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ABSTRACT

The goal of the proposed research is to develop methods for
efficient implementation of logic programs. There are two areas
we wish to investigate, both of which are continuations of
research conducted by members of the UCI dataflow architecture
group. One aspect of the proposed research involves development
of a non-von Neumann architecture for parallel execution of logic
programs; preliminary work in this area is reported by Conery
[9]. The second area involves transformation of high level logic
specifications into efficient Prolog and/or procedural language

programs, and is based on work by Morris [20].



1. CONTEXT

In 1965, J. A, Robinson [24] published the resolution
algorithm, a procedure for automatic theorem proving that works
for theorems expressed as clauses of first order predicate logic.
Since then, other researchers (c.f. [13, 21]) have arqgued that a
resolution proof can be viewed as a computation. Specifically,
given a satisfiable set of clauses S, and a clause C which is to
be proven, a resolution proof shows that the set { S U~C } leads
to a contradiction. Moreover, the proof is constructive; that
is, if C contains one or more variables, the proof process will
construct the value(s) for those variables that make the set
unsatisfiable. Thus, the proof that { S U~C } is unsatisfiable

also computes values for the variables of C. In this context, the

set S is known as a logic program.

Prolog [23] is a language that is based on the resolution
procedure. It is quickly gaining credibility as a viable
programming language. Warren, Pereira, and Pereira [27],
Kowalski [17], and others cite numerous examples of large and

useful programs written in Prolog.

One major advantage of using logic as a programming language is
that it is a very high level language. Kowalski [17] advocates
the use of Prolog as a specification language. He argues that
there are many benefits obtained from being able to directly
execute the logical specification of a program (not the least of

which is that if the Prolog is efficient enough, there is no need
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to design a procedural language version of the program). Davis
[10] describes a system which creates LISP or Pascal programs

from Prolog specifications.

One factor that will determine the ultimate success of logic
programming is the difficulty of learning to program using the
clause form of logic. Kowalski [15] describes some of the
difficulties of trying to express certain relationships in clause
form as opposed to the more familiar first order predicate
calculus. This style of programming, which can be called
relational, is quite different from two other common styles of
programming, namely procedural (as typified by programs written
in Pascal, FORTRAN, or PL/I) and functional (FFP [3], LISP, SASL

[26]1).

Another key to the acceptance of logic programming is the
etficiency of logic programs. Warren, Pereira, and Pereira {[27]
found that programs written in Prolog and LISP required about the
same amount of time to execute. Kowalski [17] cites an article
which claims that compiled Prolog is as efficient as "well

structured" Pascal.

Improving the efficiency of logic programs is the major goal of

our proposed research. Among the various strategies are

- Improved resolution algorithms. There has been quite a
bit of research in this area (c.f. [25, 141), with the
emphasis on improved control strategies over the choice
of resolvents. We do not propose to do any work in
this area,



..4_

- Parallel execution of logic programs. Section 2 of
this paper is a discussion of current work in this
area, and our proposal for further research.

- Optimization of 1logic programs. In section 3 of this
paper we present an alternative functional notation for
logic programs and a scheme for transforming
expressions in this notation into efficient programs.

The next two sections are introductions to topics which are
related to our proposal. Readers who are familiar with these
topics are invited to skip the corresponding sections. The first
is a description of the Prolog 1language. Our proposals for
multiprocessor architectures in section 2 are related to dataflow
architectures, so the second is an introduction to the dataflow

system upon which our proposals are based -- the UCI Dataflow

Architecture.

1.1. Prolog
A Prolog program consists of a set of glauses. There are two

kinds of clauses -- jimplications and assertions. Implications

are of the form
w - X, y’ Z.

where w, x, y, and z are predicates. w 1is the head of the
clause, and those predicates to the right of the :~ symbol make
up the body of the clause. Assertions are clauses that have an

empty set of predicates for the body:
W,

In most cases, predicates have arguments, which are enclosed in
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parentheses after the predicate name. These arguments are called
terms, and can be atoms, variables, or structured objects. The
names of atoms begin with lower case 1letters, and names of
variables (which take values of either atoms or structures) begin
with upper case letters. The syntax for structured objects is
the same as that for terms. The "scope" of a variable 1is a
single clause; if X‘appears in two different clauses, it will not
necessarily refer to the same object. Variables in Prolog are
completely different from variables in most other languages,

where they are names of memory locations that hold values.
A Prolog program is activated by giving it a goal statement
- X, Y.

The system tries to solve the goals in order, from left tc right.
To solve a goal, the system looks for a clause whose head upifies
with, or mﬁ;ghgg, the goal. Two predicates can be unified if
there is a substitution for variables that makes the predicates
identical (see [22] for a definition of a unification algorithm).

For example, the two predicates
p(X,a),p(b,Y)

can be unified by the substitution {X/b,Y/a}, meaning substitute
"b" for X and "a" for Y, to give the single predicate. p(b,a).
When the system unifies a goal and the head of some clause, the
unifying substitution is applied to the entire goal list and the

body of the clause, and this new body now replaces the original



Prolog program:

clauses comments
(1) father (curt,elaine). /* curt is the father of */
/* elaine (an assertion) */

(2) father (dan,pat).
(3) father (pat,john).
(4) mother (elaine, john).
(5) grandfather(X,Z) :- /* X is the grandfather of 2% */
father (X,Y) ,father(Y,z). /* if there exists a Y such */
/* that X is the father of y*/
/* and Y is the father of 2z */
(6) grandfather(X,z) :-
father (X,Y) ,mother(Y,z).

Execution 1: find G such that "dan" is the grandfather of G.

step goals to be solved matching unifying
clause substitution
(1] :- grandfather (dan,G) 5 {X/dan}
[2] :— father (dan,Y), 2 {Y/pat}
father (Y,G)
[3] ¢~ father (pat,G) 3 {G/john}
(4] {empty}

answer: G = john

Execution 2: find G such that "john" is the grandson of G.

[1] :— grandfather (G, john) 5 {zZ/john}

[2] :— father (G,Y), 1 {G/curt,
father (Y, john) Y/elaine}

[3] :— father (elaine, john) none; backtrack to [2]

[4] :—- father (G,Y), 2 {G/dan,
father (Y, john) Y/pat}

[5] :— father (pat,john) 3 { }

[6] { empty }

Note: if this answer, G = "dan", is rejected, the system will

backtrack and find another substitution for step [2]. These
will all fail, and eventually step [1] will be redone using
clause (6), and the second answer, G = "curt", will be produced.

Figure 1-1: Example of a Prolog Program
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goal at the front of the goal 1list. Note that under this
interpretation, predicates in the body of a clause can be

considered subgoals, i.e. one can read the statement

w - X, y' Ze.

as "in order to solve the goal w, solve the goals x, Yy, and z in

that order." Assertions (goals with no subgoals) always succeed.

If the current goal does not unify with the head of any clause,

it fails, and the system backtracks by undoing the latest
unifying substitution, and trying another match for the most

recently matched goal.

When the goal list is empty, the system stops and prints the

values obtained for any variables that were in the original goal.

Figure 1-1 contains an example of a Prolog program, and shows
the series of steps carried out when the program is given various

goals to solve.

References [23], [17], [8] and [13] offer a variety of other

descriptions of logic programming and the Prolog language.

1.2, Dataflow

The UCI Dataflow Architecture project has three distinct
levels. At the most abstract level is an applicative language,
Id (for Irvine dataflow). Id programs are translated into a

graph-like base language, and at the lowest level a

multi-microprocessor architecture interprets base language
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programs. The following (extremely brief) introduction contains

a simple Id program and the corresponding base language program.

Id programs are essentially multivalued expressions. The
following program computes the two roots of a quadratic equation
2
Ax + Bx + C:
rl, r2 <~ ( x <- sqrt(bfT2 - 4*a*c);

y <- 2*a
return (-b+x)/y, (-b-x)/y )

The base language translation, which is also known as a dataflow
sC a, for this program is shown in fiqure 1-2. There is one
"box" for every function in the expression. The variables of the
program correspond to labels on the arcs connecting the boxes.
Constants are represented by constant functions, i.e. the
constant C is represented byta function £ such that f(x) = C for

any x.

This base 1language program is interpreted as follows. Values
are represented as tokens, which flow along the arcs connecting
boxes. The tokens flow into the input ports of function boxes.
If a token comes to a fork, where the arc splits into two or more
arcs, it is replicated, and copies of the token travel down each
of the successor arcs, When tokens are present at all of the
input ports of a function box, the box absorbs the tokens,
computes a value, and emits the result as a new token at the
output port of the box. This application of functions when and

only when all input values are available is known as data driven
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Figure 1-2: Id Schema

Base language form of a program that computes the roots of a
quadratic equation. Reprinted, with permission, from
Arvind, Gostelow, and Plouffe [2].
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computation.,

It is important to note that Id variables are the names of
values, not memory locations that hold values. There 1is no
concept of a memory cell in Id, and thus no way for a function to
generate side effects, or in any manner interfere with other
functions (other than simply producing and consuming values).
This makes it possible to achieve a high degree of parallelism in

the architecture.

We have necessarily omitted a great deal of the Id language and
corresponding base machine constructs. Refer to Arvind,
Gostelow, and Plouffe [2] for a more complete description of

Irvine dataflow.

2. PARALLEL EXECUTION OF LOGIC PROGRAMS
Nilsson [22] describes the resolution algorithm as a production
system, and cites work by Zisman [28] as a possible control

regime for parallel application of production rules.

In the following sections we will present Nilsson's production
system model of resolution and Zisman's control strategy. We do
this not because we propose to follow this line of research, but
because this discussion exposes a major difficulty. Following
that we will present two completely different approaches to

parallel execution of logic programs.
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2.1. The Production System Model of Resolution

A production system consists of three basic components: a set
of rules (each of the form P -> A), a global mpemory, and a
control strategy. The P in each rule is a predicate, and the A
is an action. When the system is in operation, the predicates of
the various rules are evaluated. If a predicaté is true, the
corresponding action can be carried out. Among the various kinds
of actions are modifications of the memory, addition/deletion of
rules, and so on. The particular control strategy is independant
of the specification of the rules, and determines such things as
the order in which rules are scanned when looking for a true
predicate, and the overall structure of the memory (e.g. memory
may be organized as a stack, with only the most recently inserted

item being accessible).

In a backward chaining production system model of resolution
theorem proving, the clauses of the logic program are the rules
of the production system, i.e. a clause x :- y, z corresponds to
a rule x -> y, z. A goal to be solved is the only thing
contained in the memory when the production system is started.
The system operates by scanning every rule for one whose
predicate matches (can be unified with) a goal currently in the
memory. If a match is found, the unifying substitution is
applied to the entire contents of memory and the action part of
the selected rule; then the action part of the rule is inserted

into memory.
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The control strategy for this production system has two
components: the order in which rules are scanned when searching
for a match, and the process which decides where in memory new
actions are inserted. The control structure for Prolog, as was
mentioned in section 1.1, organizes memory as a stack, where new
actions (subgoals) are pushed onto the stack, and the new top of
stack becomes the goal that is to be matched next. Rules are

scanned linearly from first to last.

2,2. Parallel Application of Rules

Zisman [28] describes the use of a production system in
modeling the actions of a Petri net.’ Nilsson [22] suggests that
this scheme can be adapted for wuse as a parallel control
structure for production systems, and thus, by extension, for
logic programs. Figure 2-1 shows this pictorially, where the
linear scan of rules has been replaced with a correspondence
between the transitions of a Petri net and the rules of the
Prolog program.l The idea is that any transition that is enabled
to fire "points at" a rule that can be applied. When any two or

more transitions are enabled, they can all fire at once, and

lThis replacement of one control structure by another is
consistent with Kowalski's observation [16] that algorithms have
two major components: the 1logic component L and the control
component C (symbolically, A =L + C). 1In the context of logic
programming, the 1logic component is the set of axioms that make
up the program, If one wants parallel execution of logic
programs, it is only necessary to exchange Prolog's "depth-first"
search strategy with some method of applying two or more rules
simultaneously.
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Prolog Control Structure: RULES
scan rules linearly, —
top to bottom; memory is -
a stack. —
ME m o Ry

Petri Net Control Structure: transitions point to rules; enabled
transitions correspond to rules that can be applied;
organization of memory not specified.

Figure 2-1: Control Structures for Production Systems
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therefore the rules pointed to can all be applied at the same

time.

The major drawback to using this scheme for parallel execution
of 1logic programs stems from the fact that the control structure
of any resolution proof necessarily involves the unification
procedure. In order for a rule to be applied, its predicate muét
unify with some goal already present in the memory. Furthermore,
the wunification affects not only variables in the matched goal,
but all other occurances of those same variables, no matter where

they occur in memory.

When two rules are applied simultaneously, the corresponding
unifications may generate conflicting values for variables. For

example, suppose the current goals in memory are
£(X,Y), g(¥), h(Y,2)

and that among the rules are

Using Prolog's control structure, the system would be looking
for a rule whose predicate unifies with f(X,Y). That rule is
f(X,0), the unifying substitution is {Y/0}, and the new goals

would be
g(0), h(0,2)

If h(Y,Z) happened to occur before f(X,Y) in the goal list, the
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rule to be applied would be h(3,4), and the new goals would be
£(X,3), g(3)

Using a hypothetical control structure that would enable both
£(X,Y) and h(Y,Z) to be solved simultaneously, the substitution
{Y/0} would conflict with {Y/3,2/4} since one produces the goal

g(0) and the other produces g(3).

It is quite clear that the source of this problem is that
values are communicated among subgoals via a common, shared
memory. It is precisely this problem -- coordinating access to
common memory among processes executing in parallel -- that is
avoided in data driven systems. What we propose, therefore, are

data driven models of computation for logic programs.

This analogy is shown pictorially in figure 2-2, which shows
the current status of research in 1languages and computer
architecture as we see it. This figure shows two dimensions for
describing a programming language: language style (relational,
functional, procedural) and underlying architecture (von Neumann,

non-von Neumann).

Square 1 represents the vast majority of language and
architecture research in computer science to date: procedural
languages for von Neumann machines. Languages in this square
include older languages such as ALGOL, as well as newer languages
such as Ada. There have been various attempts at using

traditional languages on multiprocessor machines (e.g. FORTRAN
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Language Style

Underlying \ procedural functional relational
Archi- \
tecture 1 2 3

ALGOL, FORTRAN,

| | | |

I | I |

von Neumann | Pascal, Ada | SASL, LISP | Prolog |
| ] | |

| 4 | 5 | 6 I

non | FORTRAN for | | |
von Neumann | ILLIAC IV | Id, FFP | ? |
I ] | |

Figure 2-~2: Research in Languages and Architectures

for the ILLIAC IV); these are part of square 4.

Squares 2 and 5 represent, respectively, the functional
languages mentioned before (Lisp, SASL) and architectures
designed specifically for a given functional language (e.g. Id

[2], Mago's machine for FFp [18]).

Square 3 represents Prolog, a relational language with g
control structure that makes it suitable for use on a single

processor machine,

The final square represents the general area-“ of our proposal
for parallel execution of logic programs -- development of
non-von Neumann multiprocessor architectures for executing logic

programs.
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2.3. Proposed Research
We have two independent proposals for parallel architectures
for logic programs. One is a machine that would expand Prolog
programs in a breadth-first search on independent processors (we
call this the Parallel Prolog Machine, or PPM); the other is a
relational dataflow machine. Each will be discussed in detail

below.

At this time we do not intend to actually build a piece of
hardware. This proposal covers only the first phases of
architecture design, namely specification of a "paper machine",

followed by simulation studies.

2.3.1. A Breadth-First Prolog Machine

Figure 2-3 shows a tree in which each node is a possible state
of a Prolog computation (by state we mean the current 1list of
unsolved subgoals). This example uses the same computation that

was performed in figure 1-1.

The tree is constructed by starting with the main goal as the
root. A descendent of a node is created by unifying some goal in
the current list with the head of some clause in the program. In
other words, generation of a descendent corresponds exactly to
one unification and replacement step in the standard Prolog

system, where the new goal list is the descendant.

It may be possible to perform more than one unification. For

example, in the first step of computation 1 of figure 1-1, the



_18..

gf (curt,A)

T

l f(curt,Yy), £(Y,A)

1 ////

f (elaine,A)

<~ 2

f(curt,Y), m(Y,A)

/

~

f (curt,dan)

f(curt,pat)

m(elaine,A)

f (curt,elaine)

The numbers labelling arcs refer to the goal within the

2
f(curt,curt)\\\\\\\

F

F F

S

parent that is used to create the descendant

Figure 2-3: Maximum Breadth-First Goal Tree

gf (curt,A)

1 / \

f(curt,Y), £(Y,A)

f(curt,Y), m(Yy,A)

1

f (elaine,n)

F

1

m(elaine,A)

1

S

A less ambitious strategy for expanding nodes uses

only the first goal in the current list

(i.e. every label is 1).

Figure 2-4: Breadth-First Goal Tree
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goal
grandfather (dan,G)

could have been unified with either clause (5) or (6). 1In such
situations, all unifications are applied, and each one creates a
descendant in the tree. 1In the proposed architecture, sibling
goal 1lists would be processed in parallel by independant

processors.

There are two possible ways to stop the growth of the tree
along any path from the root:

1. If there is no substitution that can unify the head of
any clause with any goal in the node currently being
expanded, then the current node is a fajlure node and
its only descendant is marked F.

2. If a substitution and replacement step results in the
empty set of clauses, the node is a success node and
its only descendant is marked S.

The sequence of substitutions on a path from the root node to a
success node provides the solution to the computation. If the
root clause contains a variable X, the first substitution for X
that is encountered on the path from the root to the success node

2
is the computed value for X. Notice that where DECsystem-10

Prolog produces multiple answers for a single goal through

’More accurately, since the first substitution might only
"partially bind" X by assigning it a structured term that itself
contains variables, the value of X is given by the composition of
substitutions labeling the path from the root to S.
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backtracking (c.f. computation 2 of figure 1-1), the PPM produces

the same answers in parallel, along different paths and on

different processors.

The tree of fiqure 2-3 exhibits the maximum amount of
parallelism possible. This can lead to a large number of
unsuccessful paths in the tree, with a corresponding waste of
processing. A less ambitious rule for expanding nodes is a
compromise: only the leftmost goal in any list is eligible for
unification, but it is unified with as many heads of clauses as
possible. The tree constructed using this rule is shown in

figure 2-4,

Another strategy for controlling growth is related to the
control annotations of IC-Prolog (Clark and McCabe [8]). The
idea here 1is that the most efficient ordering of predicates in
the body of a clause depends on the pattern of variable
instantiations in the head of the clause. Clause (5) of figure
1-1 is expressed as two clauses in IC-Prolog:

grandfather (X?,2z7) :- father(X,Y), father(Y,2z).

grandfather (XT,2?) :- father(Y,z), father(X,Y).
Here X? means that X has to be bound to a non-variable before the
head can be unified with a goal, and XT means that the clause

will produce a value for X. Thus the call
grandfather (dan,G)

matches only the first of these clauses, and
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grandfather (G, john)

matches only the second. Note that the body of the second clause
has the same goals as the first clause, but in the opposite
order. This order is the most efficient for this pattern of

3
variable instantiation in the head of the clause,.

We feel that this ordering of subgoals in the body of a clause
can be done dynamically, at run-time, without requiring the
programmer to explicitly use annotations. This analysis could be

used in the PPM to limit the growth of the tree.

Our proposed research program for the breadth-first machine is

as follows:

1. Survey existing Prolog programs, analyzing them for
potential sources of parallelism.

2, Develop techniques for dynamically generating
efficient parallel search spaces (where efficiency is
measured by the number of processors working on
successful paths in the goal tree).

3. Design the PPM, at the same level of abstraction as
the Irvine dataflow base machine. This will involve
specifying mechanisms for assigning goal 1lists to
processors, implementing algorithms developed in step
2, and designing methods for gathering results at the
root of the tree.

4. Develop a simulator for the PPM, written in SIMULA and
running on the DECsystem-10 at UCI.

3Computation 2 of fiqure 1-1 is an example of this situation.
This call required six steps, as opposed to the four steps used
in computation 1. If the order of the subgoals were reversed,
this computation would also be completed in four steps.
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5. Design and simulate a physical architecture for the
PPM. We anticipate that this architecture will not
actually be a tree-shaped organization of processors,
but that we should be able to use much of the work
already done at this 1level for the UCI Dataflow
Architecture Project (see Gostelow and Thomas [11]).
2.3.2. Relational Dataflow
The idea for a relational dataflow system stems from attempts
to create dataflow schemata for Prolog programs instead of Id
programs. What developed was a system where the high level
language is first order predicate calculus, and the base language
is a modified form of the 1Irvine dataflow base language.
Reference [9] is a preliminary report on some ideas for a
relational dataflow system. The remainder of this section is a

summary of the key ideas from [9], and our proposals for

continued research on this architecture.

High level language programs are well formed formulae (wffs) of
first order predicate calculus. The graph form that these wffs
are translated into is very similar to the 1Id base language:
function and predicate names become boxes, and variables are
labels on lines connecting boxes. Another similarity is that
values are communicated via tokens, and that when a box has

enough tokens, it "fires" and creates new tokens for results.

Boxes in the relational dataflow system represent relations,
and not functions. The difference is illustrated by the folowing

example.



In 1Id, tokens always flow along lines X and Y; when both are
present, f can be applied, and the value of f£(X,Y) sent out along
line Z. In the relational dataflow system, it is possible for
tokens to move "backwards"; it is possible for tokens to arrive
at the box on lines Z and Y. If this happens, the box absorbs the
tokens, and computes a value for X, such that f(X,Y) = 2. In
other words, the box works to preserve the relationship

z = £(X,Y).

Figure 2-5 shows a simple wff, its corresponding graph, and an
explanation of a computation of values for one of the variables

of the wff.

Some functions in relational dataflow are non-strict functions,
meaning that values of their outputs can be computed before all
inputs are present. An example is conjunction, Z =Y /\ X. If Y
is known to be false, then the box can absorb the token carrying
Y and emit a false for 2. This also wotks for tokens moving
backwards. If a true token arrives at Z, true tokens can be

generated for both X and Y (since only T /\' T = T).
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sqr

Relational dataflow schema for the expression ax + bx + c =Y.
If values for x, a, b, and ¢ are known, a system can compute c
as follows: tokens for x, a, and b are used to compute,

in the normal manner, a value (call it z) for the top left port
of the box labeled (1). A token carrying the value of y arrives
at the top of box (2), and a token with a True value goes to the
bottom of this box. 1In order to preserve the "=" relation, this
box copies the value of y and sends it to the bottom port of box
(1). Box (1) now computes y - z for the value of c.

This schema cannot be used to compute a value for x, given values

for a, b, ¢ and y (i.e. it is not equivalent to a schema for
the quadratic equation); see [9].

Figure 2-5: Relational Dataflow Program
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The relational dataflow system is similar to the PPM in that it
is easy to waste processing power on irrelevant computations.
One way to control this is to use demand tokens, which are sent
from a function F to another function G when F requires some
information that can be produced by G. This means that G will
never compute values unless it is known that these valiues will be
used, Keller, et al [12] describe an implementation of
demand-driven computation, and [9] describes how demand tokens

could be used in the relational dataflow system.

Our research program for the relational dataflow system is:

l. Design a high level logic language, programs of which
would be translated to run on the base machine,
Required extensions to first order predicate calculus
include data structures and user defined functions.
There should be some means of specifying assertions,
as there is in Prolog (so that the system could
interpret programs such as the "grandfather"™ example).

2. Define the base machine. Further work in this area
includes a complete definition of the rules for using
demand tokens, and providing a means for implementing
some of the nondeterminism of Prolog (especially the
ability to produce more than one answer from one
goal).

3. Design and implement simulators for both the base
machine and a lower level physical machine (this step
is similar to items four and five for the tree
machine).

4. The tree machine has a very sound and well understood
theoretical basis, namely resolution theorem proving.
However, the relational dataflow machine is "breaking
the rules" of Id and other dataflow systems by having
tokens move in all directions. Part of our research
effort will go toward defining how/why/what a
relational dataflow system is capable of computing.



- 26 -

3. OPTIMIZATION OF LOGIC PROGRAMS

3.1. Objective
The goal of this reseﬁrch segment is to attain a certain level

of automatic programming, using logic programs as an intermediate
language for manipulation. Specification will be in a high-level
declarative languége resembling mathematical notation.,
Conversion to efficient code will proceed in four stages:

1. Straight-forward translation to a (probably

inefficient) logic program.
2. General transformations to remove some well-defined

types of inefficiency, using the dataflow network’
representation of logic programs [20].

3. Further optimization based on runtime information.
4., Straight-forward translation to a conventional
language.

3.2. Initial Design and Methods

3.2.1. Specification Language

Logic programs, while well suited to manipulation because of
their simple wuniform structure, do not constitute an ideal
specification language. The main shortcoming is the restriction

of pattern match to simple patterns involving the primitive

4This version of dataflow is oriented towards manipulation,
rather than direct implementation, and differs somewhat from both
Irvine dataflow and the relational dataflow system considered
earlier.
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constructor functions. Specification is made easier by the
"bootstrapping™ approach of allowing patterns to be based on
defined functions. This consideration leads to a language where
one may define multivalued5 functions, as well as relations, by
means of what we «call modulated recursion equations (MREs).
These resemble the clauses of logic programs except for the use

of
1. equality and functional notation.
2. patterns involving defined functions in the clause
head.
Example of 1: SORT may be defined by

sort (X)=Y / perm(X)=Y, ordered(Y).

The "/" may be read as "modulo" or "provided that." Compare this

with the clause
sort (X,Y) :- perm(X,Y), ordered(Y).

Example of 2: Suppose now that the usual APPEND function on
lists has been defined. We wish to define a multivalued MEMBER
function that returns any member of a list. The definition is

given by the following MRE:

member (append (Y,cons (X,2)))=X.

"Here we use "multivalued" in the sense of having multiple

alternative values. This is the same usage as in the mathematical
theory of functions of a complex variable.
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Here CONS 1is the wusual primitive list operation, as in LISP.
Note that "/" does not appear here since no modulation is needed.
In this example, the pattern append(Y,cons(X,Z)) may match the
input list in multiple ways, giving alternate values for
X. Another example:

fact(0)=1.
fact (N)=times (N,fact(subl(N))) / greater(N,0).

defines the factorial function.

Modulated recursion equations are closely related to the
recursion equations of [7]. The language also has much in common
with SASL [26], and with the specification language of Manna and

Waldinger [19].

It is not difficult to see that there is a simple systematic
way of transforming MREs to equivalent logic program clauses.

For example, the definition of MEMBER translates to

member (X,W) :- append(Y,XZ,W), cons(X,Z,XZ).

Notice, however, that the resulting logic program is inefficient
because the 1list Y is created unnecessarily. This kind of
inefficiency is typical in the translation of the most naturally
defined MREs. We will discuss methods below for removing these

inefficiencies.

The surface form of the specification language can be made even

more natural by a judicious use of devices 1like infix notation
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and ellipsis., Thus, the MEMBER definition could be rendered as
member([...,X,...])=X.

3.2,2., Transformation Methods

Certain inefficiencies éan be readily detected and removed by
exploiting the dataflow representation of logic programs. The
MEMBER predicate above can be optimized by this method. However,
we will wuse a more interesting example to illustrate the

technique. We define a multivalued function EMBED by

embEd(X,[..-,..-]) = [ool'X'.oo].
i.e. embed(X,append(Y,Z)) = append(Y,cons(X,Z)).

(Thus embed(A,[B,C]) has [A,B,C], [B,A,C] and [B,C,A] as
alternative values. Notice that MEMBER could now be defined as

member (embed (X,Y)) = X.)

A straightforward translation gives the logic program clause
embed (X,U,V) :- append(Y,2,U), cons(X,Z,XZ), append(Y,XZ,V).
Let APPEND be defined by the logic program

append(nil,Q,Q).
append (P,Q,R) :- cons(Pl,P2,P), append(P2,0Q0,R1l), cons(Pl,R1,R).

s s 6
These definitions correspond to the network

®The networks have been slightly simplified since [20] by
allowing loops to be entered from both the top and the bottom.
This avoids the need for elements whose sole purpose is to
transport values to the bottom of loops.
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embed (X,U,V) :- cons(X,U,V).

embed (X,U0,V) :- cons(Y,U1,U0),cons(Y,V1,V),embed (X,U1,V1).

We hope eventually to apply this technique in all situations
where a computation does internal work that is unused for the
output. Discovery of these simplifications can be facilitated by
constructing an example computation and annotating the lines of
the dataflow network with the resulting streams of values. The

coincidences noted suggest candidate simplifications.

3.2.3, Using Runtime Information
Many inefficiencies which are obscure in a program are easily
seen in a runtime trace. This suggests the following plan:
1. Run the program on example input, saving the
computation trace.

2. Convert the trace to a straight-line program,
equivalent to the original program on the given input.

3. Apply known techniques for optimizing straight-line
programs [1] Convert the optimized straight-line
program back to a trace.

4. Infer a general optimized program from the sample
trace, drawing on established methods [5, 4].

We illustrate this process with the naive REVERSE-A-LIST arising
from the definition

reverse (NIL) = NIL.
reverse(cons (X,Y)) = append(reverse(Y) ,cons (X,NIL)).

Here NIL is the empty list.

Applying the naive algorithm to the input [A,B,C] gives rise to
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the computation in figure 3-1 (shown as a bipartite graph; we
have purposely omitted chronological information). Observe that
the unrolled loops appear as ladder-like structures. Noticing
the identities indicated by the dotted lines in figure 3-1, we
can simply excise entire portions of the network, as in figure
3-2. We may attach the identified edges and bend the network
into the familiar ladder shape, leading to the simpler system
shown in figure 3-3 which corresponds to the efficient REVERSE
algorithm. Notice that input and output are now at opposite ends
of the ladder. A logic program for this computation would

require an additional variable to pass the output back up.

It would seem that the process of infering the general
optimized program could be aided by information retained from the

original program. We plan to investigate this possibility.

It is instructive to compare figure 3-1 with the dataflow
network for the same program. This is shown in figure 3-4,. The
correspondence in structure suggests another interpretation of
the dataflow network: it may be regarded as a kind of generalized
trace (over all inputs). This raises the possibility of operating
directly on the dataflow network to produce the optimization

previously noted.

3.2.4, Final Compilation
Although the optimized logic program could be run directly
using the Prolog interpreter [23], it is worthwhile to consider

the final step of translating to conventional code. This can
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best be done by identifying a restricted category of logic
program that possesses a superficial translation into ordinary
code. For example, only determinate logic programs would belong
to this category. The problem is then pushed back to reducing
logic programs to the desired form. An essential aspect of this
process involves correct ordering of the computation steps, 1i.e.
addition of control information. Runtime information should

prove useful for this stage also,

3.3. Significance and Relationship to Other Work

With rapidly diminishing hardware expenses, the cost of
producing and maintaining software has become the major barrier
to increased computer use. In addition, more sophisticated
applications have produced more complex programs that are
difficult to fully understand, resulting in programmer error and
unreliable systems. An obvious solution to these problems is to
transfer more of the burden of producing code to the computer
itself. An appropriate division of labor might be to make the
computer responsible for constructing efficient code, freeing the
human programmer to concentrate on 1logical specification. In
other words, we should tell the computer what to do rather than
how to do jit. This is the rationale for the field of automatic

programming (see Biermann [6] for a survey of work in this area).

The work proposed here 1is most closely related to the
transformation approach [7, 19] but also draws upon inductive

techniques [4, 5]. It improves previous work in the following
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respects:
- It introduces a more concise and flexible model of
computation.

- The transformations are guaranteed to produce
improvements.,

- Application of transformations can be guided by example
computations.

- It is not necessary to submit information about
non-primitive functions (e.g. the associativity of
APPEND in the REVERSE optimization).

- S0 far, we haven't needed any eurekas [7].
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