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Abstract. Learning multiple descriptions for each class in the data has been shown to reduce
generalization error but the amount of error reduction varies greatly from domain to domain.
This paper presents a novel empirical analysis that helps to understand tliis variation. Our
hypothesis is that the amount of error reduction is linked to the "degree to which the descriptions
for a class make errors in a correlated manner." We present a precise and novel definition for
this notion and use twenty-nine data sets to show that the amount of observed error reduction
is negatively correlated with the degree to which the descriptions make errors in an correlated
manner. We empirically show that it is possible to leam descriptions that make less correlated
errors in domains in which many ties in the search evaluation measure (e.g. information gain) are
experienced during learning. The paper also presents results that help to understrind when and
why multiple descriptions are a help (irrelevant attributes) and when they are not as much help
(large amounts of class noise).

Keywords: Multiple models, Combining classifiers

1. Introduction

Learning multiple models of the data has been shown to improve classification
error rate as compared to the error rate obtained by learning a single model of
the data (for example: decision trees: Kwok Carter, 1990; Buntine, 1990, Kong
& Dietterich, 1995; rules: Gams, 1989; Smyth & Goodman, 1992; Kononenko &:
Kovacic,1992; Brazdil & Torgo, 1990; neural nets: Hansen k, Salamon, 1990; Baxt,
1992; Bayesian nets: Madigan k York, 1993). Although much work has been done
in learning multiple models not many domains were used for such studies. There
has also been little attempt to understand the variation in error reduction (the
error rate of multiple models compared to error rate of the single model learned on
the same data) from domain to domain. Three of the data sets used in our study
for which this approach provides the greatest reduction in error (Tic-tac-toe, DNA,
wine) have not been used in previous studies. For these data sets, the multiple
models approach is able to reduce classification error on a test set of examples by a
factor of up to seven! This paper uses a precise definition of "correlated errors" to
provide an understanding of the variation in error reduction. We also present the
idea of "gain ties" to understand why the multiple models approach is effective -
especially, why it is more effective for domains with more irrelevant attributes.

Figure 1 shows an example of multiple learned models. In the multiple models
approach, several models of one training set are learned. Each model consists of a
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1st model of the data

1st concept description for class a

class-a(X,Y)b(X),c(Y).

class-a(X,Y)d(X,Z),e(Z,Y).

:lass-b(X,Y)e(X,Y),f(X,X).

dass-b(X,Y)g(X),class-b(Y,X).

2nd model of the data

2nd concept description for class a

class-a(X,Y)b(X),c(Y).

class-a(X,Y)d(X,Z),h(Z,Y).

2nd concept description for class b
class-b(X,Y)e(X,Y),k(X,X).

class-b(X,Y)g(X),class-b(Y,X).

Figure I. An example of learning multiple models.

description for each class. Each description is a set of rules for that class (i.e. each
class description is a set of first-order Horn clauses (with negation) for that class).
The set of learned models is called an ensemble (Hansen k Salamon, 1990).

Previous work in learning multiple models has mainly been concerned with demon
strating that the multiple models approach reduces error cis opposed to the goal
of this paper which is to explain the variation in error reduction from domain to
domain. Previous work has compared different search strategies (Kononenko k
Kovacic, 1992) compared different search evaluation measures (Gams, 1989; Smyth
k Goodman, 1992), evaluated the effects of pruning (Kwok k Carter, 1990; Bun-
tine, 1990) and compared different ways ofgenerating models (nearly all authors).
Except for the work of Buntine, all the other comparisons have been made on a few
domains so we still do not have a clear picture of how domain characteristics affect
the efficacy of using multiple models. It is important to analyze these experimen
tal data because the amount of error reduction obtained by using multiple models
varies a great deal. On the wine data set, for example, the error obtained by uni
formly weighted voting between eleven, stochastically-generated descriptionsis only
one seventh that of the error obtained by using a single description. On the other
hand, on the primary-tumor data set, the error obtained by the identical multiple
models procedure is the same as that obtained by using a single description.

Much of the work on learning multiple models is motivated by Bayesian learning
theory (e.g. Ripley, 1987) which dictates that to mciximize predictive accuracy, in
stead of making classifications based on a single learned model, one should ideally
use all hypotheses (models) in the hypothesis space. The vote of each hypothe
sis should be weighted by the posterior probability of that hypothesis given the
training data. Although this theoretical support is useful, it is impractical for all
but the smallest hypothesis spaces. Another problem is that even though the idea
of using multiple models has theoretical reasons for succeeding, not all reasonable
implementations succeed. For instance, Buntine (1990) shows that learning an over-
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fitted tree and then generating multiple trees by pruning the original in different
ways produces trees that make similar errors and so do not lead to as much of a
reduction as learning different trees independently. These difficulties provide the
motivation for experimental work to determine the kind of learning method that
provides the greatest error reduction in practice.

The main hypothesis examined in this paper is whether error is most reduced
for domains for which the errors made by models in the ensemble are made in
a uncorrelated manner. In order to test this hypothesis, we first need to define
error reduction more precisely. Two obvious measures comparing the error of the
ensemble (Eg) to the error of the single model (E,) are error difference {E, —Eg)
and error ratio {Er = Eg/E,). We use error ratio because it reflects the fact that it
becomes increasingly difficult to obtain reductions in error as the error of the single
model approaches zero. Error ratios less than 1 indicate that multiple models
approach was able to obtain a lower error rate than the single model approach.
The lower the error ratio, the greater the error reduction. A precise definition of
the notion of "correlated errors" is presented in Section 5.2. Briefly, our metric (<^e)
mesisures the proportion of the test examples on which members of an ensemble
make the same kinds of misclassification errors.

The paper presents results on why it is possible to learn models with more un
correlated errors for some domains than for others. We also explore the effect of
varying two domain characteristics (level of clciss noise and number of irrelevant
attributes) on error ratio. Finally, we examine the effect of syntactic diversity on
ensemble error. This follows the work of Kwok k. Carter (1990) which postulates
that learning more syntactically diverse decision trees leads to lower ensembleerror.

The remainder of the paper is organized as follows. After an examination of the
main issues in learning multiple models, wepresent our core learning algorithm (Ali
k Pazzani 1993; Ali k Pazzani, 1992) which we modify in various ways to learn
multiple models. Next, we present results of experiments designed to answer the
following questions;

1. What effect does the multiple models approach have on classification error eis
compared to the error produced by the single model learned from the same
training data?

2. What is the relationship between the amount of observed error reduction {Er)
and the tendency of the learned models to make correlated errors?

3. Can the amount of error reduction observed for a domain be predicted from the
number of ties in gain experienced by the learning algorithm on that domain?

4. How does increasing the amount of class noise affect the amount of error reduc
tion?

5. How does increasing the number of irrelevant attributes affect the amount of
error reduction?
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6. Does increasing the diversity ofthe models necessarily lead to greater reduction
in error?

2. Background

Previous empirical work inusing multiple models (e.g. Buntine, 1990; Kononenko k
Kovacic, 1992) has mainly focused on demonstrating error reduction through using
multiple models and exploration of novel methods ofgenerating models and com
bining their classifications. The work can be characterized along three dimensions:
the kind ofmodel being learned (tree, rule etc.), the method ofgenerating multiple
models, and the method of combining classifications of the models to produce an
overall classification. The work of Kwok t Carter (1990) also serves as foundation
for our work on the effect ofsyntactic diversity on error rate. They showed that
ensembles with decision trees that were more syntactically diverse obtained better
accuracies than ensembles with trees that were less diverse.

The main theoretical basis of learning multiple models is Bayesian probability
theory (e.g. Ripley, 1987). This basis is exploited in the work of Buntine (1990) in
which he uses option trees to represent many (on the order ofhundreds) separate
decision trees and shows that the resulting clcissifications are superior to those
obtained by a greedy search for the single tree with highest posterior probability.
However, this research has not explicitly focused on understanding when multiple
models are likely to help and when they are not.

Previous theoretical work in learning multiple models includes Buntine's formula
tion ofgeneral Bayesian learning theory, Schapire's (1990) boosting algorithm and
the results from Hansen k Salamon (1990). Schapire's work proceeds on the basis
(proved in Hansen k Salamon, 1990) that models that make errors in a completely
independent manner will produce lower ensemble error. His boosting algorithm is
the only learning algorithm which incorporates the goal of minimizing correlated
errors during learning. However, the number of training examples needed by that
algorithm increases as a function ofthe accuracy ofthe learned models. Schapire's
method could not be used to learn many models on the modest training set sizes
used in this paper.

Other theoretical resultson the effects of using multiplemodels come from Hansen
k Salamon (1990) who prove that ifall models have the same probability of making
an error, and this probability is less than 0.5 and if they all make errors completely
independently then the overall error must decrease monotonically as a function of
the number of models. However, they do not say anything about the amount of
error reduction or about what happens if the errors do not occur in a perfectly
independent manner.

With the exception of Buntine (1990), most of the empirical work has been done
on a small number of domains (two: Kwok k Carter (1990); three: Kononenko
k Kovacic (1992); three: Smyth et al. (1990)). The small number of domains
used reduces the chance of accurately characterizing the conditions under which
the method works. Furthermore, although Buntine used many data sets, he did



K. AT.I AND M. PAZZANT

FOIL(POS-EGS,IEa-EGS.Positive-class-name,Arity):
Let LearnedDescription be the empty set
Until POS-EGS is empty do

Separate; (begin a nes clause)
Let head of leoClause be Positive-class-name(V_l,...,V_Arity)
Let body of lesClause be empty
Let lEG be lEG-EGS

Let POS be POS-EGS

Until legative is empty do:
Conquer: (build a clause body)
Choose the literal L that yields highest information gain
Conjoin L to body of leuClause
Remove from lEG negative examples that dont satisfy iesClause
Remove from POS positive examples that dont satisfy leeClause

End

Add leuClause to LearnedDescription
Remove from POS-EGS all positive examples that satisfy leoClause.

Return LearnedDescription

Table 1. Pseudo-code for FOIL.

not try to explain the variation in error reduction. By using twenty-nine data sets
from twenty-one domains we are better able to study what domain characteristics
are factors in error reduction (a data set being different from a domain in that
it also involves specifying parameters such 2is number of training examples, noise
levels and irrelevant attributes).

3. Methods for learning multiple class descriptions

We consider two methods for generating multiple class descriptions; stochastic hill-
climbing (Kononenko k. Kovacic, 1992) and deterministic learning from a ik-fold
partition of the training data (e.g. Gams, 1990). Although these methods are not
new, our goal is to show that results pertaining to error reduction, correlatedness
of errors (0e) and gain ties apply to more than one method of generating multiple
models.

The methods learn using extensions to FOIL (Quinlan, 1990) proposed in Ali k
Pazzani (1993) and Pazzani et al. (1991). Although FOIL is an algorithm that
learns cIjiss descriptions consisting of relational (first-order) clauses, in this paper
we are not concerned with issues pertaining to relational learning or inductive logic
programming (e.g. Dzeroski k Bratko, 1991). We present results on the interaction
of inductive logic programming and learning multiple models in (Ali & Pazzani,
1995).

The pseudo-code for FOIL is presented in Table 1. FOIL learns one clause (rule) at
a time, removing positive training examples covered by that clause in order to learn
subsequent clauses. This is referred to as the "separate and conquer" (Quinlan,
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1990) or "covering" (Michalski k Stepp, 1983) strategy. The basic FOIL procedure
learns as follows. A clause for a given class such as class-a is learned by a greedy
search strategy. It starts with an empty clause body which covers all remaining
positive and negativeexamples. Next, the strategy considers all literals that it can
add to the clause body and ranks each by the information gained (Quinlan, 1990)
if that literal were to be added to the current clause body. Briefly, the information
gain measure favors the literal whose addition to the clause body would result
in a clause that would cover many positive examples and exclude many negative
examples. The literal that yields the highest information gain is then added to
the clause body. The strategy keeps adding literals until either the clause covers
no negative examples or there is no candidate literal with positive information
gain. Positive examples covered by the clause are removed from the training set
and the process continues to learn subsequent clauses on the remaining examples,
terminating when no more positive examples are left.

FOIL only learns in data sets consisting of two-classes, one of which must be
identified as the "positive" class. FOIL learns a class description (a set of clauses)
only for the class identified asthe "positive" class. Thus, FOIL learns a single model
consisting of a single class description. FOIL uses the closed-world assumption
(Lloyd, 1984) for classification: if the test example matches the body ofany clause
learned for class "positive" then the example is assigned to class "positive." If it
fails to match any clause, FOIL uses the closed-world assumption and 2tssigns the
example to class "negative."

Theway we extend FOIL to learn a rule setfor each class isby treating examples of
all other classes as negative (we will refer to this as the multi-class FOIL procedure).
We prefer this way oflearning for multi-class data rather than learning a set ofrules
of the form:

class(Vi...Ki, X)
class(Ki.X)

..., X = class-a

... , X = class-b

because of a technical limitation with FOIL - there is no guarantee in FOIL that
the variable corresponding to the class (X) will appear in the body of the learned
clause. FOIL would have to be substantially modified to provide that guarantee.
Now we discuss two methods of learning several descriptions for each class in the
training data.

Stochastic Hill-climbing- Stochastic hill-climbing only involves modifying
foil's procedure for selecting which literal to add to the clause currently being
learned. Instead of picking the best literal (ranked according to some measure
such as information gain) stochastic hill-climbing stores all literals that are
within some margin, /?, of the best (we will refer to this set as the "bucket")
and then picks non-deterministically from among that set. The probability of
a literal being picked is proportional to its gain. By executing the multi-class
FOIL procedure stochastically several times, one can learn several different
models.
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This procedure generates k class descriptions by partitioning the training data
into k equal-sized sets and in turn, training on all but the j-th set. The multi-
class FOIL procedure is called k times and each time it learns a clciss description
for each clciss in the data set. fc-fold partition learning was first used by Gams
(1989) whose system learns ten models using 10-fold partition learning and
then combines them into a single model. By doing so, however, he is not able
to exploit the advantages of evidence combination from different descriptions.
Our version of this algorithm differs from Gams in retaining all rule sets and
using evidence combination to form overall classifications.

4. Methods for combining evidence

Our experiments compare four evidence combination methods: Uniform Voting,
weighted combination according to Bayesian probability theory (Buntine, 1990),
weighted combination according to Distribution Summation (Clark k, Boswell,
1991) and likelihood combination (Duda ei ai, 1979). Results using all four evi
dence combination methods and both learning methods are given in the appendix.
Our goal is to empirically demonstrate that our hypotheses about error reduction
apply for a wide variety of evidence combination methods.

Before describing evidence combination between descriptions of a given class, we
explain how classification occurs when only one model has been learned. Consider
Figure 2 and assume that only the first model has been learned. The rules in bold
typeface indicate the rules that have been satisifed for the current test example. The
figure indicates that for two rules of the description of class a, their preconditions
match the test example. The first of these rules covers four training examples of
class a. The figure also indicates that the first rule of the description of class b
covers six training examples of class b and that the preconditions of that rule did
not match the test example. Assume that some "reliability measure" (such as the
Laplace estimate (Kruskal k Tanur, 1987) of the accuracy of the rule) is attached
to each rule by the learning algorithm ( the Laplace estimate of the probability of
the event X = v which has been observed to occur / times in T consecutive trials
is (f + 1)/(T+k) where k denotes the number of possible values that X can take).
Although the figure shows three kinds of reliability measure associated with each
rule, each evidence combination method only uses one kind of reliability measure.
The rules associated with each clciss are sorted within that clciss with respect to the
reliability measure - most reliable first. The figure shows rules sorted with respect
to the Laplace estimate of the training accuracy of each rule. Then, for each class
in turn, each rule is matched with the test example, starting with the most reliable
rule. If the match is successful, the reliability measure of that rule is used to signify
the degree to which the system believes that the example belongs to that class.
Assuming that the Laplace estimate of the training accuracy of a rule is being used
as the reliability measure, the figure indicates that the degree of belief of class a
is 0.71 (using the more reliable of the two rules) and the degree of belief for class
b is 0.0. Finally, the example is classified to the class with the highest reliability
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1st model of data (posterior prob. = 0.02)

1stdescription ofclass a
a(X,Y)j(X), g(Y). Covers (7,0) LS = 5.0, Accu. = 0.89

a(X,Y) :• c(X,Z), i(Y). Covers (4,1), LS = 1.6, Accu. = 0.71

a(X,Y) :• k(Y,X),d(X). Covers (3,1), LS = 13, Accu. = 0.67

1stdescription ofclass b
b(X,Y)h(X,Y), f(Y). Covers (6,0), LS=11.2, Accu. = 0.88

.b(X,Y)n(X,y), f(Y). Covers (2,1). LS=2.4. Accu. = 0.60

2nd model ofdata (posterior prob. = 0.015)
2nddescription ofclass a

a(X,Y)j(X), d(Y). Covers (8,0). LS=S.6, Accu. = 0.90

a(X.Y)k(Y,X), i(Y). Covers (6,0), LS=4.4, Accu. = 0.88
2nddescription of classb

b(X,Y) in(X,V),f(Y). Covers (6,1), LS=S.2,Accu. = 0.78
b(X,Y)n(X,Y), i(Y). Covers (2,0), LS=4.8, Accu=0.75

Figure S. Comparison of evidence combination methods. "Covers (6,1)" for a rule for class 'b'
indicates that thebody ofthat rule is true for 6 training examples ofclass 'b' andfor 1 training
example of other class(es). The given accuracy is a Laplace estimate of the accuracyof the rule
as estimated from the training data.

Table S. Degrees of belief for four evidence combination methods. The composite degree ofbelief fora class is
obtained by summing the degrees of belief for that class over descriptions of that class.

Evidence comb,
method

Uniform Voting

Bayesian comb.

Descr. 1
class a

0.02 • 0.71

= 0.0142

Distribution sum. (4,1) + (3,1)
= (7.2)

Likelihood comb. 1.6

Descr. 2

class a

0.015 * 0.90

= 0.0135

Composite
class a

Descr. 1 Descr. 2

class b class b

0.02 * 0 0.015 • 0.78
= 0.0117

1.6x5.6x1.75 1

= 15.68

Composite
class b

1 X 5.2 X 0.57

= 2.96

measure (if no rule from any class matches the example, the example is classified
to the most frequent class in the training data).

(Note that at most one rule from each class influences the classification (Ali
k. Pazzani (1995) presents details on how to deal with recursive concepts in this
framework). We will refer to this as the "single, most reliable rule" bias. See Torgo
(1993) for empirical support for using this bias within each rule set.)
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When more than one model has been learned, classification proceeds by combining
degrees of belief for each class from all its descriptions and then finally comparing
those composite degrees of belief to those of the other classes. The four methods
we chose for evidence combination between class descriptions are:

• Uniform Voting - Each description votes with an equal weight to classify new
examples. For the example in Figure 2, class a receives two votes as both
descriptions of class a have at lecist one rule matching the test example. As
class h only receives one vote, this evidence combination method assigns the
test example to class a.

• Bayesian combination (Buntine, 1990) - In Bayesian combination, there are
weights associated with models (the posterior probability of the model) and
weights associated with rules (the accuracy of the rule). In the general form of
Bayesian combination, the test example, x, should be assigned to the class, c,
that maximizes

pr(c|x, T) — pr{c\x,T)pr{T\£}

where T is the model (hypothesis) space of all possible models, and x denotes the
training examples. pr{c\x,T) is the probability of class c given a test example
and a particular learned model T. pr(c|x,T) can be thought of £is the degree to
which T endorses class c for example x. For a "single, most reliable rule" bias,
we use the Laplace estimate of the training accuracy of the rule as an estimate
for pr(c|x,T). pr(T|x) denotes the posterior probability of the model (see All
& Pazzani (1995) for details on how Buntine's (1990) form for the posterior
probability of a decision tree is adapted to compute the probability for models
such as those described in this paper). Briefly, models whose class descriptions
are syntactically-compact and are well able to separate the training examples
of different classes end up with higher posterior probabilities.

The general Bayesian method is used in our "single, most reliable rule" frame
work as follows. As Figure 2 indicates, the first model has posterior probabil
ity 0.02 and the matching rule of cljiss a with highest accuracy hcis accuracy
0.71. The second model has posterior probability 0.015 and the accuracy of
the matching rule is 0.90. This gives a degree of belief for class a of 0.0277
(0.02 * 0.71 -|- 0.015 * 0.90). Doing the same for cl2iss b yields a degree of belief
of 0.0II7 for class b. Hence, the test example is assigned to class a. Therefore,
the example is cissigned to clciss a.

(Distribution Summation (Clark Boswell, I99I) - This method associates a
fc-component vector (the distribution) with each rule. The vector consists of
the numbers of training examples from all k classes covered by that rule. A
component-wise sum is formed over all satisfied rules of all class descriptions of
all clEisses) that match a test example to produce a combined vector. So, for
class a, (7,2) and (8,0) are summed to yield (15,2) and similarly the combined
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vector for class b is (6,1). These combined vectors are then compared and the
class corresponding to the highest value is chosen as the winning class. In this
case, the value of 15 for class a means the test example is assigned to class a.
This is the only evidence combination method of the four that has the ability
to use more than one rule per rule set.

• Likelihood combination - This method associates the "degree of logical suffi
ciency" (LS) (Duda et al., 1979) with each rule. In the context of classification,
the LS of a rule of Classi is defined as the ratio of the following probabilities:

pr(rule{T) = true | r g Classj)
pr{rule(T) = true \ t ^ Classi)

where r is a random example (the Laplace estimate of these probabilities are
used throughout). LS is a generalization of the notion that the body of a rule is
completely sufficient to conclude the head of the rule. These rules are combined
using the odds form of Bayes rule (the odds of a proposition with probability
p are p/(l —p)). If A/,- denotes the set of class descriptions for class i and Mij
denotes one such class description, then the posterior odds of Classi are given
by:

0{Classi\Mi) « 0{Classi) x 0(C/ass,|M,j)
j

where 0{Classi) are the prior odds ofC/ass,-. For the term 0{Classi\Mij) we
use the LS of the most reliable rule in Mij that matched the example. In our
illustration, class a had 14 of the 22 training examples for a "prior" probability
of 0.63 and prior odds of 1.75. Class b had 8 of the 22 examples for a "prior"
probability of 0.36 and prior odds of 0.57. As Table 2 shows, the posterior odds
of class a are obtained by multiplying the prior odds by the LS of the most
reliable matching rule in the first description of class a with the LS of the most
reliable matching rule in the second description of class a. This yields posterior
odds of 15.68 for class a and posterior odds of 2.96 for class b. Therefore, this
evidence combination method will assign the example to class a.

We chose Uniform Voting as a "straw man" method which the other methods
should be able to beat in terms of accuracy. We chose Bayesian combination be
cause it is an approximation to the optimal Bayes approach. In particular, if some
other method did better than this method that would implythat quantities in that
other method could be more reliably estimated from training data. Distribution
Summation was chosen because rules that cover more examples are given higher
weight in this method. As Muggleton ei al. (1992) have noticed, training coverage
of a rule is more closely correlated with its generalization error than is apparent er
ror (estimated from the trainingdata) for learning methods which take no measures
to avoid overfitting the training examples. Finally, we chose likelihood combination
because the logical sufficiency measure has the flavor of measuring both coverage
and accuracy. Most of the rules learned by the multi-class FOIL procedure cover
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no negative training examples. Under these conditions, apparent accuracy and ap
parent LS rank rules differently. Apparent accuracy ranks rules in order of the
number of positive examples covered whereas apparent LS ranks rules in order of
the fraction of positive space covered. Accordingly, we find that rules of minor
classes are given relatively higher weights under the LS scheme.

5. Empirical Analyses

For our experiments we chose domains from the UCI repository of machine learning
databases (Murphy & Aha, 1992) ensuring that at least one domain from each of the
major groups (molecular biology, medical diagnosis ...) was chosen. These include
molecular-biology domains (2), medical diagnosis domains (7), relational domains
(6 variants of the King-Rook-King (KRK) domain, Muggleton et ai, 1989), a chess
domain with a "small disjuncts problem" (KRKP; Holte et ai, 1989), and attribute-
value domains (4 LED variants and the tic-tac-toe problem).

For most of the domains tested here, we used thirty independent trials, each time
training on two-thirds of the data and testing on the remaining one-third. The
exceptions to this are the DNA promoters domain for which leave-one-out testing
has traditionally been used and we follow this tradition to allow comparability with
other work. Other exceptions are trials involving the King-Rook-King domain. For
this domain, the training and test sets are independently drawn (rather than being
mutually exclusive) from the set of all 8® board configurations. There is little chance
of overlap between training and test sets at the sample sizes we use. Whenever
possible we tried to test learned models on noise-free examples (including noisy
variants of the KRK and LED domains) but for the natural domains we tested on
possibly noisy examples.

5.1. Does using multiple rule sets lead to lower error?

In this section we present results of an experiment designed to answer the first of
the questions listed in Section 1;

What effect does the use of multiple descriptions per class have on claissifica-
tion error as compared to the error produced by learning a single description
per class?

For this experiment, the Stochastic and Partition methods were used to learn eleven
models (we chose a odd number to prevent ties from occurring for the Uniform
Voting combination method for two-class domains). Although most of the results
in the following sections are given for eleven models, we also performed experiments
using one, two and five models. Figure A.l in the appendix shows the effect of
varying the number of models on classification accuracy.

For the Stochastic method, all literals that had gain at least 0.8 ( /? = 0.8) as
large as that of the best literal were retained (see Section 5.6 for results on the
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Table 3. Comparison oferrors produced by a single description versus two methods (stochastic hill-
chmbing and /:-fold partition learning) of learmng multiple descriptions. Eleven models were used, using
the likelihood evidence combination method. A '+' indicates that the accuracy ofmultiple models was
sigmHcantly higher thanthat of thesingle model. A indicates the accuracy was significant lower. An
asterisk indicates that the accuracy of the single model version was not significantly better than guessing
the most frequent class.

Domain

Led 8i

Led 17i

Tic-tac-toe

Krkp
Krk lOOe

Krk 200e

Krk 160e 5a

Krk 320e 5a

Krk 160e 20c

Krk 32De 20c

Led 20a

Led 40a

Default

Accuracy
Single

Description
Accuracy

11 Stocliastic

Descriptions
Accuracy

+ 96.4%

+ 94.6%
+ 99.8%

+ 95.5%
95.6%

98.9%

+ 86.8%
+ 92.5%

96.8%

+ 97.8%

+ 96.1%
+ 94.9%
+ 98.9%

92.4%

+ 92.3%

+ 87.1%
79.2%

+ 83.9%

+ 80.5%

+ 73.9%
- 67.2%

55.2%

38.2%

11 Stochastic 11 Partition
Descriptions Descriptions
Error Flatio Error Ratio

Number of

training
examples

effect of varying the bucket size). For the Partition method, k was set to the
same number ofmodels (eleven) as used during stochastic hill-climbing. For each
description generation method, we tested all four evidence combination schemes.
The results ofusing likelihood combination on stochastically-generated descriptions
are presented in Table 3. Results using all four evidence combination methods and
both learning methods are presented in the appendix.
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Table 3 compares the accuracies obtained by using a single deterministically
learned description to the accuracies obtained by using eleven descriptions. The first
column indicates the domain name. Trailing suffixes indicate number of irrelevant
attributes (i), numberof training examples (e), percentage of attribute noise (a) or
percentage of class noise (c) {x% class noise means that the class assignments of x%
oftheexamples were randomly reassigned - for a two class problem, this means |%
of the examples will bear incorrect class labels). The second column indicates the
accuracy that would be attained by guessing the most frequent class. An asterisk
signifies that the accuracy of the single description method was not significantly
better than guessing the most frequent class. The third column indicates the ac
curacy obtained by using the multi-class FOIL procedure (using information gain)
to deterministically learn a single description. The next two columns indicate the
ratio {Er = Eg/E,) between the error obtained by learning multiple descriptions
(Eg) over the error obtained by learning a single description (E,). A '-I-' indicates
a significant (using the paired 2-tailed t-test at the 95% confidence level) reduction
in error, a indicates a significant increase. For the DNA domain, the t-test is
not applicable because we used leave-one-out testing. For this domain, we used a
sign-test (DeGroot, 1986).

The data sets are grouped as follows: the first group contains noise-free training
data from artificial concepts (for which we know the true class descriptions), the
second group contains noisy data from artificial concepts the third contains data
sets from molecular biology domains and the final group contains probably noisy
data from medical diagnosis and other "real world" domains. The domains in the
last group are sorted so that those with the highest single model accuracies appear
first.

Table 3 shows that stochastic search using likelihood combination is able to sta
tistically significantly (95% confidence) reduce or maintain error on all domains
except the (Ljubljana) breast-cancer domain. On that breast cancer data set few
learning methods have been able to get an accuracy significantly higher than that
obtained by guessing the most frequent clciss suggesting it lacks the attributes rele
vant for discriminating the clcisses. The table shows that for approximately half the
data sets, error is reduced by a statistically significant margin when using models
learned by stochastic search and combined with likelihood combination. The ap
pendix shows that the other evidence combination methods and learning methods
also lead to statistically significant error reductions. There is no significant change
in error for most of the other data sets - on very few occasions does the multiple
models approach lead to a significant increeise in error.

Another striking aspect of the results presented in Table 3 is that the error is
reduced by a factor of 6 for the wine data set (representing an increase in accuracy
from 93.3% to 98.9%!) and by large (around 3 or 4) factors for LED and Tic-tac-
toe. The molecular biology data sets also experienced significant reduction with the
error being halved (for DNA this represented an increase in accuracy from 67.9%
to 86.8%). The error reduction is least for the noisy KRK and LED data sets and
for the presumably noisy medical diagnosis data sets. Eighty percent of the data
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sets which scored unimpressive error ratios (above 0.8) were noisy data sets. This
finding is further explored in Section 5.4 in which weexplore the effect of class noise
on error ratios. The fact that the best error ratios were obtained on the noise-free
and molecular biology data sets holds for all four of the evidence combinations
schemes we used and both description generation methods (see appendix).

The LED domain, in particular, gives us some insight into the effect of irrelevant
attributes and class noise on error ratios. As the table shows, learning multiple
descriptions helps a lot in reducing errors of the LED data sets with irrelevant
attributes. For eight irrelevant attributes, the error is reduced from 12.8% to just
3.6%. This suggests that when irrelevant attributes are present, using multiple
descriptions provides a substantial benefit. Backing up this hypothesis are also
the DNA and Splice domains for which the error is reduced by a large factor.
These domains have many (57 for DNA, 60 for Splice) attributes some of which
are probably irrelevant. These observations led us to more carefully investigate the
effect of irrelevant attributes on error ratio. The results of those investigations are
presented in Section 5.5.

Although error ratios for the noisy data sets represent a statistically significant
reduction in error, the ratios are not as impressiveas they are for noise-free domains
containing irrelevant attributes. Again, the LED data sets provide some insight.
The LED variants presented in the table differ by two dimensions: the variants
with irrelevant attributes have no noise and the noisy variants have no irrelevant
attributes. The LED results suggest that the error ratios obtained through the use
of multiple descriptions become less beneficial as the amount of noise increases.
This issue is explored in detail in Section 5.4.

In summary, the answer to the question for this section ("What effect does the use
of multiple descriptions have on classification error?") is that the use of multiple
descriptions leads to significant reductions in classification error for about half of
the data sets tested here. For most of the other data sets, the error does not change
significantly. Therefore, most of the time, the multiple descriptions approach helps
significantly or does not hurt. This is true for both description generation methods
and all four evidence combination methods tried here. The table in the appendix
presents results for the other generation methods and evidence combination meth
ods.

5.2. Link between error reduction and correlated errors

In this section we explore the following question:

What is therelationship between theamount ofobserved error reduction (as
measured by error ratio) and the tendency of the learned models to make
correlated errors?

Hansen k Salamon (1990) first introduced the hypothesis that the ensemble of
models is most useful when its member models make errors totally independently
with respect to every other model in the ensemble. They proved that when all
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Table 4. Contingency tables (one per class) for each pair of models are sufficient to
capture the interplay of classification patterns of a pair of models. Row indicates
the class predicted by model t, column indicates class predicted by model j,
bold typeface indicates test examples correctly classified by both models. This
illustration assumes that 100 test examples of each class were used. Tliis set of
contingency tables is jtist for one pair of models. Given that M models were
lettmed, there will be A/ x (M —1) such sets of contingency tables.

Test eg.s of
class #1

Test eg.s of
class #2

Test eg.s of
class ^3

Model j's predictions
classl class2 classS classl cltiss2 class3 classl class2 class3

classl 86

class2 3

class3 2

0 1

83 5

2 6

1 0 1

3 7 4

2 0 82

the models have the same error and that error is less than 0.5 and they make
errors completely independently that the expected ensemble error must decrease
monotonically with the number of models. The question we explore here is more
general firstly because it does not assume that the errors are made completely
independently and secondly because it attempts to explain the amount of error
reduction in terms of a measure {(pe) of the correlatedness of the errors of the entire
ensemble.

Now we present a precise instantiation of the concept: "the degree to which the
errors made by models of the ensemble are correlated." In our approach, we will
compute a correlation for each pair of models in the ensemble and will be the
average of all those pairwise correlations. Let denote the correlation between
the i-th and j-th models and let C denote the number of classes in the data set.
In order to compare the classifications made by model i with those made by model
j consider a set of C contingency tables. The n-th contingency table captures the
clcissification pattern between model i and model j for test examples of the n-th
cltiss.

The contingency tables can be read as follows. The 86 in the (1,1) (top-left) cell
of the first table indicates that on 86 test examples of class 1, the i-th and j-th
models both classified such test examples as class 1. Hence the bold numbers in the
tables represent the numbers of test examples correctly classified by both models.
The row index corresponds to the class predicted by model i and the column index
corresponds to the prediction of model j. Therefore, the table indicates that for 3
test examples of class 1, model i made an error and predicted class 2, whereas model
j correctly predicted class 1 for those 3 test examples. Clearly, then, the diagonal
elements that are not in bold indicate the number of occstsions on which both

models made correlated errors (i.e. the same kinds of errors). <j)ij then, is defined
to be the fraction of test examples for which both models made the same kind of
error. In this illustration, we have <j)ij = ((4 -|- 2) -|- (3 -t- 6) -I- (1 -f 7))/300 = 0.077.
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Uniform Voting

y = 0.32046 + 0.11459* = 0.562

0 1 2 3 4 5 6
Percentage Same Error

Figvre S. Plot of error ratio as afunction of 100 X0e- One point represents one data set. Learning
method: stochastic hill-climbing, evidence combination method: Uniform Voting).

In general, if n.ji; denotes the l-th diagonal cell (starting from top left) in the
I;-th contingency table for the pair (t, j) of models and C denotes the number of
classes (hence, also, the number of contingency tables per pair of models), then

t=l

and letting M denote the number of learned models, we have

1 c c

> i=i

Figure 3plots error ratio as a function of<j>g for all domains for which the multiple
models approach led to a statistically significant decrease in error (we restrict our
analysis to those domains for which error declined significantly because we are
propsing <j)g as &model of error reduciion). The linear correlation coefficient (r)
between error correlation (i^e) and error ratio {Er) can be used to measure how
well (f>g models error ratio. Of the 29 data sets used in this study, significant error
reduction was obtained (when using stochastic learning and Uniform Voting) on 15
data sets. Error did not increase significantly for any of the remaining 14 data sets.
The r of 0.56 in the Figure shows that 56% of the variance in error ratio can be



K. AM AND M. PAZZANI

Table 5. Ranges of leave-one-out estimates of between error ratio and
(the tendency of models to make correlated errors).

Uniform Bayesian Distribution LikeUhood
Voting combination Summation combination

Stochastic

Hill-climbing [0.54,0.61] [0.47,0.71] [0.37,0.52] [0.38,0.48]

fc-fold Partition

Learning [0.55,0.66] [0.27,0.56] [0.28,0.46] [0.29,0.56]

explained by the tendency of members of the ensemble to make correlated errors
For the other evidence combination methods, the values were 56% (Bayesian

combination), 43% (Distribution Summation) and 41% (Likelihood combination).
When it-fold partition learning was used, the values were 60% (Uniform Voting),
40% (Bayesian combination), 35% (Distribution Summation) and 41% (Likelihood
combination). This is quite encouraging given that the data sets vary widely in
type of class description, optimal Bayes error level, numbers of training examples
and numbers of attributes. Another point to note is that (pe is a pairwise mecisure,
whereas what the error rate under Uniform Voting counts is the proportion of the
test examples on which at leeist half of the members in the ensemble make an error.

How stable are these estimates of r^? In particular, is it possible that we are able
to get such a high simply because of one point luckily appearing near the line
of best fit? In order to mecisure the stability of these estimates of r^, for each of
the eight combinations of learning method and evidence combination method we
calculated twenty-nine values - each time calculating what the would be if
one of the 29 data sets were left out. This analysis (Table 5) shows that the
values presented above do not depend critically on any single data set. We also
performed significance tests to compute the likelihood of the observed results under
the null hypothesis (that the population correlation, p, equals 0). The tests showed
that the likelihood of our data given Ho was less than 0.01 for each of the eight
combinations of learning method and evidence combination method. Therefore, we
can conclude that there is a significant linear correlation between error ratio and
the tendency to make correlated errors for all the learning methods and evidence
combination methods used in this study. When (pe is small, multiple models have
a substantial impact on reducing error. In Sections 5.4 and 5.5 we investigate how
class noise and irrelevant attributes affect 4>e and consequently the amount of error
reduction achieved by multiple models.

In order to gain insight into why <pe explains so much of the variance in error ratio
consider the simpler problem of modeling variation in error within a given data set
(this removes possibly confounding variables such as optimal Bayes error rate that
vary from one data set to another). Assume that N trials have been conducted
to yield N ensemble error values. Assume that the simplest evidence combination
method (Uniform Voting) is used and that the data set contains two classes and that
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the ensemble contains just two models. In this situation, an ensemble error occurs
if both the models make an error or if the models disagree and the tie is broken so
as to cause an error. Assume that a tie will occur for a negligible proportion of the
test examples. Under these assumptions, (j), is an exact measure of ensemble error
(Ee).

As (f)e is a pairwise measure, how well it models within-dataset ensemble error
depends on the size of the ensemble. It is a better model of ensemble errors for
ensembles ofsmaller size. The evidence combination method also affects the ability
to model ensemble error using <j)e. (j)^ is a better model of ensemble error obtained
by Uniform Voting than it is for evidence combination methods in which different
models are given different "voting" weights.

5.3. Gain ties and error reduction

<t>e provides a post-hoc way of understanding why the multiple models approach
reduces error more for some domains than for other domains. In this section, we
explore whether we can approximately predict the amount of error reduction due
to the use of multiple models. We explore the following question:

Can the amount oferror reduction observed for a data set be predicted from
the number of ties in gain experienced by the learning algorithm on that
data set?

The motivation for postulating this hypothesis is the observation that each time
the stochastic generation method is run, it uses the same training data. However,
it is able to generate different descriptions because it randomly picks from the
literals whose gain is within some factor /?(/?€ [0,1]) of the gain of the highest
literal. If there are many such literals then the possibility for syntactic variation
from description to description is greater. The greater syntactic diversity (e.g.
Kwok and Carter, 1990) may leads to less correlation of errors (as measured by
d)e, for instance) which in turn may lead to lower (i.e. better) error ratios. As
a first approximation measure of the amount of syntactic variety in a data set
as experienced by a learning algorithm, consider the number of literals that tie
for the highest information gain. If n literals tie for gain, that event is recorded
as representing n —1 ties in gain. The total number of ties experienced during
learning a model is then divided by the number ofliterals in the model to produce
the quantity g, the "average number ofgain ties" for that dataset. Alarge number
ofsuch ties are a problem for a hill-climbing deterministic learner but represent an
opportunity for the multiple model learner. Figure 4 plots error ratio as a function
of average gain ties (each point represents results for one data set from Table 3).
The figure shows that some of the largest reductions in error are obtained for data
sets for which such ties are frequent (on average, there were 5.1 gain ties on the
wine data set, 6.6 for the DNA promoters data set and 2.5 for the Splice data
set). However, the figure also shows that a high average value for ties in gain is
not a necessary condition for significant reduction oferror. For example, multiple
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Figure 4- Error ratio as a function of average gain ties for decision trees (left) and rule sets
(right). The ensembles of decision trees contained eleven, stocliastically learned decision trees
with respect to the entropy gttin function. The ensembles of eleven rule sets were learned using
stochastic hiU-climbing and combined using likelihood combination. Similar plots are obtained
for other evidence combination methods and the other learning method.

models are able to achieve low error ratios on the Tic-Tac-Toe and the noise-free

LED variants (bottom left of figure) even though there are not many ties in gain
for those data sets.

In summary, the answer to the question posed in this section is that if the number
of gain ties experienced on average for a data set is large (say 2 or more) then that
data set will benefit quite a lot (i.e. have its error reduced by at leaust 40%) from
the use of multiple models. In our experiments, we have seen no exceptions to this
trend. However, if the number of gain ties is small, the amount of error reduction
cannot be predicted. As Figure 4 shows, these results are not just true for the
particular core algorithm used here (the multiclaiss FOIL procedure) - they are also
true when eleven decision trees are generated using a stochastic search variant of
"vanilla" IDS (no pruning and using information gain).

5.4. Effect of class noise

The results of Section 5.1 showed that the majority (80%) of data sets for which
unimpressive error ratios (above 0.8) were recorded were data sets with significant
amounts of noise. Furthermore, experiments on the LED domain provided prelim
inary evidence that the addition of attribute noise increases (worsens) error ratios.
In this section we follow up on that hypothesis by asking:

How does increasing the amount of class noise affect the amount of error
reduction?

We choose to study the effect of class noise rather than attribute noise because
attributes in some domains have more values than attributes in other domains and
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Table 6. Effect of increasing class noise on error ratios (using 11 stochastically-learned models and
Uniform Voting for evidence combination). Similar plotsare obtained for other evidence combination
methods and the other learning method.

KRK 100 KRK 100 TTT 200 TTT 200
Noise Err. ratio <t>e Err. ratio

10% .85 3.6% .70
20% .88 5.0% .77

30% .98 7.0% .92

40% .95 8.9% .95

BC-Wisc. BC-Wisc.
Err. ratio <t>e Err. ratio <t>e

.23 1.5% .55 2.7%

.30 2.5% .56 3.6%

.48 4.1% .62 4.4%

.53 5.2% .69 5.5%

Table 7. Distribution of ensemble errors as a function of the number of models correctly
classifying a test example. Learning method: stocliastic liill-climbing; evidence combination
method: Uniform Voting. Eleven models were combined using Uniform Voting soan ensemble
error occurs if five or fewer of the models made an error.

Nmnber of modeb

got test eg. correct
BC. Wise.

10% noise
BC. Wise.

10% noise
BC. Wise.

40% noise
BC. Wise.

40% noise

% of ensemble Cxunulative % of % of ensemble Cumulative % of
errors ensemble errors errors ensemble errors

15.4%

23.1%

43.6%

51.3%
66.7%

100.0%

27.6%

38.8%
51.0%

69.4%
83.7%

100.0%

an attribute with fewer values is more likely by chance to have large information
gain. Therefore it would not be easy to compare levels of attribute noise across
domains.

Table 6 shows the effect of adding class noise to four very different kinds of data
sets (noise was only added to the training data). We chose the wine and tic-tac-toe
data sets because the multiple models approach was able to reduce error by a large
amount (error ratios of 0.16 and 0.22 respectively) for these data sets. We wanted
to see if this advantage would be eroded by the addition of noise. The table shows
that for each of the four chosen data sets the advantage yielded by the multiple
models approach lessens as class noise is increased.

More careful examination of the patterns of errors of models in the ensemble
shows that at 40% noise, a relatively large proportion of the test examples on
which the ensemble made an error were incorrectly classified by all the models in
the ensemble. That is, as noise increases, some ofthe examples become "hard" for
all the ensembles.

In a follow-up experiment (Table 7), we studied the distribution of the ensemble
errors. We wanted to know what proportion ofthe ensemble errors were caused by
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0.2 0.4 0.6 0.8 1.0

Error ratio (0% class noise added)

Figure 5. Comparison of error ratios at 0% added cltkss noise and 40% added noise. Learning
method: stochastic hill-climbing; evidence combination method: Uniform Voting.

all the models making an error and what proportion were caused by a narrow ma
jority of models making an error. The first column indicates the number of models
that correctly classified the test example. The remaining columns are arranged in
two groups. Columns two and three present results for 10% class noise, the Ijist two
columns present results for 40% noise. The t-th row corresponds to test examples
that were correctly classified by i (out of 11) models. The first column in each
set indicates the number of test examples characterized by that situation. Let a
m/n split indicate the situation for a test example where m models make a correct
classification and n make a mistake (m -f- n = 11). Therefore, the table indicates
that a 0/11 split occurred on 15.4% of the test examples after learning with 10%
class noise and it occurred on 27.6% of the test examples after learning with 40%
class noise. Therefore, the table indicates that that as noise level increases, all the
models miscleissify a test example on a greater proportion of the test examples for
which an ensemble error is made. This indicates that as noise level increases, some
test examples become more difficult for all the models.

Figure 5 compares the error ratio (11 models, stochastic learning. Uniform Voting)
with 0% added noise to that with 40% added noise. In each case, the addition of
noise causes the error ratio to go towards 1 indicating the erosion of the advantage
of the multiple models approach.

In summary, the answer to the question of this section ("How does increasing the
amount of class noise affect the amount of error reduction?") is that increasing class
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Table 8. Error ratio as a function of number of added boolean irrelevant attributes (using Uniform Voting of eleven
stoAMticaUy generated models). The number below each data set identifier indicates the number of training examples
5a indicates 5% attribute noise. Similar results are obtained for other evidence combination methods and the other

leeuTung method.

KRK

100

Avge.
gain ties
0.42

0.47

0.55

0.96

KRK 5a

160

Error

Ratio

0.81

0.67

0.64

0.55

KRK 5a

160

Avge.
gain ties
0.54

0.58

0.59

1.00

Splice
200

Avge.
gain ties
2.51

2.78

2.93

2.81

BC. Wise.

200

Error

Ratio

0.55

0.53

0.45

0.41

BC. Wise.

200

Avge.
gain ties

0.85

0.45

0.67

1.19

noise causes the multiple models approach (at least as described in this paper) to
produce poorer (higher) error ratios. Extrapolation ofthese results suggests that at
100% noise the error ratios for all datasets would be 1.0. This makes sense because
the training data contains no discrimination information so there is no reason to
expect the multiple models approach to do better than the single models approach.

5.5. Effect of irrelevant attributes

The experiments presented in Section 5.1 provide preliminary evidence that the
addition of irrelevant attributes has the effect of lowering the error ratio. That is,
the benefit of using the multiple models approach increases with increasing numbers
of irrelevant attributes. In this section we describe further experiments to explore
this question:

How does increasing the number of irrelevant attributes affect the amount
of error reduction?

To study this question, we added varying number of boolean irrelevant attributes
to the Tic-tac-toe, King-Rook-King, Breast Cancer Wisconsin and Wine data sets.
We chose boolean attributes rather than constructing irrelevant attributes whose
values were domain specific because the attributes in some data sets can take on
many more values than attributes in other data sets. Attributes that can take only
a few values are more likely by chance to have high information gain than attributes
that can take on many values.

Table 8 corroborates the hypothesis that the multiple models approach is able
to attain especially impressive error reductions when many irrelevant attributes
are present in the data. The table shows that error ratio decreases as a function
of increasing numbers of irrelevant attributes. To understand this, consider the
Uniform Voting evidence combination scheme. For the multiple models approach
to make an errordue to irrelevant attributes, at least halfofthe learned models need
to involve an irrelevant attribute that leads to a classification error. If the number

Wine

118

Avge.
gain ties

T03
6.61

23.1

104.2
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0.0 0.2 0.4 0.6 0.8 1.0

Error ratio with 0 added irrelevant attributes

Figure 6. Comparison of error ratios with 0 added irrelevant binary attributes emd 50 added
irrelevant binary attributes. Learning method; stoclitistic hill-climbing; evidence combination
method: Uniform Voting.

of irrelevant attributes is not too large, it is unlikely that at least half of the models
will be affected in this manner. Therefore, the multiple models approach will not
make an error in this situation. But the single model approach need only make a
mistake due to learning a rule involving an irrelevant attribute early in its separate
and conquer strategy for most of the subsequent rules to go off track. Hence the
single model approach is much more likely to suffer due to irrelevant attributes.
Figure 6 extends the irrelevant attributes experiment to all 29 data sets. It plots
the error ratio obtained after the addition of 50 irrelevant binary attributes against
the error ratio before the addition of any irrelevant attributes. The fact that most
of the plotted points lie below the diagonal indicate that for most of the data sets
adding irrelevant attributes leads to smaller (better) error ratios.

Table 8 also shows that the average number of gain ties experienced increases as
the number of irrelevant attributes increases. This confirmsthe results (Section 5.3,
Figure 4) that better (lower) error ratios are obtainable for data sets where the
learning algorithm experiences more gain ties.

Consider, however, what would happen if an arbitrarily large number of irrelevant
attributes were to be added to a data set. By adding enough irrelevant attributes,
one could force all the learned models to go astray. In this situation, one would
expect that the error ratio should go to 1 as both the deterministic and multiple
models approaches would perform at chance level. Hence, we predict that for
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Table 9. Error ratio as a function of number of added boolean irrelevant at
tributes for small samplesizes (usingensemblesofelevenstochastically-learned
models; combined with Uniform Voting). The number below each data set
identifier indicates the number of training examples.

Number of irrel. KRK 5% attr. BC. Wisconsin
attributes 20 20 20 20 20

0 1.00 0.98 1.00 0.68 0.44
3 0.99 1.06 0.91 0.67 0.45
20 1.08 1.01 0.92 0.68 0.59
50 0.95 0.97 0.92 0.65 0.64

large enough numbers of irrelevant attributes the error ratio tvould increase with
increasing numbers of irrelevant attributes. This hypothesis is difficult to test with
datasets ofreasonable size because such data sets tend to have literals with high
information gain and one needs exponentially many irrelevant attributes for an
irrelevant attribute to have higher information gain purely by chance. So, to test
this hypothesis, we performed 100 trials with training sets ofsize 20. Inparticular,
we were interested to see if the exceptionally low error ratio obtained on the wine
data set could be made to increase with increasing numbers of irrelevant attributes.
Table 9 shows that for very small training set sizes, adding irrelevant attributes
makes no significant difference to error ratios in 4 domains and increases the error
for the wine data set thus validating our hypothesis.

In summary, the answer to the question posed in thissection ("How does increas
ing the number ofirrelevant attributes affect the amount oferror reduction?") is
that error ratios initially decrease as irrelevant attributes are added thus providing
an opportunity for the multiple models approach. However, beyond some point,
adding irrelevant attributes will begin to hurt the multiple models approach and
error ratios will begin increasing towards 1. In the limit, neither the single model
approach or the multiple models approach will be much use, and the error ratio
will be 1.

5.6. Effect of diversity

In this section we explore the following question:

Does increasing the diversity of the models necessarily lead to greater re
duction in error?

This question is motivated by the conclusions in Kwok k, Carter (1990) in which
they show (on two domains) that ensembles consisting ofmore (syntactically) di
verse decision trees are able to achieve lower error rates than ensembles consisting
of less diverse decision trees.
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Table 10. Effect of varying diversity on the tendency to make correlated errors and ac
curacy (learning method: stochastic hill-cUmbing; evidence combination method: Uniform
Voting).

Domain Accuracies

Bucket Bucket Bucket Bucket Bucket Bucket Bucket Bucket

size size size size size size size size

4 6 8 20 4 6 8 20

LED-8 95.1 95.1 93.1 92.3 0.62% 0.62% 0.68% 0.71%

KRK 100 93.9 93.1 93.0 92.1 1.10% 2.46% 2.55% 2.94%

Iris 94.4 94.3 94.5 94.5 1.93% 1.74% 1.59% 1.57%

Diabetes 73.9 74.3 74.1 74.2 8.09% 8.01% 7.95% 7.81%

Splice 93.3 92.9 92.9 90.9 1.38% 1.50% 1.60% 2.01%

In this experiment, we modified the stochastic hill-climbing algorithm slightly by
allowing the user to specify a fixed bucket size. The choice of literal is still made
stochastically from the bucket so that elements with higher gain have a proportion
ately higher chance of being selected. The only difference to previous experiments
is that the bucket size is specified by the user in advance. Larger bucket sizes lead
to ensembles whose members are more syntactically diverse. We chose a variety
of domains for this study: LED-8 and KRK 100 are noise-free, Diabetes and Iris
may contain class and attribute noise and the Splice domain may contain classes
which can be succintly described with "m of n" rules (e.g. Spackman, 1988). Ta
ble 10 shows the accuracies obtained by combining eleven stochastically generated
models using the Uniform Voting evidence combination method. Our hope is that
increasing the bucket size (learning more diverse models) will lead to an increase
in ensemble accuracy. However, as Table 10 shows, increasing the bucket size leads
does not always lead to an increase in ensemble accuracy. It leads to a decrease
in accuracy for the KRK (100 examples), LED (8 irrelevant attributes) and splice
data sets. To achieve higher accuracy, the models should be diverse and each model
must be quite accurate. In fact, it is easy to produce uncorrelated errors by learning
less accurate models.

A more detailed examination of the results shows that many equally accurate
models were learned for the Iris, Diabetes and Splice domains by increasing the
bucket size. But for the noise-free, artificial concept data sets (Led-8 and "KRK
100") increasing the bucket size led to a few accurate models and many less accurate
models. For LED and KRK, we know the target definitions so we know that
all the relevant attributes are presented to the learning algorithm. Maybe for
these data sets, all the very accurate models that can be learned are syntactically
similar so increasing syntactic diversity leads to the learning of less accurate models.
Increasing the bucket size increases the probability that the literal chosen will not
be the one with the maximum gain and maybe this is a bad strategy when there is
no noise and all the relevant attributes are present (LED-8 and "KRK 100") and
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the sample size is large. This experiment suggests that although theory prescribes
evidence combination from all models in the model or hypothesis space (Buntine,
1990), in practice only a small number of models are learned and so it may be
necessary to screen out less accurate models in order to maximize overall accuracy.
The accuracy ofa model could be estimated by dividing the training set into two
parts: the actual training data and the "hold-back" set. The models could be
learned on the actual' training data and their accuracies could be estimated on
the hold-back set. This method, however, would not provide an advantage if
there are too few training examples to partition the training data in this manner.

To summarize, our experiments indicate that in order tominimize ensemble error,
it isnecessary to balance increcised diversity with competence - ensuring the diverse
members of the ensemble are all competent (accurate). The "hold-back" approach
would seem to be an obvious approach. However, for some ofthe datasets presented
here, not using a hold-back set might yield higher accuracy when the size of the
training set is small.

6. Previous work

Schapire s boosting algorithm (Schapire, 1990) is the only learning algorithm which
explicitly attempts to learn models that make errors statistically independently. In
the boosting algorithm, the first learned classifier, hi, is learned on some subset of
the training data. Next, the classifications made by hi are tested on more training
examples and a new training set is constructed such that 50% ofthe new training
set consists of examples correctly classified by hi and 50% consists of misclassified
examples. A new classifier, /12 is learned on this new training set. In the final
step, a third classifier is learned on a training set 50% ofwhich consists oftraining
examples on which hi and /12 agree and 50% ofwhich consists oftraining examples
on which they disagree. The final ensemble consists of (/»i,h2ih3)- Schapire's
method could not be used to learn many models on the modest training set sizes
used in this paper because the number of training examples required increases as a
function of the accuracy of hi and /j2-

The only previous work involving learning re/afiuna/multiple models (apart from
our own, Ali k Pazzani, 1995) has been done by Kovacic (1994). Kovacic shows
that learning multiple models (using simulated annealing) on the KRK and Finite-
element mesh data sets yields significantly lower error rates than his single model
learning algorithm (mPOlL).

Previous work related to the effect of noise and multiple models includes that of
Kovacic (1994) and Gams (1990). Our observation that error ratios asymptote to I
as (class) noise is added is consistent with results tabulated in (Kovacic, 1994) and
(Gams, 1990) although those authors did not explore the issue in detail as they did
not attempt to explain the variation in error reduction from one domain to another.

Previous work on diversity and multiple models has been done by Kwok k Carter
(1990) in which they showed that allowing the root of a decision tree to vary from
model to model produces morediverse and moreaccurate ensembles than if decision
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trees of the ensemble are forced to share the same root. Our work builds on this

by showing that in some situations one is forced to trade-off diversity for accuracy
- in such situations many syntactically-diverse and accurate models may not exist.
Buntine (1990) also presents results in which option trees are able to achieve better
error rates than ensembles of less diverse trees obtained by different way of pruning
a single, initial tree.

7. Conclusions

Our experiments confirmed previous work that using multiple descriptions lowers
the generalization error. Because our experiments used a large sample of data sets
from the UCI repository we were able to find three data sets (not previously used
in multiple models work) for which the multiple models approach offers striking
error ratios: 1/7 for wine, 1/5 for tic-tac-toe and 1/2.5 for DNA (the 1/7 ratio was
obtained using Uniform Voting and stochastic learning). However, multiple models
work in ways different to those we had anticipated. In particular, they were better
at reducing error on tasks which were already fairly accurate (reduced error for Tic-
tac-toe from 1% to 0.2%) than they were at reducing error on noisy domains. Such
noisy data sets may be called "data-limiting." However, when the limiting factor
is not the noise or difficulty of the data, the multiple models approach provides an
excellent way of achieving large reductions in error (by factors of up to seven (on
the Wine data set using stochastic learning and Uniform Voting)). One situation in
which this occurs is for data sets with many irrelevant attributes. The information
necessary to differentiate the clcisses is present in the data but the deterministic
hill-climbing learning algorithm may have difficulty finding it. On such ("search-
limiting") data sets, the multiple models approach does increasingly better (than
the single model) as the number of irrelevant attributes is increased. We also
find that the average number of gain ties experienced increases as the number of
irrelevant attributes increases. This confirms our earlier results that the multiple
models approach does especially well when there are many gain ties. Beyond some
point, however, adding irrelevant attributes begins to hurt the multiple models
approach. In the limit, neither the single model approach or the multiple models
approach will be much use, and the error ratio will be 1.

We have shown that there is a substantial (linear) correlation between the amount
of error reduction (as measured by error ratio) due to the use of multiple models
and the degree to which the errors made by individual models are correlated (^e)-
Therefore, we conclude that a major factor in explaining the variance in error
reduction is the tendency of the learned models to make correlated errors. The
greater the tendency to make correlated errors, the less impressive the error ratios.
But why is it possible to learn models that do not make correlated errors for some
domains and not for others? Put another way, why does stochastic learning of rule
sets as implemented in this paper lead to models in some domains that make the
same kinds of errors whereas in other data sets it leads to models that make different

kinds of errors? Part of the answer is that it is possible to learn models that make
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different kinds of errors for domains for which there are many ties in gain. To
follow up on this, we tried to increase the number ofgain ties for each data set by
adding 50 irrelevant binary attributes to each data set. This increased the number
ofgain ties experienced and also produced greater reduction inerror suggesting that
an abundance of gain ties is a problem for the single model hill-climbing learning
method but an opportunity for the multiple models approach.
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Appendix

FigureA.l illustrates how accuracy varies as the numberof learnedmodels is varied.
The figure supports our choice of eleven models because for most domains, the
accuracy has asymptoted at eleven models so adding further models would increase
learning cost but not offer significant increases in accuracy.

The appendix also contains a table of accuracies all four evidence combination
methods crossed with the two multiple model learning methods and the single
model, deterministic hill-climbing method.
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Figure A.l. The figures above illustrate the effect of varying number of stochastically-leamed
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terminisic, multi-class FOIL procedure, closed circles represent the multiple models method. At
least one data set from each of the major types of data sets (artificial concepts, artificial concepts
with added noise. Molecular-biology, Medical Diagnosis) is represented.
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Table A.l. The table below presents a comparison ofmethods ofgenerating models andofevidence combination
methods. Each model generation method isrepresented byfour columns corresponding to theevidence combination
methods. They are, in order: Uniform Voting (U), Bayesian combination (B), Distribution Summation (D) and
likelihood combination (L). '4-' indicates a sigmhcant (95% confidence) increase in accuracy as compared to the
single model method; indicates a significant decline.

Deterministic, single model
Hill-climbing

led-8i 85.2 91.7 91.0
led-17i 76.5 86.0 85.0

TTT 98.7 99.0 98.9
krkp 92.5 94.5 94.5
KRK lOOe 94.7 95.2 95.2

KRK 200e 97.6 98.3 98.3

KRK 160e 5a 90.8 91.9 92.0

KRK 320e 5a 93.4 94.8 94.8

KRK 160e 20c 88.6 89.6 89.6
KRK 320e 20c 91.7 92.5 92.6
led 20a 92.7 94.3 93.0
led 40a 81.0 85.7 82.0

mushroom

hypothyroid

59.4 67.9 67.9

82.4 85.3 85.3

89.2 + 97.0

83.5 -f-95.4

99.0 -I- 99.7

94.5 -I- 95.3

95.1 95.5

98.3 -1- 98.8

91.9 92.5

94.8 + 94.9

89.6 90.3

92.5 92.6

94.3 93.7

85.0 84.7

67.9 + 86.8

85.3 -I- 92.5

97.4 98.0

95.3 97.8

93.5 + 95.8

93.5 -t- 94.2

93.3 + 98.7

91.4 + 92.8

88.5 + 91.6

83.2 -I- 86.7

78.8 80.2

77.9 + 83.8

72.1 -I- 80.5

72.0 73.2

69.9 68.6

54.3 56.0

38.8 38.7

Stochastic

Hill-climbing
k-fold partition

Learning

97.9 + 97.7 -I- 98.0 + 97.2 + 97.8 + 98.0
-I- 96.3

-t- 99.8

95.2

95.6

98.9

+ 96.2

-1- 99.5

+ 95.4

94.6

98.2

-i- 96.4

-I- 99.8

+ 95.5

95.6

98.9

+ 94.9

-I- 99.7

-b 95.0

95.5

-I- 98.7

-f- 93.0

-I- 95.8

+ 90.9

-I- 93.5

94.0

86.0

-I- 95.6

+ 99.8

+ 95.4

95.9

98.8

-t- 95.1

+ 99.5

-I- 95.4

94.3

98.1

92.3

95.4

+ 91.4

93.6

94.3

85.3

+ 90.6 + 87.7 -1- 86.8 84.0 + 80.2 -|- 85.8
+ 91.1 + 92.3 + 92.5 + 91.0 + 90.6 + 91.0

98.0

97.6

+ 95.5

94.1

+ 98.2

92.6

+ 91.6

+ 86.0

78.9

+ 82.6

+ 79.3

72.8

68.1

55.7

40.3

96.8

97.4

+ 94.9

+ 94.6

+ 98.5

92.2

+ 91.0

+ 87.7

79.4

+ 82.4

+ 78.3

74.4

70.2

+ 57.6

+ 42.8

97.3

+ 97.8

+ 96.1

+ 94.4

+ 98.7

92.4

+ 92.2

+ 87.0

79.5

+ 83.8

+ 80.3

73.6

-67.3

55.1

38.3

98.1

97.8

+ 95.1

+ 94.4

+ 97.0

90.8

+ 90.8

+ 87.2

79.8

+ 78.9

+ 78.3

73.4

69.4

+ 56.3

37.3

97.4

97.9

+ 95.1

94.1

+ 97.1

91.5

+ 90.8

+ 86.1

78.9

80.4

+ 78.3

72.4

68.5

54.9

39.1

-95.5

97.7

93.7

+ 94.6

+ 97.5

90.1

+ 90.3

+ 86.4

78.0

80.3

+ 77.0

74.5

+ 72.0

+ 57.4

41.0

+ 97.9

+ 95.5

+ 99.6

+ 95.3

95.7

98.8

93.5

+ 96.6

91.3

+ 94.1

95.3

86.7

+ 85.8

+ 90.9

97.5

+ 97.5

+ 95.5

+ 94.5

+ 96.5

91.7

+ 91.5

+ 87.8

79.1

80.1

+ 78.7

73.8

68.5

55.3

-36.1
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