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Abstract

Dynamic resting state functional connectivity (RSFC) characterizes time-varying fluctuations 

of functional brain network activity. While many studies have investigated static functional 

connectivity, it has been unclear whether features of dynamic functional connectivity are 

associated with neurodegenerative diseases. Popular sliding-window and clustering methods for 

extracting dynamic RSFC have various limitations that prevent extracting reliable features to 

address this question. Here, we use a novel and robust time-varying dynamic network (TVDN) 

approach to extract the dynamic RSFC features from high resolution magnetoencephalography 

(MEG) data of participants with Alzheimer’s disease (AD) and matched controls. The TVDN 

algorithm automatically and adaptively learns the low-dimensional spatiotemporal manifold of 

dynamic RSFC and detects dynamic state transitions in data. We show that amongst all the 

functional features we investigated, the dynamic manifold features are the most predictive of 

AD. These include: the temporal complexity of the brain network, given by the number of 

state transitions and their dwell times, and the spatial complexity of the brain network, given 

by the number of eigenmodes. These dynamic features have higher sensitivity and specificity 

in distinguishing AD from healthy subjects than the existing benchmarks do. Intriguingly, we 
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found that AD patients generally have higher spatial complexity but lower temporal complexity 

compared with healthy controls. We also show that graph theoretic metrics of dynamic component 

of TVDN are significantly different in AD versus controls, while static graph metrics are 

not statistically different. These results indicate that dynamic RSFC features are impacted in 

neurodegenerative disease like Alzheimer’s disease, and may be crucial to understanding the 

pathophysiological trajectory of these diseases.

Keywords

Alzheimer’s disease; Brain state switch; Dementia; Dynamic resting state; Functional 
connectivity; Functional magnetic resonance; Magnetoencephalography; Multi-modality imaging

1. Introduction

The human brain can be described as a set of highly dynamic functional networks 

constructed from a fixed structural network whose fluctuations form the basis for complex 

cognitive functions and consciousness (Deco and Jirsa, 2012; Shine et al., 2015). Failure of 

integration within these functional networks may lead to cognitive dysfunction—the cardinal 

clinical manifestation of Alzheimer’s disease (AD) (Bokde et al., 2009; Knopman et al., 

2021; Scheltens et al., 2016). Here, we test the hypothesis that time sensitive descriptions of 

brain network activity, namely dynamic functional connectivity (FC), are crucial features of 

functionally relevant alterations in network structure that may underlie AD pathophysiology 

(Sperling et al., 2010). Although there is a vast literature on static FC and its graph 

theoretic properties in AD brains, a comparable body of work interrogating the dynamic 

aspects of FC and its alteration in disease is still lacking. Image data resolution is one 

obstacle for obtaining convincing evidence that dynamic FC generates strong predictors that 

distinct between AD and control samples. To date, most dynamic FC studies in AD have 

focused on low temporal resolution resting state functional magnetic resonance imaging 

(fMRI) (Schumacher et al., 2019; Sendi et al., 2021; Chumin et al., 2021; Ma et al., 2020; 

Dautricourt et al., 2022), restricting them only to detect state transitions that may occur in 

the timescale of seconds. However, micro-states with faster dynamics in the timescale of 

tens to hundreds of milliseconds are considered the basis for the rapid reorganization and 

adaptation of the functional networks of the brain Van de Ville et al. (2010).

Several technical challenges also prevent current studies from demonstrating the utility 

of dynamic FC features in AD studies. Sliding-window techniques have been commonly 

applied to extract the dynamic FCs. While the sliding-window method is practically 

attractive due to its analytical simplicity and easy implementation, it presents several 

limitations and trade-offs. The temporal resolution of the inferred dynamic FC is inherently 

limited by the window length and overlap. In practice, this trade-off means that only 

slow changes in brain dynamics in the time-scale of the window length can be detected 

or tracked. Furthermore, in almost all current implementations, the sliding-window width 

is typically pre-specified and is not adaptable to the signal statistics or noise (Jiang et 

al., 2022), and hence the reliability and reproducibility of dynamic FC patterns are still 

a challenge (Filippi et al., 2019). Therefore, more comprehensive statistical models are 
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required to extract the dynamic FCs (Filippi et al., 2019). Last but not least, the sliding 

window approaches typically use K-means clustering on time-resolved FCs to determine 

the discrete states encompassed by the dynamic FCs. Unfortunately, the performance of 

K-means clustering suffers from the curse of dimensionality and can be distorted when 

clustering high-dimensional FCs (Sun et al., 2012).

In the current study, we address these challenges by adopting recent advances in model-

based analysis of time-varying FC, and apply them to interrogate the role of dynamic 

FC in the AD context. We utilize the time-varying dynamic network approach (TVDN) 

proposed by Jiang et al. (2022) to extract these dynamic FCs from magnetoencephalography 

(MEG) resting state data in a well characterized cohort of patients with AD and an age-

matched control cohort study. MEG has been shown to have good sensitivity to detect early 

functional changes associated with AD pathophysiology (López-Sanz et al., 2018; Khan 

and Usman, 2015; Mandal et al., 2018; Maestú et al., 2015). From this high resolution 

MEG data, TVDN allows us to examine the contributions from temporal and spatial 

features separately. This is because the TVDN algorithm was designed to ensure that 

spatial and temporal features from TVDN are not confounded with each other, where the 

spatial structures arise from the underlying static connectivity, and the temporal parameters 

describe the dynamic switching between brain networks over time. This is achieved in the 

TVDN approach by imposing an explicit model of piece-wise constant multivariate signal 

generation model (see (1) and (2) in Jiang et al., 2022).

Moreover, TVDN utilizes a data driven dimension reduction and an automated switch 

detection procedures to capture the dynamic patterns of the FCs. Since this approach 

requires no clustering of dynamic FCs, it eases the curse of dimensionality and avoids 

the uncertainties induced by the clustering procedures as those adopted under the sliding 

window framework. Finally, TVDN selects the model parameters automatically to minimize 

the uncertainties of the number of switches across independent samples, which generates 

robust and reproducible dynamic FCs across different datasets. Using TVDN, we predict 

that the AD patients will show fewer brain state transitions than the healthy controls similar 

to what has been observed in EEG studies (Benz et al., 2014). Furthermore, when evaluating 

the graph metrics resulting from TVDN in AD patients, we expect a decrease in the path 

length and modularity as suggested by Stam et al. (2009) and Wang et al. (2013).

In Section 4.4 we summarize the TVDN model, its assumptions, and briefly describe how 

they lead to the desirable properties stated above. In Section 2.1 and Section 2.2, we 

examine the differences between AD and healthy control groups of the features and graph 

metrics inferred from the TVDN model. We study the contribution of TVDN features on 

classifying AD and control subjects in Section 2.3. Finally, we evaluate the sensitivity and 

specificity of using the TVDN features to predict AD and control classification and compare 

with benchmark methods in Section 2.4. Using these analyses we show that certain dynamic 

FC features, including the number of brain state switches, the number of resting state 

networks, the relative importance of the resting state networks, and a spatial distribution of 

the resting state networks, are critical for correctly distinguishing AD patients from healthy 

controls. Our results particularly highlight the importance of dynamic graph metrics over 

their static counterparts—cementing dynamicity of FC as a key correlate of the disease. We 
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discuss the results and illustrate possible use cases in Section 3. All the technical details are 

presented in Section 4.

2. Results

We implement TVDN on the MEG datasets from 88 AD patients and 88 age-matched 

healthy control group. All AD patients met the diagnostic criteria for probable AD or mild 

cognitive impairment due to AD (Albert et al., 2011; McKhann et al., 2011; Jack et al., 

2018). The mean (standard deviation) of the mini-mental state examination score (MMSE) 

in the AD cohort is 22.14(5.58), and that of the clinical dementia rating (CDR) score is 0.87 

(0.49). A schematic of the TVDN is shown in Fig. 1, including the set of static and dynamic 

features extracted from TVDN that will be used in the rest of the paper for the purpose 

distinguishing AD from healthy control. For each MEG dataset, TVDN automatically 

detects the brain state switches over given time series, which divides the time series into 

multiple stationary time segments. We obtain the eigenmodes from TVDN, defined as the 

magnitude of the top r eigenvectors of the implied functional connectivity matrix extending 

across all the time segments. TVDN assumes the set of eigenmodes remains constant across 

all time segments, and only their relative contributions change over time. Here r, the number 

of eigenmodes, can vary from one subject to another, and is selected so that corresponding 

magnitude of the eigenvalues comprises 80% of the total sum of the magnitude of all 

the eigenvalues. Each eigenmode is a 68 dimensional vector corresponding to 68 cortical 

regions based on the Desikan–Killiany parcellations (Desikan et al., 2006), and may be 

thought of as a single resting state network (RSN) that is shared across the time segments. 

Therefore our RSNs, defined via the TVDN model equation, may or may not correspond 

to the canonical RSNs one observes via independent component analysis (Yeo et al., 2011). 

The resulting TVDN scalar features are the number of eigenmodes and the number of brain 
state switches. TVDN also provides a spatial feature, the absolute weighted sum of the 

eigenmodes (WRSN), in each stationary segment, which carries the information of both 

the shared eigenmodes and the segment specific eigenvalues. The WRSN from each time 

segment represents the state of the brain during specific time intervals, while the time 

between two switch points characterizes the dwell time of the brain in each brain state, that 

is the amount of time the brain spent in a state before moving into a new state. We finally 

average the WRSN across the segments to obtain the average weighted resting state network 
(AWRSN).

2.1. TVDN scalar features in AD and control groups

We use the above described TVDN method to extract static, dynamic and spatial features 

from resting state MEG recordings in 88 patients with AD and 88 age-matched-controls 

participants.

The results in Fig. 2 show that the number of eigenmodes are significantly higher in 

AD group than that in the control group (95% CI: 6.276–7.928 vs 4.582–5.895, AD and 

control, respectively; t = 3.442, p-value < 0.001) from a student t-test. This is consistent 

with increased spatial heterogeneity and complexity of dynamic spatial patterns in AD. 

Despite having an increased number of eigenmodes that commonly used to represent brain 
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states, patients with AD switch less frequently between brain states compared to the healthy 

controls do on average (95% CI: 1.664–2.745 vs 2.740–3.919, AD and control, respectively; 

t = −2.743, p-value = 0.007). This is consistent with the observation that the maximal dwell 

time in a stationary time segment is significantly longer in AD patients than controls with 

(95% CI: 39.525–46.310 vs 30.960–38.402, AD and control, respectively; t = 3.188, p-value 

= 0.002). These results suggest that AD patients have greater complexity of brain states as 

represented by higher number of eigenmodes, although they are significantly less active in 

brain state switches.

2.2. Graph metrics of dynamic functional connectivity

We quantify the graph structure of the dynamic FCs using the following graph metrics 

computed from the brain networks represented by the TVDN connectivity matrices: path 

length L, representing the average shortest length of the path that goes from one region 

to the other; and modularity Q, where a brain network with a higher modularity has 

denser connections within its subdivisions on average (Stam et al., 2009; Wang et al., 

2013; Baniqued et al., 2018). L and Q are two important graph metrics which measure the 

integration and segregation of a brain network (Cohen and D’Esposito, 2016), respectively. 

Specifically, we compute these graph metrics for all dynamic segments of the data. For each 

subject, we first obtain the path length and modularity over time denoted by Lmean and Qmean, 

respectively. Furthermore, we extract the graph metrics in the segments with the maximal 

dwell time denoted by Lmax and Qmax. Moreover, we obtain the variance of the graph metrics 

over time denoted by Lvar and Qvar. For a comparison, we summarize the graph metrics of 

the static FC from the network diffusion model (ND) proposed in Abdelnour et al. (2014), 

denoted by Lstatic and Qstatic, where the ND model is a reduced form of the TVDN model 

when assuming the FC is static. We then compare the properties of these metrics in AD and 

control cohorts.

Distributions of the variances of the graph metrics over time are shown in Fig. 3(a), which 

indicates that the path length and modularity from the control cohort have significantly 

higher variability than those from the AD cohort do after adjusting for the multiple 

comparison (Lvar 95% CI: 0.002–0.007 vs 0.008–0.018; t = −3.069, p-value = 0.003; Qvar

95% CI: 0.066–0.131 vs 0.126–0.209; t = −2.545, p-value = 0.012, AD and controls, 

respectively). Therefore, the variations of the graph metrics contain dynamic information 

that distinguishes AD and control samples. Distributions of the average graph metrics over 

time are shown in Fig. 3(b), which suggests that the mean of the average modularity is 

significantly different in the AD and control groups (95% CI: 2.501–2.680 vs 2.630–2.812, 

AD and control, respectively; t = −2.005, p-value = 0.047). However, after adjusting for the 

multiple comparison, none of the average graph metrics is significantly different in the two 

groups. Distributions of the graph metrics from the segments with the maximal dwell time 

are shown in Fig. 3(c), which suggests that none of those graph metrics is differentiable in 

the AD and control groups. Consistent with the results from the segments with the maximal 

dwell time, the static graph metrics in Fig. 3(d) also do not show between group difference.
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2.3. TVDN features are highly associated with AD and control classification

We study the effect of TVDN features and graph metrics to classify AD (group 1) and 

control (group 0) groups through a logistic regression model. The TVDN features include 

the number of eigenmodes, the number of brain state switches, and the AWRSN, a 68 

dimensional vector, representing the weighted resting state networks over 68 brain regions of 

interest (ROIs). The graph metrics of interest are the static metrics: Lmean, Qmean, and dynamic 

metrics: Lvar, Qvar. Here we do not include Lmax, Qmax because they are highly correlated with 

Lmean, Qmean, and none of them is associated with the AD and control classification as shown 

in Fig. 3. Since some predictors are highly correlated and the number of predictors is large, 

we add a ridge regularization to the model to ease the collinearity among the predictors. 

Moreover, we utilize the bootstrap method (Efron, 1979) to construct the 95% confidence 

interval (CI) and the p-values of the effects from the TVDN features. We use p-values=0.05 

as the cutoff to determine significant difference between AD and control groups (Table 1).

Consistent with the previous group comparison, the logistic regression showed that AD 

patients have a greater number of eigenmodes (Table 1, positive estimators), and lesser 

number of brain state switches (Table 1, negative estimator), compared to controls. Next, 

we examine the regional patterns of the estimated absolute effects from AWRSN (Fig. 4(a)), 

which shows the AWRSNs at twelve ROIs are significantly different in AD and control 

groups when adjusting for other predictors in the model. It is worth mentioning that the six 

graph metrics do not significantly affect the AD and control classification after adjusting for 

the other predictors.

2.4. Benchmark comparisons in classification

We perform a leave-one-out (LOO) procedure to examine the accuracy of using significant 

TVDN features identified in Table 1 to classify AD and control samples. We first use 175 

samples to train a ridge regression model and predict the classification of the remaining one 

sample. We iterate the procedure to predict the classification for all samples and to depict the 

receiver operating characteristic (ROC) curve in Fig. 4(b).

We compare the classification performance of using features from TVDN model to the 

classification performances of using the features from two static FC models: dynamic 

mode decomposition model (DMD) (Brunton et al., 2016) and network diffusion model 

(ND) (Abdelnour et al., 2014) and from one dynamic FC model: time-varying dynamic 

mode decomposition model (TVDMD) (Kunert-Graf et al., 2019). DMD assumes that 

the observed signal follows a multivariate autoregression model, ND links two signals at 

consecutive times through a differential equation model, while TVDMD is a sliding window 

based extension of DMD. We extract the predictors including the number of eigenmodes, 

AWRSN and static graph metrics from the static FC models. We also extract the predictors 

including the number of eigenmodes, the number of brain state switches, AWRSN, static 

and dynamic graph metrics from the dynamic FC models. The detailed derivations of 

the predictors are presented in Sections 4.5 and 4.6. To make a more comprehensive 

comparison, we further compare the model using the TVDN features with the spatial and 

temporal autocorrelation (STA) features introduced in Shinn et al. (2023). Similar to Shinn 

et al. (2023), we also consider region-wise lag one temporal autocorrelation (TA-Δ1) as well 
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as two spatial autocorrelation features in the comparative model: the rate at which FC falls 

off with physical distance (SA-λ) and the average correlation between two distant brain 

regions SA-∞. The methods for extracting these additional features are detailed in Shinn 

et al. (2023). Additionally, we also compare our model to the model using the region-wise 

power spectral density (PSD). Similar to those used in TVDN evaluation, we first perform a 

ridge regression to select important predictors based on their confidence intervals and then 

utilize an independent ridge regression model on the selected predictors to classify AD and 

control samples. We depict the prediction algorithms in Section 4.7. In addition to the LOO 

we performed a Monte Carlo (MC) cross validation (Xu and Liang, 2001), where we used 

80% of samples to train the model and predicted the classifications of the rest 20% samples. 

We show the average AUC and their standard deviations from 10000 MC cross validation 

experiments in Table 2. The corresponding ROC curves under different models are depicted 

in Fig. 4(b). The results show that TVDN performs the best among all the methods in 

classifying AD and control samples. The dynamic FC models perform generally better than 

the static models in the predictions. In addition to the out-sample AUC, we also utilize the 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) to evaluate the 

models based on different features. Table 2 suggests that using TVDN features yields the 

lowest AIC and BIC values among all competing methods.

Finally, we study the effects of features and graph metrics from the benchmark TVDMD, 

ND and DMD models in distinguishing AD and control samples through a ridge regularized 

logistic regression. The predictors of interest are summarized in Table 2 and the results are 

summarized in Table 3. As shown in Table 3, the numbers of eigenmodes from all models 

have a significant positive effect in distinguishing AD and control subjects. However, the 

effect size of the number of eigenmodes from the TVDMD model is much smaller than 

those from the TVDN, ND, DMD models. Furthermore, the effect size of the number of 

brain state switches from the TVDMD model is much smaller than those from the TVDN 

model. Moreover, consistent with the finding in Section 2.2, none of the graph metrics from 

the static models has significant effect on AD and control classification.

2.5. The relationship between TVDN features and the graph metrics

We further study the effects of TVDN scalar features on the brain network connection 

through examining their correlation with the graph metrics. This analysis aims to facilitate 

the interpretation of the TVDN features and reveal the graph information that explained by 

the TVDN features. We study the Pearson’s correlation between each of the two TVDN 

scale features and each of the eight graph metrics. Here all 16 variables are standardized 

through dividing by their sample standard deviations. We use p-value < 0.003 (0.05/16) as 

a significance cutoff after adjusting for multiple testing. It is expected that all the dynamic 

graph metrics in Table 4 are positively correlated with the frequency of brain state switching, 

because a larger number of brain state switches implies higher dynamicity in the FC which 

leads to more variable graph metrics. Furthermore, Qmean and Qmax also are significantly 

correlated with the number of eigenmodes suggesting that a smaller number of eigenmodes 

implies denser connections within the subdivisions of the brain network from the dynamic 

FC. Moreover, the number of eigenmodes is negatively correlated with Lvar, suggesting that a 

greater number of eigenmodes implies less variations of path length over time. Finally, since 
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the static model does not contain dynamic information, the TVDN scalar features are not 

associated with the graph metrics from the static model.

3. Discussion

We demonstrate, for the first time, that the number of brain state switches, representing the 

temporal complexity of the brain network, in high-temporal resolution resting state MEG 

extracted by the time-varying dynamic network (TVDN) algorithm is an important feature 

that predicts AD. Specifically, AD subjects have fewer brain state transitions and in turn 

longer dwell periods in any given brain state than the control subjects. The number of 

eigenmodes, representing the spatial complexity of the brain network, is also an important 

predictor for AD, where AD subjects have greater number of eigenmodes, and hence a more 

heterogeneous and complex functional brain network structure. We also demonstrate that 

the variability of graph metrics such as path length and modularity of dynamic functional 

connectivity periods are reduced in AD subjects. Interestingly, the static graph metrics 

corresponding to the brain state with the maximal dwell time or the mean of all brain 

states are not distinguishable between AD and control groups, while the dynamic graph 

metrics that correlated with the brain state switching are significantly different in the two 

groups. Using a data driven approach, TVDN identifies AD associated spatial features, 

that are different between AD and controls, in the brain regions that reflect high tau 

accumulation. When compared with predictions using features from other dynamic and 

static FC benchmarks, we show that features from TVDN leads to the best sensitivity 

and specificity for distinguishing AD and control samples. These results highlight the 

importance of dynamic functional connectivity in resting-state data for understanding the 

neural pathophysiology of AD.

High resolution MEG data provide convincing evidence that the brain state switching 
patterns are altered in AD.

Although static FC features extracted from MEG activity have proven to be reliable across 

different MEG laboratories (Geisseler et al., 2016) and have demonstrated to be an early 

biomarker of AD burden (Bajo et al., 2012; Fernández et al., 2006), literature is still scarce 

in studying the dynamic features from MEG data for neurodegeneration. Our study utilizes 

the novel TVDN method to extract the dynamic functional connectivity and brain state 

transitions from MEG data. We find that the minimal dwell time in the brain states is around 

2 s, and half of the dwell times are less than 5 s. Such fast brain state transitions are difficult 

to capture by using low time resolution image modalities such as fMRI, because the samples 

within each stationary time segment are too limited to provide accurate estimates of the 

high dimensional whole brain functional connectivity. On the contrary, high resolution MEG 

data provide sufficient samples in each time segment to estimate functional connectivity, and 

hence can be used to capture fast brain state transitions that distinguish the AD and control 

samples.

TVDN graph metrics are highly associated with AD and control classification.

The application of graph theory to static resting state functional connectivity in AD has 

provided conflicting results. Based on the resting state fMRI data, Supekar et al. (2008) 
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show no difference in the average path length between the AD and control samples in their 

study, while (Sanz-Arigita et al., 2010) show a decreased average path length in the AD 

patients compared to the healthy control. In a MEG study, (Stam et al., 2009) show that 

the similarities of the graph metrics between AD and control samples varies across different 

frequency bands. Our results show that the graph metrics from the static models cannot 

effectively distinguish AD and control samples, while Fig. 3 shows that the variations of the 

graph metrics provide important information to distinguish AD and control subjects, which 

can only be obtained from dynamic FCs. Furthermore, the graph metrics in the control group 

generally have higher variability than those in the AD group and the variability patterns of 

the path length and modularity in AD and control groups are significantly different. These 

results highlight the importance of considering dynamic FC in AD studies.

TVDN features sufficiently capture the information in the graph metrics.

A comprehensive study on the TVDN features and graph metrics in Section 2.5 finds that 

the TVDN features are strongly associated with the graph metrics that differentiate AD 

and control groups (Lvar, Qvar). For example, the number of eigenmodes negatively affects 

Lvar, suggesting that a greater number of eigenmodes implies less variations of path length 

over time. In addition, the number of brain state switches are positively associated with 

the dynamic graph metrics. Finally, when adjusting for the TVDN features, graph metrics 

do not contribute to the AD and control classification (Table 1), which indicates that the 

information in the graph metrics regarding the AD and control distinction is sufficiently 

captured by the TVDN features.

AD patients have larger number of eigenmodes implying higher spatial complexity of the 
brain network.

Fig. 2 shows that the AD patients have a significantly larger number of eigenmodes, which 

implies a higher spatial complexity on average when comparing with the healthy controls. 

This is because the additional eigenmodes in the AD subjects introduce new bases in the 

lower dimensional manifold, which results in a more heterogeneous and complex network 

structure. This is also supported by the fact that a higher number of eigenmodes is negatively 

associated with a lower modularity (Table 4), which leads to higher structural complexity 

(Baldwin and Clark, 2000; Sinha et al., 2018). These additional eigenmodes can form up 

AD specific pathological networks that do not exist in healthy subjects. Consistent with this 

idea, increase prevalence of pathophysiological epileptiform activity network structures have 

indeed been reported in AD when compared to healthy controls (Ranasinghe et al., 2022a; 

Vossel et al., 2016).

Dynamic features from TVDN with MEG imaging enhances the sensitivity and specificity of 
AD and control classifications.

We compare prediction accuracies of using TVDN features, the features from TVDMD, 

a sliding window based method, and the features from static FC models. As shown in 

Table 2 and Fig. 4 (b), TVDN has much higher prediction accuracy than the other models 

do, which shows the superiority of TVDN on extracting robust features that are highly 

differential in AD and control samples. Furthermore, the prediction accuracies are improved 
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by introducing the temporal features from TVDN, the number of brain state switches, 

into the prediction model. This can be seen from Table 2 and Fig. 4 (b) that using the 

TVDN features yields the highest sensitivity and specificity in classifying AD versus 

control subjects. Moreover, the results in Tables 1 and 3 show that the effect size of the 

number of eigenmodes and the number of brain state switches from TVDN are much 

larger than those from the TVDMD model. Furthermore, using the features from the TVDN 

model gives the best prediction accuracy among all the comparative methods. The lower 

prediction accuracy and smaller effect sizes from the TVDMD method could attribute to 

its deficiencies inherited from the sliding window based method, such as the arbitrariness 

of the window length selection and the curse of dimensionality. Collectively, these results 

indicate that TVDN is a more reliable method to detect brain state switches than TVDMD. 

It is worth noting that modularity derived from the static FC significantly differs between 

individuals with AD and healthy controls, as demonstrated in Fig. 3 (Qmean). However, when 

incorporating both dynamic and static features into the model, the significance of the static 

features diminishes, while the significance of the dynamic features remains, as shown in 

Table 1. This implies that the dynamic FC features provides crucial information, not present 

in static FC features, for effectively distinguishing between AD and control samples.

fMRI studies of dynamic FC in AD.

The present study uses MEG imaging to demonstrate that dynamic functional connectivity 

features are abnormal and have predictive value in AD. Here, we review a larger fMRI 

literature on dynamic functional studies in AD. Consistent with our dwell time findings, 

Jones et al. (2012) suggest that the dwell time in the default mode network are distinctive 

between AD dementia patients and healthy controls. Brenner et al. (2018) also show that 

amnestic MCI patients spend more time in a single dominant state. Also consistent with 

our observation of decreased number of switches in AD, Córdova-Palomera et al. (2017) 

show decreased global metastability between functional states when comparing the patients 

with mild cognitive impairment (MCI) and healthy controls. Similar to our findings on 

the predictability of dynamic spatial features, Fu et al. (2019) examine the shared and 

specific dynamic functional connectivity in subcortical ischemic vascular disease and AD. 

Dautricourt et al. (2022) show that dynamic FC states are differentially associated with 

dementia risk. However, the above mentioned studies have not clearly demonstrated that 

dynamic FC features can distinguish AD patients from healthy controls (Jones et al., 2012; 

Córdova-Palomera et al., 2017; Brenner et al., 2018). In contrast, a recent study by de Vos 

et al. (2018) reveals higher accuracy to distinguish AD dementia from healthy controls using 

the variability of FC across time as a feature than static FC features, perhaps the first clear 

evidence that the dynamic FC can be a strong predictor of AD. However, their prediction 

model included a large number of features and did not fully address which dynamic FC 

features were important to distinguish AD and healthy subjects (de Vos et al., 2018). 

Therefore, whether dynamic FC features have predictive power to distinguish AD patients, 

and if so which features are important to drive these predictions remain unknown from these 

prior fMRI studies. Extending TVDN to fMRI data is important to address these questions. 

Collecting resting state fMRI data and further research along these lines are ongoing in our 

laboratory.
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Dynamic FC features have higher predictive power than other benchmarks do.

It must be borne in mind that the present classifier results by themselves do not argue 

for the exclusive use of dynamic FC features as predictors of AD, whether for diagnostic 

or prognostic purposes. Our contribution is to show that a model-based TVDN approach 

provides far more predictive power in the use of dynamic FC compared to alternate means of 

obtaining dynamic FC features, and that TVDN-derived dynamic features uncover important 

processes of the AD pathophysiology that are currently being unreported by conventional 

static FC methods.

Spatial patterns of dynamic connectivity changes overlap with the regional anatomy of AD 
pathophysiology.

Fig. 4(a) shows the regional patterns of the estimated effects from AWRSN that 

distinguish AD from healthy elderly individuals. These regions include inferior and posterior 

temporal cortices and posterior parietal-occipital cortices, which reflects the same regional 

distribution of high tau accumulations, earliest hypometabolism and go onto develop 

greatest neuronal loss in patients with AD (Jagust, 2018). Distributions of tau accumulation 

both in space and time have been linked to network connectivity measures using various 

static network features, where functional connectivity based models could reliably predict 

individual variability of tau accumulation in AD (Franzmeier et al., 2020b,a). The proximity 

of spatial patterns between abnormal dynamic functional connectivity indices and AD 

pathophysiology relevant regional anatomy suggests that dynamic functional connectivity 

features, in addition to static features may also be worthwhile indices to explore as 

additional, complimentary predictors of AD pathophysiology. It is also noteworthy that 

the spatial distribution of dynamic connectivity differences is more left predominant in our 

findings. Although the biological significance of this lateralization of dynamic functional 

changes is yet to be explored, such asymmetry has been observed in previous resting state 

functional connectivity studies as well (Medvedev, 2014; Di et al., 2014).

In conclusion, the fact that we find fewer brain state switches even though there are more 

possible brain states, and increased maximal dwell times suggests that brain dynamics 

alterations in AD have independent spatial and temporal characteristics. Graph structure 

variations are reduced in AD compared to controls suggests that dynamic graphs are similar 

across time in AD with a specific network nodes identified in Table 1 and Fig. 4a that 

are consistent nodes implicated in AD pathophysiology. These results encourage further 

exploration and validation of spatial static and temporal dynamic patterns of the functional 

connectivity from MEG data.

4. Methods

4.1. Data and preprocessing

Each participant in our study underwent a complete clinical history, physical examination, 

neuropsychological evaluation, brain magnetic resonance imaging (MRI), and a 10-min 

session of resting MEG. All the acquisition and processing pipelines are the same as 

that for a previous study (Ranasinghe et al., 2022b). All participants were recruited 

from research cohorts at the University of California San Francisco-Alzheimer’s Disease 
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Research Center(UCSF-ADRC). Informed consent was obtained from all participants and 

the study was approved by the Institutional Review Board (IRB) at UCSF (UCSF-IRB 

10-02245). Demographics of cohorts are summarized in Table 5. All of the AD patients 

included in this study had a clinical diagnosis of AD from the UCSF Memory and Aging 

Clinic. Among our cohort, 65 individuals had their excessive amyloid burden confirmed 

through amyloid PET scans. Additionally, six patients’ AD diagnoses were verified autopsy, 

while eight others were validated using CSF biomarkers.

4.2. Resting state MEG data acquisition and preprocessing

MEG scans were acquired on a whole-head biomagnetometer system (275 axial 

gradiometers; MISL, Coquitlam, British Columbia, Canada), following the same protocols 

described previously (Ranasinghe et al., 2020, 2022b). Each subject underwent MEG 

recordings at rest, eyes-closed and supine for 5–10 min. Three fiducial coils including 

nasion, left and right preauricular points were placed to localize the position of head relative 

to sensor array, and later coregistered to each individual’s respective MRI to generate 

an individualized head shape. Data collection was optimized to minimize within-session 

head movements and to keep it below 0.5 cm. 5–10 min of continuous recording was 

collected from each subject while lying supine and awake with eyes closed (sampling rate: 

600 Hz). We selected a 60 s (1 min) continuous segment with minimal artifacts (minimal 

excessive scatter at signal amplitude <10 pT), for each subject, for analysis. The study 

protocol required the participant to be interactive with the investigator and be awake at the 

beginning of the data collection. Spectral analysis of each MEG recording and whenever 

available simultaneously collected scalp EEG recordings were examined to confirm that 

the 60-second data epoch represented awake, eyes closed resting state for each participant. 

Artifact detection was confirmed by visual inspection of sensor data and channels with 

excessive noise within individual subjects were removed prior to analysis.

4.3. Source space reconstruction of MEG data and spectral power estimation

Tomographic reconstructions of the MEG data were generated using a head model 

based on each participant’s structural MRI. Spatiotemporal estimates of neural sources 

were generated using a time–frequency optimized adaptive spatial filtering technique 

implemented in the Neurodynamic Utility Toolbox for MEG (NUTMEG; https://

nutmeg.berkeley.edu/).

To prepare for source localization, all MEG sensor locations were coregistered to each 

subject’s anatomical MRI scans. The lead field (forward model) for each subject was 

calculated in NUTMEG using a multiple local-spheres head model (three-orientation lead 

field) and an 8-mm voxel grid which generated more than 5000 dipole sources, all sources 

were normalized to have a norm of 1 (Dalal et al., 2008, 2011). The source space 

reconstruction approach provided amplitude estimations at each voxel derived through 

the linear combination of spatial weighting matrix with the sensor data matrix (Dalal et 

al., 2008). A high-resolution anatomical MRI was obtained for each subject (see below) 

and was spatially normalized to the Montreal Neurological Institute (MNI) template brain 

using the SPM software (http://www.fil.ion.ucl.ac.uk/spm), with the resulting parameters 

being applied to each individual subject’s source space reconstruction within the NUTMEG 
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pipeline (Dalal et al., 2011). Tomographic reconstructions of source-space voxel level data 

were parcellated into 68 cortical regions using the Desikan–Killiany (DK) atlas (Desikan et 

al., 2006).

To construct the power spectral density (PSD), parcellated MEG data are detrended and then 

subjected to a bandpass filter within the range of [1, 45] Hz. Subsequently, Welch’s method 

is employed to derive the PSD.

4.4. Time-varying dynamic network model

The time-varying dynamic network (TVDN) model is a robust method to extract dynamic 

FCs from the neuroimaging data (Jiang et al., 2022), which assumes the brain states 

experience discrete and discontinuous changes over time. The dynamic FC features contain 

static spatial feature (RSNs) and dynamic temporal feature (the dynamic weights of the 

RSNs).

Let X(t) be a d dimensional vector, denoting the brain activity at time t at d numbers of ROIs, 

and let X′(t) be its derivative. The TVDN model assumes

X′(t) = A(t)X(t),

where A(t) is a d × d connectivity matrix. The connectivity matrix A(t) can be further 

decomposed as A(t) = UΛ(t)U−1, where the columns of U represent the static RSNs, and the 

eigen-value matrix Λ(t), varying across the time, represents the importance of each RSN. 

The real and imaginary parts of Λ(t) represent the growth constant and signal frequency, 

respectively. Since only a small number of RSNs are operational in the brain, typically 

ranges from 7–20 (Yeo et al., 2011), A(t) is assumed to be a low-rank matrix, where the rank 

of the A(t) represents the number of distinct static RSNs that are active in the resting state.

To extract the dynamic FC features, we first perform a B-spline smoothing step to obtain 

noise free versions of X′(t) and X(t). Then, we implement a kernel regression step to 

obtain the Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964) of A(t), denoted by 

A(t). The static spatial feature U is then extracted as the top r eigen-vectors of ∑t A(t), 
where we choose rank r so that the magnitude of the top r eigen-values of ∑t A(t)
comprises 80% of the total sum of the magnitude of them. Next, the brain state switches 

are detected by minimizing a modified Bayesian information criteria (MBIC) through 

the dynamic programming algorithm (Jackson et al., 2005) based on a low dimensional 

transformation Ur
−1X(t), where Ur is the first r columns of the estimated U, and Ur

−1
 is the 

r × d dimensional generalized inverse of Ur. The brain activities are separated to different 

segments after the detection procedure. Then we refit TVDN model in each segment, while 

assuming A(t) is a constant. Furthermore, the temporal dynamic weighted are obtained as 

the eigen-values of estimated A(t) in each stationary segment, denoted by Λr × r(t), which is 

a r × r dimensional matrix. We obtain the WRSN feature as the column sum of UrΛr × r(t). 
Finally, we first obtain W(t) ≡ {W ij(t), i, j = 1, …, d} = A(t)A(t)T and construct the functional 

connectivity matrix through the following two steps:
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1. let W ij(t) = W ij(t) ∕ W ii(t)W jj(t)

2. perform fisher transform and obtain the functional connectivity matrix W(t) with 

the i, jth entry to be W ij(t) = 0.5 ln{1 + W ij(t)} ∕ {1 − W ij(t)}

All the tuning parameters in the TVDN procedure are tuned based on the control samples.

The TVDN analysis is performed using the Python code from https://github.com/feigroup/

TVDN, which contains detailed documentation of the code usage.

4.5. Dynamic mode decomposition model and network diffusion model

We implement the dynamic mode decomposition model (DMD) and the network diffusion 

model (ND) for comparison.

The DMD model assumes X(t + 1) = AX(t) (Brunton et al., 2016), where A is a d × d constant 

matrix. We obtain the estimated A by minimizing the sum of the squared distance between 

X(t + 1) and AX(t) over time. Then we obtained the estimated RSNs, denoted by U, as the 

first r eigen-vectors corresponding to the top eigen-values, whose summation comprises 

80% of the total sum of the eigen-values. Furthermore, we construct the WRSN feature as 

the column sum of UrΛr × r, where Ur is a d × r dimensional eigen-vector matrix, and Λr × r is 

a r × r dimensional eigen-value matrix. Since there is only one segment resulted from the 

DMD model, AWRSN feature is the same as the WRSN feature. Finally, we obtained the 

W = AAT
 and use steps 1, 2 in Section 4.4 to generate the final connectivity matrix W.

The ND model assumes X′(t) = AX(t). We obtain the estimated A by minimizing the sum 

of the squared distance between X′(t + 1) and AX(t) over time. The remaining steps for 

extracting spatial features from the ND model are the same to the DMD model.

We implement TVDMD as follows where we construct windows with 192 frames sliding 

by 24 frames in each step. In each sliding-window, TVDMD extracts the dynamic modes 

(Brunton et al., 2016; Kunert-Graf et al., 2019) from the brain signals, and obtains the 

WRSN in each sliding windows using the same procedures as those described in DMD 

model above. The selection of the window size and step size leads to 292 number of sliding 

windows, which is similar as those used in Kunert-Graf et al. (2019). We then use Kmeans 

algorithm to cluster the WRSNs to 3 clusters, which is the average number of switches from 

the control group with the TVDN method. We define a switch point as the time where there 

is a cluster membership change before and after the time. These switch points divide the 

MEG data into multiple segments, and in each segment we reestimate the WRSN and the 

number of eigenmodes, whose corresponding magnitude of the eigenvalues comprises 80% 

of the total sum of the magnitude of the eigenvalues. We then average the WRSN as the 

AWRSN and calculate the maximal number of RSNs across the multiple segments as the 

number of RSNs.

The DMD and ND analysis were conducted using the Python code (https://github.com/

feigroup/TVDN-AD).
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4.6. Graph metrics

The brain networks extracted from functional connectivity models can be represented by 

graphs, which are the combination of ROIs, the nodes in the graph, and the edges (Boccaletti 

et al., 2006), the region-wise connections in the graph. The strength of the connections 

among the ROIs, namely the edge weights, are mathematically captured by the entries of the 

functional connectivity matrix W.

The path length L of the graph is defined as

L = d(d − 1)
∑i = 1

d ∑j = 1, j ≠ i
d Lij

−1 ,

where Lij is the shortest length of the path that goes from regions i to j, where the length of a 

path is the summation of the inverse of edge weights on the path (Wang et al., 2013).

The modularity Qmax is a statistic that quantifies the degree to which the network can 

be subdivided into different groups (Newman, 2006), where the optimal group structure 

is obtained by maximizing the number of within-group connections, and minimizing the 

number of between-group connections.

Let W ij be the i, jth entry of the functional connectivity matrix, representing the strength 

of connection between ROI i and ROI j. If W ij ≠ 0 (W ij = 0), region i and j are connected 

(disconnected). For a given partition p of the graph, the modularity index Q(p) is defined as

Q(p) = ∑
g = 1

Np W g
W − Sg

2W
2

,

where Np is the number of groups in the partition, W = ∑i, j W ij and W g is sum of all the edge 

weights between the regions in the group g. Here let Sgk = ∑j = 1, j ≠ k
d W kj, Sg = ∑k = 1

d Sgk is the 

sum of the nodal strength in group g. Finally Q = maxp{Q(p)}, which is obtained by using the 

spectral algorithm described in Newman (2006).

To eliminate this dependence of the graphic features on the size of the graph, we normalize 

the three features through dividing them by an ensemble of 100 random networks, which is 

described as follows. We randomly permute the values in W, and create 100 sets of pseudo 

graph features. We them divide the each of the two graphic features by the corresponding 

means of the pseudo graph features over the 100 permutations.

To extract the graph characteristics, we adopted the bctpy package in python (https://

pypi.org/project/bctpy/), which contains the detailed documentation of the code usage.

4.7. Logistic regression with ridge regularization

In our manuscript, we adopted the logistic regression with the ridge penalty as the classifier 

for the AD and control groups. The ridge regularization was utilized due to the high-

dimension feature in our regression (Hoerl and Kennard, 1970).
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With the ridge penalty, the loss function to optimize becomes

min
β, β0

ρ
2βTβ + ℓ(Y, β0 + βTX),

where X are the FC features, which can be different from TVDN, DMD, ND models, 

Y = (Y 1, …, Y N)T is a vector a binary indicator with Y i = 1 or Y i = 0 if the ith subject is a AD 

patient or a healthy control, respectively. The function ℓ( ⋅ ) is the negative log likelihood of 

the logistic regression and ρ > 0 is the penalty parameter. The penalty parameter is tuned by 

the leave-one-out evaluation within the training set to ensure no testing data information is 

used during the training procedure.

For each model, we implemented the two ridge regularized logistic regressions. We use 

first ridge regression to select significant predictors as the ones whose estimated 95% 

confidence intervals do not cover zero. We then utilized the selected important predictors in 

the second ridge regression model to evaluate the sensitivity and specificity of classifying 

AD and control samples through leave-one-out (LOO) and MC cross validation over 10000 

repetitions. The penalty parameters are tuned based on the training data to avoid information 

leaking in the prediction.

With the ridge penalty, the effective degree of freedom (DF) is not simply the number of free 

parameters in the model. We calculate the DF of the model following (Sinkovec et al., 2021) 

which takes the shrinkage effect of the ridge penalty into consideration. Then the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) is

AIC = − 2ℓ(Y, β 0 + βTX) + 2 × DF,

BIC = − 2ℓ(Y, β 0 + βTX) + log(N) × DF .

We implemented the logistic regression with the ridge penalty by the LogisticRegression 

function in sklearn package in Python.
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Appendix.: Predictive value of dynamic and static features from benchmark 

methods

See Table A.1.

Table A.1

The comparison of AD and control groups of the brain state switches, the dynamic and static 

graph metrics from TVDMD, ND, DMD results. The p-values are from the student t-tests.

AD: Alzheimer’s disease; DMD: dynamic mode decomposition model; ND: network 

diffusion model; TVDMD: time-varying dynamic mode decomposition model.

Features and graph metrics AD - Control P-value

TVDMD scalar features and graph metrics

Number of eigenmodes 0.523 0.005

Number of brain state switches 14.932 0.001

Lvar 0.013 0.001

Qvar 0.027 0.005

Lmean −0.023 0.099

Qmean −0.004 0.864

ND scalar features

Number of eigenmodes 1.182 < 0.001

Lstatic −0.021 0.437

Qstatic 0.022 0.821

DMD scalar features

Number of eigenmodes 1.807 < 0.001

Lstatic −0.004 0.479

Qstatic −0.176 0.002

The detailed documentation of the package is accessible at https://scikit-learn.org/stable/

modules/generated/sklearn.linear_model.LogisticRegression.html.
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Fig. 1. 
Schematic illustration of TVDN. TVDN extracts spatial features: the number of eigenmodes; 

temporal features: number of brain state switches; spatial and temporal mixed features: 

weighted resting state networks (WRSN). The weighted resting state network in each 

segment is a weighted summation of the eigenmodes with the corresponding eigenvalues 

as the weights. These are the features used in predictive models described in the rest of the 

paper.

TVDN: time-varying dynamic network model.
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Fig. 2. 
The comparisons between AD and control groups of the static features. Left: number of 

eigenmodes; Middle: number of brain state switches; Right: maximal dwell times. Mean and 

95% confidence intervals are shown and the p-values are from the student t-tests.

AD: Alzheimer’s disease.

Jin et al. Page 23

Neuroimage. Author manuscript; available in PMC 2024 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The distributions of the graph metrics extracted from the TVDN dynamic functional 

connectivity in AD and control groups. (a) The variance of the graph metrics across 

different segments. (b) The mean graph metrics over the segments. (c) The graph metrics 

in the segments with the maximal dwell time. (d) The graph metrics from the static FC 

in the network diffusion model. p-value <= 0.05 is used as a significance cutoff. Only the 

significant p-values are shown in the plots. The error bars represent the 95% confidence 

interval of the means. AD: Alzheimer’s disease; FC: functional connectivity; TVDN: time-

varying dynamic network model.
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Fig. 4. 
The results from regularized logistic regressions: (a) The estimated absolute effects from 

AWRSN projected to [0, 1] interval. Only the regions with p-values less than 0.05 are shown 

in the figure. (b) The ROCs of the leave-one-out prediction results from different models.

AUC: area under ROC curve; AWRSN:average weighted resting state network; DMD: 

dynamic mode decomposition model; ND: network diffusion model; PSD: power spectral 

density; ROC: receiver operating characteristic; STA: spatial and temporal autocorrelation; 

TVDMD: time-varying dynamic mode decomposition model; TVDN: time-varying dynamic 

network model.
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Table 1

TVDN results from a ridge regularized logistic regression: the effects from the predictors of interest on the AD 

and control classifications (outcome). The predictors include the number of eigenmodes, number of brain state 

switches, the dynamic and static graph metrics and the AWRSN over 68 regions (the labels of the ROIs are 

presented in the table) of interest are presented along with the corresponding 95% CI and p-value. All 

predictors are all standardized by their sample means and standard deviations. Only the significant spatial 

features are shown. p-value <= 0.05 is used as a significance cutoff. AD: Alzheimer’s disease; AWRSN: 

average weighted resting state network; CI: confidence interval; ROI: region of interest; TVDN:time-varying 

dynamic network method.

TVDN scalar features

Features Effect 95% CI P-value

Number of eigenmodes 1.093 ( 0.572, 1.613) < 0.001

Number of brain state switches −0.369 (−0.731, −0.007) 0.046

TVDN graph metrics

Metrics Effect 95% CI P-value

Lvar −0.161 (−0.645, 0.323) 0.513

Qvar −0.153 (−0.478, 0.173) 0.358

Lmean 0.196 (−0.234, 0.626) 0.372

Qmean −0.273 (−0.620, 0.073) 0.122

TVDN spatial features (p-value <= 0.05)

Features Absolute effect 95% CI P-value

Left rostral anterior cingulate 0.665 (0.319, 1.010) < 0.001

Left fusiform 0.619 (0.293, 0.944) < 0.001

Left lingual 0.492 (0.188, 0.797) 0.002

Left inferior parietal 0.611 (0.228, 0.993) 0.002

Right inferior temporal 0.463 (0.153, 0.774) 0.003

Left parahippocampal 0.383 (0.122, 0.645) 0.004

Left temporal pole 0.370 (0.077, 0.664) 0.013

Right pericalcarine 0.432 (0.068, 0.796) 0.020

Left superior temporal 0.332 (0.052, 0.612) 0.020

Left lateral occipital 0.446 (0.065, 0.827) 0.022

Left inferior temporal 0.392 (0.049, 0.734) 0.025

Left superior parietal 0.414 (0.041, 0.786) 0.029

Right cuneus 0.361 (0.016, 0.707) 0.040

Right inferior parietal 0.380 (0.006, 0.754) 0.046
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Table 3

TVDMD, ND, DMD results from a ridge regularized logistic regression: the effects from the predictors of 

interest on the AD and control classifications. The predictors include the number of eigenmodes, number of 

brain state switches, the dynamic and static graph metrics and the AWRSN over 68 regions of interest. Only 

the effects of the scalar predictors are presented. All predictors are all standardized by their sample means and 

standard deviations.

AWRSN:average weighted resting state network; DMD: dynamic mode decomposition model; ND: network 

diffusion model; TVDMD: time-varying dynamic mode decomposition model.

Features and graph metrics Effect 95% CI P-value

TVDMD scalar features and graph metrics

Number of eigenmodes 0.008 ( 0.002,0.014) 0.005

Number of brain state switches 0.010 ( 0.004,0.015) 0.001

Lvar 0.010 ( 0.004,0.015) 0.001

Qvar 0.008 ( 0.003,0.014) 0.004

Lmean −0.005 (−0.010,0.001) 0.115

Qmean −0.000 (−0.006,0.006) 0.980

ND scalar features

Number of eigenmodes 0.104 ( 0.042, 0.167) 0.001

Lstatic −0.011 (−0.087, 0.065) 0.775

Qstatic 0.040 (−0.035, 0.115) 0.293

DMD scalar features

Number of eigenmodes 0.131 ( 0.072, 0.189) < 0.001

Lstatic −0.022 (−0.097, 0.052) 0.554

Qstatic −0.063 (−0.132, 0.006) 0.074
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Table 4

Pearson’s correlation between TVDN features and graph metrics. Lvar, Qvar are the variances of the standardized 

path length, and modality over time; Lmean, Qmean are the means of corresponding graph metrics over time; 

Lmax, Qmax are the graph metrics in the segments with the maximal dwell time; and Lstatic, Qstatic are the graph 

metrics from the static FC model. p-value < 0.003 is used as the significance cutoff to account for multiple 

testing.

FC: functional connectivity; TVDN: time-varying dynamic network model.

TVDN features Number of eigenmodes Number of brain
state switches

Graph metrics Correlation p-value Correlation p-value

TVDN dynamic graph metrics

Lvar −0.268 < 0.001 0.234 0.002

Qvar −0.120 0.114 0.284 < 0.001

TVDN static graph metrics

Lmean −0.170 0.024 −0.014 0.853

Qmean −0.371 < 0.001 0.032 0.670

Lmax −0.111 0.143 −0.018 0.811

Qmax −0.254 0.001 −0.034 0.656

Graph metrics from the static model

Lstatic −0.160 0.034 0.225 0.003

Qstatic −0.200 0.008 0.011 0.880
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Table 5

Baseline characteristics: The number of samples (percentiles) for gender, the mean (standard deviation) for 

age, The number of samples (percentiles) of education level and the mean MMSE score (standard deviation) 

are presented.

AD: Alzheimer’s disease; MMSE: Mini-mental state examination.

AD group
(n=88)

Control group
(n=88)

P-value

Gender Male 35 (40%) 37 (42%) 0.878

Female 53 (60%) 51 (58%)

Age at MEG (Years) 62.7 (8.7) 65.1 (10.0) 0.098

Education High school or below 25 (28%) 9 (10%) 0.057

Junior college 29 (33%) 19 (22%)

College 20 (25%) 23 (26%)

Graduate school or above 10 (11%) 14 (16%)

Missing 2 (2%) 23 (26%)

MMSE 22.1 (5.6) 29.4 (0.9) < 0.001
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