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Characterizing the epigenomic landscape of the developing human cortex at 

single-cell resolution 

Ryan Ziffra 

 

ABSTRACT 

During mammalian development, chromatin state differences coincide with cellular 

differentiation and reflect changes in the gene regulatory landscape. In the developing 

brain, cell fate specification and topographic identity play important roles in defining cell 

identity and confer selective vulnerabilities to neurodevelopmental disorders. To identify 

cell type specific chromatin accessibility patterns in the developing human brain, we used 

a single cell assay for transposase accessibility by sequencing (scATAC-seq) in primary 

human forebrain tissue samples. We applied unbiased analyses to identify genomic loci 

that undergo extensive cell type- and brain region-specific changes in accessibility during 

neurogenesis and an integrative analysis to predict cell type specific candidate regulatory 

elements. We found that cerebral organoids recapitulate most putative cell type-specific 

enhancer accessibility patterns but lack many cell type specific open chromatin regions 

found in vivo. Systematic comparison of chromatin accessibility across brain regions 

revealed an unexpected diversity among neural progenitor cells in the cerebral cortex and 

implicate retinoic acid signaling in the specification of prefrontal cortex neuronal lineage 

identity. Together, our results reveal the important contribution of chromatin state to the 

emerging patterns of cell type diversity and cell fate specification and provide a blueprint 

for evaluating the fidelity and robustness of cerebral organoids as a model for cortical 

development. 
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CHAPTER 1  

Introduction 

The cerebral cortex is the largest region of the human brain, representing roughly 80% of 

the total brain mass, and is responsible for higher order cognitive functions, such as 

language, decision making, and sensory perception1. The cortex underwent great 

expansion during human evolution, and its larger size in humans relative to other 

mammals is thought to be responsible for our extraordinary cognitive abilities2. Since the 

times of Santiago Ramon y Cajal, it has been appreciated that the cerebral cortex 

contains an astonishing diversity of cell types distributed across dozens of anatomically 

distinct areas3,4. These distinct cortical areas can be distinguished on the basis of sharply 

bordered patterns of cytoarchitecture, including differences in cell density, lamination, and 

morphology, and often correspond with functional specialization5–10. Despite the vast 

body of research establishing and characterizing the differences between cortical areas 

in adult brains, few of these differences are apparent during development, and the specific 

mechanisms and timing by which they attain their distinct anatomical and functional 

identities is still largely unknown4.  

 

Hypotheses of cortical development 

During embryonic development, the neuroepithelial tissue that gives rise to the majority 

of cortical cells originates as a homogeneous layer of neuroepithelial stem cells. Over the 

past few decades, neurobiologists have circled around two main hypotheses which 

explain how this initially unform layer of progenitors gives rise to the vast diversity of cell 

types and functionally specialized areas found in the adult human cortex. The “protomap” 
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hypothesis suggests that the cortical progenitors are pre-programmed to give rise to area-

specific cell types based on intrinsic developmental programs11–13 while the “protocortex” 

hypothesis suggests that the cortex is initially homogenous and takes on area-specific 

architecture following differential extrinsic signals, such as input from the thalamus14–16. 

 

Early forebrain patterning 

Much has already been established as relates to the patterning of the forebrain during 

prenatal development. Morphogen gradients of FGF, WNT, BMP, SHH, and TGFα are 

established early on and induce the expression of patterning transcription factors (TFs), 

including Pax6, Sp8, Emx2, and COUP-TFI3,17. These patterning TFs are expressed in 

gradients along the anterior-posterior and lateral-medial axes of the developing forebrain 

and induce the expression of additional TFs that initiate area-specific developmental 

programs controlling the cell fate specification of molecularly distinct neuronal subtypes.  

Due to the fact that these TFs are expressed in graded patterns, it is clear that they must 

work in concert with additional mechanisms in order to give rise to the sharply bordered 

cortical areas found in the fully developed adult cortex.  

 

The Epigenetic Landscape 

Over 60 years ago, Conrad Waddington introduced the concept of an epigenetic 

landscape to account for the emergence of distinct cell fates18. In particular, chromatin 

state defines the functional architecture of the genome by modulating the accessibility of 

gene regulatory elements (GREs), such as enhancers and promoters, which serve as 

binding sites for transcriptional regulators that enable the assembly of the transcriptional 



 

3 
 

machinery. Together with the expression of unique combinations of graded TFs, 

chromatin state is believed to represent the cis-regulatory ‘vocabulary’ of gene 

expression, which is a fundamental determinant of cell identity19,20. However, studies of 

chromatin state in developing brain have been limited because established methods for 

discovering GREs, such as the Assay for Transposase-Accessible Chromatin with 

Sequencing (ATAC-seq)21 or Chromatin Immunoprecipitation with Sequencing (ChIP-

seq)22, lacked cellular resolution. To gain insight into cell type specific patterns of 

chromatin state changes during development, few studies have been able to enrich for, 

or isolate, broad cell classes and perform measurements of chromatin state or other 

epigenetic assays23–29 and revealed changes in chromatin state broadly correlated with 

regional patterning and neuronal differentiation. For example, many mouse brain 

enhancers, are developmentally regulated27 and exhibit sharp regional boundaries of 

activity in the subpallium (which gives rise to the basal ganglia and cortical 

interneurons)19,20. These sharply bordered patterns of enhancer activity suggest that 

enhancers may play an important role in the specification of anatomically defined areas 

of the cortex. However, the cell type specific nature of many enhancers makes them 

difficult to study in the context of heterogeneous tissues, such as the brain, using bulk 

assays that provide an average signal of the sample. Future studies of the epigenomic 

landscape of the developing brain will benefit greatly from approaches that are able to 

profile the regulator landscape of discrete cell types.  
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Molecular diversity of the developing cortex 

The diverse cell types of the cortex have historically been classified based on a handful 

of morphological, anatomical, and physiological features. However, during developmental 

stages, many of these features are indistinguishable across cortical areas. More recent 

studies, which have examined the molecular profiles of cells in the developing cortex, 

have begun to identify and characterize distinctions between cells in different cortical 

areas. One of the first studies to systematically assess molecular differences between 

cortical areas during development using exon arrays found hundreds of genes 

differentially expressed between rostral and caudal areas30. While bulk transcriptomic 

studies such as this made it clear that molecular differences between cells from different 

cortical areas were detectable, their ability to elucidate the expression programs that lead 

to the divergence of closely related cell types was limited by the nature of bulk assays, 

which provide an average profile of the sampled region. Recent innovations in single cell 

genomics, such as single cell mRNA sequencing (scRNA-seq), have enabled massively 

parallel profiling of thousands of molecular features in every cell, uncovering the 

remarkable molecular diversity of cell types previously considered homologous, such as 

excitatory neurons located in different areas of the cerebral cortex31–34. While single cell 

transcriptomic studies have been invaluable in redefining the molecular diversity of cell 

types in the cortex, they have not answered the question of how distinct gene expression 

patterns are established through the modulation of transcriptional regulators. 
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The promise of single cell epigenomics 

Recently, the advances in single cell genomics have been extended to epigenomic 

assays, such as scATAC-seq35,36, enabling the profiling of the epigenomic landscape at 

single cell resolution. Studies using these methods have revealed many cell type specific 

patterns of enhancer activity in the developing and adult mouse brain, as well as adult 

human brain37–39. GREs often contain binding sites for transcriptional regulators, enabling 

the discovery of regulatory programs that control the specification of specific cell types. 

To understand the regulatory landscape of the developing human cortex, it will be 

important to characterize GREs in their native context of developing human tissue 

directly, rather than drawing inferences from mouse and adult human tissues, as growing 

evidence suggests that human genome sequence evolution is accelerated in putative 

neurodevelopmental enhancer regions40–42 and many enhancers exhibit transient 

patterns of activity27. 

 

Non-coding variation in neuropsychiatric disease 

Mutations in non-coding genomic regions, as well as de novo loss of function mutations 

in chromatin modifiers have been implicated in a wide range of neurodevelopmental and 

psychiatric disorders, including schizophrenia43 and autism spectrum disorder (ASD)44–

46. Cellular-resolution datasets of chromatin state across developmental stages and 

differentiation states may provide an important link between these mutations and 

selective vulnerabilities among the diverse cell types of the developing human brain, as 

was seen with recent studies using single cell transcriptomic data46,47. A recent study was 

able to use scATAC-seq data from the adult human brain to fine map disease-associated 
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genomic loci to pinpoint the likely causal variants associated with Parkisnon’s disease48. 

Similar datasets in the developing human brain may enable similar fine-mapping of 

neurodevelopmental disease-associated loci, shedding light on the cell type specific 

vulnerabilities and causal mechanisms by which common genetic variants may contribute 

the poorly understood heritability of neurodevelopmental diseases. 

 

Cerebral organoids as a model for human cortical development 

Due to the scarcity of primary human tissue, studies of human neural development 

critically require suitable in vitro models, such as cerebral organoids, a 3D cell culture 

system in which cells self-organize and recapitulate many macro-scale phenomena of 

neurodevelopment49. Previous studies emphasized the similarities between cerebral 

organoid cells and their in vivo counterparts using single cell transcriptomics50,51 and bulk 

epigenomics26,28,52. However, others have noted the shortcomings of cerebral organoids, 

such as elevated signatures of cellular stress, which may compromise their integrity as a 

model of healthy developmental states53. Importantly, no studies have yet assessed the 

fidelity of cerebral organoids as a model for human epigenomic signatures with cellular 

resolution. 

 

At the time this dissertation work was undertaken, there were no publicly available cellular 

resolution epigenomic datasets from the prenatal human cortex or cerebral organoid 

models. With this dissertation work, we sought to generate such datasets and use them 

to characterize the regulatory landscape of human cortical development, with specific 
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focus on understanding the mechanisms that underlie cell fate specification and 

arealization.  
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SUMMARY 

During mammalian development, chromatin state differences coincide with cellular 

differentiation and reflect changes in the gene regulatory landscape1. In the developing 

brain, cell fate specification and topographic identity play important roles in defining cell 

identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. To identify 

cell type specific chromatin accessibility patterns in the developing human brain, we used 

a single cell assay for transposase accessibility by sequencing (scATAC-seq) in primary 

human forebrain tissue samples. We applied unbiased analyses to identify genomic loci 

that undergo extensive cell type- and brain region-specific changes in accessibility during 

neurogenesis and an integrative analysis to predict cell type specific candidate regulatory 

elements. We found that cerebral organoids recapitulate most putative cell type-specific 

enhancer accessibility patterns but lack many cell type specific open chromatin regions 

found in vivo. Systematic comparison of chromatin accessibility across brain regions 

revealed an unexpected diversity among neural progenitor cells in the cerebral cortex and 

implicate retinoic acid signaling in the specification of prefrontal cortex neuronal lineage 

identity. Together, our results reveal the important contribution of chromatin state to the 

emerging patterns of cell type diversity and cell fate specification and provide a blueprint 

for evaluating the fidelity and robustness of cerebral organoids as a model for cortical 

development. 
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BACKGROUND 

Cell types of the cerebral cortex (Figure 2.1a) have traditionally been classified based on 

a handful of morphological, anatomical, and physiological features. Recent innovations in 

single cell transcriptomics (scRNA-seq) have enabled massively parallel profiling of 

thousands of molecular features in individual cells and uncovered novel distinctions 

among closely related cell types, such as excitatory neurons located in different areas of 

the cerebral cortex2,4. Despite these advances, the developmental mechanisms 

underlying the emergence of distinct neuronal lineages in the human cerebral cortex 

remain largely unknown5.  

 

Chromatin state defines the functional architecture of the genome by modulating the 

accessibility of gene regulatory elements, such as enhancers, which serve as binding 

sites for transcriptional regulators. During development, sequential cascades of 

transcription factors progressively remodel and refine differential patterns of chromatin 

accessibility across distinct cell types6,7. Identifying the highly dynamic and cell type 

specific patterns of enhancer activity could provide critical insights into the molecular 

mechanisms that govern cell fate specification. Although chromatin accessibility 

represents a fundamental feature of cell identity, relatively few studies have profiled 

chromatin state changes during brain development1,8–11. Recently, the innovations in 

single cell genomics have enabled scalable profiling of chromatin state with cellular 

resolution using scATAC-seq12. In the developing mouse brain13, scATAC-seq has 

revealed highly dynamic changed in chromatin accessibility underlying 

neurodevelopmental processes. Extending these studies to human primary tissue will be 
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needed to better understand how mutations in non-coding regulatory elements, including 

human-specific neurodevelopmental enhancers, interfere with normal developmental 

processes and contribute to genetic burden in psychiatric neurodevelopmental 

disorders14,15. 

 

RESULTS 

Chromatin states of the developing brain 

To characterize the chromatin state landscape of the developing human brain at single 

cell resolution, we performed scATAC-seq on primary samples of the human forebrain at 

mid-gestation (n = 6 individuals), including samples of dorsolateral prefrontal cortex 

(PFC), primary visual cortex (V1), primary motor cortex (M1), primary somatosensory 

cortex, dorso-lateral parietal cortex, temporal cortex, insular cortex, and the medial 

ganglionic eminence (MGE) (Figure 2.1b, Supplementary Table 1).  

 

We generated data from 77,354 cells passing quality control criteria (Methods, Figure 

S2.1a-c). Aggregated signal from single cell libraries correlated strongly with bulk ATAC-

seq libraries generated in parallel (Figure S2.1d), and biological replicates were highly 

correlated (Figure S2.1e-f). To reduce the dimensionality of the dataset, we performed 

latent semantic indexing followed by singular value decomposition (Methods). Batch 

correction was performed using the deep neural network-based scAlign16 to correct for 

technical sources of variance, including individual variation and processing method 

(Figure S2.1g-k, Figure S2.2, Methods). We identified 25 distinct clusters using the Leiden 
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community detection algorithm (Figure 2.1c, Figure S2.1l-m, Methods). This analysis 

robustly separated cortical and subcortical cells (MGE) (Figure 2.1d).  

 

To infer the identity of cell clusters, we calculated ‘gene activity scores’, which represents 

a proxy for gene expression13, by summing fragments in the gene body and promoter 

regions (Methods). We identified the major cell classes, including radial glia (RG), 

intermediate progenitor cells (IPCs), deep layer (cortical layers V-VI) excitatory neurons 

(dlENs), upper layer (cortical layers II-IV) excitatory neurons (ulENs), MGE (IN-MGE) and 

CGE derived cortical interneurons (IN-CGE), insular neurons, progenitors from the MGE, 

microglia, oligodendrocyte progenitor cells (OPCs), endothelial cells, and mural cells 

(Figure 2.1e-f, Figure S2.3a). In addition, we used CellWalker17 to assign cell type labels 

to scATAC-seq cells based on previously published scRNA-seq data (Methods, Figure 

S2.3b-c). CellWalker identified cell types at a finer resolution, including subtypes of 

broader cell classes. For example, radial glia form a single cluster, but multiple radial glia 

subtypes (‘dividing’, ‘ventricular’, ‘outer’, and ‘truncated’) are identifiable as sub-clusters 

using CellWalker (Figure S2.3d). Furthermore, we were able to identify differentially 

accessible peaks between two subclasses, tRGs and oRGs, that are distinguishable 

based on their expression of CRYAB and HOPX, respectively2, suggesting that scATAC-

seq is sensitive enough to distinguish cellular subtypes at high resolution (Figure S2.3e-

f, Supplementary Tables 12-13,22). 
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Identifying cell type specific enhancers 

To identify candidate gene regulatory elements, we called peaks on aggregate single cells 

from each broad cell class (Methods). Overlapping peaks were subsequently merged to 

a total union set of 459,953 peaks (Supplementary Tables 2-3). Annotation of our peak 

set in genomic features shows enrichment in intronic and distal intergenic regions and in 

the flanking regions of transcription start sites, suggesting an enrichment of gene 

regulatory elements, such as enhancers (Figure S2.4a-b). We intersected our peak set 

with the imputed 25-state chromatin model from Roadmap Epigenomics18, finding strong 

enrichment for promoter and enhancer states and a depletion of transcribed, 

heterochromatin, and quiescent states (Methods, Figure S2.4c, Supplementary Table 

14). Cell type specific differentially accessible peaks were identified for each cell type, 

resulting in a set of 265,123 peaks, with most cell types having on the order of thousands 

of specific peaks (Fisher’s Exact, FDR<0.05, Figure 1g, Figure S2.4d-e, Supplementary 

Tables 4,6-7). In addition, we identified peaks that are differentially accessible between 

the eight brain regions used in this study (Figure S2.3g, Supplementary Table 8) In order 

to identify putative enhancers in our dataset, we integrated our ATAC-seq peaks with 

H3K27ac CUT&Tag data generated from similar samples (Methods), Hi-C data generated 

from developing human cortex19, and gene expression data2, using the Activity-by-contact 

algorithm20 to predict enhancer-gene interactions (Methods) for all cortical cell types. In 

total, we predicted 25,659 gene-linked enhancers across the whole dataset (Figure 

S2.4d,f, Supplementary Table 5). We intersected our peaks with promoter-interacting 

regions identified using H3K4me3 PLAC-seq on sorted cells from developing human 

cortex21, and found 67,493 peaks and 10,050 predicted enhancers with physical evidence 
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of promoter interaction (Figure S2.4d, Supplementary Table 15). Genes linked to 

predicted cell type specific enhancers were enriched for biological processes strongly 

associated with cell type identity (Methods, Figure S2.4g-h).  

 

To further support our annotations, we intersected our peak set with publicly available 

datasets generated from human cortical tissue samples9,22,23 (Figure S2.5a-c, 

Supplementary Table 15). We found that scATAC-seq recovered most of the peaks 

annotated using bulk tissue datasets, and also recovered many putative cell type specific 

peaks that are not captured in bulk datasets, especially those enriched in rarer cell 

populations, such as microglia and endothelial cells (Supplementary Table 4). We 

intersected our predicted enhancers with other enhancer predictions derived from 

previously published datasets11,23,24. Surprisingly, we did not find strong concordance 

between predicted enhancers from these studies (Figure S2.5d). Among functionally 

validated forebrain enhancers25, the vast majority (304/319) overlapped chromatin 

accessibility peaks, but only 67 overlapped enhancers predicted using activity-by-contact 

(Figure 2.1h, Figure S2.5e). Together, these analyses suggest that scATAC-seq is a 

robust method for detecting chromatin accessibility patterns from heterogeneous tissue 

samples. However, limited overlap of predicted enhancers with previously published 

studies indicates that a better understanding of the relevant feature set to computationally 

predicting regulatory potential is urgently needed.  

 

To characterize the regulatory ‘grammar’ of cell types, we calculated enrichment of known 

transcription factor binding motifs in cell type specific peak sets (Methods, Figure 2.1g, 
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Supplementary Table 20). We observed a strong association between transcription factor 

motif enrichments and cell type annotations from marker gene body enrichments. To 

examine transcription factor motif enrichments at the single cell level, we used 

ChromVAR26 (Methods) and found substantial agreement with top motif enrichments for 

each cluster (Figure 2.4i). Together, these findings ascertain that scATAC-seq identifies 

chromatin accessibility patterns consistent with known transcription factor expression 

patterns across cell types and provides a roadmap towards discovery of transcription 

factor ‘code’ underlying cell lineage and cell fate specification.  

 

Disease risk in the regulatory landscape 

Mutations in non-coding genomic regions, as well as de novo loss of function mutations 

in chromatin regulators have been implicated in a wide range of neurodevelopmental and 

psychiatric disorders, including schizophrenia27 and autism spectrum disorder 

(ASD)3,28,29. Cellular-resolution datasets of chromatin state across developmental stages 

and differentiation states may provide an important link between these mutations and 

selective vulnerabilities among the diverse cell types of the developing human brain, as 

was seen with recent studies using single cell transcriptomic data3,22. Towards that end, 

we intersected cell type specific ATAC-seq peaks, and putative enhancers, with disease-

linked common and rare non-coding variants (Methods). We first intersected cell type 

specific peak sets, predicted enhancers, and peaks overlapping promoter-interacting 

regions21 with genomic regions enriched for copy number variants in cases with 

developmental delay30, identifying enrichment in dlEN, endothelial/mural, and microglia 

specific peaks, as well as peaks overlapping promoter-interacting regions in interneurons 
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(Figure 2.1i, Figure S2.6f). Because such regions do not provide specificity with respect 

to individual regulatory elements or genes, we next tested for enrichment of cell type 

specific peaks, predicted enhancers, and peaks overlapping promoter-interacting regions 

in the flanking regions of genes associated with ASD and NDD and identified peak sets 

significantly enriched and depleted in these regions for most cell types (Figure 2.1j, Figure 

S2.6a-c). We also intersected our cell type-specific peak sets and predicted enhancers 

with de novo non-coding mutations (DNMs) identified from ASD and neurodevelopmental 

delay (NDD) cases, however, no peak sets were significantly enriched for the currently 

annotated DNMs in probands compared to sibling controls (Fig S2.6d-e). In addition, we 

intersected predicted enhancers with topological associated domains that contain 

neurodevelopmental disease associated genes24,31, identifying significant colocalization 

in TADs in several cell types (Figure S2.6g). Finally, we sought to assess the enrichment 

of common variants associated with neuropsychiatric disease risk in our predicted 

enhancers for each cell type. To do this we performed a partitioned heritability LD score 

regression analysis using summary statistics from large-scale genome-wide association 

studies of schizophrenia27,32, ASD33, major depressive disorder34, and bipolar disorder35 

(Methods). We found that excitatory and inhibitory neuron putative enhancers were 

enriched (FDR < 0.05) for common variants associated with schizophrenia, confirming 

previous findings of neuronal involvement27 (Figure 2.1k). Together, our prenatal cell type 

specific chromatin state data has the potential to identify specific regulatory programs 

during cortical development that confer the greatest risk for neurodevelopmental 

disorders, particularly as improved disease associated variant annotations become 

available. 
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Dynamic chromatin states of neurogenesis 

To better understand how transcriptomic and epigenomic changes may regulate cell fate 

decisions during neurogenesis, we co-embedded scRNA-seq and scATAC-seq datasets 

for the relevant cell types generated from the visual cortex (Figure 2.2a-c, Methods). 

Projections of gene expression and gene activity scores in the co-embedded space 

reveals clustering of distinct cell types is preserved irrespective of the profiling modality 

(Figure 2.2d). To identify trajectories of chromatin accessibility underlying excitatory 

neuron differentiation and maturation, we performed pseudotemporal ordering of cells in 

the co-embedded space, which recovered the known developmental sequence of cell 

types underlying excitatory neuron differentiation (Figure 2.2e, Methods). We identified 

>25,000 peaks with transient accessibility across pseudotime, including >5,000 predicted 

enhancers, many of which are predicted to interact with genes linked to cell type identity 

(Figure 2.2f-h, Supplementary Table 9). 

 

Consistent with recent reports36,37, we find that, for genes with variable expression across 

pseudotime, gene activity scores derived from chromatin accessibility in the cis-regulatory 

region around genes are highly correlated with gene expression (Fig 2.2i, Figure S2.7, 

Methods). Finally, by calculating transcription factor binding site enrichment across peaks 

that show dynamic changes in accessibility along pseudotime, we reconstructed the 

known hierarchy of transcription factors involved in cortical neurogenesis, including 

sequential enrichment for PAX6, EOMES, and MEF2C binding sites among transiently 

accessible loci (Figure 2.2j). Together, these results underscore highly dynamic states of 

chromatin accessibility during human cortical neurogenesis.  
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Area specific chromatin states 

Area-specific cortical excitatory neuron types emerge during early neurogenesis, but only 

limited transcriptomic differences have been found among progenitors from different 

regions2. Given that changes in the accessibility of regulatory elements often precede 

gene expression, we examined whether epigenomic signatures could foreshadow the 

emergence of area-specific excitatory neurons. Specifically, we compared scRNA-seq 

and scATAC-seq profiles of excitatory lineage cells sampled from the extremes of the 

rostral-caudal axis, PFC and V1 (Figure 2.3a-b, Figure S2.8a-h). For each modality, we 

ordered the cells in pseudotime to approximate the differentiation trajectory and identified 

the ‘branch’ point along this trajectory at which transcriptomic or chromatin state 

differences between PFC and V1 lineages become apparent (Figure 2.3c-f, Methods). In 

contrast to transcriptomic data, which has revealed area-specific clusters of excitatory 

neurons (Figure 2.3h), chromatin state signatures reveal a striking divergence between 

PFC and V1 intermediate progenitor populations (Figure 2.3g, Figure S2.8i-j). 

Transcriptomically, PFC and V1 IPCs differentially expressed only a handful of genes, 

including NR2F1 (Supplementary Table 24), while chromatin accessibility analysis 

identifies over 1,800 differentially accessible peaks between these cell types (Figure 

S2.8k-l, Supplementary Table 25). 

 

Next, to identify putative regulatory programs that could underlie the divergence of PFC 

and V1 lineages, we performed transcription factor binding site enrichment analysis on 

peaks that were differentially accessible between PFC and V1 cells (Fisher’s Exact, two-

sided, FDR<0.05, Figure 2.3i-k, Figure S2.9a-d, Supplementary Tables 10-11). This 
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analysis recovered several transcription factors predicted based on transcriptomic 

studies2,38, including enrichment of POU3F2, MEIS1, TBR1, NEUROD1, NEUROG2, and 

TBX21 binding motifs among PFC cells. Interestingly, this analysis also identified 

components of the Retinoic Acid (RA) signaling pathway, including RXR, RAR and TGIF1, 

among PFC cells, consistent with a recent report that suggested increased levels of RA 

activity in the PFC during mid-gestation39 (Figure 2.3j-k, Supplementary Table 21).  

 

Retinoic acid in cortical arealization 

RA signaling plays an important role in patterning of the neural tissue during mammalian 

brain development39,40. To test if RA may promote the differentiation of the human PFC 

lineages, we cultured cortical organoids in the presence, or absence, of Vitamin A, the 

precursor for RA synthesis and, in parallel, we treated a organoids that were cultured with 

Vitamin A with 4-diethylamniobenzaldehyde (DEAB), a potent inhibitor of RA synthesis41 

(Methods, Figure 2.3l). At week 10 of differentiation, which corresponds to deep layer 

neurogenesis, organoids were profiled using scRNA-seq. We found that excitatory 

forebrain neurons (FOXG1/NEUROD2 double positive) cultured in the presence of 

Vitamin A clustered separately from those derived from organoids cultured without 

Vitamin A or in the presence of DEAB (Fig 2.3m-n, Figure S2.9e). Among the top 

differentially expressed genes, we found signatures that distinguish PFC and V1 cortical 

neurons, including SATB2, NR2F1, and NR2F22 (Figure 2.3n, Figure S2.9h-i). We applied 

a previously developed classifier for annotating PFC and V1 neuronal identities among 

organoid neurons42, and found consistently higher proportion of neurons classified as 

PFC-like among organoids cultured with Vitamin A compared with those cultured without 
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Vitamin A or treated with DEAB (Figure S2.9f-g, Chi-square test, one-sided, *p-value < 

0.00001). Differentially expressed genes, including co-expression  among excitatory 

neurons of SATB2/CTIP2 and AUTS2 in prefrontal cortex, and enriched expression of 

NR2F1 in the visual cortex2,43–45, were also confirmed by immunostaining and found to be 

consistent with a PFC-like identity of organoids cultured in the presence of Vitamin A 

(Figure 2.3n-o, Figure S2.9j). Together, these findings suggest a role for the retinoic 

signaling pathway in the specification of the PFC neuronal lineage during human cortical 

development, and further studies are required to determine how the RA pathway 

interfaces with other signaling pathways, such as fibroblast growth factor, to promote this 

neuronal fate46. 

 

Benchmarking cerebral organoids 

Due to the scarcity of primary human tissue, studies of human neural development 

critically require suitable in vitro models, such as cerebral organoids. Previous studies 

emphasized the similarities between cerebral organoid cells and their in vivo counterparts 

using single cell transcriptomics47,48 and bulk epigenomics10,11,49. We generated scATAC-

seq data for 23,555 cells from cortical organoids derived via directed differentiation from 

three genetically normal individuals47,50 at three time points of differentiation (Figure 2.4a-

c, Figure S2.10a-e, Extended Data Table 1, Methods). To validate our organoid lines, we 

also generated scRNA-seq data from organoids derived from the same lines and cultured 

in parallel and showed that all lines expressed FOXG1 and markers of major cell types 

(Figure S2.10j-n). Using gene activity scores, we identified the major cell classes of cell 

types among scATAC-seq data, including radial glia, IPCs, interneurons, and excitatory 
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neurons, although individual clusters contained fewer cell type specific peaks than 

clusters derived from primary cells (Figure 2.4d, Supplementary Table 17).  

 

Next, we quantified chromatin accessibility among organoid cells across peaks defined 

from primary cells (Methods, Figure 2.4e) and found organoid cells homologous to radial 

glia, IPCs, interneurons, and excitatory neurons. Across organoid cells, we identified 

377,448 peaks (Supplementary Table 16), and intersected them with the primary cell 

peaks, as well as a down-sampled set to match the cell abundance of organoid dataset 

(Methods, Figure 2.4f). Of the 459,953 peaks in the full primary dataset, 239,661 were 

also called in the organoid dataset (Figure 2.4g, Figure S2.10f, Supplementary Table 18). 

The set of peaks not detected in organoids was strongly enriched for peaks specific to 

cell types not found in significant numbers in our organoids, including microglia, 

endothelial cells, astrocytes, and OPCs (Figure S2.10h). After removing these peaks from 

analysis, the remaining peaks not found in organoids were enriched among V1 excitatory 

neurons. While cell type specific peaks identified in primary cells maintain cell type 

specificity in homologous organoid cell types, many of the cell type specific peaks were 

not detected (Figure 2.4h-i). However, the vast majority (>80%) of predicted enhancers 

were also identified in organoids, except for microglial enhancers (Fig 2.4i, Figure 

S2.10h). We also identified 109,960 organoid peaks not found in the primary cell dataset 

(Figure 2.4f, Figure S2.10g). Transcription factor motif enrichments analysis revealed that 

these organoid-specific peaks were enriched for HIF1A, HIF1B, and p53, which is 

consistent with the reported higher levels of cellular stress42 (Supplementary Table 23). 

To further explore the robustness of our findings, we integrated our data with recently 
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published epigenomic datasets generated from organoids11,49. This integrative analysis 

revealed that 20,066 out of the 77,573 peaks found in organoids, but not primary tissue, 

were also detected in other published datasets (Figure S2.10f, Supplementary Table 19), 

suggesting that our findings can be independently validated.  

 

DISCUSSION 

In this study we profiled chromatin state of single cells of the developing human brain and 

found thousands of transiently accessible loci that track with neuronal differentiation. 

These states may reveal mechanisms governing the establishment of cell fate during 

neurogenesis, and intersecting them with comparable datasets from adult human brain 

may enable the complete reconstruction of the epigenomic neurodevelopmental 

trajectory 51. Consistent with previous studies52, intersection of chromatin state landscape 

with disease variants implicates post-mitotic, developing cortical excitatory neurons in the 

etiopathogenesis of neuropsychiatric disorders9,22,53. Future studies are needed to probe 

how disease-associated variants in these regulatory regions modify cell fate decisions in 

the developing cortex. By comparing the regulatory landscape of different cortical areas 

during development, we found distinct sets of transcription factor binding motifs 

differentially enriched between these two lineages. Our findings extend the well-

established role of RA signaling in forebrain development39,45 and suggest that RA 

signaling contributes to the specification of excitatory neurons of the human prefrontal 

cortex. Dysregulation of RA signaling has been implicated in a range of 

neurodevelopmental and psychiatric disorders54, and therefore our findings may have 

implications for studies of these disorders. 
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METHODS 

Tissue Source 

De-identified tissue samples were collected with previous patient consent in strict 

observance of the legal and institutional ethical regulations. Protocols were approved by 

the Human Gamete, Embryo, and Stem Cell Research Committee (institutional review 

board) at the University of California, San Francisco. 

 

Nuclei isolation from fresh primary tissue 

Cortical areas were microdissected from 3 specimens of mid-gestation human cortex, in 

addition to 3 specimens of non-area-specific mid-gestation human cortex. Tissue was 

dissociated in Papain containing Deoxyribonuclease I (DNase) for 30 minutes at 37C and 

samples were triturated to form a single cell suspension. 106 Cells were pelleted and 

lysed for 3 minutes in 100uL chilled Lysis Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 

3mM MgCl2, 0.1% Tween-20, 0.1% Igepal CA-630, 0.01% Digitonin, 1% BSA). Lysed 

cells were then washed with 1mL chilled Wash Buffer (10mM Tris-HCl pH7.4, 10mM 

NaCl, 3mM MgCl2, 0.1% Tween-20, 1% BSA) and nuclei were pelleted at 500rcf for 5 

minutes at 4C.   

 

Nuclei isolation from frozen primary tissue 

Tissue sections were snap frozen and stored at -80C. Nuclei were isolated from frozen 

tissues using the protocol published in Corces MR et al., 201755. Briefly, frozen tissue 

samples were thawed in 2mL chilled Homogenization Buffer (10mM Tris pH7.8, 5mM 

CaCl2, 3mM Mg(Ac)2, 320 mM Sucrose, 0.1mM EDTA, 0.1% NP40, 167uM β-
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mercaptoethanol, 16.7uM PMSF) and lysed in a pre-chilled dounce. Cell lysates were 

then centrifuged in an Iodixanol gradient for 20 minutes at 3000rcf at 4C in a swinging 

bucket centrifuge with the brake turned off. The nuclei band was then carefully pipetted 

and nuclei were diluted in Wash Buffer.  

  

Cortical organoid differentiation protocol 

Cortical organoids were cultured using a forebrain directed differentiation protocol47,56. 

Briefly, 2 genetically normal human induced PSC lines H28126 (Gilad Laboratory, 

University of Chicago) and 13234 (Conklin Laboratory, Gladstone Institutes), which were 

previously authenticated47, and the embryonic stem cell line H1 (WiCell, authenticated at 

source), were expanded and dissociated to single cells using accutase. Cells tested 

negative for mycoplasma. After dissociation, cells were reconstituted in neural induction 

media at a density of 10,000 cells per well in 96 well v-bottom low adhesion plates. 

GMEM-based neural induction media includes 20% Knockout Serum Replacer (KSR), 1X 

non-essential amino acids, 0.11mg/mL Sodium Pyruvate, 1X Penicillin-Streptomycin, 

0.1mM Beta Mercaptoethanol, 5uM SB431542 and 3uM IWR1-endo. Media was 

supplemented with 20uM Rock inhibitor Y-27632 for the first 6 days. After 18 days 

organoids were transferred from 96 to six well low adhesion plates and moved to an orbital 

shaker rotating at 90rpm and changed to DMEM/F12-based media containing 1X 

Glutamax, 1X N2, 1X B27 without Vitamin A and 1X anti-anti. At 35 days, organoids were 

moved into DMEM/F12-based media containing 1X N2, 1X B27 with Vitamin A and 1x 

anti-anti. Throughout culture duration organoids were fed every other day. 
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Nuclei isolation from cerebral organoids 

Cerebral organoids were dissociated in Papain containing Deoxyribonuclease I (DNase) 

for 30 minutes at 37C and samples were triturated to form a single cell suspension. 106 

Cells were pelleted and lysed for 3 minutes in 100uL chilled Lysis Buffer (10mM Tris-HCl 

pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% Igepal CA-630, 0.01% Digitonin, 

1% BSA). Lysed cells were then washed with 1mL chilled Wash Buffer (10mM Tris-HCl 

pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1% BSA) and nuclei were pelleted at 

500rcf for 5 minutes at 4C. 

 

Cortical Organoid Arealization Experiment 

Two genetically normal iPSC lines (1323-4 & H28126) were differentiated into cortical 

organoids following the above protocol up to day 35. At day 35, organoids from each line 

were split into 3 different conditions: 1) normal media conditions for day 35 and beyond 

as described above (with Vitamin A), 2) normal media conditions for day 35 and beyond 

(with Vitamin A) plus 100uM 4-Diethylaminobenzaldehyde (DEAB), an inhibitor of retinoic 

acid synthesis, 3) normal media conditions for day 35 and beyond as described above 

except using B27 without Vitamin A. DEAB treatment was ended after one week, and 

culture conditions remain otherwise the same until day 70, at which time organoids were 

processed for scRNA-seq and fixed for immunohistochemistry. 13234 organoids were 

used for scRNA-seq (one for each of the three conditions) and both 13234 and H28126 

organoids were used for immunostaining. Organoids processed for scRNA-seq were 

multiplexed using Multi-seq oligonucleotide barcoding57 and pooled for library prep and 

sequencing to reduce potential batch effects.  
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 Single Cell RNA-seq Library Preparation and Sequencing 

Single cell RNA-seq libraries were generated using the 10x Genomics Chromium 3’ Gene 

Expression Kit. Briefly, single cells were loaded onto chromium chips with a capture target 

of 10,000 cells per sample. Libraries were prepped following the provided protocol and 

sequenced on an Illumina NovaSeq with a targeted sequencing depth of 50,000 reads 

per cell. BCL files from sequencing were then used as inputs to the 10X Genomics Cell 

Ranger pipeline.  

 

Bulk ATAC-seq Library Preparation and Sequencing 

Bulk ATAC-seq libraries were generated using the protocol outlined in Corces MR et al., 

201755. Briefly, 50,000 nuclei were permeablized and tagmented. Tagmented chromatin 

libraries were generated and sequenced on an Illumina NovaSeq with a target 

sequencing depth of 50 million reads per library. Sequencing data was used as an input 

to the ENCODE ATAC-seq analysis pipeline (https://github.com/ENCODE-DCC/atac-

seq-pipeline). 

 

Bulk H3K27ac CUT&Tag Library Preparation and Sequencing 

H3K27ac CUT&Tag libraries were prepared as previously described in Kaya-Okur et al., 

201958, with modifications to the protocol. Briefly, cells were dissociated from human 

developing cortical tissue as described above. 50,000 cell aliquots were pelleted at 600xg 

in a swinging bucket rotor centrifuge and washed twice in 200μL CUT&Tag wash buffer 

(20 mM HEPES pH 7.5; 150 mM NaCl; 0.5 mM Spermidine; 1× Protease inhibitor cocktail 

(Roche)). Nuclei were isolated by resuspending cell pellets in 200μL Dig-wash buffer 

https://github.com/ENCODE-DCC/atac-seq-pipeline
https://github.com/ENCODE-DCC/atac-seq-pipeline
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(CUT&Tag wash buffer supplemented with 0.05% digitonin and 0.05% IGEPAL CA-630). 

Nuclei pellets were washed twice in 200μL Dig-wash buffer before resuspending in 100μL 

Dig-wash buffer supplemented with 2mM EDTA and a 1:50 dilution of H3K27ac primary 

antibody (Cell Signaling 8173) and incubated over night at 4°C on an overhead rotator. 

Excess primary antibody was removed by pelleting the nuclei at 600xg and washing twice 

in 200μL Dig-wash buffer. Secondary antibody (Novex A16031) was added at a dilution 

of 1:50 in 100μL Dig-wash buffer and nuclei were incubated at room temperature for 30 

minutes rotating. Excess secondary antibody was removed by pelleting the nuclei at 

600xg and washing twice in 200μL Dig-wash buffer. pA-Tn5 was added at a dilution of 

1:100 in 100μL of Dig-med buffer (0.05% Digitonin, 20 mM HEPES, pH 7.5, 300 mM NaCl, 

0.5 mM Spermidine, 1× Protease inhibitor cocktail), and nuclei were incubated at room 

temperature for 1 hour rotating. Unbound pA-Tn5 was removed by pelleting the nuclei at 

300xg and washing twice in 200μL Dig-med buffer. Nuclei were resuspended 100μL 

tagmentation buffer (10 mM MgCl2 in Dig-med Buffer) and incubated for 1 hour at 37°C. 

After tagmentation, nuclei were lysed with the addition of 100μL DNA binding buffer 

(Zymo Research), and tagmented DNA was purified with a 1.5:1 ratio of AMPure XP 

beads (Beckman) following the manufacturer’s instructions. Purified DNA was eluted in 

21μL EB and mixed with 2μL each 10μM indexed i5 and i7 primers and 25μL NEBNext 

HiFi 2× PCR Master mix. Libraries were amplified with the cycling conditions: 72 °C for 

5 min; 98 °C for 30 s; 12 cycles of 98 °C for 10 s and 63 °C for 30 s; final extension at 

72 °C for 1 min and hold at 4 °C. Libraries were purified with a 1:1 ratio of AMPure XP 

beads and eluted in 15μL EB. CUT&Tag libraries were quantified by Agilent Bioanalyzer, 
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and sequenced paired-end to a depth of 15 million reads on a Illumina NovaSeq 6000 

system, with read lengths 50x8x8x50.  

 

Single Cell ATAC-seq Library Preparation and Sequencing 

Nuclei were prepared as outlined in the 10X Genomics Chromium single cell ATAC-seq 

solution protocol (v1.0 kit was used). Nuclei were loaded with a capture target of 10,000 

nuclei per sample. scATAC-seq libraries were prepared for sequencing following the 10X 

Genomics single cell ATAC-seq solution protocol. scATAC-seq libraries were sequenced 

using PE150 sequencing on an Illumina NovaSeq with a target depth of 25,000 reads per 

nucleus (Extended Data Table 1).  

  

Single Cell ATAC-seq Analysis Pipeline 

Cell Ranger 

BCL files generated from sequencing were used as inputs to the 10X Genomics Cell 

Ranger ATAC pipeline. Briefly, FASTQ files were generated and aligned to GRCh38 

using BWA. Fragment files were generated containing all unique properly paired and 

aligned fragments with MAPQ > 30. Each unique fragment is associated with a single cell 

barcode.  

  

SnapATAC 

Fragment files generated from the Cell Ranger ATAC pipeline were loaded into the 

SnapATAC59 pipeline (https://github.com/r3fang/SnapATAC) and Snap files were 

generated. A cell-by-bin matrix was then generated for each sample by segmenting the 

https://github.com/r3fang/SnapATAC
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genome into 5-Kb windows and scoring each cell for reads in each window. Cells were 

filtered based on log(reads passed filters) between 3-5 and fraction of reads in promoters 

between 10-60% to obtain cells with high quality libraries. Bins were then filtered, 

removing bins overlapping ENCODE blacklist regions 

(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/). This matrix was then 

binarized and coverage of each bin was calculated and normalized by log10(count + 1). 

Z-scores were calculated from normalized bin coverages and bins with a z-score beyond 

± 2 were filtered from further analysis. Cells with coverage of <500 bins were removed 

from the downstream analysis. A cell-by-cell similarity matrix was generated by 

calculating the Latent Semantic Index (LSI) of the binarized bin matrix. Singular value 

decomposition (SVD) was performed on the log TF-IDF matrix. The top 50 reduced 

dimensions were used for batch correction through scAlign. 

  

scAlign Batch Correction 

Multiple batches were integrated using the scAlign package16 (https://github.com/quon-

titative-biology/scAlign). The ATAC batches were first merged together to calculate the 

Latent Semantic Index (LSI) with the TF matrix log-scaled for input into SVD. The 50 

reduced dimensions of LSI were used as inputs to the encoder. The latent dimension was 

set at 32 and ran with all-pairs alignment of all batches. The input dimension to the 

encoder was set to 50 to match the input dimensions and trained to 15,000 iterations 

using the small architecture setting with batch normalization (BN). The 32 dimensions 

were used for downstream analysis for finding neighbors. The scRNA-seq were 

processed using Seurat and computed the top 15 components from CCA for input into 

http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/
https://github.com/quon-titative-biology/scAlign
https://github.com/quon-titative-biology/scAlign
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scAlign, and the latent dimension was set to 20 using the small architecture with BN and 

15,000 iterations. All alignments were unsupervised. 

 

Clustering and Visualization 

In order to visualize the high dimensionality dataset in 2D space, the latent dimensions 

for the ATAC and RNA data from scAlign were used to construct UMAP 

(https://arxiv.org/abs/1802.03426) graphs from Seurat. A K-nearest neighbor graph was 

constructed from the latent dimensions from scAlign using k=15. The leiden algorithm 

was then used to identify ‘communities’, or clusters, in the sample, representing groups 

of cells likely to be of the same cell type using resolution 0.8.  

  

Calculating Gene Activity Scores 

To create a proxy for gene expression, ATAC-seq fragments in the gene-body plus 

promoter (2Kb upstream from transcription start sites) of all protein-coding genes were 

summed for each cell to generate ‘Gene Activity Scores’. A matrix was constructed for all 

gene activity scores by all cells. Due to the sparsity of scATAC-seq data, the MAGIC60 

imputation method was used, as implemented in the SnapATAC package, to impute gene 

activity scores based on the K-nearest neighbor graph. 

 

Assigning Cell Type Labels to scATAC-seq Cells 

Broad cell type classes were assigned to cells based on the gene activity scores of 

previously described cell type marker genes2 (Figure S2.2a). To identify cell types at a 

higher resolutions, we assigned cell type labels to using the CellWalker17 method, as 
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implemented in CellWalkR (v0.1.7). Briefly, we used CellWalker to integrate scRNA-seq 

derived labels from Nowakowski et al., 20172 with scATAC-seq data by building a network 

of label-to-cell and cell-to-cell edges and diffusing label information over this combined 

network to compensate for data sparsity in single cell data. We calculated cell-to-cell edge 

weight using the Jaccard similarity between cells. Label-to-cell weight was calculated as 

the sum of the products of the gene activity scores for that cell and the log fold change in 

expression level of each marker for that cell label. We tuned label edge weight using cell 

homogeneity as described in the CellWalker paper17. Diffusion resulted in a vector of 

influence scores of each label for each cell. We then smoothed these vectors for each 

cell by taking a weighted average of its scores with those of each of its ten closest 

neighbors (weighted such that each neighbor contributes one fifth as much as the cell in 

question) in UMAP space. Finally, we assigned cell type labels to each cell based on the 

label with the highest influence. 

 

Peak Calling 

Fragments from cells were grouped together by broad cell class (RG, IPC, ulEN, dlEN, 

EndoMural, AstroOligo, nEN, IN-MGE, IN-CGE, MGE progenitor, Insular, Microglia) and 

peaks were called on all cluster fragments using MACS2 

(https://github.com/taoliu/MACS) with the parameters ‘--nomodel --shift -37 --ext 73 --qval 

5e-2 -B --SPMR --call-summits’. Peaks from each cell type were then combined, merging 

overlapping peaks, to form a master peak set and a cell-by-peak matrix was constructed. 

This matrix was binarized for all downstream applications. 

  

https://github.com/taoliu/MACS
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Determination of Differentially Accessible Peaks 

Differentially accessible peaks for each cell type were determined by performing a two-

sided Fisher’s exact test and selecting peaks that had log fold change >0, and FDR-

corrected p-value < 0.05, using the built in function in snapATAC ‘findDAR’.  

  

Visualizing Cluster Signal in Peaks 

The deeptools suite61 (https://deeptools.readthedocs.io/en/develop/) was used to 

visualize pileups of cluster-specific ATAC-seq signal (output from MACS2) in DA peak 

sets. 

 

Intersection with 25 Chromatin State Model 

To comprehensively categorize our peaks in genomic features genome-wide, we 

intersected our peak set with the 25-state model from the Roadmap Epigenomics 

Project18, specifically using the data generated from sample E081, which was a sample 

of developing human brain. Enrichment of peaks within annotated regions of the genome 

was calculated using the ratio between the (#bases in state AND overlap feature)/(#bases 

in genome) and the [(#bases overlap feature)/(#bases in genome) X (#bases in 

state)/(#bases in genome)] as described previously18. 

 

Intersection with Epigenomic Datasets  

We intersected our peak sets with several epigenomic datasets including ATAC-seq 

peaks from de la Torre-Ubieta et al., 20189 (GEO: GSE95023), ATAC-seq peaks from 

Markenscoff-Papadimitriou et al., 202023 (GEO: GSE149268), H3K4me3 PLAC-seq 

https://deeptools.readthedocs.io/en/develop/
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promoter-interacting regions, generated from ENs, INs, IPCs, and RGs sorted from 

samples of developing human cortex62, that were graciously provided by the author, 

H3K27ac peaks from Amiri et al., 201811 (taken from supplementary tables of publication), 

ATAC-seq peaks from Trevino et al., 202049 (GEO: GSE132403), H3K27ac peaks from 

Li et al., 201822 (obtained from http://development.psychencode.org), and high 

confidence enhancer predictions from Wang et al., 201824 (obtained from 

http://resource.psychencode.org/). Any peaks not already mapped to hg38 were lifted 

over using the UCSC LiftOver tool. Overlaps between peak sets were determined using 

the ‘findOverlaps’ function in R. 

 

Transcription Factor Motif Enrichment Analysis 

The findMotifsGenome.pl tool from the HOMER suite63 (http://homer.ucsd.edu/homer/) 

was used to identify TF motif enrichments in peak sets. The ChromVAR26 R package was 

used to identify TF motif enrichments at the single cell level in scATAC-seq data. Briefly, 

the peak-by-cell matrix from the snap object was used as an input, filtering for peaks open 

in at least 10 cells. Biased-corrected TF motif deviations were calculated for the set of 

1,764 human TF motifs for each cell. 

  

Enhancer-Gene Predicted Interactions  

The Activity-by-Contact (ABC) model20 (https://github.com/broadinstitute/ABC-Enhancer-

Gene-Prediction) was used for prediction of enhancer-gene interactions from scATAC-

seq data. Cell type specific ATAC-seq signal and peak outputs from MACS2 were used 

as inputs. Bulk H3K27ac CUT&Tag libraries generated from similar samples (see ‘Bulk 

http://development.psychencode.org/
http://resource.psychencode.org/
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
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H3K27ac CUT&Tag Library Preparation and Sequencing’ section above) were used as a 

mark for active enhancers. Publicly available Hi-C data generated from similar samples19 

was used to demarcate regulatory neighborhoods, using the highest resolution available 

for each chromosome. Cell type specific gene expression profiles were generated from 

publicly available scRNA-seq data generated from similar samples2 by averaging 

expression across each cell type. The default threshold of 0.02 was used for calling 

enhancer-gene interactions. 

  

VISTA Enhancer Intersections 

VISTA Enhancers were taken from the VISTA Enhancer Browser25 

(https://enhancer.lbl.gov/) and filtered for human sequences found to be active in the 

forebrain. Enhancers were lifted over to Hg38 using the UCSC LiftOver tool 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) and overlapping regions were merged, 

resulting in 319 unique regions. These regions were intersected with the peak set from 

all primary scATAC-seq cells and 304 peaks overlapping VISTA forebrain enhancer 

regions were identified. 

 

Genomic Feature Annotations 

The ChIPSeeker R package64 

(https://bioconductor.org/packages/release/bioc/html/ChIPseeker.html) was used to 

annotate all peak sets in genomic features. 
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Gene Ontology 

Identification of enriched biological processes in the genes nearby sets of cell type 

specific enhancer predictions was performed using the GREAT alogrithm65. For each cell 

type, peaks that were both predicted enhancers and cell type specific were identified and 

enrichment of biological processes in the flanking genes of the regions relative to a 

background set of the full primary peak set was identified. 

 

Calculating sample correlations 

Correlation between samples was determined using the ‘multiBamSummary’ function 

from the deeptools python suite61 on sample bam files. Bam file comparison was limited 

to the genomic space of the merged primary peak set (n=459,953 peaks), ignoring 

duplicates and unmapped reads. Heatmaps were then generated using the 

‘plotCorrelation’ function.  

 

scRNA-seq/scATAC-seq Coembedding 

To anchor mRNA expression and chromatin state profiles in the same map of cell 

diversity, we applied scAlign on datasets where we profiled scRNA-seq and scATAC-seq 

in parallel in the same sample. This was achieved by linking gene expression data to 

gene activity scores derived from chromatin accessibility data. The gene activity scores 

were logRPM values derived from gene activity scores generated by the SnapATAC 

pipeline. Then the gene expression and gene activity scores were processed using 

Seurat, and then split into batches for input into scAlign. The encoder space was 
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computed using multi CCA of the 10 dimensions with latent dimensions at 20 using the 

‘small’ architecture. 

 

Pseudotime Analysis 

The Monocle 3 R package66 (https://cole-trapnell-lab.github.io/monocle3/) was used for 

pseudotime calculation of the co-embedded RNA and ATAC dataset. The radial glia cells 

were set as the root cells. The minimum branch length was 9 in the graph building. 

Monocle 3 was also used for the pseudotime calculation of the scRNA-seq PFC/V1 

dataset. The Cicero package67 (https://cole-trapnell-lab.github.io/cicero-release/) was 

used for the pseudotime calculation of the scATAC-seq PFC/V1 dataset. 

 

Identification of Temporally Dynamic Peaks in the Excitatory Neuronal Lineage 

scATAC-seq cells from V1 samples used in the co-embedding analysis were divided into 

ten equal bins by pseudotime. Average accessibility for each peak for each bin was 

determined. Peaks were considering temporally dynamic if they met the following criteria: 

accessible in a minimum of 10% of cells in the bin with the highest accessibility, 

accessible in a maximum of 20% of cells in the bin with the lowest accessibility, at least 

a difference of 10% in proportion of cells where the peak was accessible between the 

lowest and highest accessibility bins, and had an increase in proportion of accessibility in 

cells of at least 3x between the lowest and highest accessibility bins. In total 

25,415/459,953 peaks met these criteria and were deemed to be temporally dynamic in 

the cortical excitatory neuronal lineage. 

 

https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/cicero-release/
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Comparison of Accessibility, Gene Expression, and TF Motif Enrichment Across 

Pseudotime 

Since pseudotime was calculated on the co-embedded space of ATAC and RNA cells, 

we can directly compare temporal changes in gene expression, gene activity scores 

calculated from open chromatin, and transcription factor motif enrichment. For each of 

the genes, we calculated gene activity scores using Cicero67 and calculated a 1,000 cell 

moving average across pseudotime from the ATAC cells. This value was normalized to 

represent a proportion of the maximum value. For gene expression, we calculated a 1,000 

cell moving average across pseudotime from the RNA cells. This value was normalized 

to represent a proportion of the maximum value. For TF motif enrichment, using Z-scores 

from ChromVAR, we calculated a 1,000 cell moving average of the motif enrichment 

across pseudotime from the ATAC cells. LOESS regression lines were fit to the moving 

average data. For the generation of heatmaps, a similar approach was used, except 

values were averaged within 20 equally sized bins of pseudotime and normalized the 

maximum value. 

 

Branchpoint Analysis 

URD68 (https://github.com/farrellja/URD/) was used to compare the branchpoint of ATAC 

and RNA independently. Deep-layer neurons weren’t considered during this analysis due 

to obfuscating identities, and the batch corrected values were used as input to the 

diffusion map calculations to combat batch effects. Diffusion parameters were set to 150 

nearest neighbors, and sigma was auto calculated from the data. The tree was 

https://github.com/farrellja/URD/
https://github.com/farrellja/URD/
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constructed using 200 cells per pseudotime bin, 6 bins per pseudotime window, and 

branch point p-value threshold of 0.001. 

 

Identification of Homologous Cell Types in Primary and Organoid Samples 

In order to identify homologous cell types between primary and organoid scATAC-seq 

datasets, reads from organoid cells were counted in peaks defined in the primary dataset, 

providing matching peak by cell matrices for primary and organoid datasets. DA peaks 

were then identified in each dataset for each cluster as described above, and the 

intersection of this DA peak set was used to calculate correlation between primary and 

organoid clusters after averaging peaks accessibility across all cells in each cluster. 

Homologous cell types were then determined based on the highest correlation values for 

each cluster. 

 

Single Cell RNA-seq Analysis 

Seurat 

For primary samples used in Figs. 2-3, preprocessing of scRNA-seq data was conducted 

using a minimum of 500 genes and 5% mitochondrial cutoff was used and Scrublet69 for 

doublet removal. The SCTransform70 workflow in Seurat71 were run separately on each 

batch. canonical component analysis (CCA) on the Pearson residuals from SCTransform 

was used as input into scAlign for batch correction. Dimensionality reduction and 

clustering were performed using PCA and leiden, respectively, using the default 

parameters of the Seurat pipeline. For organoid samples used in the arealization 

experiment in Figure 3, libraries from different conditions were demultiplexed using the 
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Multi-seq pipeline (https://github.com/chris-mcginnis-ucsf/MULTI-seq). The normal 

SCTransform workflow was then applied, as described above. Differentially expressed 

genes between conditions were identified using the ‘FindMarkers’ function with ‘MAST’ 

selected as the method. For organoid samples used for validation, scRNA-seq data were 

integrated following the Seurat SCTransform integration workflow using default 

parameters. 

  

Classification of Area Identity of Organoid Cells 

In order to systematically determine whether organoid cells had a transcriptomic identity 

more closely aligned with human PFC or V1 cells, we implemented a classifier method 

described in Bhaduri et al., 202042. Briefly, area gene modules defined based on area-

associated gene expression patterns2,42 were generated and module eigengene values 

were determined for each organoid excitatory neuron using the ‘moduleEigengenes’ 

function from the WGCNA R package72. Organoids cells were then assigned an identity 

of ‘PFC’ or ‘V1’ based on the higher module eigengene value for each module. 

Significance of differences in proportions of identity labels between treatments were 

determined using a two-sided Chi-square test (p < 0.05).  

 

Disease Intersection 

De novo mutation (DNM) enrichment 

Peak sets were intersected DNMs from 2,708 probands and 1,876 siblings using bedtools 

v2.24.0. DNMs were identified by an in-house pipeline. Briefly, variants from whole-

genome sequencing data were called using four independent callers: GATK v3.8, 

https://github.com/chris-mcginnis-ucsf/MULTI-seq
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FreeBayes, Strelka, and Platypus. Variant calls from each caller were intersected, and 

filtered for read depth (> 9), allele balance (> 0.25), absence of reads supporting the 

mutation in parents, and identified by at least three of the four callers. 

 

Sets of cell type specific peaks and peaks overlap PLAC-seq promoter-interacting regions 

were tested for an enrichment of DNMs in probands as compared to a background peak 

set which contained all primary peaks. We used a Fisher’s exact test to compare the 

number of peaks with one or more DNMs between the cell type-specific peak set and the 

background peak set. We also performed a Wilcox rank sum test comparing the number 

of DNMs per peak in the cell type-specific set to the background peak set. We applied a 

Bonferroni multiple test correction to all p-values. 

  

ASD/NDD gene set enrichment 

We created gene plus upstream regulatory regions using bedtools v2.24.0, where we 

defined the upstream regulatory region as the 100Kb region upstream of the gene 

transcription start sites. Gene regions were defined using Gencode V27. The total number 

of peaks in each gene plus upstream regulatory region was quantified per gene for each 

cell type and compared to the number of peaks in the merged peak set for each gene set 

using a Fisher’s exact test. The peaks in the remaining gene plus promoter regions were 

used as background. Gene sets from Coe et al., 201430 (COE253), Kaplanis et al., 202073 

(DDD299) and SFARI gene (SFARI854) were used for enrichment testing. P-values were 

Bonferroni corrected for multiple tests (# of peak sets).  
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Morbidity map CNV enrichment 

CNVs enriched in NDD cases from Coe et al., 2014 (n=70) were intersected with peak 

sets using bedtools 2.24.0; peaks were required to have a 50% overlap with the CNV 

region. The total number of peaks overlapping a CNV were compared to the number of 

peaks that did not overlap with a CNV for each cell type. The full primary peak set was 

used as background and compared by Fisher’s exact test. P-values were Bonferroni 

corrected for multiple tests (# of peak sets). 

 

Cell type-specific GWAS enrichment testing 

We retrieved GWAS summary statistics for schizophrenia (Ripke et al., 201427), bipolar 

disorder (Stahl et al., 201935), and autism (Grove et al., 201933) from the Psychiatric 

Genomics Consortium data portal (https://www.med.unc.edu/pgc). We also obtained 

GWAS summary statistics for schizophrenia (Pardiñas et al., 201832) from 

http://walters.psycm.cf.ac.uk/. GWAS summary statistics for major depression (Howard 

et al., 201934) were obtained from the authors under the auspices of a Data Use 

Agreement between 23AndMe and the University of Maryland Baltimore. We applied 

stratified LD score regression (LDSC version 1.0.1; Finucane et al., 201874; Finucane et 

al., 201575) to these summary statistics to evaluate the enrichment of trait heritability in 

each of 10 predicted enhancer sets. These associations were adjusted for the union of 

the peak sets as well as for 52 annotations from version 1.2 of the LDSC baseline model 

(including genic regions, enhancer regions and conserved regions; Finucane et al., 2015). 

Associations that met a cutoff of FDR < 0.05 were considered significant. 

 

https://www.med.unc.edu/pgc
http://walters.psycm.cf.ac.uk/
http://walters.psycm.cf.ac.uk/
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TAD Enrichment 

Odds ratios were calculated as the likelihood of a TAD containing an ATAC peak if it also 

contained a gene from the set denoted by the subplot title, with significance identified 

using a Fisher's exact test. The magenta dotted line indicates a significance threshold of 

p < 0.05. Gene sets were obtained from http://resource.psychencode.org/24,31. TAD sets 

were from human brain, germinal zone (GZ) and cortical plate (CP) from Won et al., 

201619. 

 

Immunohistochemistry 

Samples used for immunostaining were fixed in 4% PFA for 45 min, washed out with 

PBS, and incubated overnight in a 30% sucrose solution at 4c. Samples were then 

embedded in a 1:1 solution of OCT and 30% sucrose and frozen at -80c until ready for 

sectioning. Cryosections were prepared at a thickness of 16uM. Heat induced antigen 

retrieval was performed in 10mM sodium citrate (pH=6.0) for 15 min. Permeabilization 

was performed in PBS (pH=7.4) supplemented with 2% Triton X-100. Primary and 

secondary antibodies were diluted and incubated in PBS (pH=7.4) supplemented with 

10% donkey serum, 2% Triton X-100, and 0.2% gelatin. Primary antibodies used in this 

study included: mouse anti-AUTS2 (1:200, Abcam ab243036), rabbit anti-NR2F1 

(1:100, Novus Biologicals NBP1-31259), mouse anti-SATB2 (1:250, Santa Cruz 

Biotechnology SC-81376), rat anti-CTIP2 (1:500, abcam AB18465), rabbit anti-FOXG1 

(1:500, Abcam ab196868), and rabbit anti-PAX6 (1:200, Biolegend 901301). Secondary 

antibodies used were AlexaFluor secondary antibodies. Images were collected using 

Leica SP5 confocal system and processed using ImageJ/Fiji. 
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DATA AVAILABILITY 

scATAC-seq and scRNA-seq data derived from primary human samples are available on 

the NeMO archive (https://assets.nemoarchive.org/dat-gnot1gb) and the psychENCODE 

Knowledge Portal (https://www.synapse.org/#!Synapse:syn21392931). scATAC-seq and 

scRNA-seq data from derived from cortical organoids are also available on the 

psychENCODE Knowledge Portal (https://www.synapse.org/#!Synapse:syn21392931) 

and  GEO (GSE163018). Peak level scATACseq primary and organoid ATAC-seq data 

is available through the UCSC Cell Browser (https://cortex-atac.cells.ucsc.edu/) and 

UCSC Genome Browser (https://urldefense.proofpoint.com/v2/url?u=https-

3A__genome.ucsc.edu_s_Max_cortex-

2Datac&d=DwIBaQ&c=iORugZls2LlYyCAZRB3XLg&r=wIGwA13tJ0H_yBH_8fGR_aHD

v_Lb9BdBvaGRmKuMfC8&m=C-

AKivMuKdU2JxBfFMIkS53e2NDAh9SJrG2tdmW5_MU&s=Sg2BoS6TTUoAMLyXiaM6h

GHhNtG9LqaUBpXoPQxWBuQ&e=). 

 

CODE AVAILABILITY 

Custom codes used in this study are available at the following GitHub repository: 

https://github.com/NOW-Lab/scATACcortex. 
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Figure 2.1: Single cell chromatin state atlas of the developing human brain. a) 
Schematic cross-section of developing cortex highlighting major cell types. b) Schematic 
depicting experimental workflow. PFC – prefrontal cortex, MGE – medial ganglionic 
eminence.  c) UMAP projection of primary scATAC-seq cells (n = 6 individuals, 77,354 
cells) colored by clusters. d) UMAP projection of primary scATAC-seq cells colored by 
brain region. Som. – somatosensory cortex, V1 – primary visual cortex. e) UMAP 
projections of gene activity scores for GFAP marking glia, EOMES marking intermediate 
progenitors, DLX1 marking cells in the interneuron lineage, and NEUROD2 marking cells 
in the excitatory neuron lineage. f) UMAP project of primary scATAC-seq cells colored by 
broad cell type. g) Top, sankey plot linking scATAC-seq clusters and cell type predictions. 
Bottom left, Pileups of ATAC-seq signal for each cluster within sets of the top 1000 
enriched peaks for each cluster (Fisher’s Exact, two-sided). Pileups are centered on peak 
centers and the +/-10Kb flanking region is depicted. Bottom right, significantly enriched 
TF motifs for each cluster specific peak set (Hypergeometric test, one-sided). h) Left, 
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predicted enhancer-gene interactions for radial glia highlighting predicted enhancers of 
ARX that overlap with validated VISTA forebrain enhancers25. Right, LacZ staining 
marking regions of enhancer activity for the enhancer candidates hs122 and hs145 in 
mouse embryos, depicting activity in the forebrain (Images taken from VISTA Enhancer 
Browser, https://enhancer.lbl.gov/) i) Enrichment and depletion of peaks that overlap with 
promoter interacting regions21, cell type-specific peaks, and peaks that meet both criteria 
in copy number variant (CNV) regions enriched in pediatric cases of neurodevelopmental 
delay (NDD)30 (n=70 NDD-associated CNVs) (Fisher’s Exact, two-sided). Asterisks 
indicate Bonferroni corrected significance. Error bars represent 95% confidence interval. 
j) Enrichment and depletion of peaks that overlap with predicted enhancers in promoter 
and gene regions of genes associated for autism and NDD including genes enriched in 
de novo non-coding mutations (SFARI845, DDD29973, COE25330) (Fisher’s Exact, two-
sided). Asterisks indicate tests that pass Bonferroni significance. k) Heatmap of 
heritability enrichment based on LD score regression analysis of GWAS summary 
statistics in cell type specific peak sets colored by -log10(P). Asterisks indicate significance 
at FDR < 0.05. From left to right, Psychiatric Genomics Consortium (PGC) schizophrenia 
(SCZ) GWAS27, an additional PGC schizophrenia GWAS32, PGC bipolar (BIP) disorder35, 
PGC major depressive disorder (MDD) GWAS34, PGC autism spectrum disorder (ASD) 
GWAS33. 

https://enhancer.lbl.gov/
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Figure 2.2: Dynamic changes in chromatin accessibility during human cortical 
neurogenesis. a) Schematic depicting workflow for co-embedding scATAC-seq and 
scRNA-seq data from the same samples. Left, schematic depicting experimental 
workflow. Top middle-left, UMAP projection of scATAC-seq cells from samples of visual 
cortex (n = 3 individuals) colored by leiden clusters. Bottom middle-left, UMAP projection 
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of scRNA-seq cell from samples of visual cortex (n = 2 individuals) colored by leiden 
clusters. Middle-right, UMAP projection of co-embedded cells colored by assay. Right, 
UMAP projection of co-embedded scATAC-seq & scRNA-seq cells colored by leiden 
clusters. b) Sankey plot depicting the mappings between scATAC-seq clusters, scRNA-
seq clusters, and co-embedded clusters. c) Heatmap of correlations between scATAC-
seq and scRNA-seq clusters based on a set of cell type marker genes. (Methods) d) Left, 
schematic depicting cell type marker genes in the cortical excitatory neuronal lineage. 
Right, projection of log normalized gene expression and gene activity scores in co-
embedded space for SOX2 (RGs), EOMES (IPCs), SATB2 (Upper-layer ENs), and 
CRYM (Deep-layer ENs). e) UMAP projection of co-embedded cells colored by 
pseudotime with principal graph overlaid. f) Heatmap depicting the average proportion of 
cells with peaks that are differentially accessible across pseudotime (n=25,415). Cells are 
binned by pseudotime into 10 equally sized bins. g) Barplots of peak accessibility for 4 
individual peaks across 10 pseudotime bins with regression line overlaid. h) Predicted 
enhancer-gene interactions for each of the four peaks, peaks highlighted in red. i) 
Heatmap depicting gene expression (left) and gene activity scores derived from open 
chromatin (right) for 615 cell type marker genes. Values are averaged within 20 equally 
sized bins of pseudotime. j) Comparison of moving averages of normalized gene activity 
scores (red), gene expression (blue), and motif enrichment (green) across pseudotime 
for PAX6 (left), EOMES (middle), and MEF2C (right).   
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Figure 2.3: Areal differences in chromatin state of progenitor cells foreshadow the 
emergence of area-specific excitatory neuron types. a) Schematic depicting 
differentiation trajectories for excitatory neurons from the PFC (left) and V1 (right). b) 
UMAP projection of PFC & V1 scATAC-seq cells (n = 3 individuals) colored by cell type 
predictions. Cells from the excitatory lineage are outlined. c) UMAP projection of PFC & 
V1 scATAC-seq excitatory lineage cells colored by area of origin. d) UMAP projection of 
PFC & V1 scATAC-seq excitatory lineage cells colored by pseudotime value. e) UMAP 
projection of PFC & V1 scRNA-seq excitatory lineage cells (n = 2 individuals) colored by 
area of origin. f) UMAP projection of PFC & V1 scRNA-seq excitatory lineage cells colored 
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by pseudotime value. g) Left, PFC & V1 scATAC-seq excitatory lineage cells ordered 
from bottom to top by pseudotime value with PFC/V1 divergence branch point displayed 
(Methods). Cells colored by gene activity score of EOMES, highlighting IPCs. Right, 
schematic illustrating the excitatory neuron differentiation trajectory based on chromatin 
accessibility, in which PFC/V1 divergence becomes apparent at the level of IPCs. h) Left, 
Projection of PFC & V1 scRNA-seq excitatory lineage cells ordered from bottom to top by 
pseudotime value with PFC/V1 divergence branch point displayed (Methods). Cells 
colored by expression of EOMES, highlighting IPCs. Right, schematic illustrating the 
excitatory neuron differentiation trajectory based on gene expression, in which PFC/V1 
divergence is not apparent in IPCs. i) Pileups of PFC and V1 signal in PFC and V1 specific 
peak sets. Pileups are centered on peaks showing +/-10Kb flanking regions. j) TF motif 
enrichments of retinoic acid-related TFs in set of 4,176 PFC specific peaks (Fisher’s 
Exact, two-sided, FDR<0.05). k) UMAP projection of deviation scores of motif enrichment 
for TGIF1. l) Schematic of experimental design to test role of RA in organoid area identity. 
m) UMAP projection of scRNA-seq data from day 70 organoids (n=11,415 cells). Cells 
colored by treatment. n) Left, schematic of expected expression patterns of BCL11B, 
SATB2, AUTS2, and NR2F1 in primary human cortex. Right, images of primary 
developing human cortex from the PFC (left) and V1 (right) stained for CTIP2/SATB2 
(top) and AUTS2/NR2F1 (bottom). Representative images shown from n=2 specimens. 
o) Left, UMAP projection of cells colored by expression of NEUROD2. TBR1, SATB2, 
NR2F2 (clockwise, from top left). Right, images of organoids cultured without Vitamin A 
(left) and with Vitamin A (right) stained for CTIP2/SATB2 (top) and AUTS2/NR2F1 
(bottom). Representative images shown from n=3 lines. 
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Figure 2.4: Cell type-specific differences in chromatin accessibility between 
cerebral organoids and the developing human brain. a) Schematic depicting 
experimental workflow. PSCs – pluripotent stem cells. b) UMAP projection of all organoid 
scATAC-seq cells (n = 5 organoids from 3 different lines and 3 different time points, 
23,555 cells) colored by leiden clusters. (Cluster 16 not depicted, see Extended Data 
Figure 10e) c) UMAP projections of gene activity scores for GFAP marking radial glia, 
EOMES marking intermediate progenitors, DLX1 marking interneurons, and NEUROD2 
marking excitatory neurons. d) UMAP projection of all organoid scATAC-seq cells colored 
by sample. e) Heatmap of pearson correlations between primary and organoid scATAC-
seq clusters based on a common peak set. f) Venn diagram of overlap between the full 
primary peak set (red), a down-sampled primary peak set (blue), and the organoid peak 
set. g) UMAP project of enrichment Z-score of peaks that overlap between primary and 
organoid datasets on the primary scATAC-seq dataset h) Left, UMAP projection of 
enrichment Z-scores of radial glia specific peaks (Fisher’s Exact, two-sided, FDR < 0.05) 
in all primary scATAC-seq cells. Right, UMAP projection of Z-scores of enrichment of the 
same radial glia specific peaks in all organoid scATAC-seq cells. i) Left, proportion of cell 
type specific primary peaks present in the organoid peak set. Right, proportion of gene-
linked enhancers for each cell type present in the organoid peak set. 
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Figure S2.1: Batch correction and quality control metrics for primary scATAC-seq 
data. a) Density curve of fragment size distribution for deduplicated, uniquely mapped 
fragments passed quality filters for each sample. b) Plot of promoter ratio vs ln(read 
depth) for all cell barcodes detected. Cells were included in downstream analysis that had 
a promoter ration between 10-60% and ln(read depth) between 3-5. Red lines indicate 
upper and lower thresholds. c) Histogram of cellular coverage in 5kb genomic bins for all 
cells. Cells with reads in <500 bins were removed from downstream analysis d) Heatmap 
of all-by-all pearson correlations between all samples that had bulk libraries prepared in 
parallel. Bulk and aggregate single cell libraries for each sample are included. Correlation 
was calculated in the space of the merged primary peak set (n=459953 peaks). e) 
Heatmap of all-by-all pearson correlations between all aggregate single cell libraries. 
Correlation was calculated in the space of the merged primary peak set (n=459953 
peaks). f) Heatmap of all-by-all correlations between primary single cell data aggregated 
by area of origin. Correlation was calculated in the space of the merged primary peak set 
(n=459953 peaks). g) UMAP projection of all primary scATAC-seq cells before batch 
correction colored by sample. h) UMAP projection of all primary scATAC-seq cells after 
batch correction colored by sample (Methods). i) UMAP projection of log(read depth) for 
deduplicated, uniquely mapped reads passed quality filters on all primary scATAC-seq 
cells j) UMAP project of fraction of fragments in peaks on all primary scATAC-seq cells. 
k) UMAP projection of all primary scATAC-seq cells colored by condition (fresh/frozen). 
l) Barplot depicting the proportion of cells from each brain region for each leiden cluster 
for all primary scATAC-seq cells. m) Heatmap of all-by-all pearson correlations between 
clusters. Correlation is calculated in the space of all primary peaks (n = 459953).  
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Figure S2.2. Batch Correction of Primary scATAC-seq Samples. a) UMAP projection 
of all primary scATAC-seq cells passed QC before batch correction with all cells from 
each sample colored in red. b) UMAP projection of all primary scATAC-seq cells passed 
QC after batch correction with all cells from each sample colored in red. 
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Figure S2.3: Gene activity scores correlate with cell type-specific expression of 
marker genes. a) UMAP projections of all primary scATAC-seq cells colored by gene 
activity score. From top left to bottom right, NKX2.1 marking MGE cells, AQP4 marking 
glia/astrocytes, TBR1 marking excitatory neurons, FEZF2 marking deep layer excitatory 
neurons, HES1 marking radial glia, HOPX marking outer radial glia, SATB2 marking 
upper layer excitatory neurons, CCL4 marking microglia, CRYAB marking truncated radial 
glia, LHX6 marking MGE-derived interneurons, OLIG1 marking oligodendrocyte 
precursors, and SOX2 marking radial glia. b) Schematic of the CellWalker algorithm17 
used to assign cell type labels to scATAC-seq cells based on integration with scRNA-seq 
data. c) UMAP projection of cell type labels assigned by CellWalker. d) UMAP projection 
of radial glia with cell type assignments from CellWalker. e) UMAP projections of gene 
activity scores for PAX6 and GLI3, genes ubiquitously expressed in radial glia, HOPX, an 
oRG specific gene2, and CRYAB, a tRG specific gene2. f) UMAP projection of Z scores 
of enrichment of oRG and tRG specific peaks (Fisher’s Exact, two-sided test, P-value < 
0.05). g) UMAP projections of Z-scores of enrichment of area specific peaks for each area 
in all primary scATAC-seq cells (Fisher’s Exact, two-sided test, P-value < 0.05). 
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Figure S2.4: Annotation of primary scATAC-seq peaks. a) Distribution of primary 
scATAC-seq peaks in genomic features. b) Distribution of primary scATAC-seq peaks 
are transcription start sites. c) Barplot of log(fold enrichment) of primary scATAC-seq 
peaks in chromatin states. Chromatin states defined by the 25-state model from Roadmap 
Epigenomics18 (Methods). d) Intersection of cell type specific peaks (Fisher’s Exact, two 
sided, FDR < 0.05), predicted enhancer peaks (Methods), and peaks overlapping 
promoter-interacting regions identified by H3K4me3 PLAC-seq21. e) UMAP projection of 
Z-scores of enrichment of cell type specific peaks (Fisher’s Exact, two-sided, FDR < 0.05) 
for each broad cell type. f) Browser tracks highlighting cell type specific predicted 
enhancers. Left, highlighting predicted enhancers linked to SOX2 in RGs that are not 
present in ulENs. Right, highlighting a predicted enhancer for GRIN2B that is present in 
ulENs and not RGs. g) Barplot of -log10(P) of Gene ontology biological processes that 
are enriched in cell type specific predicted enhancers of MGE-derived interneurons 
(Methods). h) Barplot of -log10(P) of Gene ontology biological processes that are 
enriched in cell type specific predicted enhancers of RGs (Methods). i) Heatmap of Z-
scores of transcription factor motif enrichments of key lineage-associated TFs in each 
cluster. 
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Figure S2.5: scATAC-seq peaks overlap with previously annotated bulk ATAC-seq 
peaks and validated forebrain enhancers. a) Overlap of all primary peaks with the peak 
set from de la Torre-Ubieta et al., 20189. (Left to right) Venn diagram of overlaps, UMAP 
projection of Z-scores of enrichment of overlapping peaks in all primary scATAC-seq 
cells, barplot of proportions of cell type specific peaks (Fisher’s Exact, two-sided, FDR < 
0.05) present in overlapping set, barplot of proportions of predicted enhancers for each 
cell type (Methods) present in the overlapping set. b) Overlap of all primary peaks with 
the peak set from Li et al., 201822. (Left to right) Venn diagram of overlaps, UMAP 
projection of Z-scores of enrichment of overlapping peaks in all primary scATAC-seq 
cells, barplot of proportions of cell type specific peaks (Fisher’s Exact, two-sided, FDR < 
0.05) present in overlapping set, barplot of proportions of predicted enhancers for each 
cell type (Methods) present in the overlapping set. c) Overlap of all primary peaks with 
the peak set from Markenscoff-Papadimitriou et al., 202023. (Left to right) Venn diagram 
of overlaps, UMAP projection of Z-scores of enrichment of overlapping peaks in all 
primary scATAC-seq cells, barplot of proportions of cell type specific peaks (Fisher’s 
Exact, two-sided, FDR < 0.05) present in overlapping set, barplot of proportions of 
predicted enhancers for each cell type (Methods) present in the overlapping set. d) Venn 
diagram of overlap of all predicted enhancers (Methods) with gene-linked enhancers from 
Amiri et al., 201811, high confidence enhancers from Wang et al., 201824, and putative 
regulatory elements from Markenscoff-Papadimitriou et al., 202023. e) Venn diagram of 
overlaps of VISTA forebrain enhancers25 with all primary scATAC-seq peaks, and all 
predicted enhancers (Methods). 
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Figure S2.6. Enrichment and depletion of disease associated variants in scATAC-
seq peaks. a)  Enrichment and depletion of cell type specific peaks (Fisher’s Exact, two-
sided, FDR < 0.05) in promoter and gene regions of genes associated for autism and 
NDD including genes enriched in de novo non-coding mutations (DNM) (SFARI845, 
DDD2996073, COE2536130). Stars indicate tests that pass Bonferroni significance. b) 
Enrichment and depletion of peaks that overlap with H3K4me3 PLAC -seq interactions21 
(Fisher’s Exact, two-sided, FDR < 0.05) in promoter and gene regions of genes 
associated for autism and NDD including genes enriched in de novo non-coding 
mutations (DNM) (SFARI845, DDD2996073, COE2536130). Stars indicate tests that pass 
Bonferroni significance. c) Enrichment and depletion of cell type specific peaks that 
overlap with H3K4me3 PLAC -seq interactions21 (Fisher’s Exact, two-sided, FDR < 0.05) 
in promoter and gene regions of genes associated for autism and NDD including genes 
enriched in de novo non-coding mutations (DNM) (SFARI845, DDD2996073, 
COE2536130). Stars indicate tests that pass Bonferroni significance. d) Enrichment and 
depletion of DNMs in predicted enhancer peaks for each cell type in ASD probands 
compared with unaffected siblings. DNM data from a total of 2767 probands and 1855 
unaffected siblings were included in the analysis. No tests reached Bonferroni 
significance. Bars represent 95% confidence interval. e) Enrichment and depletion of 
DNMs in cell type specific peaks for each cell type in ASD probands compared with 
unaffected siblings. DNM data from a total of 2767 probands and 1855 unaffected siblings 
were included in the analysis. No tests reached Bonferroni significance. Bars represent 
95% confidence interval. f) Enrichment and depletion of predicted enhancer peaks in copy 
number variant (CNV) regions enriched in pediatric cases of neurodevelopmental delay 
(NDD)30 (n=70 NDD-associated CNVs). No tests reached Bonferroni significance. Bars 
represent 95% confidence interval. g) Enrichment of cell type specific enhancers located 
in TADs with neurodevelopmental disease associated genes31 (left) and schizophrenia 
associated genes24 (right). Three distinct sets of TADs were used (top to bottom): TADs 
defined in the cortical plate (CP) of developing human cortex, TADs defined in the 
germinal zone (GZ) of developing human cortex, and TADs defined in adult cortex19. 
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Figure S2.7: Dynamic patterns of gene expression, chromatin accessibility, and 
transcription factor motif enrichment across pseudotime. a) Heatmap of normalized 
expression of 40 key lineage transcription factors across pseudotime. Pseudotime is 
binned into 20 equally sized bins and accessibility is averaged across all cells in each bin. 
b) Heatmap of normalized gene activity scores for 40 key lineage transcription factors 
across pseudotime. Pseudotime is binned into 20 equally sized bins and activity scores 
are averaged across all cells in each bin. c) Heatmap of deviation scores of motif 
enrichments for 40 key lineage transcription factors across pseudotime. Pseudotime is 
binned into 20 equally sized bins and deviations are averaged across all cells in each bin. 
Deviation scores determined using ChromVAR26 (Methods). d) Heatmap of correlations 
between gene expression and gene activity scores for 40 key lineage transcription 
factors. e) Heatmap of correlations between gene expression and gene activity scores for 
615 cell type marker genes. 
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Figure S2.8: Chromatin state profiling reveals divergence of PFC and V1 excitatory 
lineages. a) UMAP projection of scATAC-seq cells from PFC and V1 samples before 
batch correction colored by sample. b) UMAP projection of scATAC-seq cells from PFC 
and V1 samples after batch correction colored by sample. c) UMAP projection of scATAC-
seq cells from PFC and V1 samples colored by leiden cluster. d) UMAP projection of 
scATAC-seq cells from PFC and V1 samples colored by gene activity score for EOMES, 
a marker of IPCs. e) UMAP projection of scRNA-seq cells from PFC and V1 samples 
before batch correction colored by sample. f) UMAP projection of scRNA-seq cells from 
PFC and V1 samples after batch correction colored by sample. g) UMAP projection of 
scRNA-seq cells from PFC and V1 samples colored by leiden cluster. h) UMAP projection 
of scRNA-seq cells from PFC and V1 samples colored by expression of EOMES, a marker 
of IPCs. i) Projection of NHLH1, PPP1R17, and NEUROD4 gene activity scores on PFC 
& V1 scATAC-seq cells ordered by pseudotime with PFC/V1 divergence branch point 
displayed. j) Projection of NHLH1, PPP1R17, and NEUROD4 gene expression on PFC 
& V1 scRNA-seq cells ordered by pseudotime with PFC/V1 divergence branch point 
displayed. k) Volcano plot of peaks that are differentially accessible between PFC and V1 
IPCs. Peaks highlighted in red have logFC > 0.5 and FDR < 0.05. (n = 1819). l) Volcano 
plot of differentially expressed genes between PFC and V1 IPCs. Genes highlighted in 
red have logFC > 0.5 and FDR < 0.05. (n = 11).  



 

77 
 

 
 
 



 

78 
 

Figure S2.9: Modeling the PFC/V1 split in the developing cortex.  a) UMAP projection 
of Z-scores of enrichment of PFC specific peaks (n = 4,176) in all PFC & V1 scATAC-seq 
cells (Fisher’s Exact, two-sided, FDR < 0.05). b) UMAP projection of Z-scores of 
enrichment of V1 specific peaks (n = 21,030) in all PFC & V1 scATAC-seq cells (Fisher’s 
Exact, two-sided, FDR < 0.05). c) Top enriched transcription factor motifs in V1 specific 
peak set as determined by HOMER (Hypergeometric Test, one-sided). d) UMAP 
projection of ChromVAR deviation scores of motif enrichment of MEF2C in all PFC & V1 
scATAC-seq cells. e) UMAP projection of scRNA-seq data from organoids (n=3) cultured 
in the presence of Vitamin A, without the presence of Vitamin A, and in the presence of 
DEAB. Cells colored by cluster. f) Schematic depiction of classifier method used to assign 
area identity to organoid cells based on defined area-specific gene modules. g) Barplot 
depicting proportion of excitatory neurons from each treatment group classified as more 
PFC-like or more V1-like based on calculation of module eigengene values for area-
specific modules (Methods).  Asterisks indicate significant differences in proportions 
(DEAB – PFC: 1160/2622, V1: 1462/2622; NoVA – PFC: 563/1556, V1: 993/1556; VA – 
PFC: 1831/2976, V1: 1145/2976) (Chi square test, one-sided, VA vs noVA: pval = 3.209e-
59, VA vs DEAB: pval = 2.79e-38). h) Violin plots depicting expression levels of SATB2, 
NR2F1, and NR2F2 for excitatory neurons from each treatment group. i) Heatmap gene 
expression of differentially expressed genes between excitatory neurons cultured with 
and without Vitamin A. j) Images of organoids cultured with and without Vitamin A stained 
with DAPI and immunostained for NR2F1 and AUTS2. All images taken at 10x resolution. 
Representative images shown from n=3 lines. 
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Figure S2.10: Comparison of organoid and primary peaks reveal significant 
differences in the chromatin landscapes. a) Representative image of organoid (13234 
line depicted) immunostained for FOXG1, a marker of cortical identity. Image taken at 
10x resolution. Representative image shown from n=3 lines. b) Density curves of 
fragment size distributions for each organoid sample. Fragments are dedpulicated, 
uniquely mapped fragments that have passed quality filters (Methods). c) UMAP 
projection of all organoid scATAC-seq cells colored by cluster. d) UMAP projection of 
log(read depth). Fragments are dedpulicated, uniquely mapped fragments that have 
passed quality filters (Methods). e) Barplot depicting the proportions of cells in each 
cluster from each organoid sample. f) Venn diagram of overlaps of all primary scATAC-
seq peaks, all organoid scATAC-seq peaks, all H3K27ac peaks from Amiri et al., 201811, 
and all ATAC-seq peaks from Trevino et al., 202049. g) UMAP projection of Z-scores of 
enrichment of peaks that are present in the organoid scATAC-seq dataset but not in the 
primary scaTAC-seq dataset. h) UMAP projection of Z-scores of enrichment of peaks that 
are present in the primary scATAC-seq dataset but not in the organoid scaTAC-seq 
dataset. i) Genome browser tracks depicted a predicted enhancer of SOX2 that is present 
in both the full and down-sampled primary RGs but not detected in organoid RGs. j) 
UMAP projection of scRNA-seq data from the same three organoid lines used for 
scATAC-seq analysis colored by line (n = 19,509 cells). k) UMAP projection of scRNA-
seq data colored by cluster. l) UMAP projection of normalized gene expression of PAX6, 
SOX2, EOMES, and NEUROD2. Maximum value was set at the 99th quantile. m) Barplot 
depicting the proportions of cells in each cluster from each organoid sample. n) UMAP 
projection of normalized gene expression of FOXG1 split by organoid line. Maximum 
value was set at the 99th quantile. 
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CHAPTER 3 

Conclusion 

With the work described in this dissertation, we were able to generate one of the first 

single cell resolution epigenomic datasets for human cortex during prenatal 

developmental stages and use these data to make novel biological findings related to the 

process of cortical arealization. Using our dataset, we nominated thousands of cell type 

specific enhancer candidates active during human cortical development, we showed 

dynamic changes occur in the chromatin landscape that correspond with the process of 

neurogenesis, we benchmarked cerebral organoids as an epigenomic model for human 

cortical development, and we identified a novel role for retinoic acid in specification of 

prefrontal cortical identity. Excitingly, this finding linking increased retinoic acid signaling 

to prefrontal identity in the cortex was also found independently in a separate study 

around the time the manuscript represented in chapter 2 was submitted for publication1. 

This work merely represents the tip of the iceberg for how this dataset can be used to 

further our understanding of human cortical development and neurodevelopmental 

disease. I am hopeful that the research community will continue to use the data we 

generated to uncover deeper mechanistic understanding of the critical role that the 

chromatin landscape plays in the processes of cell fate specification and arealization and 

build better models for cortical development when primary tissues are inaccessible. 

Additionally, I am hopeful that this dataset will continue to be useful for those studying the 

genetic underpinning of neurodevelopmental disease. While we were able to find 

significant enrichment of neurodevelopmental disease-associated variants in predicted 

enhancers of excitatory and inhibitory neurons, better-powered genetic studies will enable 
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the use of single cell epigenomic data for further fine mapping of disease-associated 

variants to pinpoint the causal mutations, as seen in a recent study of neurodegenerative 

diseases2.  

 

As I write this dissertation, there is ongoing work in the Ahituv and Nowakowski labs to 

follow up on some of the findings from the chapter 2 manuscript. We are currently 

conducting massively parallel reporter assays (MPRAs)3,4 in primary developing human 

cortical cells to characterize the enhancer activity of the cell type specific enhancer 

candidates we identified. Defining a set of enhancers with activity in discrete cell types 

will aid in the development of molecular tools that can achieve targeted cell type specific 

expression, enabling the study of specific cell types in a way that was previously 

unattainable5,6. In addition, we are testing the enhancer activity of candidates that 

intersect neurodevelopmental disease-associated variants to better understand the 

mechanism by which genetic variants may mediate disease via disruption of gene 

regulation during development. Lastly, we are following up on the finding that increased 

retinoic acid signaling plays a role in prefrontalization of the cortex with further 

experiments to understand the mechanism by which this fate specification occurs. In 

summary, though I will be moving on to the next phase of my career, I am hopeful that 

the modest contribution I have been able to make during my doctoral work will be useful 

to other scientists in the field and enable them to continue to unlock the secrets of the 

extraordinary human brain. 
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