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Urokinase receptor and resistance
to targeted anticancer agents
Steven L. Gonias* and Jingjing Hu

Department of Pathology, School of Medicine, University of California, San Diego, San Diego, CA, USA

The urokinase receptor (uPAR) is a GPI-anchored membrane protein, which regulates
protease activity at the cell surface and, in collaboration with a system of co-receptors,
triggers cell-signaling and regulates gene expression within the cell. In normal tissues,
uPAR gene expression is limited; however, in cancer, uPAR is frequently over-expressed
and the gene may be amplified. Hypoxia, which often develops in tumors, further
increases uPAR expression by cancer cells. uPAR-initiated cell-signaling promotes cancer
cell migration, invasion, metastasis, epithelial-mesenchymal transition, stem cell-like
properties, survival, and release from states of dormancy. Newly emerging data suggest
that the pro-survival cell-signaling activity of uPAR may allow cancer cells to “escape”
from the cytotoxic effects of targeted anticancer drugs. Herein, we review the molecular
properties of uPAR that are responsible for its activity in cancer cells and its ability to
counteract the activity of anticancer drugs.

Keywords: uPAR, plasmin, fibrinolysis, epithelial-mesenchymal transition, cancer stem cell, metastasis, cellular
senescence

Introduction

Adhesion receptors that mediate interactions between adjacent cells or with extracellular matrix
(ECM) and at the same time, initiate cell-signaling include the integrins andmembers of the cadherin
superfamily (Giancotti and Ruoslahti, 1999; Angst et al., 2001). The urokinase receptor (uPAR) is
functionally similar to adhesion receptors in that it binds to the provisional ECMprotein, vitronectin
(Wei et al., 1994), and robustly activates cell-signaling (Blasi and Carmeliet, 2002). The second
ligand for uPAR is the fibrinolysis protease, urokinase-type plasminogen activator (uPA), which
like vitronectin, activates cell-signaling (Busso et al., 1994; Koshelnick et al., 1997). The signaling
response elicited by uPA requires the amino-terminal region of uPA and not the uPA active site
(Nguyen et al., 1998). Although the cell-signaling responses elicited by binding of either vitronectin
or uPA to uPAR may be distinct, when uPAR is expressed at high levels, a composite response is
observed, in which signaling factors controlled downstream of uPA and vitronectin are activated
collectively (Eastman et al., 2012). From the structural standpoint, understanding the signaling
activity of uPAR has been a fascinating challenge given that this 55-kDa, three-domain receptor is
coupled to the cell surface only by a glycosylphosphatidylinositol anchor (Roldan et al., 1990; Ploug
et al., 1991).

We now understand that the cell-signaling activity of uPAR controls many aspects of cell
physiology that are pivotal in cancer progression. Clinical trial data support the hypothesis that
uPAR is associated with cancer progression. In pancreatic cancer, the gene encoding uPAR may

Abbreviations: ECM, extracellular matrix; EGFR, EGF receptor; EGFRvIII, EGF receptor variant III; EMT, epithelial-
mesenchymal transition; ERα, estrogen receptor-α; GBM, glioblastoma; MMP, matrix metalloprotease; RTK, receptor
tyrosine kinase; TKI, tyrosine kinase inhibitor; uPA, urokinase-type plasminogen activator; uPAR, urokinase receptor.
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be amplified and this event substantially deteriorates prognosis
(Hildenbrand et al., 2009). In astrocytic brain tumors, uPAR
expression correlates with tumor grade (Yamamoto et al., 1994).
Recent results suggest that uPAR may play an important role
promoting cancer cell survival during cancer chemotherapy. We
hypothesize that:Developing new uPAR-targeting therapeutics may
be advantageous to improve the efficacy of currently available
anticancer agents. Support for this hypothesis is found in
numerous basic and translational studies that have explored
molecular aspects of uPAR function. Unfortunately, efforts to
develop uPAR-targeting drugs are still in a formative stage.

Regulation of Cell Surface Plasminogen
Activation

Early studies demonstrated that uPA-binding to uPAR increases
the catalytic efficiency (kcat/KM) of plasminogen activation (Ellis
and Danø, 1991). Plasminogen activation is further stimulated
by the simultaneous binding of plasminogen to the cell surface,
which is mediated by any of a number of membrane-associated
proteins (Miles and Parmer, 2013). Anchoring of the single-chain
or zymogen form of uPA to uPAR also accelerates its conversion
to the enzymatically active, two-chain variant, in a reaction
most frequently catalyzed bymembrane-associated plasmin (Ellis,
1996). This positive feedback loop may generate large amounts of
active plasmin at the cell surface.

Although best understood as the principal protease responsible
for lysis of fibrin clots, plasmin has diverse glycoprotein substrates
and thus, has been implicated in diverse activities including
ECM remodeling, angiogenesis, cell migration, and cancer
invasion (Mignatti and Rifkin, 1993). Key plasmin substrates, in
addition to fibrin and ECM proteins, include latent transforming
growth factor-β (Lyons et al., 1988) and pro-forms of matrix
metalloproteases (MMPs; Murphy et al., 1999). Many plasmin
activities may be facilitated by binding to cellular plasminogen
receptors (Miles and Parmer, 2013).

Diverse cancer cells express high levels of uPAR (Mazar, 2008;
Smith andMarshall, 2010) and also express plasminogen receptors
that function in plasmin generation (Gonias et al., 2001). As
cancers enlarge, they frequently outgrow their blood supply,
causing hypoxia in the tumor core, which is a known inducer of
uPAR expression (Graham et al., 1999; Lester et al., 2007). The
effects of hypoxia on uPAR expression are mediated by hypoxia-
inducible factor-1, which binds to the hypoxia-responsive element
in the uPAR promoter (Krishnamachary et al., 2003). Although
this is probably a compensatory response, meant to promote cell
survival, once uPAR expression is induced, all the activities of
uPAR described herein may be activated, including the ability of
uPAR to promote plasminogen activation and potentiate tissue
remodeling.

uPAR Signaling Requires a Multiprotein
Receptor Complex

To activate cell-signaling in response to uPA or vitronectin,
uPAR utilizes a system of co-receptors, which are dynamically

assembled to generate qualitatively differing responses (Jo et al.,
2005). Formyl peptide receptor-1 (FPR1) is a G protein-coupled
receptor and essential co-receptor for cell-signaling downstream
of membrane-anchored uPAR (Resnati et al., 2002). FPR1 also
mediates cell-signaling in response to soluble forms of uPAR
(Resnati et al., 2002). In cells that lack FPR1, FPR2 may substitute
to mediate uPAR signaling (de Paulis et al., 2004). Diverse
integrins also have been implicated in uPAR signaling, including
α3β1, α5β1; αvβ1, αvβ5, and β2 integrins such as Mac1 (Yebra
et al., 1996; May et al., 1998; Carriero et al., 1999; Nguyen
et al., 1999; Wei et al., 2001, 2005). Mechanistically, uPAR
physically associates with integrins to regulate integrin activity
in cell adhesion, cell migration, and in assembly of cell-signaling
complexes. Src family kinases and focal adhesion kinase are
instrumental upstream signaling factors for uPAR and probably
associate with uPAR indirectly through integrins (Koshelnick
et al., 1997; Nguyen et al., 2000).

gp130 associates with uPAR in some cell types and may control
activation of the JAK1-STAT1 pathway (Koshelnick et al., 1997).
Receptor tyrosine kinases (RTKs) also may be important in uPAR
signaling. In vascular smoothmuscle cells, platelet-derived growth
factor receptor-β has been implicated (Kiyan et al., 2005). Inmany
other cell types, the EGF receptor (EGFR) plays an important role
(Liu et al., 2002; Jo et al., 2003, 2005). In cancer cells, the EGFR
functions with uPAR to activate ERK1/2, which promotes tumor
cell survival and release from states of dormancy (Ma et al., 2001;
Liu et al., 2002). The EGFR and uPAR also cooperate to activate
the mitogenic transcription factor, STAT5b (Jo et al., 2005).
Other cell-signaling factors, which have received considerable
attention as key downstream targets of uPAR signaling, include
PI3K and Rho GTPases such as Rac1 (Blasi and Carmeliet, 2002;
Smith andMarshall, 2010). There is considerable overlap between
the pathways controlled by RTKs and uPAR. This redundancy
may partially explain the ability of uPAR to substitute for RTKs
and promote cell survival in tumors treated with RTK-targeting
drugs.

uPAR Expression and Function in Cancer

Targeting uPAR in cancer is intriguing given that in normal
quiescent human tissues, uPAR expression is limited (Mazar,
2008; Smith and Marshall, 2010). Increased uPAR expression
may be observed in activated non-neoplastic cells, including
endothelium, smooth muscle cells, and immune system cells,
especially in processes such as tissue injury or inflammation.
By contrast, uPAR is highly expressed by diverse cancer
cells and by non-malignant cells that infiltrate cancers
(Mazar, 2008; Smith and Marshall, 2010). When expressed
in malignancy, uPAR typically worsens the prognosis irrespective
of whether the cell of origin is the tumor cell or the stromal
cell.

In addition to pancreatic cancer, uPAR gene amplification
is observed in breast cancer. In breast cancers that are HER2-
positive, uPAR and HER2 tend to be amplified in the same
cells (Uhr, 2008). In colorectal cancer, uPAR expression by non-
malignant stromal cells is correlated with a negative prognosis
(Boonstra et al., 2014). Obviously, different mechanisms are
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operational when cancer progression is accelerated by tumor
cell uPAR versus stromal uPAR. One possible pathway by which
stromal cell uPARmay promote cancer progression is by releasing
soluble uPAR, which is biologically active andmay regulate cancer
cell physiology (Gilder et al., 2015).

Early models attributed the ability of uPAR to promote cancer
progression to its control of extracellular proteolysis at the
cancer cell surface (Blasi and Carmeliet, 2002; Dano et al.,
2005). However, we and others have shown that uPAR promotes
cell migration by activating Rac1 and ERK1/2 (Nguyen et al.,
1998; Kjoller and Hall, 2001; Ma et al., 2002). In a mouse
xenograft model system, uPAR promoted metastasis exclusively
by controlling cell-signaling factors such as Rac1 (Jo et al.,
2009b). This result does not discount the importance of uPAR
in extracellular proteolysis but instead, proves the importance of
uPAR-dependent cell-signaling in cancer progression in an in vivo
model system.

The ability of uPAR to promote cell survival is particularly
relevant to its activity in cancer treatment. In cell culture model
systems, uPA-binding to uPAR inhibits apoptosis by maintaining
an increased level of phosphorylated ERK1/2 (Ma et al., 2001).
Similarly, uPAR-initiated cell-signaling prevents anoikis in vitro
by transcriptional activation of the anti-apoptotic BCL-2 family
member, BCL-xL (Alfano et al., 2006). uPAR signaling also
regulates BIM, which is a second BCL-2 family member that
promotes apoptosis (Wykosky et al., 2015). Glioblastoma (GBM)
cells may be driven into apoptosis by suppressing uPAR signaling,
which elevates BIM.

Cellular senescence and tumor cell dormancy are important
concepts in cancer therapy (Campisi and d’Adda di Fagagna, 2007;
Gewirtz, 2009). In response to radiation or chemotherapy, tumors
cells may enter senescence as opposed to undergoing apoptosis.
Replicative arrest is characteristic of cellular senescence; however,
so is sustained survival. From the standpoint of cancer treatment,
senescence within a sub-population of tumor cells implies a
diminished capacity for tumor growth but also, a decreased
opportunity for cancer eradication. There is still debate regarding
whether cellular senescence is fully irreversible in cancer.
Ossowski and colleagues showed that uPAR controls entry of
cancer cells into states of dormancy and release from dormancy
(Yu et al., 1997; Aguirre Ghiso et al., 1999) and thereby
demonstrated the capacity of uPAR to regulate checkpoints in the
life cycle of a cancer cell.

uPAR-initiated cell signaling promotes epithelial-mesenchymal
transition (EMT) and this process appears to be reversible (Lester
et al., 2007; Jo et al., 2009a). Hypoxia facilitates EMT by increasing
uPAR expression (Lester et al., 2007). uPAR may play a central
role in the mechanism by which gene products, such as the
transcription factor, Forkhead Box M1, promote EMT (Huang
et al., 2014). uPAR-activated cell-signaling also induces stem cell-
like properties in cancer cells (Jo et al., 2010). Finally, uPAR
controls gene expression in cancer cells, promoting expression
of factors such as interleukin-4 and transforming growth factor-
β, which condition immune system cells so that the tumor
microenvironment is more conducive for tumor growth (Hu et al.,
2014a). The activities of cancer cell uPAR are summarized in
Figure 1.

FIGURE 1 | Activities of uPAR in cancer cells. Binding of uPA to uPAR
promotes activation of plasminogen (Pg) to form plasmin (Pm). Plasmin then
expresses diverse activities near the cell surface. uPAR also collaborates with
a system of co-receptors to activate cell-signaling. Reported outcomes of
uPAR-initiated cell-signaling in cancer cells are shown.

uPAR and Chemoresistance in Cancer

In studies with cell culture model systems, Alfano et al. (2006)
showed that silencing uPA increases the extent of apoptosis
observed when cells are treated with cisplatin or UV irradiation.
In small cell lung cancer in patients, uPAR expression is associated
with resistance to diverse traditional chemotherapeutic agents
(Gutova et al., 2007). In squamous cell carcinoma of the head and
neck and in malignant mesothelioma, uPAR confers resistance to
cisplatin (Cortes-Dericks et al., 2010; Huang et al., 2013). Because
uPAR appears to confer some degree of resistance to almost all
forms of traditional cancer therapy, each round of treatment may
select for tumor cells that have the highest uPAR expression levels.
As a result, uPAR-positivitymay become increasingly problematic
in patients that require multiple rounds of cancer treatment with
different modalities.

In breast cancers in which tumor cells express estrogen
receptor, anti-estrogen therapeutics such as tamoxifen have
served as effective “targeted” anticancer agents (Massarweh
and Schiff, 2006). Because as many as 70% of all breast
cancers are estrogen receptor-positive, understanding why some
malignancies acquire resistance of anti-estrogen drugs is of
considerable importance. Activation of cell-signaling pathways
downstream of the EGFR, HER2, and Insulin-like Growth Factor
Receptor-1 has received attention (Massarweh and Schiff, 2006).
In a series of 691 breast cancer patients treated with tamoxifen,
progression-free survival correlated inversely with expression of
uPAR and uPA (Meijer-van Gelder et al., 2004). To study this
phenomenon, we examined estrogen-dependent breast cancer
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cell lines (Eastman et al., 2012). In the presence of estrogen,
estrogen receptor-α (ERα) functioned as a major receptor
responsible for sustaining ERK1/2 activation. When estrogen was
withdrawn, ERK1/2 phosphorylation decreased. To model how
uPAR may regulate this process, we over-expressed uPAR in our
ERα-expressing breast cancer cells. When estrogen was present,
uPAR did not regulate ERK1/2 phosphorylation; however, in the
absence of estrogen, uPAR provided a rescue pathway, sustaining
ERK1/2 activation and promoting cell survival (Eastman et al.,
2012). Similar results were obtained when we utilized a xenograft
model system in mice. MCF-7 breast cancer cells typically require
estrogen supplementation to establish xenografts in SCID mice;
however, when MCF-7 cells were transfected to over-express
uPAR, the estrogen requirement was attenuated (Eastman et al.,
2012). Although more work is clearly required, these early studies
support a model in which changes in uPAR expression in breast
cancer cellsmay release tumors from control by estrogen receptor-
targeting therapeutics in patients.

uPAR and EGFR in Glioblastoma

Glioblastoma is a highly aggressive astrocytic tumor of the brain
in which the gene encoding the EGFR is frequently amplified,
driving tumorigenicity (Heimberger et al., 2005). In the context of
EGFR gene amplification, EGFRmutations are common including
a truncation mutation that generates a form of the receptor called
EGF receptor variant III (EGFRvIII). This EGFR variant does
not bind EGF but demonstrates constitutive enzymatic activity in
the absence of growth factor (Nishikawa et al., 1994; Heimberger
et al., 2005). Given the robust effects of EGFR gene amplification
and EGFRvIII on GBM progression, it would be reasonable to
assume that EGFR-targeting therapeutics would be effective in
treating GBM; however, although temporary responses may be
observed, tumors typically escape from control (Voelzke et al.,
2008).

To understand why EGFR-targeting therapeutics do not
demonstrate greater efficacy in GBM, together with our
colleagues, we evaluated three models of acquired resistance to
EGFR-targeting drugs. Mukasa et al. (2010) developed the first
model, applying a genetic approach. EGFRvIII was expressed
in U373MG GBM cells under the control of a doxycycline-
repressible promoter. Tumors were developed in mice. Once the
tumors were established, EGFRvIII expression was neutralized
in vivo forcing the tumors into a state of dormancy. Many of
these tumors emerged from dormancy, re-establishing growth.
Wykosky et al. (2015) developed two additional model systems in

which GBM cells were treated with the EGFR-targeting tyrosine
kinase inhibitors (TKIs), erlotinib, and gefitinib, either in three
dimensional cell culture or in xenografts in vivo. TKI resistance
developed and was readily documented in cell viability and
proliferation assays.

In all three model systems, neutralization of EGFRvIII activity
induced expression of uPA, activating uPAR-dependent cell-
signaling (Hu et al., 2011; Wykosky et al., 2015). uPAR assumed a
major role sustaining ERK1/2 activation (Hu et al., 2011;Wykosky
et al., 2015). As a result, apoptosis was prevented and the GBM
cells survived. BIM was a major target for ERK1/2, downstream
of uPAR in GBM cells. Silencing uPA in TKI-resistant GBM
cells increased BIM levels and promoted apoptosis. Inhibiting
MEK or treating cells with a BH-3 mimetic, which counteracts
the activity of anti-apoptotic Bcl-2 family members, restored
sensitivity to TKIs in GBM cells. These results suggest that the
uPA-uPAR signaling system may provide a major escape pathway
for GBM cells when tumors are treated with EGFR-targeting
therapeutics. Interestingly, when EGFRvIII was neutralized in
GBM cells, GBM cell migration was potentiated (Hu et al., 2014b).
The compensatory response of the GBM cells, which involved
activation of uPAR signaling to promote cell survival, also
promoted cell migration, which is a well described consequence of
uPAR-activated cell-signaling. These results suggest that changes
in uPAR expression in cancer cells, induced or selected for by
anticancer therapies, may unintendedly increase the capacity of
the cancer cells to invade or metastasize.

Concluding Comments

Urokinase receptor regulates activities that are relevant to
cancer progression on both sides of the plasma membrane.
At the cell surface, uPAR stimulates tissue remodeling. Cell-
signaling pathways, activated downstream of uPAR, stimulate
many activities implicated in cancer progression. As a response
to conventional or targeted anticancer agents, uPAR signaling
may be activated. Alternatively, anticancer drugs may select for
cancer cells in which uPA or uPAR are most highly expressed.
Because cell-signaling pathways that support cell survival also
may promote cell migration, activation of uPAR-dependent cell-
signaling in treated cancer cells may not only prevent cancer
eradication but also promote cancer progression.
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