinethiol (LeuSH) and DTT at a final concentration of 30uM and 50uM, respectively. Treatment lasted for 6 hours prior to addition of 10⁵ FEko7Z hybridoma cells. T cell response was assessed by CPRG cleavage after 15-24 hours though measurement at A595.

Fractionation: DNA from positive wells was transformed into Top10 or electrocompetent DH5alpha cells (Amp selection). Colonies were selected and plasmid DNA was purified (Qiagen miniprep kit). Individal cDNAs were tested for their ability to stimulate FEko7Z responses through expression in D^d -L cells as above. To determine insert sizes and approximate diversity of the pool composition, DNA was digested with NotI/SalI.

Determining FEKo7Z Restriction via antibody blocking: Harvested WT and ERAAP KO spleen cells and blasted overnight in 200ng/mL LPS. Washed splenocyte APCs and then performed a 2-fold titration, with $1x10^6$ cells in the first well. The blocking antibody and/or peptide was added to appropriate wells in 50uL volume. Blocking antibodies are listed above. Final [peptide]=10ng/ml of either AI9 or HF10. Allowed APCs with or without peptide and blocking antibodies to incubate on ice for 1 hour before adding 5-10x10⁴ AI9Z, CTgEZ.4 or FEko7Z hybridoma cells. CPRG was added after overnight incubation to assess T cell response.

Staining macrophages/DCs with surface MHC I mAb: To increase the frequency of macrophages and dendritic cells recovered from ERAAP KO and WT spleens, they were treated with DNAse and collagenase prior to generation of a single cell suspension. Spleens were cut into small fragments, incubated for 1 hour in a cRPMI containing collagenase (10mg/ml, Sigma) and DNAse (10mg/ml, Roche). A single-cell suspension was made by grinding the spleens though a nylon filter, red blood cells were lysed using an isotonic buffer and cells were stained with MHC I and cell-type specific antibodies prior to flow cytometry analysis.

Staining cells intracellularly with conformation dependent Ab: J774 cells stably expressing UL49.5 or B10.D2 ERAAP KO and WT BMDCs were first stained with Fc block to minimize background staining. Cells were fixed using BD cytofix/cytoperm for 20 minutes on ice. After being washed in BD perm/wash buffer, cells were stained for 20 minutes on ice with dialyzed 30-5-7 or 64-3-7 antibody that had been diluted using perm/wash buffer. Cells were washed in Perm/wash buffer and then stained with APC anti-mouse IgG2a secondary antibody diluted 1:100 in perm/wash buffer. Finally, cells were washed well before being resuspended in FACS buffer (PBS+2.5% FBS) and analyzed by flow cytometry.

Immunizations and Cytotoxic Lymphocyte Lines (CTLs). To generate WT anti-tapasin or Tapasin anti-WT T cell lines, female tapasin-deficient or wild-type mice were immunized intraperitoneally with 2x10⁷ spleen cells from male wild-type or tapasin-deficient mice, respectively. Ten days after immunization, spleen cells were restimulated *in vitro*. Cultures contained 20 U/ml (first two restimulations) or 50 U/ml (subsequent restimulations) of hIL-2 (BD Biosciences) and irradiated spleen cells from female mice of the same genotype used for immunization. Additional restimulations were done every 7-10 days.

To generate FEko T cell lines, female F_1 mice were immunized with $2x10^7$ spleen cells from male F_1 ERAAP-deficient mice. Ten days later, F1 mice were boosted with $2x10^7$ spleen cells from B10.D2 ERAAP-deficient mice. After another ten days, spleen cells were harvested and restimuated *in vitro* as above. EkoF T cell lines were made using the same protocol. Host mice were female F_1 ERAAP KO which were immunized first with male F1 spleen cells followed by a boost with B10.D2 WT spleen cells prior to *in vitro* restimulation.

Measurement of Intracellular IFN- γ **production by CTLs.** The CD8⁺ T cell responses of the immunized mice were measured by assessment of intracellular IFN- γ production. Spleen cell APCs were treated with 200 ng/ml of lipopolysaccharide (LPS, Sigma) overnight and CD4⁺ and CD8⁺ cells were depleted using magnetic beads (Dynal Biotech, invitrogen) prior to incubation with restimulated CD8⁺ T cells. 1µl/ml brefeldin A (GolgiPlug (BD Biosciences)) was added after one hour and total incubation of CD8⁺ T cells and APCs was 5 hours. Cells were stained for surface markers followed by intracellular staining for IFN- γ . Cells were analyzed by flow cytometry and with FlowJo Software (Treestar). For blocking of particular MHC I molecules, APCs were first incubated for 30-45 minutes on ice with antibody supernatant or commercial antibody at a 1:100 dilution prior to addition of CD8⁺ T cells as described above. To use RMA cells as APCs, 5x10⁴ RMA or RMA-K^d, D^d or L^d were plated in a 96-well round bottom plate and treated overnight with 50uM DTT and 30uM LeuSH as indicated. Ficolled T cells were added directly the following day.

RMA/s stability assay: Prior to both surface binding and surface decay assays, flasks containing RMA/s or RMAs-D^d cells in complete RPMI with 10% fetal bovine serum were sealed and left overnight at room temperature followed by three washes in PBS. All subsequent steps were done in PBS with no serum. Ten-fold dilutions of synthetic peptides were made followed by addition of $5x10^5$ washed RMA/s or RMAs-D^d cells to result in the indicated final peptide concentrations. Samples were kept at room temperature for one hour followed by incubation at 37°C for three hours. At the end of the three hours, peptides were washed out, samples were stained with anti-H-2K^b, anti-H-2D^b or anti-H-2D^d antibodies, fixed in 1% paraformaldehyde, and analyzed by flow cytometry.

In vivo cytotoxicity assay. WT female mice, depleted of NK cells at least 36 hours prior to every immunization, were primed intraperitoneally with $2x10^7$ male WT, ERAAP⁰ or Tpn⁰ splenocytes. Mice were challenged on day seven with a 1:1:1 mix of labeled ERAAP⁰, Tpn⁰ and WT female APCs. Target cell labels: ERAAP⁰ labeled with 20µM CellTracker Blue CMAC (7-Amino-4-Chloromethylcoumarin, Invitrogen); Tpn⁰ targets labeled with 0.125 µM CFSE (low-dose); WT targets labeled with 1.25µM CFSE (high-dose) (Carboxyfluorescein

succinimidyl ester, Invitrogen). 20 hours after challenge with labeled cells, host mice were sacrificed and splenocytes analyzed by flow cytometry to determine percentage of cells remaining. Percent Specific Lysis was calculated as follows: $100 \times (1- (ratio of target output))/(ratio of target input))$ where input is determined prior to injection of targets and output represents targets recovered after challenge. To calculate ratios: (% population of interest)/(%ERAAP⁰+%Tpn⁰+%WT).

In vitro cytotoxicity assay:

B10.D2 splenocytes (WT) or ERAAP-KO spleen cells (targets) were blasted overnight with 200ng/ml LPS. The following day, target cells were washed well in PBS and labeled for 3 minutes at room temperature with PKH26 cell linker kit for membrane labeling (Sigma). Excess dye was washed away, and target cells were plated at 5×10^4 cells/well of 96-well plate. T cells were harvested, put over a ficoll gradient (GE healthcare) to remove dead cells and mixed with labeled targets to generate indicated ratios. After 2 hours, Yo-pro-1 dye (Invitrogen) was added to each well at a final concentration of 1uM and the plate was placed on ice for 30 minutes. Cells were then immediately analyzed for the percentage of total target cells that are Yo-Pro-1 positive by flow cytometry (PKH26+YoPro-1+). To calculate relative killing (155): $100*(\%PKH26+YoPRO-1+_{ET=X}-\%PKH26+YoPRO-1+_{ET=0})/(100-\%PKH26+YoPRO-1+_{ET=0})$

Large-scale peptide sequencing by MS/MS. Peptide sequencing using immunoaffinity purification of pMHC complexes from detergent-solubilized spleen lysates was performed as reported previously(199). To detect peptide differences unique to tapasin-deficiency, freshly isolated spleen cells from 25 C57BL/6 and 50 tapasin-deficient mice were lysed and pMHC I was immuno-purified using mAbs Y3 (anti–H-2K^b) and B22.249 (anti–H-2D^b). In contrast, to detect peptide differences due to loss of ERAAP, freshly isolated spleen cells from 30 B10.D2 and 30 B10.D2xERAAP KO were lysed and immuno-purified using mAb: 34-5-8S (anti-H-2D^d), SF1-1.1.1(anti-H-2K^d) and 28-14-8S (anti-H-2L^d). For both experiments, samples were subject to FPLC- HPLC fractionation, and sequence identification by nanochip ESI-QTOF mass spectrometer. Peptides were identified with high confidence using an initial search with Spectrum Mill algorithm followed by expert manual spectral validation(200). To analyze the amino acid conservation of groups more than seven peptides, we used WebLogo program (<u>http://weblogo.berkeley.edu/</u>).

Chapter 9: References

- 1. Iwasaki, A., and R. Medzhitov. 2010. Regulation of adaptive immunity by the innate immune system. *Science* 327: 291-295.
- 2. Starr, T. K., S. C. Jameson, and K. A. Hogquist. 2003. Positive and negative selection of T cells. *Annu Rev Immunol* 21: 139-176.
- 3. Harty, J. T., A. R. Tvinnereim, and D. W. White. 2000. CD8+ T cell effector mechanisms in resistance to infection. *Annu Rev Immunol* 18: 275-308.
- 4. Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, and D. C. Wiley. 1987. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. *Nature* 329: 512-518.
- 5. Falk, K., O. Rotzschke, and H. G. Rammensee. 1990. Cellular peptide composition governed by major histocompatibility complex class I molecules. *Nature* 348: 248-251.
- 6. Rodgers, J. R., and R. G. Cook. 2005. MHC class Ib molecules bridge innate and acquired immunity. *Nat Rev Immunol* 5: 459-471.
- 7. Beckman, E. M., S. A. Porcelli, C. T. Morita, S. M. Behar, S. T. Furlong, and M. B. Brenner. 1994. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. *Nature* 372: 691-694.
- Kjer-Nielsen, L., O. Patel, A. J. Corbett, J. Le Nours, B. Meehan, L. Liu, M. Bhati, Z. Chen, L. Kostenko, R. Reantragoon, N. A. Williamson, A. W. Purcell, N. L. Dudek, M. J. McConville, R. A. O'Hair, G. N. Khairallah, D. I. Godfrey, D. P. Fairlie, J. Rossjohn, and J. McCluskey. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. *Nature* 491: 717-723.
- 9. Peaper, D. R., and P. Cresswell. 2008. Regulation of MHC class I assembly and peptide binding. *Annu Rev Cell Dev Biol* 24: 343-368.
- 10. Allen, H., J. Fraser, D. Flyer, S. Calvin, and R. Flavell. 1986. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db. *Proc Natl Acad Sci U S A* 83: 7447-7451.
- 11. Hansen, T. H., N. B. Myers, and D. R. Lee. 1988. Studies of two antigenic forms of Ld with disparate beta 2-microglobulin (beta 2m) associations suggest that beta 2m facilitate the folding of the alpha 1 and alpha 2 domains during de novo synthesis. *J Immunol* 140: 3522-3527.
- 12. Williams, D. B., B. H. Barber, R. A. Flavell, and H. Allen. 1989. Role of beta 2microglobulin in the intracellular transport and surface expression of murine class I histocompatibility molecules. *J Immunol* 142: 2796-2806.
- Zijlstra, M., M. Bix, N. E. Simister, J. M. Loring, D. H. Raulet, and R. Jaenisch. 1990. Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. *Nature* 344: 742-746.
- 14. Koller, B. H., P. Marrack, J. W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. *Science* 248: 1227-1230.

- 15. Ljunggren, H. G., L. Van Kaer, P. G. Ashton-Rickardt, S. Tonegawa, and H. L. Ploegh. 1995. Differential reactivity of residual CD8+ T lymphocytes in TAP1 and beta 2microglobulin mutant mice. *Eur J Immunol* 25: 174-178.
- 16. Ljunggren, H. G., R. Glas, J. K. Sandberg, and K. Karre. 1996. Reactivity and specificity of CD8+ T cells in mice with defects in the MHC class I antigen-presenting pathway. *Immunol Rev* 151: 123-148.
- 17. Perarnau, B., M. F. Saron, B. Reina San Martin, N. Bervas, H. Ong, M. J. Soloski, A. G. Smith, J. M. Ure, J. E. Gairin, and F. A. Lemonnier. 1999. Single H2Kb, H2Db and double H2KbDb knockout mice: peripheral CD8+ T cell repertoire and anti-lymphocytic choriomeningitis virus cytolytic responses. *Eur J Immunol* 29: 1243-1252.
- 18. Vugmeyster, Y., R. Glas, B. Perarnau, F. A. Lemonnier, H. Eisen, and H. Ploegh. 1998. Major histocompatibility complex (MHC) class I KbDb -/- deficient mice possess functional CD8+ T cells and natural killer cells. *Proc Natl Acad Sci U S A* 95: 12492-12497.
- 19. Braaten, D. C., J. S. McClellan, I. Messaoudi, S. A. Tibbetts, K. B. McClellan, J. Nikolich-Zugich, and H. W. Virgin. 2006. Effective control of chronic gamma-herpesvirus infection by unconventional MHC Class Ia-independent CD8 T cells. *PLoS Pathog* 2: e37.
- 20. Swanson, P. A., 2nd, C. D. Pack, A. Hadley, C. R. Wang, I. Stroynowski, P. E. Jensen, and A. E. Lukacher. 2008. An MHC class Ib-restricted CD8 T cell response confers antiviral immunity. *J Exp Med* 205: 1647-1657.
- 21. Moore, M. W., F. R. Carbone, and M. J. Bevan. 1988. Introduction of soluble protein into the class I pathway of antigen processing and presentation. *Cell* 54: 777-785.
- 22. Yewdell, J. W., L. C. Anton, and J. R. Bennink. 1996. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? *J Immunol* 157: 1823-1826.
- 23. Schubert, U., L. C. Anton, J. Gibbs, C. C. Norbury, J. W. Yewdell, and J. R. Bennink. 2000. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. *Nature* 404: 770-774.
- 24. Reits, E. A., A. C. Griekspoor, and J. Neefjes. 2000. How does TAP pump peptides? insights from DNA repair and traffic ATPases. *Immunol Today* 21: 598-600.
- 25. Ostankovitch, M., V. Robila, and V. H. Engelhard. 2005. Regulated folding of tyrosinase in the endoplasmic reticulum demonstrates that misfolded full-length proteins are efficient substrates for class I processing and presentation. *J Immunol* 174: 2544-2551.
- 26. Apcher, S., C. Daskalogianni, F. Lejeune, B. Manoury, G. Imhoos, L. Heslop, and R. Fahraeus. 2011. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. *Proc Natl Acad Sci U S A* 108: 11572-11577.
- 27. Cardinaud, S., S. R. Starck, P. Chandra, and N. Shastri. 2010. The synthesis of truncated polypeptides for immune surveillance and viral evasion. *PLoS One* 5: e8692.
- 28. Yewdell, J. W., E. Reits, and J. Neefjes. 2003. Making sense of mass destruction: quantitating MHC class I antigen presentation. *Nat Rev Immunol* 3: 952-961.

- 29. Bullock, T. N., and L. C. Eisenlohr. 1996. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames. *J Exp Med* 184: 1319-1329.
- 30. Schwab, S. R., K. C. Li, C. Kang, and N. Shastri. 2003. Constitutive display of cryptic translation products by MHC class I molecules. *Science* 301: 1367-1371.
- 31. Groll, M., L. Ditzel, J. Lowe, D. Stock, M. Bochtler, H. D. Bartunik, and R. Huber. 1997. Structure of 20S proteasome from yeast at 2.4 A resolution. *Nature* 386: 463-471.
- 32. Sijts, E. J., and P. M. Kloetzel. 2011. The role of the proteasome in the generation of MHC class I ligands and immune responses. *Cell Mol Life Sci* 68: 1491-1502.
- 33. Young, P., Q. Deveraux, R. E. Beal, C. M. Pickart, and M. Rechsteiner. 1998. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. *J Biol Chem* 273: 5461-5467.
- Nussbaum, A. K., T. P. Dick, W. Keilholz, M. Schirle, S. Stevanovic, K. Dietz, W. Heinemeyer, M. Groll, D. H. Wolf, R. Huber, H. G. Rammensee, and H. Schild. 1998. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. *Proc Natl Acad Sci U S A* 95: 12504-12509.
- 35. Rock, K. L., I. A. York, and A. L. Goldberg. 2004. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. *Nat Immunol* 5: 670-677.
- Rock, K. L., C. Gramm, L. Rothstein, K. Clark, R. Stein, L. Dick, D. Hwang, and A. L. Goldberg. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. *Cell* 78: 761-771.
- Gaczynska, M., K. L. Rock, and A. L. Goldberg. 1993. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. *Nature* 365: 264-267.
- 38. Ustrell, V., G. Pratt, and M. Rechsteiner. 1995. Effects of interferon gamma and major histocompatibility complex-encoded subunits on peptidase activities of human multicatalytic proteases. *Proc Natl Acad Sci U S A* 92: 584-588.
- 39. Driscoll, K. E., D. G. Hassenbein, J. Carter, J. Poynter, T. N. Asquith, R. A. Grant, J. Whitten, M. P. Purdon, and R. Takigiku. 1993. Macrophage inflammatory proteins 1 and 2: expression by rat alveolar macrophages, fibroblasts, and epithelial cells and in rat lung after mineral dust exposure. *Am J Respir Cell Mol Biol* 8: 311-318.
- 40. Kuckelkorn, U., S. Frentzel, R. Kraft, S. Kostka, M. Groettrup, and P. M. Kloetzel. 1995. Incorporation of major histocompatibility complex--encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-gamma. *Eur J Immunol* 25: 2605-2611.
- 41. Gaczynska, M., K. L. Rock, T. Spies, and A. L. Goldberg. 1994. Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complexencoded genes for LMP2 and LMP7. *Proc Natl Acad Sci U S A* 91: 9213-9217.
- 42. Glynne, R., S. H. Powis, S. Beck, A. Kelly, L. A. Kerr, and J. Trowsdale. 1991. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. *Nature* 353: 357-360.
- 43. Ortiz-Navarrete, V., A. Seelig, M. Gernold, S. Frentzel, P. M. Kloetzel, and G. J. Hammerling. 1991. Subunit of the '20S' proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. *Nature* 353: 662-664.

- 44. Basler, M., J. Moebius, L. Elenich, M. Groettrup, and J. J. Monaco. 2006. An altered T cell repertoire in MECL-1-deficient mice. *J Immunol* 176: 6665-6672.
- 45. Van Kaer, L., P. G. Ashton-Rickardt, M. Eichelberger, M. Gaczynska, K. Nagashima, K. L. Rock, A. L. Goldberg, P. C. Doherty, and S. Tonegawa. 1994. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. *Immunity* 1: 533-541.
- 46. Nussbaum, A. K., M. P. Rodriguez-Carreno, N. Benning, J. Botten, and J. L. Whitton. 2005. Immunoproteasome-deficient mice mount largely normal CD8+ T cell responses to lymphocytic choriomeningitis virus infection and DNA vaccination. *J Immunol* 175: 1153-1160.
- 47. Stohwasser, R., U. Kuckelkorn, R. Kraft, S. Kostka, and P. M. Kloetzel. 1996. 20S proteasome from LMP7 knock out mice reveals altered proteolytic activities and cleavage site preferences. *FEBS Lett* 383: 109-113.
- 48. Fehling, H. J., W. Swat, C. Laplace, R. Kuhn, K. Rajewsky, U. Muller, and H. von Boehmer. 1994. MHC class I expression in mice lacking the proteasome subunit LMP-7. *Science* 265: 1234-1237.
- 49. Toes, R. E., A. K. Nussbaum, S. Degermann, M. Schirle, N. P. Emmerich, M. Kraft, C. Laplace, A. Zwinderman, T. P. Dick, J. Muller, B. Schonfisch, C. Schmid, H. J. Fehling, S. Stevanovic, H. G. Rammensee, and H. Schild. 2001. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. *J Exp Med* 194: 1-12.
- 50. Osterloh, P., K. Linkemann, S. Tenzer, H. G. Rammensee, M. P. Radsak, D. H. Busch, and H. Schild. 2006. Proteasomes shape the repertoire of T cells participating in antigen-specific immune responses. *Proc Natl Acad Sci U S A* 103: 5042-5047.
- Kincaid, E. Z., J. W. Che, I. York, H. Escobar, E. Reyes-Vargas, J. C. Delgado, R. M. Welsh, M. L. Karow, A. J. Murphy, D. M. Valenzuela, G. D. Yancopoulos, and K. L. Rock. 2012. Mice completely lacking immunoproteasomes show major changes in antigen presentation. *Nat Immunol* 13: 129-135.
- 52. Kloetzel, P. M. 2004. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. *Nat Immunol* 5: 661-669.
- 53. Geier, E., G. Pfeifer, M. Wilm, M. Lucchiari-Hartz, W. Baumeister, K. Eichmann, and G. Niedermann. 1999. A giant protease with potential to substitute for some functions of the proteasome. *Science* 283: 978-981.
- 54. Guil, S., M. Rodriguez-Castro, F. Aguilar, E. M. Villasevil, L. C. Anton, and M. Del Val. 2006. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental. *J Biol Chem* 281: 39925-39934.
- 55. Seifert, U., C. Maranon, A. Shmueli, J. F. Desoutter, L. Wesoloski, K. Janek, P. Henklein, S. Diescher, M. Andrieu, H. de la Salle, T. Weinschenk, H. Schild, D. Laderach, A. Galy, G. Haas, P. M. Kloetzel, Y. Reiss, and A. Hosmalin. 2003. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. *Nat Immunol* 4: 375-379.
- 56. Levy, F., L. Burri, S. Morel, A. L. Peitrequin, N. Levy, A. Bachi, U. Hellman, B. J. Van den Eynde, and C. Servis. 2002. The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases. *J Immunol* 169: 4161-4171.

- 57. York, I. A., N. Bhutani, S. Zendzian, A. L. Goldberg, and K. L. Rock. 2006. Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. *J Immunol* 177: 1434-1443.
- 58. Kawahara, M., I. A. York, A. Hearn, D. Farfan, and K. L. Rock. 2009. Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo. *J Immunol* 183: 6069-6077.
- 59. Huai, J., E. Firat, A. Nil, D. Million, S. Gaedicke, B. Kanzler, M. Freudenberg, P. van Endert, G. Kohler, H. L. Pahl, P. Aichele, K. Eichmann, and G. Niedermann. 2008. Activation of cellular death programs associated with immunosenescence-like phenotype in TPPII knockout mice. *Proc Natl Acad Sci U S A* 105: 5177-5182.
- 60. Firat, E., J. Huai, L. Saveanu, S. Gaedicke, P. Aichele, K. Eichmann, P. van Endert, and G. Niedermann. 2007. Analysis of direct and cross-presentation of antigens in TPPII knockout mice. *J Immunol* 179: 8137-8145.
- 61. Knight, C. G., P. M. Dando, and A. J. Barrett. 1995. Thimet oligopeptidase specificity: evidence of preferential cleavage near the C-terminus and product inhibition from kinetic analysis of peptide hydrolysis. *Biochem J* 308 (Pt 1): 145-150.
- Kessler, J. H., S. Khan, U. Seifert, S. Le Gall, K. M. Chow, A. Paschen, S. A. Bres-Vloemans, A. de Ru, N. van Montfoort, K. L. Franken, W. E. Benckhuijsen, J. M. Brooks, T. van Hall, K. Ray, A. Mulder, Doxiadis, II, P. F. van Swieten, H. S. Overkleeft, A. Prat, B. Tomkinson, J. Neefjes, P. M. Kloetzel, D. W. Rodgers, L. B. Hersh, J. W. Drijfhout, P. A. van Veelen, F. Ossendorp, and C. J. Melief. 2011. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. *Nat Immunol* 12: 45-53.
- 63. Saric, T., C. I. Graef, and A. L. Goldberg. 2004. Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. *J Biol Chem* 279: 46723-46732.
- 64. York, I. A., A. X. Mo, K. Lemerise, W. Zeng, Y. Shen, C. R. Abraham, T. Saric, A. L. Goldberg, and K. L. Rock. 2003. The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. *Immunity* 18: 429-440.
- 65. Stoltze, L., M. Schirle, G. Schwarz, C. Schroter, M. W. Thompson, L. B. Hersh, H. Kalbacher, S. Stevanovic, H. G. Rammensee, and H. Schild. 2000. Two new proteases in the MHC class I processing pathway. *Nat Immunol* 1: 413-418.
- 66. Kim, E., H. Kwak, and K. Ahn. 2009. Cytosolic aminopeptidases influence MHC class Imediated antigen presentation in an allele-dependent manner. *J Immunol* 183: 7379-7387.
- 67. Towne, C. F., I. A. York, L. B. Watkin, J. S. Lazo, and K. L. Rock. 2007. Analysis of the role of bleomycin hydrolase in antigen presentation and the generation of CD8 T cell responses. *J Immunol* 178: 6923-6930.
- 68. Beninga, J., K. L. Rock, and A. L. Goldberg. 1998. Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. *J Biol Chem* 273: 18734-18742.
- 69. Reits, E., A. Griekspoor, J. Neijssen, T. Groothuis, K. Jalink, P. van Veelen, H. Janssen, J. Calafat, J. W. Drijfhout, and J. Neefjes. 2003. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. *Immunity* 18: 97-108.

- 70. Towne, C. F., I. A. York, J. Neijssen, M. L. Karow, A. J. Murphy, D. M. Valenzuela, G. D. Yancopoulos, J. J. Neefjes, and K. L. Rock. 2005. Leucine aminopeptidase is not essential for trimming peptides in the cytosol or generating epitopes for MHC class I antigen presentation. *J Immunol* 175: 6605-6614.
- 71. Towne, C. F., I. A. York, J. Neijssen, M. L. Karow, A. J. Murphy, D. M. Valenzuela, G. D. Yancopoulos, J. J. Neefjes, and K. L. Rock. 2008. Puromycin-sensitive aminopeptidase limits MHC class I presentation in dendritic cells but does not affect CD8 T cell responses during viral infections. *J Immunol* 180: 1704-1712.
- 72. Kisselev, A. F., T. N. Akopian, K. M. Woo, and A. L. Goldberg. 1999. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. *J Biol Chem* 274: 3363-3371.
- 73. Yewdell, J. W. 2001. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. *Trends Cell Biol* 11: 294-297.
- 74. Ishii, T., H. Udono, T. Yamano, H. Ohta, A. Uenaka, T. Ono, A. Hizuta, N. Tanaka, P. K. Srivastava, and E. Nakayama. 1999. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. *J Immunol* 162: 1303-1309.
- 75. Binder, R. J., and P. K. Srivastava. 2005. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. *Nat Immunol* 6: 593-599.
- 76. Imai, T., Y. Kato, C. Kajiwara, S. Mizukami, I. Ishige, T. Ichiyanagi, M. Hikida, J. Y. Wang, and H. Udono. 2011. Heat shock protein 90 (HSP90) contributes to cytosolic translocation of extracellular antigen for cross-presentation by dendritic cells. *Proc Natl Acad Sci U S A* 108: 16363-16368.
- 77. Arnold, D., S. Faath, H. Rammensee, and H. Schild. 1995. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. *J Exp Med* 182: 885-889.
- 78. Binder, R. J., N. E. Blachere, and P. K. Srivastava. 2001. Heat shock proteinchaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. *J Biol Chem* 276: 17163-17171.
- 79. Kunisawa, J., and N. Shastri. 2006. Hsp90alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. *Immunity* 24: 523-534.
- 80. Callahan, M. K., M. Garg, and P. K. Srivastava. 2008. Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. *Proc Natl Acad Sci U S A* 105: 1662-1667.
- 81. MacAry, P. A., B. Javid, R. A. Floto, K. G. Smith, W. Oehlmann, M. Singh, and P. J. Lehner. 2004. HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. *Immunity* 20: 95-106.
- 82. Millar, D. G., K. M. Garza, B. Odermatt, A. R. Elford, N. Ono, Z. Li, and P. S. Ohashi. 2003. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. *Nat Med* 9: 1469-1476.
- 83. Lammert, E., D. Arnold, M. Nijenhuis, F. Momburg, G. J. Hammerling, J. Brunner, S. Stevanovic, H. G. Rammensee, and H. Schild. 1997. The endoplasmic reticulum-

resident stress protein gp96 binds peptides translocated by TAP. *Eur J Immunol* 27: 923-927.

- 84. Arnold, D., C. Wahl, S. Faath, H. G. Rammensee, and H. Schild. 1997. Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. *J Exp Med* 186: 461-466.
- 85. Randow, F., and B. Seed. 2001. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. *Nat Cell Biol* 3: 891-896.
- 86. Kubota, H., G. Hynes, and K. Willison. 1995. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. *Eur J Biochem* 230: 3-16.
- 87. Kunisawa, J., and N. Shastri. 2003. The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway. *Mol Cell* 12: 565-576.
- 88. Vatner, R. E., and P. K. Srivastava. 2010. The tailless complex polypeptide-1 ring complex of the heat shock protein 60 family facilitates cross-priming of CD8 responses specific for chaperoned peptides. *J Immunol* 185: 6765-6773.
- 89. Pamer, E., and P. Cresswell. 1998. Mechanisms of MHC class I--restricted antigen processing. *Annu Rev Immunol* 16: 323-358.
- 90. Elliott, T., and A. Williams. 2005. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. *Immunol Rev* 207: 89-99.
- 91. Ortmann, B., J. Copeman, P. J. Lehner, B. Sadasivan, J. A. Herberg, A. G. Grandea, S. R. Riddell, R. Tampe, T. Spies, J. Trowsdale, and P. Cresswell. 1997. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. *Science* 277: 1306-1309.
- 92. Schrag, J. D., J. J. Bergeron, Y. Li, S. Borisova, M. Hahn, D. Y. Thomas, and M. Cygler. 2001. The Structure of calnexin, an ER chaperone involved in quality control of protein folding. *Mol Cell* 8: 633-644.
- 93. Gao, B., R. Adhikari, M. Howarth, K. Nakamura, M. C. Gold, A. B. Hill, R. Knee, M. Michalak, and T. Elliott. 2002. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. *Immunity* 16: 99-109.
- 94. van Leeuwen, J. E., and K. P. Kearse. 1996. Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin-class I-TAP complexes. *Proc Natl Acad Sci U S A* 93: 13997-14001.
- 95. Sadasivan, B., P. J. Lehner, B. Ortmann, T. Spies, and P. Cresswell. 1996. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. *Immunity* 5: 103-114.
- 96. Farmery, M. R., S. Allen, A. J. Allen, and N. J. Bulleid. 2000. The role of ERp57 in disulfide bond formation during the assembly of major histocompatibility complex class I in a synchronized semipermeabilized cell translation system. *J Biol Chem* 275: 14933-14938.
- 97. Harris, M. R., Y. Y. Yu, C. S. Kindle, T. H. Hansen, and J. C. Solheim. 1998. Calreticulin and calnexin interact with different protein and glycan determinants during the assembly of MHC class I. *J Immunol* 160: 5404-5409.

- 98. Jackson, M. R., M. F. Cohen-Doyle, P. A. Peterson, and D. B. Williams. 1994. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). *Science* 263: 384-387.
- 99. Nossner, E., and P. Parham. 1995. Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules. *J Exp Med* 181: 327-337.
- 100. Scott, J. E., and J. R. Dawson. 1995. MHC class I expression and transport in a calnexin-deficient cell line. *J Immunol* 155: 143-148.
- Kraus, A., J. Groenendyk, K. Bedard, T. A. Baldwin, K. H. Krause, M. Dubois-Dauphin, J. Dyck, E. E. Rosenbaum, L. Korngut, N. J. Colley, S. Gosgnach, D. Zochodne, K. Todd, L. B. Agellon, and M. Michalak. 2010. Calnexin deficiency leads to dysmyelination. *J Biol Chem* 285: 18928-18938.
- 102. Johnson, S., M. Michalak, M. Opas, and P. Eggleton. 2001. The ins and outs of calreticulin: from the ER lumen to the extracellular space. *Trends Cell Biol* 11: 122-129.
- 103. Guo, L., K. Nakamura, J. Lynch, M. Opas, E. N. Olson, L. B. Agellon, and M. Michalak. 2002. Cardiac-specific expression of calcineurin reverses embryonic lethality in calreticulin-deficient mouse. *J Biol Chem* 277: 50776-50779.
- 104. Del Cid, N., E. Jeffery, S. M. Rizvi, E. Stamper, L. R. Peters, W. C. Brown, C. Provoda, and M. Raghavan. 2010. Modes of calreticulin recruitment to the major histocompatibility complex class I assembly pathway. *J Biol Chem* 285: 4520-4535.
- 105. Fu, H., C. Liu, B. Flutter, H. Tao, and B. Gao. 2009. Calreticulin maintains the low threshold of peptide required for efficient antigen presentation. *Mol Immunol* 46: 3198-3206.
- 106. Spies, T., M. Bresnahan, S. Bahram, D. Arnold, G. Blanck, E. Mellins, D. Pious, and R. DeMars. 1990. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. *Nature* 348: 744-747.
- 107. Trowsdale, J., I. Hanson, I. Mockridge, S. Beck, A. Townsend, and A. Kelly. 1990. Sequences encoded in the class II region of the MHC related to the 'ABC' superfamily of transporters. *Nature* 348: 741-744.
- 108. Deverson, E. V., I. R. Gow, W. J. Coadwell, J. J. Monaco, G. W. Butcher, and J. C. Howard. 1990. MHC class II region encoding proteins related to the multidrug resistance family of transmembrane transporters. *Nature* 348: 738-741.
- 109. Monaco, J. J., S. Cho, and M. Attaya. 1990. Transport protein genes in the murine MHC: possible implications for antigen processing. *Science* 250: 1723-1726.
- 110. Ma, W., P. J. Lehner, P. Cresswell, J. S. Pober, and D. R. Johnson. 1997. Interferongamma rapidly increases peptide transporter (TAP) subunit expression and peptide transport capacity in endothelial cells. *J Biol Chem* 272: 16585-16590.
- 111. Karttunen, J. T., P. J. Lehner, S. S. Gupta, E. W. Hewitt, and P. Cresswell. 2001. Distinct functions and cooperative interaction of the subunits of the transporter associated with antigen processing (TAP). *Proc Natl Acad Sci U S A* 98: 7431-7436.
- 112. Nijenhuis, M., S. Schmitt, E. A. Armandola, R. Obst, J. Brunner, and G. J. Hammerling. 1996. Identification of a contact region for peptide on the TAP1 chain of the transporter associated with antigen processing. *J Immunol* 156: 2186-2195.

- 113. van Endert, P. M., D. Riganelli, G. Greco, K. Fleischhauer, J. Sidney, A. Sette, and J. F. Bach. 1995. The peptide-binding motif for the human transporter associated with antigen processing. *J Exp Med* 182: 1883-1895.
- 114. Momburg, F., J. Roelse, J. C. Howard, G. W. Butcher, G. J. Hammerling, and J. J. Neefjes. 1994. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. *Nature* 367: 648-651.
- 115. Burgevin, A., L. Saveanu, Y. Kim, E. Barilleau, M. Kotturi, A. Sette, P. van Endert, and B. Peters. 2008. A detailed analysis of the murine TAP transporter substrate specificity. *PLoS One* 3: e2402.
- 116. Neisig, A., J. Roelse, A. J. Sijts, F. Ossendorp, M. C. Feltkamp, W. M. Kast, C. J. Melief, and J. J. Neefjes. 1995. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. *J Immunol* 154: 1273-1279.
- 117. Rammensee, H. G., T. Friede, and S. Stevanoviic. 1995. MHC ligands and peptide motifs: first listing. *Immunogenetics* 41: 178-228.
- 118. Spies, T., and R. DeMars. 1991. Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. *Nature* 351: 323-324.
- 119. Van Kaer, L., P. G. Ashton-Rickardt, H. L. Ploegh, and S. Tonegawa. 1992. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. *Cell* 71: 1205-1214.
- 120. Wei, M. L., and P. Cresswell. 1992. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. *Nature* 356: 443-446.
- 121. van Hall, T., E. Z. Wolpert, P. van Veelen, S. Laban, M. van der Veer, M. Roseboom, S. Bres, P. Grufman, A. de Ru, H. Meiring, A. de Jong, K. Franken, A. Teixeira, R. Valentijn, J. W. Drijfhout, F. Koning, M. Camps, F. Ossendorp, K. Karre, H. G. Ljunggren, C. J. Melief, and R. Offringa. 2006. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. *Nat Med* 12: 417-424.
- 122. Weinzierl, A. O., D. Rudolf, N. Hillen, S. Tenzer, P. van Endert, H. Schild, H. G. Rammensee, and S. Stevanovic. 2008. Features of TAP-independent MHC class I ligands revealed by quantitative mass spectrometry. *Eur J Immunol* 38: 1503-1510.
- 123. Helenius, A., and M. Aebi. 2004. Roles of N-linked glycans in the endoplasmic reticulum. *Annu Rev Biochem* 73: 1019-1049.
- 124. Ellgaard, L., and L. W. Ruddock. 2005. The human protein disulphide isomerase family: substrate interactions and functional properties. *EMBO Rep* 6: 28-32.
- 125. Smith, J. D., J. C. Solheim, B. M. Carreno, and T. H. Hansen. 1995. Characterization of class I MHC folding intermediates and their disparate interactions with peptide and beta 2-microglobulin. *Mol Immunol* 32: 531-540.
- 126. Dong, G., P. A. Wearsch, D. R. Peaper, P. Cresswell, and K. M. Reinisch. 2009. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. *Immunity* 30: 21-32.
- 127. Peaper, D. R., P. A. Wearsch, and P. Cresswell. 2005. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. *Embo J* 24: 3613-3623.
- 128. Wearsch, P. A., and P. Cresswell. 2007. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. *Nat Immunol* 8: 873-881.

- 129. Garbi, N., S. Tanaka, F. Momburg, and G. J. Hammerling. 2006. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. *Nat Immunol* 7: 93-102.
- 130. Grandea, A. G., 3rd, T. N. Golovina, S. E. Hamilton, V. Sriram, T. Spies, R. R. Brutkiewicz, J. T. Harty, L. C. Eisenlohr, and L. Van Kaer. 2000. Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. *Immunity* 13: 213-222.
- 131. Suh, W. K., M. A. Derby, M. F. Cohen-Doyle, G. J. Schoenhals, K. Fruh, J. A. Berzofsky, and D. B. Williams. 1999. Interaction of murine MHC class I molecules with tapasin and TAP enhances peptide loading and involves the heavy chain alpha3 domain. *J Immunol* 162: 1530-1540.
- 132. Tan, P., H. Kropshofer, O. Mandelboim, N. Bulbuc, G. J. Hammerling, and F. Momburg. 2002. Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. *J Immunol* 168: 1950-1960.
- 133. Simone, L. C., C. J. Georgesen, P. D. Simone, X. Wang, and J. C. Solheim. 2012. Productive association between MHC class I and tapasin requires the tapasin transmembrane/cytosolic region and the tapasin C-terminal Ig-like domain. *Mol Immunol* 49: 628-639.
- 134. Dick, T. P., N. Bangia, D. R. Peaper, and P. Cresswell. 2002. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. *Immunity* 16: 87-98.
- 135. Bangia, N., P. J. Lehner, E. A. Hughes, M. Surman, and P. Cresswell. 1999. The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. *Eur J Immunol* 29: 1858-1870.
- 136. Garbi, N., N. Tiwari, F. Momburg, and G. J. Hammerling. 2003. A major role for tapasin as a stabilizer of the TAP peptide transporter and consequences for MHC class I expression. *Eur J Immunol* 33: 264-273.
- 137. Park, B., S. Lee, E. Kim, and K. Ahn. 2003. A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence. *J Immunol* 170: 961-968.
- 138. Sieker, F., T. P. Straatsma, S. Springer, and M. Zacharias. 2008. Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: a molecular dynamics simulation study. *Mol Immunol* 45: 3714-3722.
- 139. Simone, L. C., A. Tuli, P. D. Simone, X. Wang, and J. C. Solheim. 2012. Analysis of major histocompatibility complex class I folding: novel insights into intermediate forms. *Tissue Antigens* 79: 249-262.
- 140. Zarling, A. L., C. J. Luckey, J. A. Marto, F. M. White, C. J. Brame, A. M. Evans, P. J. Lehner, P. Cresswell, J. Shabanowitz, D. F. Hunt, and V. H. Engelhard. 2003. Tapasin is a facilitator, not an editor, of class I MHC peptide binding. *J Immunol* 171: 5287-5295.
- 141. Lewis, J. W., and T. Elliott. 1998. Evidence for successive peptide binding and quality control stages during MHC class I assembly. *Curr Biol* 8: 717-720.
- 142. Chen, M., and M. Bouvier. 2007. Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. *Embo J* 26: 1681-1690.

- 143. Howarth, M., A. Williams, A. B. Tolstrup, and T. Elliott. 2004. Tapasin enhances MHC class I peptide presentation according to peptide half-life. *Proc Natl Acad Sci U S A* 101: 11737-11742.
- 144. Serwold, T., F. Gonzalez, J. Kim, R. Jacob, and N. Shastri. 2002. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. *Nature* 419: 480-483.
- 145. Cui, X., F. Hawari, S. Alsaaty, M. Lawrence, C. A. Combs, W. Geng, F. N. Rouhani, D. Miskinis, and S. J. Levine. 2002. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. *J Clin Invest* 110: 515-526.
- 146. Hattori, A., K. Kitatani, H. Matsumoto, S. Miyazawa, T. Rogi, N. Tsuruoka, S. Mizutani, Y. Natori, and M. Tsujimoto. 2000. Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells. *J Biochem* 128: 755-762.
- 147. Tsujimoto, M., and A. Hattori. 2005. The oxytocinase subfamily of M1 aminopeptidases. *Biochim Biophys Acta* 1751: 9-18.
- 148. Nguyen, T. T., S. C. Chang, I. Evnouchidou, I. A. York, C. Zikos, K. L. Rock, A. L. Goldberg, E. Stratikos, and L. J. Stern. 2011. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. *Nat Struct Mol Biol* 18: 604-613.
- 149. Chang, S. C., F. Momburg, N. Bhutani, and A. L. Goldberg. 2005. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism. *Proc Natl Acad Sci U S A* 102: 17107-17112.
- 150. Evnouchidou, I., F. Momburg, A. Papakyriakou, A. Chroni, L. Leondiadis, S. C. Chang, A. L. Goldberg, and E. Stratikos. 2008. The internal sequence of the peptidesubstrate determines its N-terminus trimming by ERAP1. *PLoS One* 3: e3658.
- 151. Brouwenstijn, N., T. Serwold, and N. Shastri. 2001. MHC class I molecules can direct proteolytic cleavage of antigenic precursors in the endoplasmic reticulum. *Immunity* 15: 95-104.
- 152. Kanaseki, T., N. Blanchard, G. E. Hammer, F. Gonzalez, and N. Shastri. 2006. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. *Immunity* 25: 795-806.
- 153. Hammer, G. E., F. Gonzalez, M. Champsaur, D. Cado, and N. Shastri. 2006. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. *Nat Immunol* 7: 103-112.
- 154. Hammer, G. E., F. Gonzalez, E. James, H. Nolla, and N. Shastri. 2007. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. *Nat Immunol* 8: 101-108.
- 155. Nagarajan, N. A., F. Gonzalez, and N. Shastri. 2012. Nonclassical MHC class Ibrestricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. *Nat Immunol* 13: 579-586.
- 156. York, I. A., M. A. Brehm, S. Zendzian, C. F. Towne, and K. L. Rock. 2006. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. *Proc Natl Acad Sci U S A* 103: 9202-9207.
- 157. Yan, J., V. V. Parekh, Y. Mendez-Fernandez, D. Olivares-Villagomez, S. Dragovic, T. Hill, D. C. Roopenian, S. Joyce, and L. Van Kaer. 2006. In vivo role of ER-associated

peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. *J Exp Med* 203: 647-659.

- 158. Firat, E., L. Saveanu, P. Aichele, P. Staeheli, J. Huai, S. Gaedicke, A. Nil, G. Besin, B. Kanzler, P. van Endert, and G. Niedermann. 2007. The role of endoplasmic reticulum-associated aminopeptidase 1 in immunity to infection and in cross-presentation. *J Immunol* 178: 2241-2248.
- 159. Blanchard, N., T. Kanaseki, H. Escobar, F. Delebecque, N. A. Nagarajan, E. Reyes-Vargas, D. K. Crockett, D. H. Raulet, J. C. Delgado, and N. Shastri. 2010. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virusinfected cells. *J Immunol* 184: 3033-3042.
- 160. Tanioka, T., A. Hattori, S. Mizutani, and M. Tsujimoto. 2005. Regulation of the human leukocyte-derived arginine aminopeptidase/endoplasmic reticulum-aminopeptidase 2 gene by interferon-gamma. *Febs J* 272: 916-928.
- 161. Saveanu, L., O. Carroll, V. Lindo, M. Del Val, D. Lopez, Y. Lepelletier, F. Greer, L. Schomburg, D. Fruci, G. Niedermann, and P. M. van Endert. 2005. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. *Nat Immunol* 6: 689-697.
- 162. Zervoudi, E., A. Papakyriakou, D. Georgiadou, I. Evnouchidou, A. Gajda, M. Poreba, G. S. Salvesen, M. Drag, A. Hattori, L. Swevers, D. Vourloumis, and E. Stratikos. 2011. Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides. *Biochem J* 435: 411-420.
- 163. Birtley, J. R., E. Saridakis, E. Stratikos, and I. M. Mavridis. 2012. The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing. *Biochemistry* 51: 286-295.
- 164. Harmer, D., M. Gilbert, R. Borman, and K. L. Clark. 2002. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. *FEBS Lett* 532: 107-110.
- 165. Danilov, S. M., E. Sadovnikova, N. Scharenborg, I. V. Balyasnikova, D. A. Svinareva, E. L. Semikina, E. N. Parovichnikova, V. G. Savchenko, and G. J. Adema. 2003. Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. *Exp Hematol* 31: 1301-1309.
- 166. Saijonmaa, O., T. Nyman, and F. Fyhrquist. 2007. Atorvastatin inhibits angiotensinconverting enzyme induction in differentiating human macrophages. *Am J Physiol Heart Circ Physiol* 292: H1917-1921.
- 167. Shen, X. Z., S. Billet, C. Lin, D. Okwan-Duodu, X. Chen, A. E. Lukacher, and K. E. Bernstein. 2011. The carboxypeptidase ACE shapes the MHC class I peptide repertoire. *Nat Immunol* 12: 1078-1085.
- 168. Eisenlohr, L. C., I. Bacik, J. R. Bennink, K. Bernstein, and J. W. Yewdell. 1992. Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. *Cell* 71: 963-972.
- 169. Kim, S., S. Lee, J. Shin, Y. Kim, I. Evnouchidou, D. Kim, Y. K. Kim, Y. E. Kim, J. H. Ahn, S. R. Riddell, E. Stratikos, V. N. Kim, and K. Ahn. 2011. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. *Nat Immunol*.

- 170. Fruci, D., P. Giacomini, M. R. Nicotra, M. Forloni, R. Fraioli, L. Saveanu, P. van Endert, and P. G. Natali. 2008. Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed non-lymphoid human tissues. *J Cell Physiol* 216: 742-749.
- 171. Burton, P. R., D. G. Clayton, L. R. Cardon, N. Craddock, P. Deloukas, A. Duncanson, D. P. Kwiatkowski, M. I. McCarthy, W. H. Ouwehand, N. J. Samani, J. A. Todd, P. Donnelly, J. C. Barrett, D. Davison, D. Easton, D. M. Evans, H. T. Leung, J. L. Marchini, A. P. Morris, C. C. Spencer, M. D. Tobin, A. P. Attwood, J. P. Boorman, B. Cant, U. Everson, J. M. Hussey, J. D. Jolley, A. S. Knight, K. Koch, E. Meech, S. Nutland, C. V. Prowse, H. E. Stevens, N. C. Taylor, G. R. Walters, N. M. Walker, N. A. Watkins, T. Winzer, R. W. Jones, W. L. McArdle, S. M. Ring, D. P. Strachan, M. Pembrey, G. Breen, D. St Clair, S. Caesar, K. Gordon-Smith, L. Jones, C. Fraser, E. K. Green, D. Grozeva, M. L. Hamshere, P. A. Holmans, I. R. Jones, G. Kirov, V. Moskivina, I. Nikolov, M. C. O'Donovan, M. J. Owen, D. A. Collier, A. Elkin, A. Farmer, R. Williamson, P. McGuffin, A. H. Young, I. N. Ferrier, S. G. Ball, A. J. Balmforth, J. H. Barrett, T. D. Bishop, M. M. Iles, A. Magbool, N. Yuldasheva, A. S. Hall, P. S. Braund, R. J. Dixon, M. Mangino, S. Stevens, J. R. Thompson, F. Bredin, M. Tremelling, M. Parkes, H. Drummond, C. W. Lees, E. R. Nimmo, J. Satsangi, S. A. Fisher, A. Forbes, C. M. Lewis, C. M. Onnie, N. J. Prescott, J. Sanderson, C. G. Matthew, J. Barbour, M. K. Mohiuddin, C. E. Todhunter, J. C. Mansfield, T. Ahmad, F. R. Cummings, D. P. Jewell, J. Webster, M. J. Brown, M. G. Lathrop, J. Connell, A. Dominiczak, C. A. Marcano, B. Burke, R. Dobson, J. Gungadoo, K. L. Lee, P. B. Munroe, S. J. Newhouse, A. Onipinla, C. Wallace, M. Xue, M. Caulfield, M. Farrall, A. Barton, I. N. Bruce, H. Donovan, S. Eyre, P. D. Gilbert, S. L. Hilder, A. M. Hinks, S. L. John, C. Potter, A. J. Silman, D. P. Symmons, W. Thomson, J. Worthington, D. B. Dunger, B. Widmer, T. M. Frayling, R. M. Freathy, H. Lango, J. R. Perry, B. M. Shields, M. N. Weedon, A. T. Hattersley, G. A. Hitman, M. Walker, K. S. Elliott, C. J. Groves, C. M. Lindgren, N. W. Rayner, N. J. Timpson, E. Zeggini, M. Newport, G. Sirugo, E. Lyons, F. Vannberg, A. V. Hill, L. A. Bradbury, C. Farrar, J. J. Pointon, P. Wordsworth, M. A. Brown, J. A. Franklyn, J. M. Heward, M. J. Simmonds, S. C. Gough, S. Seal, M. R. Stratton, N. Rahman, M. Ban, A. Goris, S. J. Sawcer, A. Compston, D. Conway, M. Jallow, K. A. Rockett, S. J. Bumpstead, A. Chaney, K. Downes, M. J. Ghori, R. Gwilliam, S. E. Hunt, M. Inouye, A. Keniry, E. King, R. McGinnis, S. Potter, R. Ravindrarajah, P. Whittaker, C. Widden, D. Withers, N. J. Cardin, T. Ferreira, J. Pereira-Gale, I. B. Hallgrimsdo'ttir, B. N. Howie, Z. Su, Y. Y. Teo, D. Vukcevic, D. Bentley, S. L. Mitchell, P. R. Newby, O. J. Brand, J. Carr-Smith, S. H. Pearce, J. D. Reveille, X. Zhou, A. M. Sims, A. Dowling, J. Taylor, T. Doan, J. C. Davis, L. Savage, M. M. Ward, T. L. Learch, M. H. Weisman, and M. Brown. 2007. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 39: 1329-1337.
- 172. Harvey, D., J. J. Pointon, D. M. Evans, T. Karaderi, C. Farrar, L. H. Appleton, R. D. Sturrock, M. A. Stone, U. Oppermann, M. A. Brown, and B. P. Wordsworth. 2009. Investigating the genetic association between ERAP1 and ankylosing spondylitis. *Hum Mol Genet* 18: 4204-4212.
- 173. Halenius, A., S. Hauka, L. Dolken, J. Stindt, H. Reinhard, C. Wiek, H. Hanenberg, U. H. Koszinowski, F. Momburg, and H. Hengel. 2011. Human cytomegalovirus disrupts

the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription. *J Virol* 85: 3473-3485.

- 174. Park, B., Y. Kim, J. Shin, S. Lee, K. Cho, K. Fruh, and K. Ahn. 2004. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. *Immunity* 20: 71-85.
- 175. Lybarger, L., X. Wang, M. R. Harris, H. W. t. Virgin, and T. H. Hansen. 2003. Virus subversion of the MHC class I peptide-loading complex. *Immunity* 18: 121-130.
- 176. Jiang, Q., H. Y. Pan, D. X. Ye, P. Zhang, L. P. Zhong, and Z. Y. Zhang. 2010. Downregulation of tapasin expression in primary human oral squamous cell carcinoma: association with clinical outcome. *Tumour Biol* 31: 451-459.
- 177. Garbi, N., P. Tan, A. D. Diehl, B. J. Chambers, H. G. Ljunggren, F. Momburg, and G. J. Hammerling. 2000. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. *Nat Immunol* 1: 234-238.
- 178. Li, L., B. A. Sullivan, C. J. Aldrich, M. J. Soloski, J. Forman, A. G. Grandea, 3rd, P. E. Jensen, and L. Van Kaer. 2004. Differential requirement for tapasin in the presentation of leader- and insulin-derived peptide antigens to Qa-1b-restricted CTLs. *J Immunol* 173: 3707-3715.
- 179. Barber, L. D., M. Howarth, P. Bowness, and T. Elliott. 2001. The quantity of naturally processed peptides stably bound by HLA-A*0201 is significantly reduced in the absence of tapasin. *Tissue Antigens* 58: 363-368.
- 180. Boulanger, D. S., R. Oliveira, L. Ayers, S. H. Prior, E. James, A. P. Williams, and T. Elliott. 2010. Absence of tapasin alters immunodominance against a lymphocytic choriomeningitis virus polytope. *J Immunol* 184: 73-83.
- 181. Aladin, F., G. Lautscham, E. Humphries, J. Coulson, and N. Blake. 2007. Targeting tumour cells with defects in the MHC Class I antigen processing pathway with CD8+ T cells specific for hydrophobic TAP- and Tapasin-independent peptides: the requirement for directed access into the ER. *Cancer immunology, immunotherapy : CII* 56: 1143-1152.
- 182. Cifaldi, L., E. Lo Monaco, M. Forloni, E. Giorda, S. Lorenzi, S. Petrini, E. Tremante, D. Pende, F. Locatelli, P. Giacomini, and D. Fruci. 2011. Natural killer cells efficiently reject lymphoma silenced for the endoplasmic reticulum aminopeptidase associated with antigen processing. *Cancer Res* 71: 1597-1606.
- 183. Rammensee, H. G., K. Falk, and O. Rotzschke. 1993. Peptides naturally presented by MHC class I molecules. *Annu Rev Immunol* 11: 213-244.
- 184. Praveen, P. V., R. Yaneva, H. Kalbacher, and S. Springer. 2010. Tapasin edits peptides on MHC class I molecules by accelerating peptide exchange. *Eur J Immunol* 40: 214-224.
- 185. Matsunaga, T., and E. Simpson. 1978. H-2 complementation in anti-H-Y cytotoxic Tcell responses can occur in chimeric mice. *Proc Natl Acad Sci U S A* 75: 6207-6210.
- 186. Shastri, N., S. Schwab, and T. Serwold. 2002. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. *Annu Rev Immunol* 20: 463-493.
- 187. Neefjes, J., E. Gottfried, J. Roelse, M. Gromme, R. Obst, G. J. Hammerling, and F. Momburg. 1995. Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. *Eur J Immunol* 25: 1133-1136.

- 188. Burrows, S. R., J. Rossjohn, and J. McCluskey. 2006. Have we cut ourselves too short in mapping CTL epitopes? *Trends Immunol* 27: 11-16.
- 189. Mendoza, L. M., S. Malarkannan, and N. Shastri. 2001. Identification of CD8+ T-cellstimulating antigen genes in cDNA libraries. *Methods Mol Biol* 156: 255-263.
- 190. Simone, L. C., X. Wang, A. Tuli, and J. C. Solheim. 2010. Effect of a tapasin mutant on the assembly of the mouse MHC class I molecule H2-K(d). *Immunol Cell Biol* 88: 57-62.
- 191. Sieker, F., S. Springer, and M. Zacharias. 2007. Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles. *Protein Sci* 16: 299-308.
- 192. Williams, D. B., and T. H. Watts. 1995. Molecular chaperones in antigen presentation. *Curr Opin Immunol* 7: 77-84.
- 193. Elliott, T. 2009. More images that yet fresh images Beget. *Immunity* 30: 1-2.
- 194. Lewis, J. W., A. Sewell, D. Price, and T. Elliott. 1998. HLA-A*0201 presents TAPdependent peptide epitopes to cytotoxic T lymphocytes in the absence of tapasin. *Eur J Immunol* 28: 3214-3220.
- 195. Peh, C. A., S. R. Burrows, M. Barnden, R. Khanna, P. Cresswell, D. J. Moss, and J. McCluskey. 1998. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. *Immunity* 8: 531-542.
- 196. Hansen, T. H., and M. Bouvier. 2009. MHC class I antigen presentation: learning from viral evasion strategies. *Nat Rev Immunol* 9: 503-513.
- 197. Blanchard, N., F. Gonzalez, M. Schaeffer, N. T. Joncker, T. Cheng, A. J. Shastri, E. A. Robey, and N. Shastri. 2008. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. *Nat Immunol* 9: 937-944.
- 198. Malarkannan, S., L. M. Mendoza, and N. Shastri. 2001. Generation of antigen-specific, lacZ-inducible T-cell hybrids. *Methods Mol Biol* 156: 265-272.
- 199. Delgado, J. C., H. Escobar, D. K. Crockett, E. Reyes-Vargas, and P. E. Jensen. 2009. Identification of naturally processed ligands in the C57BL/6 mouse using large-scale mass spectrometric peptide sequencing and bioinformatics prediction. *Immunogenetics* 61: 241-246.
- 200. Escobar, H., E. Reyes-Vargas, P. E. Jensen, J. C. Delgado, and D. K. Crockett. 2011. Utility of characteristic QTOF MS/MS fragmentation for MHC class I peptides. *J Proteome Res* 10: 2494-2507.

Appendix: Tables 2-7

Table 2: D^b peptides from WT and tapasin-deficient spleen cells

Data Set	Peptide Sequence	Length	Accession Number	Source Protein Name
tpn0	AALQNLEQL	9	Q9WTK5	Nuclear factor NF-kappa-B p100 subunit
tpn0	AGILNGKLV	9	Q922D8	C-1-tetrahydrofolate synthase, cytoplasmic
tpn0	FSHPNVLPV	9	055222	Integrin-linked protein kinase
tpn0	FSPLNPVRV	9	035737	Heterogeneous nuclear ribonucleoprotein H
tpn0	GGPENTLVF	9	Q8BX02	KN motif and ankyrin repeat domain-containing protein 2
tpn0	GINVNAAPF	9	Q60865	Caprin-1
tpn0	NSGINVMQV	9	089090	Transcription factor Spl
tpn0	SSLLSPMSV	9	P80315	T-complex protein 1 subunit delta
tpn0	YSSENISNF	9	070400	PDZ and LIM domain protein 1
tpn0	YVFPGASHN	9	Q60710	SAM domain and HD domain- containing protein 1
tpn0	SLLGGHPRL	9	Q69ZK6	Probable JmjC domain-containing histone demethylation protein 2C
tpn0	LHLGVTPSVL	10	089023	Tripeptidyl-peptidase 1
tpn0	SNLYNHPQLI	10	Q6NSQ7	Protein LTV1 homolog
tpn0	VGPLGSTIPM	10	Q9DCP9	DAZ-associated protein 2
tpn0	VMSGMMMSHM	10	Q9R1C7	Pre-mRNA-processing factor 40 homolog A
tpn0	VSGVNGPLVI	10	P62814	V-type proton ATPase subunit B, brain isoform
tpn0	WAPENAPLKS	10	P18760	Cofilin-1
tpn0	AQYNLDQFTPV	11	P47754	F-actin-capping protein subunit alpha-2
tpn0	FAPVAPKFTPV	11	Q62523	Zyxin
tpn0	FAPVNVTTEVK	11	P10126	Elongation factor 1-alpha 1
tpn0	LLTSGVEFESL	11	Q3U0M1	Trafficking protein particle complex subunit 9
tpn0	SAPSADAPMFV	11	P16858	Glyceraldehyde-3-phosphate dehydrogenase
tpn0	SLGVGYRTQPM	11	Q8C2Q3	RNA-binding protein 14
tpn0	FALQNATGDGKF	12	Q6P2L6	Histone-lysine N-methyltransferase NSD3
tpn0	FVHPGAATVPTM	12	Q9DCP9	DAZ-associated protein 2
tpn0	SQYGWSGNMERI	12	P08113	Endoplasmin
в6	IRMMLEII	8	Q8CHY3	Dymeclin

- 6	אאדדאדי		0.67.00.4	FH1/FH2 domain-containing protein
В6		9	Q6P9Q4	I II3 small nucleolar RNA-interacting
в6	AALLNTDLV	9	Q91WM3	protein 2
в6	AALQNAVAF	9	Q80VI1	Tripartite motif-containing protein 56
в6	AALQNLVKI	9	P70168	Importin subunit beta-1
B6	AALVNLDSL	9	O8CHU3	Frsin-2
			Quennus	Dolichyl-P-Man:Man(7)GlcNAc(2)-PP-
в6	AAMLNYTHI	9	Q8VDB2	<pre>dolichyl-alpha-1,6- mannosyltransferase</pre>
D6	ΔΔΡΕΠΤΥΛΗΤ	0	00 DN1/1	tRNA (uracil-5-)-methyltransferase
во		9	QOBNVI	Histone deacetylase complex
B6	AAPINTQGL	9	Q8BIH0	subunit SAP130
В6	AAPISPWTM	9	Q3U133	Zinc finger protein 746
в6	AAPRSFIFL	9	Q3UIK4	Methyltransferase-like protein KIAA1627
в6	AAPSNLPYL	9	Q8BFV3	Dual specificity protein phosphatase 4
в6	AAVLNPRFL	9	Q7TPS5	Uncharacterized protein KIAA0528
B6	AGTRNIYYL	9	O9CON1	Heat shock protein 75 kDa,
			QJCQIVI	
B6	AKIQMLDAL	9	Q9D757	Death-associated protein-like 1
В6	AMLTNLESL	9	Q8BZQ7	2
в6	AMNVNDLFL	9	P61021	Ras-related protein Rab-5B
в6	AMNVNEIFM	9	P35278	Ras-related protein Rab-5C
в6	AMYVHAYTL	9	070435	Proteasome subunit alpha type-3
				Histone-lysine N-
в6	ASMINVEYL	9	088491	and H4 lysine-20 specific
в6	ASVLNVNHI	9	Q99NH0	Ankyrin repeat domain-containing protein 17
B6	ASVSNPLFL	9	P70428	Exostosin-2
		-	1,0120	Signal recognition particle 54 kDa
B6	AIIINEEVL	9	P14576	protein
B6	ATVSNGPFL	9	Q69ZF8	Male-specific lethal 2 homolog
в6	EAVKNLEWI	9	Q02788	Collagen alpha-2(VI) chain
в6	ERAQLAAQL	9	P70436	Homeobox protein DLX-4
в6	FAHTNIESL	9	P27773	Protein disulfide-isomerase A3
в6	FAIDDHDYL	9	Q91XU3	Phosphatidylinositol-5-phosphate 4-kinase type-2 gamma
в6	FAIQNPTLI	9	Q9D2H6	Transcription factor Sp2
в6	FAPKNIYSI	9	P09581	Macrophage colony-stimulating factor 1 receptor
R6	FAPYNKPSL	٩	085350	Protein deltey-2
50	FGPINSVAF		QUOT DO	Eukaryotic translation initiation
80	TOLINOVAL	9	Δάδαρά	Uncharacterized protein CXorf21
в6	FIMTNVDQI	9	Q9D3J9	homolog

в6	FSFVNSEFL	9	P68404	Protein kinase C beta type
в6	FSLQNQLRL	9	Q9JJ28	Protein flightless-1 homolog
в6	FSPFNPTSL	9	Q9Z2U4	ETS-related transcription factor Elf-4
в6	FSVTNPHTM	9	Q8CDD9	Uncharacterized protein Clorf103 homolog
в6	FSYLNPQEL	9	Q8C2S5	F-box/LRR-repeat protein 5
в6	GALKNIVAV	9	Q3ULJ0	Glycerol-3-phosphate dehydrogenase 1-like protein
в6	GAPLNLVDL	9	Q9QWT9	Kinesin-like protein KIFC1
				CMP-N-acetylneuraminate-beta- galactosamide-alpha-2,3-
В6	GAVKNL'I'YF	9	Q91Y74	sialyltransferase Interferon-induced very large
В6	GMIENGPFL	9	Q80SU7	GTPase 1
в6	GQVINLDQL	9	Q3UVG3	Protein FAM91A1
в6	GSVVNSVAL	9	P59326	YTH domain family protein 1
в6	IAPTNAEVL	9	Q80U28	MAP kinase-activating death domain protein
в6	IAVANAQEL	9	P62075	Mitochondrial import inner membrane translocase subunit Tim13
в6	IGPKNYEFL	9	Q8BHY8	Sorting nexin-14
в6	ILHTNLVYL	9	Q62280	Protein SSXT
в6	IQIANVTTL	9	Q9CU65	Zinc finger MYM-type protein 2
в6	IQLMNTAHL	9	Q9DC50	Peroxisomal carnitine O- octanoyltransferase
в6	IRPGATAVI	9	Q9WTR6	Cystine/glutamate transporter
	TODENUTOT			Interferon-inducible double stranded RNA-dependent protein
B6	ISECULISE	9	Q9WTX2	Delta-1-pyrroline-5-carboxylate
В6	ISPFNFTAI	9	Q8CHT0	dehydrogenase, mitochondrial
В6	ISPVNPVAI	9	Q91WT8	RNA-binding protein 47
в6	KAIVNVIGM	9	Q99NB9	Splicing factor 3B subunit 1
в6	KGVFNVEVV	9	Q8R1A4	Dedicator of cytokinesis protein 7
в6	KSVENFVSL	9	Q8C3J5	Dedicator of cytokinesis protein 2
в6	KSVINTTLV	9	035114	Lysosome membrane protein 2
в6	LAIRNDEEL	9	Q8CGP5	Histone H2A type 1-F
в6	LGLSNLTHL	9	Q9EQU3	Toll-like receptor 9
в6	LLASHRTWI	9	Q921L5	Conserved oligomeric Golgi complex subunit 2
в6	LQLLNTDYL	9	Q9R0L6	Pericentriolar material 1 protein
в6	LSHTNILVL	9	Q9EQU3	Toll-like receptor 9
				Interferon-inducible double stranded RNA-dependent protein
В6	LSLPNTDYI	9	Q9WTX2	kinase activator A

в6	LSNINSVFL	9	Q9Z0M6	CD97 antigen
в6	MGILNTDTL	9	Q8C4V1	Rho GTPase-activating protein 24
в6	NGVINAAFM	9	Q61548	Clathrin coat assembly protein AP180
в6	NMPWNVDTL	9	Q61081	Hsp90 co-chaperone Cdc37
в6	QPPYNPTYM	9	Q9D7I0	Protein shisa-5
в6	QSLTNILHL	9	Q7TMR0	Lysosomal Pro-X carboxypeptidase
в6	RALQLLDEV	9	P97471	Mothers against decapentaplegic homolog 4
в6	RALSNLESI	9	Q8R317	Ubiquilin-1
в6	RSLLLLAPL	9	09R0E2	Procollagen-lysine,2-oxoglutarate
в6	SAIINEDNL	9	088667	Protein EFR3 homolog A
B6	SAISNLDYI	9	092009	Guanine nucleotide exchange factor
B6	SALANYTHI	9	OSEDCI	Integral membrane protein CPP180
	CALINIVEE		QODISA	DNA-dependent protein kinase
86	SALINLVEF	9	P97313	catalytic subunit
В6	SALLLKDVL	9	Q8BZ36	RAD50-interacting protein 1 PQ-loop repeat-containing protein
В6	SAPINSVLL	9	Q8C4N4	2 Cartilage intermediate laver
В6	SATINAEFV	9	Q66K08	protein 1
В6	SGIRNISFM	9	035598	ADAM 10
в6	SGLLNQQSL	9	Q9DB40	Mediator of RNA polymerase II transcription subunit 27
в6	SGLQNFEAL	9	Q99KD5	Protein unc-45 homolog A
в6	SGVWNVTEL	9	P70257	Nuclear factor 1 X-type
в6	SHVTNVDFL	9	Q05BC3	Echinoderm microtubule-associated protein-like 1
в6	SILVNQEVL	9	P42228	Signal transducer and activator of transcription 4
в6	SKLANIDYL	9	Q811L6	Microtubule-associated serine/threonine-protein kinase 4
в6	SLIILKQVM	9	Q9Z2U1	Proteasome subunit alpha type-5
в6	SLITNKVVM	9	P23492	Purine nucleoside phosphorylase
в6	SMAENSIPL	9	P58462	Forkhead box protein P1
в6	SMGVNDIDI	9	Q3TIV5	Zinc finger CCCH domain-containing protein 15
в6	SMVQNRVFL	9	Q8C3J5	Dedicator of cytokinesis protein 2
в6	SQISNTEFL	9	Q3TCJ1	Protein FAM175B
в6	SQVINPTAI	9	Q61191	Host cell factor
в6	SSLINGSFL	9	Q4JIM5	Tyrosine-protein kinase ABL2
в6	SSLMLESFF	9	Q91XQ0	Dynein heavy chain 8, axonemal
в6	SSLQNYAKI	9	P41251	Natural resistance-associated macrophage protein 1

B6	SSPVNPVVF	9	090868	Peptidyl-prolyl cis-trans
во			Q 9 D 0 0 0	Glycosyltransferase-like domain-
B6	SSVLNLTEL	9	Q8BW56	containing protein 1
в6	STIRLLTSL	9	P80318	T-complex protein 1 subunit gamma
В6	STLINSLFL	9	P42209	Septin-1
в6	STLVNSLFL	9	P28661	Septin-4
в6	SVLFNLTTM	9	Q8K2L8	Tetratricopeptide repeat protein 15
в6	TALENLSTL	9	P19096	Fatty acid synthase
в6	TAPVNIAVI	9	099.155	Diphosphomevalonate decarboxylase
			2,,,,,,,,	1-phosphatidylinositol-4,5-
в6	TQPLNHYFI	9	A3KGF7	bisphosphate phosphodiesterase beta-2
в6	TSLLNLTVI	9	Q8BM54	E3 ubiquitin-protein ligase MYLIP
в6	VAPYNTTQF	9	Q8R409	Protein HEXIM1
в6	VAVVNKVDI	9	035604	Niemann-Pick C1 protein
	νανμησταμ		0.0 0717-0	
B6	VAIMMEIAM	9	Q9CV12	Protein FAMI33B Ribosomal protein S6 kinase alpha-
В6	VGIENFELL	9	Q8C050	5 Cytidine monophosphate-N-
В6	VGLTNINVV	9	Q61419	acetylneuraminic acid hydroxylase
В6	VGVENVAEL	9	Q9ET01	Glycogen phosphorylase, liver form
в6	VGVNNPVFL	9	Q9DBN5	Peroxisomal Lon protease homolog 2
В6	VMLENYSHL	9	Q60585	Zinc finger protein 30
В6	VQNINIENL	9	P27005	Protein S100-A8
В6	VQPFNYVTL	9	Q9Z2G1	Protein fem-1 homolog A-A
В6	VSLLDIDHL	9	Q8BQM4	HEAT repeat-containing protein 3
в6	VSLNLRQVL	9	Q99N32	Beta-klotho
в6	VSPLNVTAV	9	Q9CR27	Coiled-coil domain-containing protein 53
в6	VSVANVDLL	9	Q80Y17	Lethal(2) giant larvae protein homolog 1
в6	VVVENGELI	9	P08775	DNA-directed RNA polymerase II subunit RPB1
в6	WAVSNREML	9	Q80YQ8	Protein RMD5 homolog A
в6	WKVVNPYYL	9	Q5EG47	5'-AMP-activated protein kinase catalytic subunit alpha-1
в6	YALANAQQV	9	Q8VBU8	Protein BANP
в6	YAPDNVWFI	9	Q80V94	AP-4 complex subunit epsilon-1
D <i>6</i>	YAPTNANAT	0	000100	Matastasis-accordiated anotain MM32
B0	YOLLIKDEL	9	OOCMD0 ART20	Guanine nucleotide exchange factor
04		3	QJCWRU	GHF 1
В6	YQQMNPEAL	9	P54841	Transcription factor MafB
в6	YSIVNASVL	9	09ERE3	Serine/threonine-protein kinase
--------	-------------	----	-------------	--
в6	SLPTNLIHL	9	~ 06WKZ8	E3 ubiquitin-protein ligase UBR2
 B6	YVVDNIDHI	9	098128	E3 ubiquitin-protein ligase REWD?
D0	ASLUNSPSYL	10	0202077	
В6		10	Q303D7	Transmembrane protein 131-like
B6	FALANHLIKV	10	Q9WVK4	EH domain-containing protein 1 Ubiquitin carboxyl-terminal
В6	FAVVNHQGTL	10	Q5DU02	hydrolase 22
В6	GALENAKAEI	10	Q9DBS8	homolog
в6	LSLENGTHTL	10	P13864	DNA (cytosine-5)-methyltransferase 1
в6	RSLDNGGYYI	10	P16277	Tyrosine-protein kinase BLK
в6	SAHQNYAEWL	10	Q99PL5	Ribosome-binding protein 1
				Mitogen-activated protein kinase kinase 7-interacting
в6	SAIHNFYDNI	10	Q99K90	protein 2
в6	SALENGRYEL	10	088379	Bromodomain adjacent to zinc finger domain protein 1A
в6	SAPVNGSVFI	10	Q91XF4	E3 ubiquitin-protein ligase RNF167
в6	SAVENILEHL	10	P58064	28S ribosomal protein S6, mitochondrial
в6	SAVRNGLLLL	10	080778	p53-associated parkin-like
P6	SAYLNMEEHT	10	00.0116	Cutochromo D450 4E2
D0	SGPTNEDLYT	10	001227	3-hydroxy-3-methylglutaryl-
Вб	CMACNITDAT	10	Q01257	coenzyme A reductase
B6	SMAGNIIPAI	10	Q9Z1F9	SUMO-activating enzyme subunit 2 Phosphotidylinositol phosphatase
В6	SSAEVIITTL	10	POC5E4	PTPRQ Mitochondrial import receptor
в6	SSIRNFLIYV	10	B1AXP6	subunit TOM5 homolog
В6	TAIENSWIHL	10	Q9CQG2	Putative methyltransferase METT10D
в6	VGLPNESQAL	10	Q00175	Progesterone receptor
в6	VMVSNPATRM	10	Q61191	Host cell factor
в6	VSLLNPPETL	10	P51943	Cyclin-A2
в6	YAGSNFPEHI	10	P61161	Actin-related protein 2
в6	YALENFVENL	10	Q8VI75	Importin-4
в6	YGPENTLPTL	10	Q5RJY2	G2/M phase-specific E3 ubiquitin- protein ligase-like protein
в6	YSVANHNSFL	10	09D3G9	Rho-related GTP-binding protein RhoH
B6	AAAKNLSDMTL	11	08K1H7	T-complex protein 11-like protein 2
			201111	
В6	AAFQNEIFSMI	11	Q9Z1T1	AP-3 complex subunit beta-1 Sterol regulatory element-binding
В6	AAVQNPALTAL	11	Q3U1N2	protein 2
в6	AQYGNILKHVM	11	Q8R4R6	Nucleoporin NUP53

в6	ASPMSIPTNTM	11	Q9WVG6	Histone-arginine methyltransferase CARM1
в6	ATAINMKNEAL	11	Q91YK0	Leucine-rich repeat-containing protein 49
в6	FSLENLRTMNT	11	Q80TG1	Uncharacterized protein KIAA1267
в6	PGSANETSSIL	11	Q80X90	Filamin-B
в6	SAIMNPASKVI	11	Q68FD5	Clathrin heavy chain 1
в6	SKFDVSGYPTI	11	P08003	Protein disulfide-isomerase A4
B6	SSIONFOKGTL	11	08BX57	PX domain-containing protein kinase-like protein
 B6	SSPASTPLSPM	11	091 YK2	Ribosomal RNA processing protein 1 homolog B
в6	YOFDKVGILTL	11	08BKT7	THO complex subunit 5 homolog
B6	VSYPLVTSFPPL	12	054957	Linker for activation of T-cells
B6	SVMENSKVLGEAM	13	D26039	
B6	SVMENSKVLGESM	13	0711.84	Talin-2
shared	AAGVGDMVM	10	D62830	600 riboromal protoin 122
shared	ATVENLUTT.	9	0000100	
Shared	AMGUNITSM	9	Q921E3	
snared	ENVECODVI	9	P1/918	H-2 class I histocompatibility
shared	FAILGRUII	9	P01899	antigen, D-B alpha chain Cyclin-dependent kinase inhibitor
shared	FUINCIDI	9	P46414	
shared	FININSLKL	9	P16460	Argininosuccinate synthase Ribonucleoside-diphosphate
shared	FÖINNENT	9	P07742	reductase large subunit Heterogeneous nuclear
shared	FSPLNPMRV	9	P70333	ribonucleoprotein H2
shared	FSPMGVDHM	9	P70372	ELAV-like protein 1
shared	GGVVNMYHM	9	P28063	Proteasome subunit beta type-8
shared	GMGFGLERM	9	Q9D0E1	ribonucleoprotein M
shared	IGIENIHYL	9	Q9DB27	Malignant T cell amplified sequence 1
shared	IQAENAEFM	9	P14901	Heme oxygenase 1
shared	KALINADEL	9	P16546	Spectrin alpha chain, brain
shared	MAPQNLSTF	9	Q99KV1	DnaJ homolog subfamily B member 11
shared	NGPQNIYNL	9	Q8K3C0	Ribonuclease kappa
shared	NSMVLFDHM	9	Q64511	DNA topoisomerase 2-beta
shared	RAIENIDTL	9	Q3UM45	Protein phosphatase 1 regulatory subunit 7
shared	SAPVAAEPF	9	Q60597	2-oxoglutarate dehydrogenase E1 component, mitochondrial
shared	SAVVDKDFL	9	P55264	Adenosine kinase
shared	SSPSNMLPV	9	Q99KN9	Clathrin interactor 1

shared	VGIENIHVM	9	Q8VE11	Myotubularin-related protein 6
shared	VMVTNVTSL	9	P26039	Talin-1
shared	YGLKNLTAL	9	Q9EQ32	Phosphoinositide 3-kinase adapter protein 1
shared	FAPVNVTTEV	10	P10126	Elongation factor 1-alpha 1
shared	FGIHNGVETL	10	Q8C0L9	Putative glycerophosphodiester phosphodiesterase 5
shared	NSPFNSKFPA	10	Q80VH0	B-cell scaffold protein with ankyrin repeats
shared	RQPSIELPSM	10	P19973	Lymphocyte-specific protein 1
shared	SAPRNFVENF	10	Q91WG4	Elongator complex protein 2
shared	SAPSAIALPV	10	Q9JHC9	ETS-related transcription factor Elf-2
shared	SAPVAAEPFL	10	Q60597	2-oxoglutarate dehydrogenase El component, mitochondrial
shared	SGPRNPFPPP	10	Q60843	Krueppel-like factor 2
shared	AQYNMDQFTPV	11	P47753	F-actin-capping protein subunit alpha-1
shared	SLGKNPTDAYL	11	Q3THE2	Myosin regulatory light chain MRLC2
shared	AQPGASGMLTPM	12	Q7TN29	Stromal membrane-associated protein 2
shared	SAPSADAPMFVM	12	P16858	Glyceraldehyde-3-phosphate dehydrogenase
shared	FAPVNVTTEVKSV	13	P10126	Elongation factor 1-alpha 1

Data Set	Peptide Seguence	Length	Accession Number	Source Protein Name
				60 kDa heat shock protein,
tpn0	TSPIFINI	8	P63038	mitochondrial
tpn0	KAPAMFNI	8	P97351	40S ribosomal protein S3a Nuclear envelope pore membrane protein
tpn0	SIFQFGKP	8	Q8K3Z9	POM 121
tpn0	SLNRFIPL	8	Q8VBV7	COP9 signalosome complex subunit 8
tpn0	VIPQFQTV	8	089090	Transcription factor Spl
tpn0	VNDIFERI	8	Q64475	Histone H2B type 1-B
tpn0	VADGFISRM	9	P24452	Macrophage-capping protein
tpn0	VGQQFGAVGV	10	Q8K2F8	Protein LSM14 homolog A
tpn0	VNRQFMAETQF	11	Q60865	Caprin-1
в6	AALIYTSV	8	Q8R1Q8	Cytoplasmic dynein 1 light intermediate chain 1
в6	AAYEFTTL	8	P32233	Developmentally-regulated GTP-binding protein 1
в6	AIFNFQSL	8	Q9CR64	Transmembrane protein 167A
в6	AIVEFATV	8	Q91WT4	DnaJ homolog subfamily C member 17
В6	ANYEFSQV	8	P56528	ADP-ribosyl cyclase 1
в6	AQYKFIYV	8	P29351	Tyrosine-protein phosphatase non- receptor type 6
В6	ASYLLAAL	8	P99027	60S acidic ribosomal protein P2
В6	ATYIFNGL	8	Q9QXK3	Coatomer subunit gamma-2
В6	AVFTFEQL	8	Q3UW53	Protein Niban
в6	AVIKFLEL	8	P43247	DNA mismatch repair protein Msh2
в6	AVYAFLGL	8	Q9JJU8	SH3 domain-binding glutamic acid-rich- like protein
В6	AVYSFEAL	8	Q99KC8	Loss of heterozygosity 11 chromosomal region 2 gene A protein homolog
в6	AVYTFETL	8	Q8R1F1	Niban-like protein 1
В6	AWIKVEQL	8	Q922P9	Nuclear protein NP60
в6	EAYRFTGL	8	Q8K015	Centromere protein O
в6	EIVTFERL	8	Q61584	Fragile X mental retardation syndrome- related protein 1
в6	FAYRFSNL	8	Q8BU03	Periodic tryptophan protein 2 homolog
в6	FNLVYENL	8	Q8R4V1	NFAT activation molecule 1
В6	FQQEFPSL	8	Q3TLH4	BAT2 domain-containing protein 1
в6	FVYIFQEV	8	Q99K51	Plastin-3

Table 3: K^b peptides from WT and tapasin-deficient spleen cells

в6	GVLRFVNL	8	Q3UGP8	Putative alpha-1,2-glucosyltransferase ALG10-B
в6	HGYTFANL	8	Q9R1T2	SUMO-activating enzyme subunit 1
в6	HVYYFAHL	8	Q80SU7	Interferon-induced very large GTPase 1
в6	IAFIFNNL	8	Q6ZQ08	CCR4-NOT transcription complex subunit
в6	IALRYVAL	8	Q9JIF7	Coatomer subunit beta
в6	IAVSFREL	8	Q8BJW5	Nucleolar protein 11
в6	IAYAFFHL	8	Q8K4P7	Suppressor of tumorigenicity protein 7-like protein
в6	IIAAMPNL	8	089090	Transcription factor Sp1
в6	IIITFNDL	8	Q9JI78	Peptide-N(4)-(N-acetyl-beta- glucosaminyl)asparagine amidase
P6	TTDMECNI	0	076M73	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha
B6	TTOFFDAL	9	090705	Eukaryotic translation initiation
B6	IIVEEVIN	0	0021M2	Colliging factor 2D subunit 2
B0	IIVSEVNA	0	Q921M3	BTB/POZ domain-containing protein
80	INFDENTI	8	0.0 11122	Glutathione-requiring prostaglandin D
80	IRTIFATL	8	Q9JHF7	Synthase F-actin-capping protein subunit alpha-
B6	ISFKFDHL	8	P47753	
B6	ISPLFAEL	8	<u> </u>	Serine/threonine-protein kinase 24
B6	ISYLYNKL	8	Q61471	Protein Tobl
B6	ISYQFSNL	8	Q99PQ1	Tripartite motif-containing protein 12 Serine/threonine-protein phosphatase
в6	IVPLFTNL	8	Q7TNP2	2A 65 kDa regulatory subunit A beta isoform
в6	IWIRVASL	8	Q8BRG6	Kelch-like protein 24
в6	KSYLFQLL	8	P97377	Cell division protein kinase 2
в6	LIYKFLNV	8	Q6P5F9	Exportin-1
в6	LQYEFTHL	8	Q9JL26	Formin-like protein 1
в6	LQYEFTKL	8	A2APV2	Formin-like protein 2
в6	LSYQYSGL	8	Q2TBA3	Mucosa-associated lymphoid tissue lymphoma translocation protein 1 homolog
в6	LVYQFKEM	8	Q60775	ETS-related transcription factor Elf-1
в6	MSFQFAHL	8	Q80TY5	Vacuolar protein sorting-associated protein 13B
в6	NNYVYAGL	8	Q8CIK8	RING finger and WD repeat domain- containing protein 3
в6	PNQLFINL	8	Q9JJ28	Protein flightless-1 homolog
в6	QSIEFSRL	8	P23116	Eukaryotic translation initiation factor 3 subunit A
в6	RNFIFSRL	8	Q60848	Lymphocyte-specific helicase

в6	RNYQFDFL	8	Q8K4Z5	Splicing factor 3 subunit 1
в6	RSLKFYSL	8	Q99KP6	Pre-mRNA-processing factor 19
B6	RSYDFEFM	8	P40336	Vacuolar protein sorting-associated
B6	RUTTETT.	8	08.171.7	Ras-GEF domain-containing family
DC	DULTECOM	0	D40201	Chromodomain-helicase-DNA-binding
80	RVLIFSQM	0	P40201	
B6	SAFEFNEL	8	Q9Z2C4	Myotubularin-related protein 1
В6	SAFSFRTL	8	Q8BMI0	F-box only protein 38 Trafficking protein particle complex
В6	SALIYSNL	8	055013	subunit 3
В6	SALRFLNL	8	Q3TAA7	protein
В6	SALVFTRL	8	Q9JHJ3	homolog
в6	SAMVFSAM	8	P63082	V-type proton ATPase 16 kDa proteolipid subunit
в6	SAPEYVFL	8	Q7TNB8	Protein strawberry notch homolog 2
				1-phosphatidylinositol-4,5- bisphosphate phosphodiesterase
B6	SAPLYTNL	8	Q8K4S1	epsilon-1
В6	SGFVFTRL	8	Q6PCN7	Helicase-like transcription factor
в6	SIANFTNV	8	Q91V92	ATP-citrate synthase
в6	SIIIFTNT	8	Q4FZF3	DDX49
в6	SILQYSNV	8	Q9WUE4	Tumor suppressor candidate 4
в6	SIVQFYYM	8	Q9R190	Metastasis-associated protein MTA2
в6	SNLKYILV	8	A2AWL7	MAX gene-associated protein
в6	SNYIFTAI	8	088427	Voltage-dependent T-type calcium channel subunit alpha-1H
в6	SNYVFVFL	8	Q9ZOS9	Prenylated Rab acceptor protein 1
в6	SQYVFTEM	8	Q5SYH2	Transmembrane protein 199
в6	SSFVFLNL	8	Q64310	Surfeit locus protein 4
в6	SSFVFSTV	8	Q01237	3-hydroxy-3-methylglutaryl-coenzyme A reductase
в6	SSIVFAEL	8	Q9Z2R9	Eukaryotic translation initiation factor 2-alpha kinase 1
в6	SSYDFTSI	8	Q8VCW8	Acyl-CoA synthetase family member 2, mitochondrial
В6	SSYFFGKL	8	Q99P81	ATP-binding cassette sub-family G member 3
В6	SSYTFPKM	8	Q9WUR2	Peroxisomal 3,2-trans-enoyl-CoA isomerase
В6	STFIYNSI	8	Q01514	Interferon-induced guanylate-binding protein 1
в6	STFTFADL	8	Q9ERU9	E3 SUMO-protein ligase RanBP2
в6	STVEFTNL	8	054692	Centromere/kinetochore protein zw10 homolog
в6	STYKFFEV	8	Q9CZM2	60S ribosomal protein L15

в6	SVIKFENL	8	Q9CPV7	Probable palmitoyltransferase ZDHHC6
в6	SVITYVGL	8	091ZE5	EGF-like module-containing mucin-like hormone receptor-like 4
в6	SVVRYVQL	8	~ 035900	U6 snRNA-associated Sm-like protein LSm2
в6	TAFQFLQL	8	P51945	Cyclin-G1
в6	TAFRFSEL	8	A3KGB4	TBC1 domain family member 8B
в6	TAFVFPRL	8	Q8BK62	Olfactomedin-like protein 3
в6	TAPEYVFL	8	Q689Z5	Protein strawberry notch homolog 1
в6	TAYAFHFL	8	Q9R0H0	Peroxisomal acyl-coenzyme A oxidase 1
в6	TAYEFAKL	8	Q9EQ06	Estradiol 17-beta-dehydrogenase 11
в6	TIYEYGAL	8	P46412	Glutathione peroxidase 3
в6	TIYRFLKL	8	Q8CEF1	Protein fem-1 homolog C
в6	TNLVYPAL	8	Q8BLR9	Hypoxia-inducible factor 1-alpha inhibitor
в6	TNYIFDSL	8	Q9CXF4	TBC1 domain family member 15
в6	TNYKFFML	8	Q5Y5T1	Probable palmitoyltransferase ZDHHC20
в6	TQYTFSSI	8	Q08943	FACT complex subunit SSRP1
в6	TSLRFVFL	8	Q9CQV4	Protein FAM134C
в6	TSYRFLAL	8	Q8QZX2	Uncharacterized protein C4orf15 homolog
в6	TTLIFQKL	8	P15307	C-Rel proto-oncogene protein
в6	VALKFSQI	8	Q62187	Transcription termination factor 1
В6	VALLFRQL	8	Q6ZPE2	Myotubularin-related protein 5
в6	VAPGYPLL	8	P21995	Embigin
В6	VAYKFPEL	8	Q6WKZ8	E3 ubiquitin-protein ligase UBR2
в6	VAYTYDNL	8	Q6ZQ93	Ubiquitin carboxyl-terminal hydrolase 34
в6	VFRLLPQL	8	Q9EST5	Acidic leucine-rich nuclear phosphoprotein 32 family member B
В6	VFTEVANL	8	Q62141	Paired amphipathic helix protein Sin3b
в6	VGFRFPIL	8	Q9QUG9	RAS guanyl-releasing protein 2
в6	VIAELVNV	8	Q8K2X8	General transcription factor IIH subunit 5
в6	VIISFNSL	8	Q5I012	Putative sodium-coupled neutral amino acid transporter 10
В6	VIQVFQQL	8	Q8BHC4	Dephospho-CoA kinase domain-containing protein
В6	VIVRFLTV	8	P62245	40S ribosomal protein S15a
в6	VMYRVIQV	8	Q61069	Upstream stimulatory factor 1
В6	VNVDYSKL	8	Q62425	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4
в6	VSFTYRYL	8	Q920Q4	Vacuolar protein sorting-associated protein 16 homolog

в6	VSIQFYHL	8	Q5H8C4	Vacuolar protein sorting-associated protein 13A
в6	VSYLFSHV	8	Q9D7G0	Ribose-phosphate pyrophosphokinase 1
в6	VSYVFTEV	8	Q8K2V6	Importin-11
в6	VTVDFSKL	8	Q6NVF4	DNA helicase B
в6	VVFFFTRL	8	P50615	Protein BTG3
в6	VVFQFQHI	8	P70658	C-X-C chemokine receptor type 4
в6	VVYIYHSL	8	Q8CD15	Myc-induced nuclear antigen
в6	AMYIFLHTV	9	Q9CQZ0	ORM1-like protein 2
в6	AVLSFSTRL	9	P46978	Dolichyl-diphosphooligosaccharide protein glycosyltransferase subunit STT3A
в6	ELFPVFTQL	9	Q99KU6	Uncharacterized protein C6orf89 homolog
в6	IGPTYYQRL	9	Q8CFI7	DNA-directed RNA polymerase II subunit RPB2
в6	KIFEFKETL	9	Q8BW96	Calcium/calmodulin-dependent protein kinase type 1D
в6	KNYDFAQVL	9	Q8BGF7	PAB-dependent poly(A)-specific ribonuclease subunit 2
В6	QILSDFPKL	9	Q99ME9	Nucleolar GTP-binding protein 1
в6	QSLAFLKDI	9	Q6NVF4	DNA helicase B
			00000	Alpha-N-acetyl-neuraminyl-2,3-beta- galactosyl-1,3-N-acetyl- galactosaminide alpha-2,6-
B6	QVYTFTERM	9	Q9R2B6	sialyltransferase
B6	RNYEYLIRL	9	Q8R3L2	Transcription factor 25
В6	RVAEFTTNL	9	Q8VDD5	Myosin-9
в6	RVYEFLDKL	9	P14685	subunit 3
в6	SGYDFENRL	9	Q8VE09	Tetratricopeptide repeat protein 39C
В6	SIAAFIQRL	9	Q9Z1R2	Large proline-rich protein BAT3
в6	SIINFIERL	9	Q9QZ09	Futative nomeodomain transcription factor 1
в6	TGYAYTQGL	9	Q9JHI9	Solute carrier family 40 member 1
в6	TILEFSQNM	9	Q6P5F9	Exportin-1
в6	TIQEFLERI	9	P57725	SAM domain-containing protein SAMSN-1
в6	VGFTFPNRL	9	Q9Z0E0	Neurochondrin
в6	VGYRFVTAI	9	Q80TM9	Nischarin
в6	VIYPFMQGL	9	Q91VV4	DENN domain-containing protein 2D
В6	VNFEKFWEL	9	Q8JZL7	Kas-GEF domain-containing family member 1B
в6	VNFPFLVKL	9	P05132	cAMP-dependent protein kinase catalytic subunit alpha
в6	VNLREYPSL	9	Q8BVK9	Sp110 nuclear body protein

в6	VNYRHLALL	9	P08775	DNA-directed RNA polymerase II subunit RPB1
в6	VTYSFRQSF	9	Q8R0S2	IQ motif and SEC7 domain-containing protein 1
в6	RELFPVFTQL	10	Q99KU6	Uncharacterized protein C6orf89 homolog
shared	ASYEFTTL	8	Q9QXB9	Developmentally-regulated GTP-binding protein 2
shared	ATLVFHNL	8	P42227	Signal transducer and activator of transcription 3
shared	HIYEFPQL	8	Q8C4B4	Protein unc-119 homolog B
shared	INFDFPKL	8	P54823	Probable ATP-dependent RNA helicase DDX6
shared	KILTFDQL	8	P35980	60S ribosomal protein L18
shared	SGPQFVQL	8	Q64693	POU domain class 2-associating factor 1
shared	SNYLFTKL	8	P97481	Endothelial PAS domain-containing protein 1
shared	SVYVYKVL	8	Q64475	Histone H2B type 1-B
shared	TIIIFHSL	8	008575	Eyes absent homolog 2
shared	VAFDFTKV	8	Q7M6Y3	Phosphatidylinositol-binding clathrin assembly protein
shared	VNFEFPEF	8	P62082	40S ribosomal protein S7
shared	VNIEFKDL	8	Q64343	ATP-binding cassette sub-family G member 1
shared	ASYEFVQRL	9	Q9JHU4	Cytoplasmic dynein 1 heavy chain 1

Sequence	Length	MHC I
FSPLNPVRV	9	D^{b}
FVHPGAATVPTM	12	D^{b}
SNLYNHPQLI	10	D^{b}
WAPENAPLKS	10	D^{b}
FAPVAPKFTPV	11	D^{b}
SLNRFIPL	8	K^{b}
ISPYFINT	8	Kp
VGQQFGAVGV	10	Kp

 Table 4: Selected peptides used for Tapasin stability and decay assays

			Access	
Data Set	Peptide Sequence	Length	lon Number	Source Protein Name
<u> </u>	<u> </u>		11	
				CMP-N-acetylneuraminate- beta-galactosamide-alpha-
WT	VPFKALDL	8	Q11204	2,3-sialyltransferase
WT	FPELKAEL	8	Q3U1Y4	protein 4B
		0	O C DNG O	
WT	HEATER	8	Q6PNC0	DmX-like protein l
				E3 ubiquitin-protein ligase
WT	LPYFLRYI	8	A2AN08	UBR4
				Echinoderm microtubule-
WT	HPSRDFFL	8	Q8BQM8	associated protein-like 5
				Histone-lysine N-
WT	RALGPKPF	8	Q8BRH4	methyltransferase MLL3
WT	LPRPSDFI	8	P21812	Mast cell protease 4
				Ĺ
WT	FPRDAVEI	8	Q91ZV0	Melanoma inhibitory activity protein 2
សា	PASGIHIF	8	095032	Phosphoinositide 3-kinase
WT	HPNFEKLL	8	Q6A070	Protein FAM179B
wr	YPVDWWSL	8	09JJX8	Serine/threonine-protein kinase 32B
	-		~~~~	
WT	IPFRAADL	8	088307	Sortilin-related receptor
WT	LPQRGNIF	8	Q9D8Y1	Transmembrane protein 126A
1.700	HUIDDODE	0	0.0 0 0 1	Tudor domain-containing
M.T.	IIVIENDE	8	Qaama T	protein i
				Signal transducer and activator of transcription
WT	FPELNYQL	8	P42227	3

Table 5: L^d peptides from WT and ERAAP-deficient spleen cells

wr	FPHPSOLDL	9	P54923	[Protein ADP- ribosylarginine] hydrolase
	- 2	,	101020	
1.771	ΤΡΔΕΟΥΨΕΕ	0	000756	26S proteasome non-ATPase
WI	TIADJIII	9	QUCAJO	regulatory subunit 8
				Acyl-CoA-binding domain-
WT	TPKPNFFDF	9	Q9D061	containing protein 6
WT	IPEALVTNL	9	Q9R158	ADAM 26A
WT	TPLTLRISI	9	Q02357	Ankyrin-1
				ATT curthage cuburit d
WT	WPHQPIENL	9	Q9DCX2	mitochondrial
				ATP-dependent RNA helicase
WT	RPSAAGINL	9	070133	Α
WT	KPANVQPYY	9	Q5SQX6	Cytoplasmic FMR1- interacting protein 2
				Dedicator of cytokinesis
WT	EAMRALEYL	9	Q8CIQ7	protein 3
WT	VPHTVYRNL	9	Q8C147	protein 8
	I DUMOMODE	_		DNA-directed RNA polymerase
WT	LPHVGVSDF	9	Q8CFI7	II subunit RPB2
WT	TPSPTKYSL	9	Q9ERU9	E3 SUMO-protein ligase RanBP2
				E3 ubiquitin-protein ligase
WT	FPQFSALRF	9	Q7TMY8	HUWE1
WT	VPIKPGOOG	9	P70429	Ena/VASP-like protein
	- 22 -			
				Eukaryotic peptide chain
សាកា	FPOMGRETT.	Q	082050	release factor GTP-binding
N1			QUINUSU	SUDUITE ERFSA
				Fukaryatia translation
				initiation factor 3 subunit
WT	VPFHLHINL	9	Q8R1B4	С
WT	IPOEAYNAV	Q	03UA37	Glutamine-rich protein 1
WT	MPSPIQHDF	9	P14220	Glycophorin
				Hermansky-Pudlak syndrome 3
WT	LPHVGYLYM	9	Q91VB4	protein homolog

				High affinity
				immunoglobulin alpha and
wr	IPOSGLFVV	9	O2TB54	immunoglobulin mu Fc receptor
	2		Q21001	
WT	VPLASKYNL	9	Q9WU62	Inner centromere protein
				Insulin-like growth factor
WT	YPEQETVSL	9	Q5SF07	2 mRNA-binding protein 2
WT	IPKSAVGEL	9	P11835	Integrin beta-2
WT	LPHASSISL	9	Q9Z0R6	Intersectin-2
				Turnerand
WT	VPHSQFINM	9	Q61168	transmembrane protein 5
				Mediator of RNA polymerase
WT	VPQESRFNL	9	Q80YQ2	II transcription subunit 23
				Natural resistance-
WT	LPHPAYFGL	9	P41251	associated macrophage protein 1
				-
WT	IPSQHYVYM	9	Q09014	Neutrophil cytosol factor 1
	TROINUNE	0		Peroxisomal carnitine O-
W.T.	TESQUIVINE	9	Q9DC20	octanoyltransferase
				Den la
WT	LPAKYPELF	9	Q5BL07	factor 1
WT	SPIAARDLL	9	Q9QY23	Plakophilin-3
				POU domain, class 3,
WT	HAHQWITAL	9	P31360	transcription factor 2
WT	FPQELKDLL	9	Q800Z2	Protein SDAL homolog
WT	FSGSFASIF	9	P11157	reductase subunit M2
WT	SPHGIPIDL	9	Q9WTM5	RuvB-like 2
				Serine/threonine-protein
WT	HPFFNTIDF	9	Q7TSJ6	kinase LATS2
ъл	FDODIDUII	<u>^</u>	DE0620	Signal transducer and
M.T.	ттуклицпп	9	22033	transcription activator 6

WT	IPQQQVFAL	9	Q5DU57	Spermatogenesis-associated protein 13
WT	YPLEKPFDF	9	08B0X7	Sphingosine-1-phosphate
			20110117	
				Structural maintenance of
WT	VPFNIPLEL	9	Q6P5D8	chromosomes flexible hinge domain-containing protein 1
WT	MPYLNKFIL	9	Q6A028	Switch-associated protein 70
WT	LPAQGLIEF	9	P42669	Transcriptional activator protein Pur-alpha
				Turne I inecited 2.4
WT	LPGPLVDSF	9	Q9EPW0	bisphosphate 4-phosphatase
				II1 small nuclear
WT	MPMMPGPPM	9	Q62241	ribonucleoprotein C
WT	YPHAAVNGL	9	Q9DB76	UPF0172 protein FAM158A
WT	EPFRLQHNL	9	Q8CIE2	containing protein 2
				Pre-mRNA-processing factor
WT	IPQDVGVNL	9	Q9DC48	17
WT	PVGFSLPSHL	10	P05622	Beta-type platelet-derived
		10	100011	
WT	VPGTHPLLVF	10	Q6NS52	Diacylglycerol kinase beta
				Multiple coagulation factor
WT	SPQELQLHYF	10	Q8K5B2	deficiency protein 2 homolog
WT	FPIEAQDHVL	10	Q08481	Platelet endothelial cell adhesion molecule
WT	LPHRIKGYLL	10	P59729	Ras and Rab interactor 3
WT	IPSVVTGTDI	10	Q9Z2H2	Regulator of G-protein signaling 6
WT	LPQGPLGTSF	10	Q8BG60	protein

				Tyrosine-protein phosphatase non-receptor
WT	VPSGHSLLAM	10	035239	type 9
WT	LPYDASKWEF	10	P35969	factor receptor 1
WT	LSVVSGKEFL	10	Q80YY7	Zinc finger protein 618
WT	VPIFSFGENNL	11	Q80W94	2-acylglycerol O- acyltransferase 2
				Cell division cycle and
WT	ESKDGEENVGL	11	Q8CH18	1
wm	APGTHPPFITF	11	090YB1	Chloride intracellular
			Q9Q1D1	
				Enhancer of mRNA-decapping
WT	IPQQVFQEVGI	11	Q8K2D3	protein 3
WT	VPCFRTPLGPL	11	Q3UCQ1	Forkhead box protein K2
	TRUITCOMMET	11	070105	Mitochondrial carrier
WT	TEUTTGDAALT		Q/9115	nomolog 1
				Mucosa-associated lymphoid tissue lymphoma
1.7 7 7	TPYCNSSELVE	11	00mD3	translocation protein 1
			Q21DA3	
WT	YPVPSGYPEPV	11	Q9JIZ9	Phospholipid scramblase 3
WT	LSTQPVQTLDL	11	B2RUI1	Zinc finger protein 551
WT	IPDEINDRVRFL	12	Q8VE70	Programmed cell death protein 10
WT	1PSSTKNIDLSF	12	Q9QUK6	Toll-like receptor 4
				Phoenhoinecitide 3-kinace
Shared	IPASGLHLF	9	Q9EQ32	adapter protein 1
Shared	LSRPDLPF	8	P36371	Antigen peptide transporter 2
				Eukaryotic initiation
Shared	LPHEILEM	8	Q91VC3	factor 4A-III
Shared	KPTLALNL	Я	P09450	Transcription factor jun-B
U				
				Baculoviral IAP repeat-
Shared	LPDQLFHNL	9	Q9QWK5	containing protein la

				Cytochrome c oxidase
Shared	VPFEAGQYF	9	Q6P8I6	assembly protein COX11, mitochondrial
	VDOI LOFNI	0	000075	Dedicator of cytokinesis
Snared	кебптбеиг	9	Q8C312	protein 2
				Dna homolog subfamily C
Shared	RPGSSYFNL	9	Q6NZB0	member 8
				Dolichyl-
				diphosphooligosaccharide protein glycosyltransferase
Shared	APSTVIFHL	9	Q9DBG6	subunit 2
Shared	KPNEGYLEF	Q	ΟΜΟσβΟ	Exosome complex exonuclease
Sharea		2	2220LIO	1411 12
Shared	VPALAKVLL	9	P97480	Eyes absent homolog 3
Shared	APQPGKYVI	9	Q8BTM8	Filamin-A
Shared	MPSESKFLF	9	Q60760	Growth factor receptor- bound protein 10
Shared	TPNETTHAL	٩	09D0F1	Heterogeneous nuclear
Shared			Q J D O L I	
Shared	VPFENKLYL	9	Q6GQU2	Kelch-like protein 23
	MDERICYNI	0	000046	
Shared	MPERLGINL	9	009046	L-amino-acid oxidase
				polypeptide 2, isoforms
Shared	APFKGGTLF	9	Q61033	alpha/zeta
Shared	TFÖDGAIIT	9	P41155	Lymphotoxin-beta
				NFX1-type zinc finger-
Shared	HPRINVFDF	9	Q8R151	containing protein 1
Shared	RPSANVYDL	9	08R151	NFX1-type zinc finger- containing protein 1
-				
				Peroxisomal Lon protease
Shared	MFGKIINGL	9	Q9DBN5	homolog 2
				Probable fibrosin-1 long
Shared	APGAHGPFL	9	Q8R089	transcript protein
Shared	EPTINTHOT.	٥	P61290	Proteasome activator
Sharea		2	101230	COMPTER SUDUITE 2
Shared	VSEPHHSTL	9	Q6ZQ06	Protein QN1 homolog

			-10/05	Retinoblastoma-associated
Shared	LPHAAQEIF	9	P13405	protein
Shared	VPLPTYHNL	9	Q8VH51	RNA-binding protein 39
		-	~	
				Segment polarity protein
Shared	RPAGAKYFF	9	Q60838	dishevelled homolog DVL-2
Shared	VPLAGHVGF	9	Q9R1T4	Septin-6
				Signal transducer and
Shared	KNLLLIHNL	9	P42228	activator of transcription
				Sorbin and SH3 domain-
Shared	LPAKAVYDF	9	Q3UTJ2	containing protein 2
				Spectrin beta chain, brain
Shared	Y PNVNI HNF	9	Q62261	1
Shared	YPHVNVTNF	9	P15508	Spectrin beta chain, erythrocyte
Shared	FPGQLNADL	9	Q7TMM9	Tubulin beta-2A chain
Channel	TUOFDOLVE	0	D22072	Tumor necrosis factor
Shared	IVQIIGHII	9	P32972	ligand superfamily member 8
				Ibiquitin carboyul-torminal
Shared	IPQQLVERL	9	Q6A4J8	hydrolase 7
			0.0.0115.0	Ubiquitin-associated
Shared	SPSLVQIDL	9	Q80X50	protein 2-like
				This within a series set in a
Shared	SPYQGGVFF	9	P62838	enzyme E2 D2
				Uncharacterized protein
Shared	SPGRILHDL	9	Q8C263	Cl3orf3 homolog
Shared	EPFRLEHNL	9	Q6P1E1	Zinc finger MIZ domain- containing protein 1
				· · ·
				Cytoplasmic FMR1-
Shared	KPANVQPYYL	10	Q5SQX6	interacting protein 2
Shared	KPHSGFHVAF	10	Q8CD10	EF-hand domain-containing family member A1
				-
Shared	VPIKPGQQGF	10	P70429	Ena/VASP-like protein
Shared	APAPVNPFQV	10	Q8CHU3	Epsin-2
	I DOWN CONTINUE			
Shared	LPQKAGGFLM	10	P09411	Phosphoglycerate kinase 1

Shared	НРМСРРРРГМ	10	Ogbuc3	Pre-mRNA-splicing factor
Shared		10	QUBIISS	NDH22
				Protein arginine N-
Shared	KPQEILTFDF	10	Q922X9	methyltransferase 7
Chanad	λονοι νολγι	1.0	O O WILL D O	RNA-binding protein with
Shared	YPHEVOFFDI.	10	Q9WVB0	Multiple splicing
Shared		10	Q311K3	Syllembryll A
Shared	IPIAGRDITYF	11	Q641P0	Actin-related protein 3B
				Putative Polycomb group
Shared	VPHKIPDSLLL	11	P59598	protein ASXL1
Cherry 1	Τρωτινιτώντ	1 1		DNA binding grate's 07
snared	TT XUUUT TI/U		V221MQ	RNA-DINGING protein 2/
Shared	IPALCVVFSSF	11	Q5GH67	XK-related protein 4
ERAAP KO	LPQRVLEQHKL	11	P26041	Moesin
ERAAP KO	IPMKPSWKTAF	11	035892	Nuclear autoantigen Sp-100
FRAAR KO	OPOPGEGYSM	1.0	068505	Clathrin heavy chain 1
	<u>Q1Q10101010</u>	10	Q001D3	
				EF-hand domain-containing
ERAAP KO	KPHSGFHVAF	10	Q8CD10	family member A1
ERAAP KO	CVQWIVKFI	9	080Y02	Mediator of RNA polymerase II transcription subunit 23
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Splicing factor 3A subunit
ERAAP KO	HPAPMPPML	9	Q62203	2
		0	0.0.5	Tetratricopeptide repeat
ERAAP KO		9	Q8B114	protein 39B
ERAAP KO	IPQDLEDFI	9	Q3UP75	3A1
			00000	Nucleosome assembly protein
ERAAP KO	VPNESFFNF HDVI A TVDI	9	Q78ZA7	I-like 4
ERAAP KO		9	E97013	
				Induced myeloid loukomin
				cell differentiation
ERAAP KO	KNAVÍGLNL	9	P97287	protein Mcl-1 homolog
ERAAP KO	RPAQLHIGF	9	Q02053	activating enzyme 1

ERAAP KO	LNKLGGVEF	9	008997	Copper transport protein ATOX1
ERAAP KO	TPQILVNNL	9	Q6Q899	Probable ATP-dependent RNA helicase DDX58
ERAAP KO	SPGRILHDL	9	Q8C263	Uncharacterized protein C13orf3 homolog
ERAAP KO	HPMRAIFMI	9	Q9JI10	Serine/threonine-protein kinase 3
ERAAP KO	IPQEKPIFL	9	P19096	Fatty acid synthase
ERAAP KO	QPFSAKDL	8	P52633	Signal transducer and transcription activator 6
ERAAP KO	IPGHPLQL	8	Q99KC8	Loss of heterozygosity 11 chromosomal region 2 gene A protein homolog
ERAAP KO	LPSHPLEL	8	Q9CQT5	Proteasome maturation protein

			Uniprot	
Sample	Sequence	Length	Id	Source Protein
WT	EGKHLYTL	8	P68040	Guanine nucleotide-binding protein subunit beta-2-like 1
WT	GPVIKVKI	8	Q9CQT2	RNA-binding protein 7
WT	GPLHLFRL	8	Q6S5C2	N-acetylglucosamine-1- phosphotransferase subunit gamma
WT	GPERILSI	8	P61979	Heterogeneous nuclear ribonucleoprotein K
WT	GPLRTVWI	8	Q8BL97	Splicing factor, arginine/serine- rich 7
WT	SPLRSLLF	8	P21460	Cystatin-C
WT	NPLRILNI	8	Q810L4	Transmembrane protein 39B
WT	GPEHIIKM	8	Q8CHI8	E1A-binding protein p400
WT	GPPHFKTI	8	Q5SQX6	Cytoplasmic FMR1-interacting protein 2
WT	GPVRGIDF	8	Q8CIE6	Coatomer subunit alpha
WT	VGVYRSPI	8	P55200	Histone-lysine N-methyltransferase HRX
WT	SPYHVDLL	8	Q9Z1S0	Mitotic checkpoint serine/threonine-protein kinase BUB1 beta
WT	AGPQSQLL	8	Q9QYB8	Beta-adducin
WT	LGFMGNLLI	9	070342	Neuropeptide Y receptor type 5
WT	TAPVRSLFL	9	Q8BSF4	Phosphatidylserine decarboxylase proenzyme
WT	YGPLRTVWI	9	Q8BL97	Splicing factor, arginine/serine- rich 7
WT	MGPSHIINI	9	Q91WD1	DNA-directed RNA polymerase III subunit RPC4
WT	AGPEIRDAI	9	Q8BHZ0	Protein FAM49A
WT	ASPLRSLLF	9	P21460	Cystatin-C
WT	VGPALLQSL	9	Q571H0	Nucleolar pre-ribosomal-associated protein 1

 Table 6: D^d peptides from WT and ERAAP-deficient spleen cells

WT	GGPLRDYQI	9	Q6PGB8	Probable global transcription activator SNF2L1
WT	DGPARLLNL	9	Q8BRH4	Histone-lysine N-methyltransferase MLL3
WT	LGPEKTSFF	9	P14869	60S acidic ribosomal protein PO
WT	TGPWRSLWI	9	Q8R2T8	General transcription factor 3C polypeptide 5
WT	DGPTKNLFI	9	P70188	Kinesin-associated protein 3
WT	VLASRLFQL	9	Q3UYK3	TBC1 domain family member 9
WT	SGASRGVGF	9	Q91W59	RNA-binding motif, single- stranded-interacting protein 1
WT	IGMTKADLI	9	P07901	Heat shock protein HSP 90-alpha
WT	YGPIADVSI	9	P62996	Splicing factor, arginine/serine- rich 10
WT	IGPLRLSTL	9	Q8BKX6	Serine/threonine-protein kinase SMG1
WT	IGAERSLVL	9	Q03267	DNA-binding protein Ikaros
WT	AGPVIKVKI	9	Q9CQT2	RNA-binding protein 7
WT	AGPDRFVLL	9	Q3UPF5	Zinc finger CCCH-type antiviral protein 1
WT	SGPERILSI	9	P61979	Heterogeneous nuclear ribonucleoprotein K
WT	SGPLHLFRL	9	Q6S5C2	N-acetylglucosamine-1- phosphotransferase subunit gamma
WT	STPLRSGLL	9	Q8C0R0	Ubiquitin carboxyl-terminal hydrolase 37
WT	SGPNRFILI	9	008696	Forkhead box protein M1
WT	SGPVHAPVF	9	Q91WM1	Spermatid perinuclear RNA-binding protein
WT	LGIHGLGGI	9	Q8CIZ9	NADPH oxidase 1
WT	IGPRAVDVL	9	Q7TSQ8	Pyruvate dehydrogenase phosphatase regulatory subunit, mitochondrial
WT	VGPDGKELI	9	070279	Protein DGCR14
WT	IGPNLSIKI	9	P27641	ATP-dependent DNA helicase 2 subunit 2

WT	GGLQHLYNI	9	Q3UFS0	Protein zyg-11 homolog B
WT	GGPVRVYSL	9	Q62507	Cochlin
WT	TGPNRYLLF	9	Q9DC69	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial
WT	LGPRNVLLF	9	Q9R1Q9	V-type proton ATPase subunit S1
WT	VGASKAVFL	9	054927	WD repeat and SOCS box-containing protein 1
WT	FGPGREYNF	9	Q8CDD8	BTB/POZ domain-containing protein KCTD20
WT	YGPEHLLTF	9	P59016	Vacuolar protein sorting- associated protein 33B
WT	SGPFRTITV	9	P13864	DNA (cytosine-5)-methyltransferase 1
WT	GGPDRFYFL	9	P13864	DNA (cytosine-5)-methyltransferase 1
WT	VGPNHAAFL	9	Q80TP3	E3 ubiquitin-protein ligase UBR5
WT	QGrQLInsL	9	Q7TMM9	Tubulin beta-2A chain
WT	KGPVIALEF	9	Q9EPK2	Protein XRP2
WT	YGPYKPFQL	9	Q3UM29	Conserved oligomeric Golgi complex subunit 7
WT	LGPEHIIKM	9	Q8CHI8	E1A-binding protein p400
WT	WGAFRHFQL	9	P19096	Fatty acid synthase
WT	VGPPHFKTI	9	Q5SQX6	Cytoplasmic FMR1-interacting protein 2
WT	FGPYHFNVL	9	Q9D7B7	Probable glutathione peroxidase 8
WT	EGPKVIFRF	9	Q3U0J8	TBC1 domain family member 2B
WT	SGPLKGIEL	9	Q80Y81	Zinc phosphodiesterase ELAC protein 2
WT	IGLPATRAF	9	Q6GQT1	Alpha-2-macroglobulin-P
WT	IGPLYPHAF	9	Q8C547	HEAT repeat-containing protein 5B
				Vacuolar protein sorting-
WT	VSPVKINQI	9	Q5KU39	associated protein 41 homolog

WT	AGPRYEYHW	9	Q921Y0	Mps one binder kinase activator- like 1B
WT	VGPIEATTF	9	035228	Interleukin-27 subunit beta
WT	VGPFQEAAF	9	0900006	Peptidyl-prolyl cis-trans
WT	LGPEIFOAY	9	087470	Chondroitin sulfate proteoglycan 4
WT	RGPFELEAF	9	061699	Heat shock protein 105 kDa
WT	VGARVLDAL	9	 Q9CQA1	Trafficking protein particle complex subunit 5
WT	FGPMKGGNF	9	P49312	Heterogeneous nuclear ribonucleoprotein Al
WT	VGPGSTVTL	9	Q6NZQ4	ETS-related transcription factor
WT	VGPAAAQQI	9	Q8BHL6	Fanconi anemia-associated protein of 24 kDa
WT	QGPVAAVLL	9	Q8C9V1	Carabin
WT	GGPVKIGQL	9	Q9QY24	Z-DNA-binding protein 1
WT	NGSTELVAL	9	Q9EPE9	Probable cation-transporting ATPase 13A1
WT	LGPQRVSGL	9	Q9JL16	Interferon-stimulated gene 20 kDa protein
WT	IGPGMVQQI	9	P63037	DnaJ homolog subfamily A member 1
WT	YGPMKGGSF	9	Q8BG05	Heterogeneous nuclear ribonucleoprotein A3
WT	AGPVYSHTL	9	Q91V83	Uncharacterized protein KIAA0406 homolog
WT	IGPSKPNEI	9	Q8K4Z5	Splicing factor 3 subunit 1
WT	SGPFRHVGL	9	Q3TBD2	Minor histocompatibility protein HA-1
WT	VGAERNVLI	9	P63017	Heat shock cognate 71 kDa protein
WT	AGPKLQEEL	9	Q2EMV9	Poly [ADP-ribose] polymerase 14
WT	QGPKTIDQI	9	Q6NZJ6	Eukaryotic translation initiation factor 4 gamma 1
WT	KGPEALQEF	9	Q3UA37	Glutamine-rich protein 1

WT	VGPELHEKL	9	090XS1	Plectin-1
WT	VGPDRLEKL	9	08JZO9	Eukaryotic translation initiation factor 3 subunit B
WT	KGPYDFDQI	9	Q6NVE8	WD repeat-containing protein 44
WT	AGPSRTVGLF	10	Q64521	Glycerol-3-phosphate dehydrogenase, mitochondrial
WT	TGPSKDALHL	10	Q571H0	Nucleolar pre-ribosomal-associated protein 1
WT	YGQISEVVVV	10	P60824	Cold-inducible RNA-binding protein
WT	VGPNHAAFLL	10	Q80TP3	E3 ubiquitin-protein ligase UBR5
WT	VGPERDLAEL	10	Q00417	Transcription factor 7
WT	SSGPERILSI	10	P61979	Heterogeneous nuclear ribonucleoprotein K
WT	VAPVSDIIEI	10	Q99LC5	Electron transfer flavoprotein subunit alpha, mitochondrial
WT	NGPPEEAEKF	10	Q9JL04	Formin-2
WT	FPGPLKEENL	10	Q91X84	CREB-regulated transcription coactivator 3
WT	VGPVEEVKEL	10	P18242	Cathepsin D
WT	APGPNRTLLL	10	Q80TT8	p53-associated parkin-like cytoplasmic protein
WT	LPSQLLVPNL	10	Q6PGF3	Mediator of RNA polymerase II transcription subunit 16
WT	LGVSPNRILL	10	009130	NFATC2-interacting protein
WT	PSGPFRHVGL	10	Q3TBD2	Minor histocompatibility protein HA-1
WT	EGLPVGLSAI	10	Q8VDV3	Guanine nucleotide exchange factor for Rab3A
WT	GGRNHLVLSL	10	Q9JKV7	Exostosin-like 1
WT	IGASCTLSLL	10	Q91W10	Zinc transporter ZIP8
WT	DGGPVKIGQL	10	Q9QY24	Z-DNA-binding protein 1
WT	APGPVHTQEI	10	Q61210	Rho guanine nucleotide exchange factor 1

WT	IGPIKNEQQL	10	Q61216	Double-strand break repair protein MRE11A
WT	AGPSRTVGLFL	11	Q64521	Glycerol-3-phosphate dehydrogenase, mitochondrial
WT	DSSGPERILSI	11	P61979	Heterogeneous nuclear ribonucleoprotein K
WT	YGIPFAAPTAL	11	Q91VX2	Ubiquitin-associated protein 2
WT	PDSSGPERILSI	12	P61979	Heterogeneous nuclear ribonucleoprotein K
WT	GPNPFPQKEDTL	12	Q6WKZ8	E3 ubiquitin-protein ligase UBR2
WT	VPDSSGPERILSI	13	P61979	Heterogeneous nuclear ribonucleoprotein K
Shared	GPLKAFNL	8	P26369	Splicing factor U2AF 65 kDa subunit
Shared	MGPWTHSL	8	P97821	Dipeptidyl-peptidase 1
Shared	RLPLRIFLI	9	P13516	Acyl-CoA desaturase 1
Shared	VGAAAWWFI	9	055143	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2
Shared	FGPYKQLFL	9	Q8CIE6	Coatomer subunit alpha
Shared	RGPIKFNVW	9	Q61820	GTP-binding nuclear protein Ran, testis-specific isoform
Shared	TGPLLKFQI	9	P62342	Selenoprotein T
Shared	VGPEHGTEI	9	Q80SU7	Interferon-induced very large GTPase 1
Shared	NGPQNIYNL	9	Q8K3C0	Ribonuclease kappa
Shared	VGPVTVVRL	9	Q9DAK3	Rho-related BTB domain-containing protein 1
Shared	GGPQALVNI	9	Q02248	Catenin beta-1
Shared	NGPIHWNEL	9	Q9D6N1	Carbonic anhydrase 13
Shared	HGPLITFHL	9	Q3UHC0	Trinucleotide repeat-containing gene 6C protein
Shared	TGPSVYELI	9	Q8BFQ8	Parkinson disease 7 domain- containing protein 1
Shared	VGPTQRLLL	9	Q3UDR8	Protein YIPF3

	ACOMPOTST.			
Shared	AGEMKQIDL	9	Q80T69	Round spermatid basic protein 1
Shared	IGPTYYQRL	9	Q8CFI7	DNA-directed RNA polymerase II subunit RPB2
Shared	GGPQQLYHL	9	Q9CQJ2	PIH1 domain-containing protein 1
Shared	KGPEVLDFI	9	P43404	Tyrosine-protein kinase ZAP-70
Shared	SGPERILSI	9	P61979	Heterogeneous nuclear ribonucleoprotein K
Shared	GGPFRFVDL	9	O8BMS1	Trifunctional enzyme subunit
Sharea			QUBIIDI	
Channel	ναρτικάτε	0	00 CDM1	ATPase family AAA domain-
Snared	VGIILIMII	9	Q8CDM1	containing protein 2
Shared	SVFIRALLL	9	P17427	AP-2 complex subunit alpha-2
	TODOGTDIT			
Shared	IGESSIDEI	9	Q80WQ6	Rhomboid family member 2
Shared	SGPIHVLLI	9	Q61502	Transcription factor E2F5
				Mannosyl-oligosaccharide 1.2-
Shared	KGATIVDAL	9	P45700	alpha-mannosidase IA
Shared	AGPVHALAI	9	Q9D8S9	BolA-like protein 1
				Dentidul prolul sis trans
Shared	RGPFADENF	9	Q9D868	isomerase H
Shared	VGPTILNKI	9	Q8QZS3	Folliculin
Shared	IGPKNYEFL	9	Q8BHY8	Sorting nexin-14
Shared	LGPKVSVLI	9	P46061	Ran GTPase-activating protein 1
Shared	YGPLRSVWV	9	P84104	Splicing factor, arginine/serine-
			101101	
Sharod	SGPPVSELI	٩	P15861	Histore H1 2
Shared		9	F13004	
Charred	VGATKI.TYT	0		Pleckstrin homology domain-
Shared		9	Λομηπρ Ο τημαίος Ο τημαίος Ο τημαίος Ο τημαίος Ο τημαίος Ο τημαίος Ο τημαίος Ο τημαίος Ο τημαίος Ο τηματικός Ο τιστικος Ο τιστικος Ο τιστικος Ο ττικα	containing family A member 1
	SCDWIODVI	_	0.000000	
Shared	POLITÄDIN	9	Q9CV12	Protein FAMI33B
	VODODI DUT			Conserved oligomeric Golgi complex
Shared	IGLGKTELT	9	Q8R1U1	subunit 4
				Guanylate cyclase soluble subunit
Shared	VGGTLKDFL	9	Q9ERL9	alpha-3

Shared	VGPGHGIQL	9	Q9JMH7	Sialidase-3
Shared	TGPPVSELI	9	P43276	Histone H1.5
Shared	AGPLRIVAL	9	09D8T0	Protein FAM3A
			~	
Shared	SGPQLFQTF	9	Q8BFX3	BTB/POZ domain-containing protein KCTD3
Shared	MGPYRQDLL	9	Q64727	Vinculin
Shared	TGPLVINRV	9	P47911	60S ribosomal protein L6
Shared	TGESHIDLI	9	Q9Z1F9	SUMO-activating enzyme subunit 2
Sharad	LGPDAATNI.	0	OO OF TO	Duractin subunit 2
Shared		9	Q99K08	
Shared	DGPVRGIDF	9	08CIE6	Coatomer subunit alpha
			~ ~ ~ ~	
Shared	AGPRLIVYI	9	Q64324	Syntaxin-binding protein 2
Shared	NGPQKLIEI	9	Q99PP2	Zinc finger protein 318 (Fragment)
Shared	VGPPHFQVI	9	Q7TMB8	Cytoplasmic FMR1-interacting protein 1
Shared	IGAEVYHNL	9	P17182	Alpha-enolase
				Ubiquitin-like modifier-activating
Shared	IGELVEDEL	9	Q02053	enzyme 1
Shared	ELGAQLVII	9	0917W8	CD209 antigen-like protein D
		-	2	
Shared	GGPAHITSL	9	Q62137	Tyrosine-protein kinase JAK3
Shared	RGPVRGISI	9	P63276	40S ribosomal protein S17
				Heterogeneous nuclear
Shared	YGPMKSGNF	9	088569	ribonucleoproteins A2/B1
	ϚͲϽϴϷΝͲͲͳ		0.011-115	Calcium-binding atopy-related
Shared	DILÄUMEET	9	Q8VCX5	autoantigen
Shared	LGAGROSLL	9	092103	Bromodomain and WD repeat-
	~ -		2,2100	concerning process i
Shared	MGPGRTVVI	9	Q9JL15	Galectin-8
Shared	SGGQRVITI	9	P81069	GA-binding protein subunit beta-2

Shared	GVGPIRKVLL	10	Q8BH60	Golgi-associated PDZ and coiled- coil motif-containing protein
Shared	GPGPGRLLLL	10	P11276	Fibronectin
Shared	YGPVGLRDFI	10	O8VEB6	Zinc phosphodiesterase ELAC
Shared	SSGPERILSI	10	~ P61979	Heterogeneous nuclear ribonucleoprotein K
Shared	NPGPDKYFTL	10	088958	Glucosamine-6-phosphate isomerase
Shared	DSSGPERILSI	11	P61979	Heterogeneous nuclear ribonucleoprotein K
Shared	PDSSGPERILSI	12	P61979	Heterogeneous nuclear ribonucleoprotein K
ERAAP KO	SPLRSLLF	8	P21460	Cystatin-C
ERAAP KO	GPPHFKTI	8	Q5SQX6	Cytoplasmic FMR1-interacting protein 2
ERAAP KO	GPLHLFRL	8	Q6S5C2	N-acetylglucosamine-1- phosphotransferase subunit gamma
ERAAP KO	GPEFKDKL	8	Q9QXS1	Plectin-1
ERAAP KO	GPLRTVWI	8	Q8BL97	Splicing factor, arginine/serine- rich 7
ERAAP KO	GAPELEVAR	9	Q8BHJ6	Serine incorporator 5
ERAAP KO	AGPIRVVTI	9	Q3THG9	Alanyl-tRNA synthetase domain- containing protein 1
ERAAP KO	AGASRIIGI	9	Q64437	Alcohol dehydrogenase class 4 mu/sigma chain
ERAAP KO	SGPSKWNWL	9	Q810A7	ATP-dependent RNA helicase DDX42
ERAAP KO	RAPVIWDNI	9	Q9EQQ9	Bifunctional protein NCOAT
ERAAP KO	VGALMYHTI	9	088712	C-terminal-binding protein 1
ERAAP KO	ASPLRSLLF	9	P21460	Cystatin-C
ERAAP KO	VGPPHFKTI	9	Q5SQX6	Cytoplasmic FMR1-interacting protein 2
ERAAP KO	FGGQRRPLL	9	08C9R9	Death-inducer obliterator 1
ERAAP	GGPDRFYFL	9	P13864	DNA (cytosine-5)-methyltransferase

ERAAP	TGAERSI.VI.	0	003267	DNA binding protoin Thoros
KO		9	Q03207	DNA-Dinaing protein ikaios
ERAAP KO	VGPNHAAFL	9	Q80TP3	E3 ubiquitin-protein ligase UBR5
ERAAP KO	FSPNRVIGL	9	Q9DCH4	Eukaryotic translation initiation factor 3 subunit F
ERAAP KO	FGPINSVAF	9	Q9QZD9	Eukaryotic translation initiation factor 3 subunit I
ERAAP KO	LGSAEQFLL	9	Q76LL6	FH1/FH2 domain-containing protein 3
ERAAP KO	AAPYKSDFL	9	Q9JL62	Glycolipid transfer protein
ERAAP KO	EGPEYWERI	9	P01897	H-2 class I histocompatibility antigen, L-D alpha chain
ERAAP KO	SQVMNLHNL	9	P29812	L-dopachrome tautomerase
ERAAP KO	GGPAIVHGL	9	Q9CZW4	Long-chain-fatty-acidCoA ligase 3
ERAAP KO	SAPKYIDYL	9	Q8BPB0	Mps one binder kinase activator- like 1A
ERAAP KO	AGPKYEYHW	9	Q8BPB0	Mps one binder kinase activator- like 1A
ERAAP KO	AGPRYEYHW	9	Q921Y0	Mps one binder kinase activator- like 1B
ERAAP KO	SGPLHLFRL	9	Q6S5C2	N-acetylglucosamine-1- phosphotransferase subunit gamma
ERAAP KO	VAPSKLEAL	9	Q8C4Y3	Negative elongation factor B
ERAAP KO	TGPAHWELL	9	Q9JHW2	Nitrilase homolog 2
ERAAP KO	STAARTFYL	9	Q9EQ61	Pescadillo homolog 1
ERAAP KO	VGPEFKDKL	9	Q9QXS1	Plectin-1
ERAAP KO	RGPGTSFEF	9	Q99LX0	Protein DJ-1
ERAAP KO	AGPEIRDAI	9	Q8BHZ0	Protein FAM49A
ERAAP KO	LGGARVTLL	9	Q811G0	Protein PTHB1
ERAAP KO	RGPFIIRQL	9	Q80WO2	Protein VAC14 homolog
ERAAP	VGALLVYDI	9	P62492	Ras-related protein Rab-11A

ERAAP KO	LGPVLSWQF	9	Q9WVL2	Signal transducer and activator of transcription 2
ERAAP KO	NGPEIISKF	9	Q3UMC0	Spermatogenesis-associated protein 5
ERAAP KO	YGPLRTVWI	9	Q8BL97	Splicing factor, arginine/serine- rich 7
ERAAP KO	AGPPNDFGL	9	P26039	Talin-1
ERAAP KO	EGPKVIFRF	9	Q3U0J8	TBC1 domain family member 2B
ERAAP KO	NGPEIMSKL	9	Q01853	Transitional endoplasmic reticulum ATPase
ERAAP KO	KGPSRRPSL	9	Q9DCF1	Transmembrane protein 25
ERAAP KO	SNPLRILNI	9	Q810L4	Transmembrane protein 39B
ERAAP KO	YGPDFTQHL	9	Q9D8Y7	Tumor necrosis factor, alpha- induced protein 8-like protein 2
ERAAP KO	LGPIKLELL	9	Q8R5L3	Vam6/Vps39-like protein
ERAAP KO	TAPVRSVDF	9	Q8BHD1	WD repeat-containing protein 51B
ERAAP KO	GGPVKIGQL	9	Q9QY24	Z-DNA-binding protein 1
ERAAP KO	AGPDRFVLL	9	Q3UPF5	Zinc finger CCCH-type antiviral protein 1
ERAAP KO	SGPLKGIEL	9	Q80Y81	Zinc phosphodiesterase ELAC protein 2
ERAAP KO	GGPNYQEGL	9	Q91V92	ATP-citrate synthase
ERAAP KO	TGPISAHSL	9	P61460	DEP domain-containing protein 5
ERAAP KO	KGPPYSDTF	9	Q922Y0	Dual specificity tyrosine- phosphorylation-regulated kinase 3
ERAAP KO	SGAERDLLL	9	Q8BNW9	Kelch repeat and BTB domain- containing protein 11
ERAAP KO	SGPLYTDRM	9	Q8CIF6	SID1 transmembrane family member 2
ERAAP KO	SGPAAHDLF	9	Q8C754	Vacuolar protein sorting- associated protein 52 homolog
ERAAP KO	SGGPVRVYSL	10	Q62507	Cochlin
ERAAP KO	SSGPFRTITV	10	P13864	DNA (cytosine-5)-methyltransferase

ERAAP KO	IGPIKNEQQL	10	Q61216	Double-strand break repair protein MRE11A
ERAAP KO	RGPPKGILLF	10	08BPY9	Fidgetin-like protein 1
ERAAP	RGPSLATLLF	10	P11032	Granzyme A
ERAAP KO	PSGPFRHVGL	10	Q3TBD2	Minor histocompatibility protein HA-1
ERAAP KO	LSADTASRFL	10	P60882	Multiple epidermal growth factor- like domains 8
ERAAP KO	AGPITDRIFL	10	Q5SUA5	Myosin-Ig
ERAAP KO	VGPELHDRLL	10	Q9QXS1	Plectin-1
ERAAP KO	LGSFPGNVIL	10	Q921K8	Protein FAM115C
ERAAP KO	GAGPEIRDAI	10	Q8BHZ0	Protein FAM49A
ERAAP KO	QGPYKGYIGV	10	055201	Transcription elongation factor SPT5
ERAAP KO	AAGPDRFVLL	10	Q3UPF5	Zinc finger CCCH-type antiviral protein 1
ERAAP KO	FSGPLKGIEL	10	Q80Y81	Zinc phosphodiesterase ELAC protein 2
ERAAP KO	LGLPRDEVLQ	10	Q61216	Double-strand break repair protein MRE11A
ERAAP KO	IGPIKNEQQL	10	Q9R0N0	Galactokinase
ERAAP KO	LGPQPPLRSA	10	Q9WTM3	Semaphorin-6C
ERAAP KO	AFPGPLKEENL	11	Q91X84	CREB-regulated transcription coactivator 3
ERAAP KO	SQGGPDRFYFL	11	P13864	DNA (cytosine-5)-methyltransferase
ERAAP KO	STPVTAASELL	11	P43352	DNA repair protein RAD52 homolog
ERAAP KO	IGPIKNEQQLF	11	Q61216	Double-strand break repair protein MRE11A
ERAAP KO	VGPVVGGNQQI	11	Q8CHI8	E1A-binding protein p400
ERAAP				Glycerol-3-phosphate
KO	AGPSRTVGLFL	11	Q64521	dehydrogenase, mitochondrial

FDAAD				Interform-stimulated 20 kDa
KO	KLVEVEWEQHL	11	Q3U1G5	exonuclease-like 2
ERAAP KO	HGPERDFPLYL	11	Q5PSV9	Mediator of DNA damage checkpoint protein 1
ERAAP KO	QGPARDVIAQL	11	Q3U0J8	TBC1 domain family member 2B
ERAAP KO	KAAGPDRFVLL	11	Q3UPF5	Zinc finger CCCH-type antiviral protein 1
ERAAP KO	AAFPGPLKEENL	12	Q91X84	CREB-regulated transcription coactivator 3
ERAAP KO	IGAERSLVLDRL	12	Q03267	DNA-binding protein Ikaros
ERAAP KO	RGPFRGNFEELI	12	Q99ML9	E3 ubiquitin-protein ligase Arkadia
ERAAP KO	NAGPSRTVGLFL	12	Q64521	Glycerol-3-phosphate dehydrogenase, mitochondrial
ERAAP KO	VGAERGEATDLL	12	054724	Polymerase I and transcript release factor
ERAAP KO	SSPGPSRIADYL	12	Q8K4K4	Tribbles homolog 1
ERAAP KO	KGPVREGDVLTLL	13	P62858	40S ribosomal protein S28
ERAAP KO	TGPQKTEDAYTIS	13	Q5SNZ0	Girdin
ERAAP KO	SVPDSSGPERILSI	14	P61979	Heterogeneous nuclear ribonucleoprotein K
ERAAP KO	VSVPDSSGPERILSI	15	P61979	Heterogeneous nuclear ribonucleoprotein K

	0		Uniprot	Duran Durah
ERAAP	Sequence	Length	10	
ко	SYVTTSTRTY	10	P20152	Vimentin
ERAAP KO	KYFEVPSVLL	10	Q9QZB7	Actin-related protein 10
ERAAP KO	SLVSCFAGGVFL	12	Q9QZ03	Zinc transporter ZIP1
ERAAP KO	AYAPAAATV	9	088532	Zinc finger RNA-binding protein
ERAAP KO	PYKSILSEL	9	Q6P1B1	Xaa-Pro aminopeptidase 1
ERAAP KO	KYAPSGFYI	9	088342	WD repeat-containing protein 1
ERAAP KO	TYQAMVHEL	9	P97390	Vacuolar protein sorting-associated protein 45
ERAAP KO	NYQEALRYI	9	Q91W86	Vacuolar protein sorting-associated protein 11 homolog
ERAAP KO	TFINLMTHI	9	Q8BVE3	V-type proton ATPase subunit H
ERAAP KO	VYQQTASLL	9	Q3U269	Uncharacterized protein C9orf97 homolog
ERAAP KO	GYIESIQHI	9	Q9CXC3	Uncharacterized protein C20orf72 homolog
ERAAP KO	YSQVLLRCL	9	Q8BFT2	Uncharacterized protein C14orf94 homolog
ERAAP KO	SFGVTLHEL	9	P52332	Tyrosine-protein kinase JAK1
ERAAP KO	SYLEDKDLV	9	P52332	Tyrosine-protein kinase JAK1
ERAAP KO	DYLGSRQYV	9	P52332	Tyrosine-protein kinase JAK1
ERAAP KO	KYTPSLTVI	9	Q8CHB8	Tubulin polyglutamylase TTLL5
ERAAP KO	TYYAAQMLI	9	Q9D8N3	Transmembrane protein 86A
ERAAP KO	KYITTLEDL	9	Q7TN22	Thioredoxin domain-containing protein 16
ERAAP KO	RYLQLTQSEL	10	Q810A3	Tetratricopeptide repeat protein 9C
ERAAP KO	TYSCREGFIL	10	A2AVA0	Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1
ERAAP KO	KYQIAVTKV	9	Q9CU62	Structural maintenance of chromosomes protein 1A
ERAAP KO	TYRELIEQL	9	Q60864	Stress-induced-phosphoprotein 1
ERAAP KO	SYKPVFVTEI	10	Q78PY7	Staphylococcal nuclease domain- containing protein 1
ERAAP KO	LYQAVATIL	9	Q9CZV5	STAGA complex 65 subunit gamma
ERAAP KO	SYYGPLNLL	9	009005	Sphingolipid delta(4)-desaturase DES1
ERAAP KO	HYEITKQDI	9	Q62245	Son of sevenless homolog 1
ERAAP KO	SYRDVIQEL	9	Q921I6	SH3 domain-binding protein 4
ERAAP KO	EYISKMGYL	9	Q7TSJ6	Serine/threonine-protein kinase LATS2
ERAAP KO	AYNPLPLTRL	10	Q62388	Serine-protein kinase ATM
ERAAP KO	ISYEELSQI	9	Q9WUH7	Semaphorin-4G
ERAAP KO	HYLPSYYHL	9	Q9DAR7	Scavenger mRNA-decapping enzyme DcpS

 Table 7: K^d peptides from WT and ERAAP-deficient spleen cells

ERAAP KO	KYEPIFQDI	9	Q64700	Retinoblastoma-like protein 2
ERAAP KO	SFRIYKGVI	9	Q99P72	Reticulon-4
ERAAP KO	YYKQGFSLI	9	Q8CHX7	Raftlin-2
ERAAP KO	SYVDIHTGL	9	Q9DCC4	Pyrroline-5-carboxylate reductase 3
ERAAP KO	AYVLMIKTL	9	P55086	Proteinase-activated receptor 2
ERAAP KO	GYVYGISAI	9	Q9EQQ2	Protein YIPF5
ERAAP KO	IYQYFEIFV	9	P61620	Protein transport protein Sec61 subunit alpha isoform 1
ERAAP KO	GYHPMPPQPGM	11	Q9D7I0	Protein shisa-5
ERAAP KO	KYNKLRQPFF	10	~ O9EOU5	Protein SET
ERAAP KO	LYTHIVTDI	9	2 2 Q80UZ2	Protein SDA1 homolog
ERAAP KO	KFVAALSVL	9	09CTG6	Probable cation-transporting ATPase 13A2
ERAAP KO	SFNETMSQL	9	~ O9JLG4	Polycystic kidney disease 2-like 2 protein
ERAAP KO	GYLQPAGDL	9	∼ Q9JHK5	Pleckstrin
ERAAP KO	RYHAALAVI	9	Q9JJW0	Peroxisomal membrane protein 4
ERAAP KO	KYRQQFEEL	9	Q6ZQH8	Nucleoporin NUP188 homolog
ERAAP KO	SYSATKETL	9	P09405	Nucleolin
ERAAP KO	FFVENVSEL	9	Q6KCD5	Nipped-B-like protein
ERAAP KO	SYNQGIVVI	9	Q5NCX5	NHR domain-containing protein KIAA1787
ERAAP KO	RFIPSQHYV	9	Q09014	Neutrophil cytosol factor 1
ERAAP KO	NYIWALSEI	9	Q60867	Neurogenic differentiation factor 1
ERAAP KO	EITLSFKTL	9	Q9CS84	Neurexin-1-alpha
ERAAP KO	HYQPSVNNI	9	Q91XQ5	N-acetylgalactosamine 4-sulfate 6-=- sulfotransferase
ERAAP KO	VYSNPVSTL	9	Q8CFN5	Myocyte-specific enhancer factor 2C
ERAAP KO	KYLQNDLYI	9	089050	Muskelin
ERAAP KO	HYWPVHNEL	9	P97471	Mothers against decapentaplegic homolog 4
ERAAP KO	RYKKLLSLL	9	P53349	Mitogen-activated protein kinase kinase kinase 1
ERAAP KO	KYLSVQGQLF	10	Q791T5	Mitochondrial carrier homolog 1
ERAAP KO	IYKDSSTFL	9	Q3UIK4	Methyltransferase-like protein KIAA1627
ERAAP KO	KYFDTNSEI	9	Q5UAK0	Mesoderm induction early response protein 1
ERAAP KO	IYAFRSQEL	9	Q01727	Melanocyte-stimulating hormone receptor
ERAAP KO	ALPVNAEGGEI	11	P43430	Mast cell protease 8
ERAAP KO	LYGTSLEAI	9	088910	MAGUK p55 subfamily member 3
ERAAP KO	SYTFLREAL	9	Q8VC16	Leucine-rich repeat-containing protein 14
ERAAP KO	KYLENPNAL	9	Q8BX02	KN motif and ankyrin repeat domain- containing protein 2
ERAAP	VYAPLKELL	9	Q9D0F1	Kinetochore protein NDC80 homolog

ко				
ERAAP KO	KYGSVIQLL	9	₽70227	Inositol 1,4,5-trisphosphate receptor type 3
ERAAP KO	SGSRSGSDYSLTISSL	16	P01639	Ig kappa chain V-V region MOPC 41
ERAAP KO	AYLEQLESL	9	Q3UXZ9	Histone demethylase JARID1A
ERAAP KO	NYGPMKGGSF	10	Q8BG05	Heterogeneous nuclear ribonucleoprotein A3
ERAAP KO	YTSSSAPSAI	10	064314	Hematopoietic progenitor cell antigen CD34
ERAAP KO	SYQAGPSAGAGGAGI	15	P49710	Hematopoietic lineage cell-specific protein
ERAAP KO	VYIPSKTDL	9	Q9CRB2	H/ACA ribonucleoprotein complex subunit 2
ERAAP KO	GYVDNKEFV	9	P01899	H-2 class I histocompatibility antigen, D-B alpha chain
ERAAP KO	AYAPSGNFV	9	P62880	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2
ERAAP KO	VYSNTIQSI	9	P08752	Guanine nucleotide-binding protein G(i), alpha-2 subunit
ERAAP KO	SYSQLITLV	9	Q6PAR5	GTPase-activating protein and VPS9 domain-containing protein
ERAAP KO	QFNSSLHNI	9	035166	Golgi SNAP receptor complex member 2
ERAAP KO	FYTPIPNGL	9	008573	Galectin-9
ERAAP KO	AYNRILDAL	9	Q68FD7	Folliculin-interacting protein 1
ERAAP KO	KYKDMGTVVL	10	Q8R050	Eukaryotic peptide chain release factor GTP-binding subunit ERF3A
ERAAP KO	FFSPTGSPL	9	P17679	Erythroid transcription factor
ERAAP KO	YYLEVGKTLI	10	Q2HXL6	ER degradation-enhancing alpha- mannosidase-like 3
ERAAP KO	SYLDIERIL	9	Q6P1E8	EF-hand calcium-binding domain- containing protein 6
ERAAP KO	AYSIVIRQI	9	Q80TP3	E3 ubiquitin-protein ligase UBR5
ERAAP KO	TYMALEERL	9	055176	E3 ubiquitin-protein ligase Prajal
ERAAP KO	TFASTLSHL	9	Q8CFI7	DNA-directed RNA polymerase II subunit RPB2
ERAAP KO	TYQDIQNTI	9	P08775	DNA-directed RNA polymerase II subunit RPB1
ERAAP KO	TYIGSVELV	9	Q01320	DNA topoisomerase 2-alpha
ERAAP KO	YYLQIHPQEL	10	Q3U1J4	DNA damage-binding protein 1
ERAAP KO	IFYQSVLNI	9	Q8CIG0	DEP domain-containing protein 1A
ERAAP KO	SYRKILNDL	9	Q01147	Cyclic AMP-responsive element- binding protein 1
ERAAP KO	HYLDTTTLI	9	P47941	Crk-like protein
ERAAP KO	AYLPSSDTPLL	11	Q9Z160	Conserved oligomeric Golgi complex subunit 1
ERAAP KO	EYTRMSTSELI	11	Q9WVD4	Chloride channel protein 5
ERAAP KO	TYSPPLNKL	9	P02340	Cellular tumor antigen p53
ERAAP KO	EYIHSKNFI	9	Q9DC28	Casein kinase I isoform delta
ERAAP KO	YYHEAALGEAL	11	089001	Carboxypeptidase D
ERAAP KO	YYVENTDTKM	10	Q8CGN4	BCL-6 corepressor
ERAAP KO	SYKRSNFYI	9	Q9Z2H5	Band 4.1-like protein 1

ERAAP	SYSSETDITI	1.0	0.0111170	Ankyrin repeat domain-containing
KO	5155110111	10	Q300F8	Amvotrophic lateral sclerosis 2
ERAAP				chromosomal region candidate gene 8
KO FDAAD	SIFFIVNDI	9	Q8VHI4	protein homolog
KO	KFLAAGTHL	9	P14206	40S ribosomal protein SA
				1-phosphatidylinositol-4,5-
KO	SYVVSSFTEL	10	A3KGF7	2
ERAAP	ͲϒϤλϚϹͲϾΙ			Sterol regulatory element-binding
KO	IIIASGIEL	9	Q3U1N2	protein 2 Leucine-rich repeats and
ERAAP				immunoglobulin-like domains protein
ко	SINQUIKL		Q52KR2	2 Zinc finger EYVE domain-containing
Shared	RYQEVIQEL	9	Q5DU37	protein 26
Shared	LLEQANNAI		Q8BND3	WD repeat-containing protein 35
Shared	NYQDTIGRL	9	P20152	Vimentin
Shared	SYENMVTEI	9	P54728	UV excision repair protein RAD23 homolog B
Shared	SYTSVLSRL	a	080729	UPF0493 protein KIAA1632
Shared	SYFGSSSSL	0	0801160	Uncharacterized protein KIAR1032
Shared		3	200002	Uncharacterized protein Clorf43
Shared	RYQEALSEL	9	Q8R092	homolog
Shared	SYAVSVNHV	9	Q8K387	hydrolase 45
Shared	AYONNKELL	9	P57080	Ubiquitin carboxyl-terminal
Shared	KYI TNI ETT	9	062120	Tyrosine-protein kinase IAK2
Shared	SYFPEITHT	0	DE0202	Tyrosine protein kinase UAK2
Shared		9	PJZJJZ	Twisted gastrulation protein homolog
Shared	SFLETVNQL	9	Q9EP52	1
Shared	AYLLNLNHL	9	Q91V04	protein 1
Shared	SYLENPTSYHL	11	Q9R210	Transcription factor EB
Shared	TYGALVTOL	9	055013	Trafficking protein particle complex subunit 3
Shared	SYLHSLOEV	9	058875	Tensin-3
Shared	GYLELLDHV	9	P26039	Talin-1
Shared	TFITDKTVL	9	P01849	T-cell recentor alpha chain C region
Shared	SYSSLIENI	9	064324	Suntavin-binding protein 2
Shared	GYLGOVTTI	0	007150	SUMO activating answer suburit 2
Shared	011020111	9	Q92119	Structural maintenance of
Shared	YYTHGPKGNET	11	060509	chromosomes flexible hinge domain-
Shared		±±	701JD0	Sterol-4-alpha-carboxylate 3-
Shared	NEIGTKTVI	9	Q9R1J0	dehydrogenase, decarboxylating
Shared	SYGDLKNAI	9	035326	rich 5
Shared	YYFPVKNVI	9	Q921M3	Splicing factor 3B subunit 3
Shared	NYISGIQTI	9	Q921M3	Splicing factor 3B subunit 3
Shared	SYLKSELGL	9	Q922B9	Sperm-specific antigen 2 homolog
Shared	VYLPLTSHI	9	Q8CFD4	Sorting nexin-8
Shared	RYLEOLHOL	٩	P42227	Signal transducer and activator of transcription 3
Shared	ĸyvenfgli	9	09CYN2	Signal peptidase complex subunit ?
Shared	KYYVOLEOL	a a	097131	SH3 domain-binding protein 5
Chanad	~ ~ NYLDIKGLL	9	09₩Ͳϒ5	S-phase kinase-associated protein 1
Snareo	-			
Shared	GYLKGYTLV	9	Q9CWZ3	RNA-binding protein 8A
--------	-------------	----	-------------	---------------------------------------------------------------------
Shared	TYGLTPHYI	9	Q62176	RNA-binding protein 38
Shared	SYLFSHVPL	9	Q9D7G0	Ribose-phosphate pyrophosphokinase 1
Shared	TYELHRDF	8	Q6Y5D8	Rho GTPase-activating protein 10
Shared	IFDRVLTEL	9	P28700	Retinoic acid receptor RXR-alpha
Shared	IYKGVIQAI	9	Q99P72	Reticulon-4
Shared	KYLNSVQYI	9	Q9ERD6	Ras-specific guanine nucleotide- releasing factor RalGPS2
Shared	KYQDILNEI	9	Q3UQ44	Ras GTPase-activating-like protein IQGAP2
Shared	RYQELINDI	9	Q9JKF1	Ras GTPase-activating-like protein IQGAP1
Shared	YYGPLKTLL	9	P58069	Ras GTPase-activating protein 2
Shared	NFLITQTEL	9	06ZPV2	Putative DNA helicase INO80 complex homolog 1
Shared	TYAPPKPRSEL	11	~ Q8BKS9	Pumilio domain-containing protein KIAA0020
Shared	SYIGSPRAV	9	Q8BJS4	Protein unc-84 homolog B
Shared	SYKQNLENL	9	Q8BGX1	Protein FAM113B
Shared	GYIKLINFI	9	Q922H1	Protein arginine N-methyltransferase 3
Shared	NYVNGKTFL	9	P49722	Proteasome subunit alpha type-2
Shared	GYLPGNEKL	9	P97372	Proteasome activator complex subunit 2
Shared	KFIATLQYI	9	Q9QUR6	Prolyl endopeptidase
Shared	RYLPLNTAL	9	Q9D8M7	PHD finger protein 10
Shared	IYSEVATLI	9	Q9R0L6	Pericentriolar material 1 protein
Shared	GYLAIVEHL	9	Q9Z1E3	NF-kappa-B inhibitor alpha
Shared	VYSRTFTWL	9	Q9WTI7	Myosin-Ic
Shared	KYKDIYTEL	9	P97434	Myosin phosphatase Rho-interacting protein
Shared	KYFPSRVSI	9	Q6PEB6	Mps one binder kinase activator-like 3
Shared	YSSLNRAQL		Q69ZX6	MORC family CW-type zinc finger protein 2A
Shared	KYIHSADII	9	P47811	Mitogen-activated protein kinase 14
Shared	KYIHSANVL	9	P63085	Mitogen-activated protein kinase 1
Shared	SYLPPGTSL	9	Q8VCF0	Mitochondrial antiviral-signaling protein
Shared	KYLGQLTSI	9	~ Q8K2Y9	Malcavernin
Shared	GYLPLAHVL	9	Q9CZW4	Long-chain-fatty-acidCoA ligase 3
Shared	SYLVSKQEL	9	Q3UM18	Large subunit GTPase 1 homolog
Shared	IFTSVRSEL	9	Q3UWM4	JmjC domain-containing histone demethylation protein 1D
Shared	KFTETLTNI	9	Q80SU7	Interferon-induced very large GTPase 1
Shared	VYGSLASVL	9	Q8JZK9	Hydroxymethylglutaryl-CoA synthase, cytoplasmic
Shared	AYLPNGTVL	9	Q80Y84	Histone demethylase JARID1B
Shared	RYFDSFGDL	9	P02088	Hemoglobin subunit beta-1
Shared	KFLASVSTV	9	P01942	Hemoglobin subunit alpha
Shared	QYLPAIRAL	9	P27601	Guanıne nucleotide-binding protein subunit alpha-13
Shared	NYFPSKQDI	9	P27600	Guanine nucleotide-binding protein subunit alpha-12
Shared	AYAPSGNYV	9	P62874	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1

Shared	YYLNDLERI	9	P08752	Guanine nucleotide-binding protein
Shared	NYIESKESL	9	075N62	GTPase IMAP family member 8
Shared	NYLPAINGI	9	P36536	GTP-binding protein SARla
Shared	GYLPNKQVL	9	005915	GTP cvclohvdrolase 1
Shared	SYNPSSQAL	9	202NL51	Glycogen synthase kinase-3 alpha
Shared	TYLVFVQGI	9	Q8BZM1	Glomulin
Shared	VYVDGKEEI	9	~ O9WUD8	Fas apoptotic inhibitory molecule 1
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Fanconi anemia group A protein
Shared	KYVPLVTCI.	9	Q9JL/0	nomolog
Snared		9	Q8BWI0	F-DOX ONLY PROTEIN 38 Erythrocyte band 7 integral membrane
Shared	RYLQTLTTI	9	P54116	protein
Shared	AYQSIQSYL	9	Q925U4	mannosidase-like 1
Shared	YYSPTKNEI	9	Q4PZA2	Endothelin-converting enzyme 1
Shared	GYLPVQTVL	9	P11531	Dystrophin
Shared	TYTSARTLL	9	061881	DNA replication licensing factor
bildred			201001	DNA replication licensing factor
Shared	KIQÕTEEDI	9	P49717	MCM4 DNA (cvtosine-5)-methvltransferase
Shared	VYTRHPLF		Q9CWR8	3-like
Shared	TYLVSKESI	9	Q6PNC0	DmX-like protein 1
Shared	YLPMAQSV	8	Q9DCP9	DAZ-associated protein 2
Shared	AYLNMFEHI	9	Q99N16	Cytochrome P450 4F3
Shared	AYVPGFAHI	9	Q9CXX9	CUE domain-containing protein 2
Shared	SFVDTRTLL	9	Q01149	Collagen alpha-2(I) chain
Shared	KYGVVLDEI	9	089079	Coatomer subunit epsilon
Shared	DYQALRTSI	9	Q68FD5	Clathrin heavy chain 1
Shared	SYIGGHEGL	9	P40201	protein 1
Shared	SFLPAQHTV	9	Q8K4Q7	Ceramide kinase
Shared	SYSLOROSL			Cell division cycle-associated
Shared	KYQEVTNNL	9	060865	Caprin-1
0.1.42.044			Q 000000	Breast cancer anti-estrogen
Shared	NENQILIAL	9	Q9QZK2	resistance protein 3 ATPase family AAA domain-containing
Shared	KYLTVKDYL	9	Q8CDM1	protein 2
Shared	SFLPSGSEI	9	Q9JKC7	AP-4 complex subunit mu-1
Shared	SYGTAVTHI	9	P27808	beta-N-acetylglucosaminyltransferase
Chanad	KTWWWWET	0	D40124	Adenylyl cyclase-associated protein
Shared	SYALHOVTL	9	000127	Acetul-coongume & transporter 1
Shared	VYNASNNEL	9	D62242	Acetyi-coenzyme A transporter i
Shared	KYFEVPSVL	9	0907B7	Actin-related protein 10
Shared	KYSGVLSSI	و م	0791 75	Mitochondrial carrier homolog 1
Shared	VYLPTHTSL	 م	08BM54	E3 ubiquitin-protein ligase MYLTP
Shared	VYLPTHTSLL	10	08BM54	E3 ubiquitin-protein ligase MYLIP
	NVCIODIT	10	2021101	Ral guanine nucleotide dissociation
WT	ПТЭТЭКГТТ	9	Q03385	stimulator 26S proteasome non-ATPase regulatory
WT	GYVQSKEMI	9	P14685	subunit 3
WT	GYKAGMTHI	9	P27659	60S ribosomal protein L3

WT	KYFEVPSVL	9	Q9QZB7	Actin-related protein 10
WT	DFYKDLEKI	9	088444	Adenylate cyclase type 1
WT	DYLQTITNI	9	Q8K4T1	Alpha-2,8-sialyltransferase 8F
WT	YLQTITNI	8	Q8K4T1	Alpha-2,8-sialyltransferase 8F
WT	LYLKTENYL	9	008739	AMP deaminase 3
WT	SFTGTKTSL	9	A2A4P0	ATP-dependent RNA helicase DHX8
WT	TYSPSRVLI	9	Q91XU0	ATPase WRNIP1
wm	VYTLTIONI	9	P15530	B-cell antigen receptor complex-
WT	KYFGGVTAL	9	09.7.704	Beta-1 4-galactosyltransferase 4
WT	OYNPVKOOL	9	09DBL7	Bifunctional coenzyme A synthase
wr	SFLPTLREL	9	P28653	Biglycan
		5	120000	Cleavage stimulation factor 50 kDa
WT	GIISIANGL	9	Q99LC2	subunit Cleft lip and palate transmembrane
WT	TYIESSTKV	9	Q8VBZ3	protein 1 homolog
				CMP-N-acetylneuraminate-beta- galactosamide-alpha-2.3-
WT	TYAPVKSFL	9	Q11204	sialyltransferase
WT	IYASSKDAI	9	P18760	Cofilin-1
WT	SFIPAVNDL	9	08BHX1	Coiled-coil domain-containing protein 5
	RVAALRELT			Coiled-coil domain-containing
WT	RYKOLLTYI	9	Q9DBT3	protein 97
W.L.		9	P61202	Corticosteroid 11-beta-dehydrogenase
WT	FFSTIRTEL	9	P50172	isozyme 1
WT	RYMELYTHV	9	Q9WTX6	Cullin-1
WT	TWNKLLTTI	9	Q9D4H8	Cullin-2
WT	KYVNSIWDL	9	Q9JLV5	Cullin-3
WT	LYLPMAQSV	9	Q9DCP9	DAZ-associated protein 2
WT	HYKDMLSEL	9	Q8BZN6	Dedicator of cytokinesis protein 10
WT	SYLPVGSHNL	10	Q9WVF7	subunit A
WT	SYNKAISYL	9	A2ALW5	DnaJ homolog subfamily C member 25
WT	YLPTHTSL	8	Q8BM54	E3 ubiquitin-protein ligase MYLIP
WT	SYLTSASSL	9	Q80TP3	E3 ubiquitin-protein ligase UBR5
WT	DYQPGITFI	9	08CJG0	Eukaryotic translation initiation factor 2C 2
WT	SYNRLKSLI	9	20920E5	Farnesyl pyrophosphate synthetase
	DYIGVROHI.		OF MORE O	FRAS1-related extracellular matrix
WT	KASIZUCAIT	9	Q5H8B9	protein 3
WT	HGEYPAKAL	9	Q9WVE'6	Group IID secretory phospholipase A2
WT		9		
WI	AYT, AAT, TOT,	0	PE4210	Histidine ammonia-lyase
	AYLAALTQL KYLSDNVHL	9	P54310	Histidine ammonia-lyase Hormone-sensitive lipase
WT.	AYLAALTQL KYLSDNVHL SYWLVRTEL	9	P54310 Q61081	Histidine ammonia-lyase Hormone-sensitive lipase Hsp90 co-chaperone Cdc37
WT WT	AYLAALTQL KYLSDNVHL SYWLVRTEL SYKLGOVST	9	P54310 Q61081 P42859	Histidine ammonia-lyase Hormone-sensitive lipase Hsp90 co-chaperone Cdc37 Huntingtin
WT WT WT	AYLAALTQL KYLSDNVHL SYWLVRTEL SYKLGQVSI	9 9 9 9 9	P54310 Q61081 P42859 P42859	Histidine ammonia-lyase Hormone-sensitive lipase Hsp90 co-chaperone Cdc37 Huntingtin Huntingtin Hydroxysteroid dehydrogenase-like
WT WT WT WT	AYLAALTQL KYLSDNVHL SYWLVRTEL SYKLGQVSI IYAPIREAL	9 9 9 9 9	P54310 Q61081 P42859 P42859 Q8BTX9	Histidine ammonia-lyase Hormone-sensitive lipase Hsp90 co-chaperone Cdc37 Huntingtin Huntingtin Hydroxysteroid dehydrogenase-like protein 1
WT WT WT WT	AYLAALTQL KYLSDNVHL SYWLVRTEL SYKLGQVSI IYAPIREAL KYLATSQVL	9 9 9 9 9 9	P54310 Q61081 P42859 P42859 Q8BTX9 P01872	Histidine ammonia-lyase Hormone-sensitive lipase Hsp90 co-chaperone Cdc37 Huntingtin Huntingtin Hydroxysteroid dehydrogenase-like protein 1 Ig mu chain C region secreted form Inhibitor of nuclear factor kappa-P
WT WT WT WT WT	AYLAALTQL KYLSDNVHL SYWLVRTEL SYKLGQVSI IYAPIREAL KYLATSQVL SLQSLKTRI	9 9 9 9 9 9 9	P54310 Q61081 P42859 P42859 Q8BTX9 P01872 O88351	Histidine ammonia-lyase Hormone-sensitive lipase Hsp90 co-chaperone Cdc37 Huntingtin Huntingtin Hydroxysteroid dehydrogenase-like protein 1 Ig mu chain C region secreted form Inhibitor of nuclear factor kappa-B kinase subunit beta

WT	NYFESKGIL	9	P15092	Interferon-activable protein 204
WT	KYMETIEKL	9	Q3TDD9	KLRAQ motif-containing protein 1
				Leucine-rich repeats and
WT	SYNQLTRL	8	Q52KR2	2
WT	TYKNITVRL	9	Q149R9	Lysophosphatidic acid receptor 5
WT	NYYPVNTRI	9	009159	Lysosomal alpha-mannosidase
wr	SYMEVPTYL	9	061168	Lysosomal-associated transmembrane
	AYIAOKTLL	9	062234	Myomesin-1
	~ SFVNTMTSL	9	P28660	Nck-associated protein 1
			120000	Nuclear factor erythroid 2-related
WT	IINMAPSAL	9	Q61985	factor 1
WT		9	Q8BHY2	Nucleolar complex protein 4 homolog
WT	GIQVLKSVL	9	Q8R5K4	Nucleolar protein 6
WT	QFWGTRSEL	9	Q8R5K4	Nucleolar protein 6 Phosphatidylinositol-4.5-
				bisphosphate 3-kinase catalytic
WT		9	035904	subunit delta isoform
WT		9	Q3V0K9	Plastin-1
WT	IIIFAGQ5V	9	P67778	Prohibitin Prolow-density lipoprotein receptor-
WT	SYLIGRQKI	9	Q91ZX7	related protein 1
WT	SFSVIGFSVL	10	P70263	Prostaglandin D2 receptor
WT	IFEEEISEL	9	Q8VCU0	Protein angel homolog 1
WT	GYIDTHKL	8	A6X919	Protein dpy-19 homolog 1
WT	AYAGVISAL	9	Q8BMB0	Protein EMSY
WT	SYHPSGLSL	9	Q8BXQ8	Protein FAM53C
WT	TYAVRVFAL	9	Q4QQM5	Protein FAM73A
WT	AFLSSLTDV	9	Q3UVL4	Protein fat-free homolog
WT	HYFNTPFQL	9	Q6NVE9	Protein phosphatase PTC7 homolog
WT	KYQDILSEL	9	Q8C9X1	Protein S100-A1-like
WT	YYKASVTRL	9	Q9QVP9	Protein tyrosine kinase 2 beta
WT	GYQRLLELI	9	A2AIV2	Protein virilizer homolog
WT	SYLLQSTEL	9	P59729	Ras and Rab interactor 3
WT	YYSPLRDLL	9	Q60790	Ras GTPase-activating protein 3
WT	MYFQTHDQI	9	Q9EPU0	Regulator of nonsense transcripts 1
WT	SYSMPLTSI	9	Q6PDX6	RING finger protein 220
WT	SYMPTVSHL	9	Q9Z2E9	Seipin
WT	KYGPVVSLL	9	P97343	Serine/threonine-protein kinase Kist
WT	SFGRTSTVTL	10	Q9EQY0	Serine/threonine-protein kinase/endoribonuclease IRE1
WT	IFFPSVTGI	9	Q9JIS8	Solute carrier family 12 member 4
WT	IYFPSVTGI	9	Q91V14	Solute carrier family 12 member 5
WT	YYGILQEKI	9	P97858	Solute carrier family 35 member B1
WT	TYAWPLSNL	9	Q8R4U0	Stabilin-2
WT	LFSEIQTTL	9	Q8C2E7	Strumpellin
				TAF6-like RNA polymerase II
WT	SYLDGKGNL	9	Q8R2K4	associated factor 65 kDa subunit 6L
WT	GYFVEACKL	9	A2ASS6	Titin

WT	KYQEALDVI	9	Q8BWZ3	TPR repeat-containing protein C12orf30 homolog
WT	TYPGQAHPAL	10	P35428	Transcription factor HES-1
WT	KFLPSSQEL	9	070472	Transmembrane protein 131
WT	AYKFGKTVV	9	Q8R3Q0	Transmembrane protein 66
WT	HYLQVNSTI	9	P32972	Tumor necrosis factor ligand superfamily member 8
WT	MYQDILTEL	9	Q6P1Y8	Type II inositol-3,4-bisphosphate 4- phosphatase
WT	KYQEALSYL	9	Q5I043	Ubiquitin carboxyl-terminal hydrolase 28
WT	YYINGKTGL	9	Q6ZQ93	Ubiquitin carboxyl-terminal hydrolase 34
WT	SLVSDTETSI	10	Q6ZQ93	Ubiquitin carboxyl-terminal hydrolase 34
WT	KYVAVYNLI	9	Q80U87	Ubiquitin carboxyl-terminal hydrolase 8
WT	WYNPILNRV	9	Q9Z222	UDP-GlcNAc:betaGal beta-1,3-N- acetylglucosaminyltransferase 2
WT	SFVSVLHAL	9	Q91V83	Uncharacterized protein KIAA0406 homolog
WT	LWEAHTNIL	9	Q505K2	UPF0518 protein FAM160A1
WT	TYIRSSLDI	9	Q8CII0	Zinc finger and BTB domain- containing protein 8