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Electron Density Geometry and the
Quantum Theory of Atoms in

Molecules

Timothy R. Wilson1 Anastassia N.   Alexandrova2 M.E. Eberhart*3

April 15, 2022

Abstract

A novel form of charge density analysis, that of isosurface curvature redistribution,

is  formulated  and  applied  to  the  toy  problem of  carbonyl  oxygen  activation  in

formaldehyde.  The isosurface representation of the electron charge density allows

us to incorporate the rigorous geometric constraints of closed surfaces towards the

analysis  and  chemical  interpretation  of  charge  density  perturbations.   Visual

inspection of 2D isosurface motion resulting from applied external electric  fields

reveals  how  isosurface  curvature  flows  within  and  between  atoms,  and  that  a

molecule  can  be uniquely  and completely  partitioned  into  chemically  significant

regions  of positive  and negative  curvature.   These concepts  reveal  that  carbonyl

oxygen activation  proceeds primarily  through curvature and charge redistribution

within atoms rather than between atoms.  By partitioning the charge density into

differential volume elements, called gradient bundles and bounded by QTAIM zero

flux surfaces, the observations from visual isosurface inspection are verified.  The

results of the formaldehyde carbonyl analysis are then shown to be transferable to

the substrate carbonyl in the ketosteroid isomerase enzyme, laying the groundwork

for extending this approach to the problems of enzymatic catalysis. 
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1.  Introduction

The quantum theory of atoms in molecules (QTAIM) attributes special significance to

volumes bounded by zero flux surfaces (ZFS), that is, surface through which the flux of the

gradient  of  the  electron  charge  density,  ρ(r ),  is  everywhere  zero [1–3].   These  volumes

possess  well  defined energies  and hence unambiguous energy- related  properties.   While

there  are  an  infinite  number  of  boundary  conditions  giving  rise  to  such  energetically

unambiguous volumes [4–6], each imposes a different geometry on ρ(r ).  In the case of the

ZFS of  QTAIM, the  geometry  imposed is  that  intrinsic  to  the  electron  density  gradient,

∇ ρ(r ), or its dual representation as a set of nested isosurfaces.  Keeping with the original

vision  for  QTAIM  as  an  exact  chemical  formalism  rooted  in  the  observable  electron

density [7],  molecular  properties  should  be  seen  as  the  consequential  and  quantifiable

changes to this geometry due to chemical or physical perturbations.  

Here,  using an  important  problem drawn from carbonyl  chemistry [8],  we show that

much  of  our  empirically  tuned  “chemical  intuition"  regarding  this  process  derives  from

mathematically rigorous geometrical constraints limiting the response of ρ(r ).  

2.  Geometry of the electron density

Electronic charge density is often represented with a set of simple closed isosurfaces that

may, in turn, be pictured as contours in selected cut planes.  Such representations have proved

useful as a way to depict a molecule’s response to chemical or physical perturbations.  It is

seldom noted, however, that in addition to chemical factors limiting this response, there are

geometric principles that further constrain the allowed changes to these surfaces.  

The geometry  of  a  surface  in  the  neighborhood of  a  point  is  determined  by its  two

principal curvatures at that point (κ1 and κ2).  The surface’s total curvature is given either by

its mean curvature (κ1+κ2) or its Gaussian curvature (κ1κ2).  A point on a surface where both

principal curvatures are positive is called an elliptic point, and near this point the surface is

convex.  If both principal curvatures are negative, the surface is said to be parabolic and is

locally concave.  Around a point where one principal curvature is negative and the other is

positive the surface is saddle shaped and the point is called hyperbolic.  Finally, about a point
2



where at least one principal curvature vanishes, the surface is topologically flat.  

Any closed ρ(r ) isosurface, may be decomposed into continuous regions in which every

point is either elliptic (convex), parabolic (concave) or hyperbolic (saddle).  The boundary

between these regions occurs where one principal curvature vanishes and hence the Gaussian

curvature is zero.  In each such region there is at least one 2D critical point (CP) where the

Gaussian curvature achieves its extreme values.  We designate these as convex, saddle, and

concave CPs.  These are the respective 2D counterparts of the 3D nuclear, bond/ring and cage

CPs of QTAIM.  

Generally,  for  nested  isosurfaces  where  the  field  is  smoothly  varying,  the  convex,

concave and saddle topological regions jointly create 3D regions.  The isosurfaces of convex

regions  stack  to  form what  are  called  corners.   The locus  of  the  convex CPs  on corner

isosurfaces lie  along the gradient  lines that  intersect  the isosurfaces where they are most

curved, ; we call these corner lines, which are often coincident with QTAIM bond paths.  

Stacked hyperbolic regions give rise to 3D structures we call troughs.  The locus of CPs

in these regions define trough lines.  These lines lie along the boundaries between two bound

atoms and terminate at 3D bond CPs.  

Stacked concave regions we call depressions, which are associated with the 3D-structure

of the charge density intrinsic to rings of bound atoms.  The locus of concave CPs gives rise

to a depression line that terminate at ring CPs.  

As examples, Figure 1 shows the charge density contour diagrams in planes containing

the internuclear axis for the series of dimers N2, BN and NaF, with trough and corner regions

3

Figure 1.  The corner (cyan) and trough (green) regions of the N2, BN and NaF molecules superimposed
on the charge density contour diagram.  Corner gradient paths are shown with light dashed black lines
and the interatomic surface with heavy dashed black lines.  Note that the boundary between the trough
and corner regions is coincident with a line along which isosurface Gaussian curvature vanishes, i.e. at
inflection points in the contours. 



indicated.  Due to their axial symmetry, isosurfaces may be generated by revolving individual

contour lines about the internuclear axis.  Note that in all cases the interatomic surface lies

entirely within the trough region and bond paths are coincident with corner lines.  However,

the corner lines endow the density with additional structure in the non-bonding region.  Even

so, there is a boundary of zero Gaussian curvature (ZGC) separating the troughs from the

corner regions.  The shape of the troughs is distinctive and in some aspects is indicative of the

nature of the interaction between the bound atoms.  For example, total negative curvature

along the trough line increases with ionicity, or more precisely, as with the increasing closed

shell character of the bound atoms increases. 

The charge density of any molecule may be partitioned into space filling corner, trough,

and depression regions separated by ZGC boundaries.  Each region may be characterized by

the total curvature of the isosurfaces they contain.  

Changes to a molecule’s external  potential  will necessarily alter  isosurface curvature.

However, the extent of these alterations must be consistent with the requirement that the total

Gaussian curvature of any simple closed surface is 4 π .  Thus, for example, perturbations that

increase the saddle character of a surface must be offset by regions of increased convexity.

As it is common to picture the charge density in a plane as a series of contours, it is useful to

generalize to closed curves.  In this case, regardless of its shape, the integrated curvature

around a closed contour line will be 2 π .  The total curvature along any segment of the curve

can be determined by the angle of intersection of the tangent to the curve at the endpoints of

the segment.  

In addition to the geometric constraints acting on individual isosurfaces and contours, the

form of the charge density imposes constraints on the character of nested isosurfaces.  These

effects are most obvious near a bond CP.  To briefly explain: To second order the shape of the

charge density around a bond CP can be written as [1,9,10],

ρ(r )−ρ(r bcp)=
1
2 (ρ zz z2

−ρxx x2
−ρyy y2

) . (1)
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Where the bond CP serves as the origin; ρ(r bcp) is the value of the charge density at the

bond CP; x , y and z are the eigenvectors of the Hessian of ρ(r ); and ρxx, ρ yy and ρ zz are the

magnitudes of the corresponding eigenvalues,  e.g. ρ xx=¿
∂2 ρ(r )

∂ x2 ∨¿.  We take  z to be the

direction parallel to the internuclear axis and hence ρ zz is the positive eigenvalue while x  and

y are the directions of the negative eigenvalues.  

When ρ(r )−ρ(r bp) is positive, Equation 1 represents nested hyperboloids of two sheets.

When it  is  negative,  it  is  the equation  for  nested hyperboloids  of  one sheet.   And when

ρ(r )−ρ(r bp)=0 (the isosurface passing through the bond CP), it is the equation for a double

elliptic cone to which the two sets of hyperboloids are asymptotic (see Figure 2).  

The cone passing through the bond CP is fully characterized by its two exterior angles θ

and  ϕ  (Figure  3),  with  tan(¿θ)=√
ρyy

ρ zz
¿ and  tan(¿ϕ )=√

ρxx

ρzz
¿.   The  curvatures  of  the

isosurfaces exterior to the cone are mediated by these angles, a perturbation that decreases

ρyy

ρ zz
 and/or  

ρxx

ρ zz
 will  necessarily  increase  the  curvature  of  these  isosurfaces.   And  iIn  a

reciprocal way, there must be a corresponding increase to the interior angles of the cone that

will necessitate a decrease in the curvature of the isosurface interior to the cone (see Figure

3).  
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Figure 2.  The isosurfaces near a bond CP.  The isosurface passing through the bond point will have the
form of  an  elliptic  cone,  with  the  bond path  coincident  with  its  axis.   This  cone  is  the  asymptotic
boundary separating the exterior isosurfaces (left) from those interior to the cone (right).  The exterior



The key points here are: 1) Troughs, corners and depressions are chemically significant

structures that are characterized by isosurface curvature; 2) The total Gaussian curvature of a

simple closed isosurface is 4 π  and as an axiom the total curvature of a closed charge density

contour is 2 π ; and 3) The curvature of corner regions e.g., along a bond path, are reciprocally

tied to the curvature of trough regions perpendicular to the bond path.  

3.  The Geometry of Carbonyl Activation

As an example application, we consider the geometry of ρ(r ) of a carbonyl group and its

change due to various external potentials.  Carbonyl chemistry is a massive subject area [8]

applicable to both natural [cites from AA] and human made systems [11–13].  Our particular

interest is motivated in part by the ubiquity with which carbonyl activation is employed as a

step in enzymatic pathways, e.g. carbonyl activation is done by peptidases and b-lactamases

to facilitate the nucleophilic attack during the hydrolyses  of the corresponding  peptide and

antibiotic  substrates,  and  ketosteroid isomerase  (KSI)  activates  the carbonyl  of  the found

steroid molecule to facilitate its isomerization.   
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Figure 3.  The isosurface sufficiently close to the bond CP will be well approximated by a double cone
fully described by the angles θ and ϕ .  In any plane containing the bond path (the cone axis) the electron
density contour lines will appear as represented on the right, where the orange contour lines are those of
the  hyperbolic  trough  region,  the  blue  contour  lines  are  those  of  the  corner  region,  and  the  black
contours are those of the double cone.  As the angle θ decreases (going from the top set of contours to the
bottom set),  along the trough line the contours become more curved, while along the corner line the
contours become less curved.  



Carbonyl  chemistry  is  most  frequently  rationalized  in  terms  of  substituent  or  field

induced shifts of electron density from the carbonyl C to the O atom.  The C=O bond is

pictured as polar covalent with a partial negative charge on the O atom and a partial positive

charge on the C atom, which renders the two atoms prone to electrophilic and nucleophilic

attack respectively.  Environments that enhance charge separation reduce the barrier to both
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reactions and are said to activate the carbonyl.  

Ketosteroid isomerase (KSI) is one of many enzymes in which a carbonyl plays an active

part.  It has been shown that an external electric field pointing from the O to the C atom along

the relevant C=O bond path lowers an activation barrier to the catalytic  reaction [14–18].

Consistent  with  the  general  mechanism  of  carbonyl  activation,  the  field  is  presumed  to

enhance charge separation by pushing electron density from the C to the O atom.  

This  observation  provides  an  ideal  starting  point  in  our  effort  to  apply  geometric

principles   to  a chemical  process,  specifically  the activation  of a  carbonyl  by an applied

external electric field.  A formaldehyde molecule serves as an initial model for this process.

Figure 4 depicts the response of the electron density contours of formaldehyde in the

molecular  plane  and in  the  perpendicular  mirror  plane  when subjected  to  a  100 MV/cm

electric field applied parallel to the C=O internuclear axis.  Note that the field magnitude is

motivated by the fields estimated to be produced by the protein macromolecules and act on

the bound carbonyl  within the KSI binding site  [15]. From a chemical  perspective these

planes are particularly relevant  as the C=O bond achieves its  maximum  s-overlap in the

molecular plane and its maximum π -overlap in the perpendicular mirror plane.  

Not surprisingly, the contours shift as one would expect in low electron density regions

where ρ(r ) is better approximated as a uniform electron gas.  For example, on either end of

the molecule the contours are displaced in the direction opposite to the applied field, with

8

Figure 5.  The dashed red lines give the tangents to the bold contour at the terminal ends of the molecule
and at  the  ZGC points  marking the  boundaries  between  the  trough and corner  regions  of  the  CO
molecule.  Thus, the total curvature on specified contour in the corner region on the O atom is given by
twice the angle α, the total positive curvature on the C atom is given by twice the angle β , and the total
negative curvature on this contour is given by twice the angle γ .  



isosurfaces  moving  inwards  toward  the  C  nucleus  and  outwards  from  the  O  nucleus.

However, counter to our initial expectations, we see little evidence of field induced charge

transfer between atoms, with the C=O bond CP and interatomic surface unperturbed by the

field.  Additionally, the change in the electron counts on the O and C atoms are far smaller

than what was expected, 0.07 and 0.03 electrons respectively.  

Rather, the field’s effects result from charge rearrangement within atoms, and visually

manifest as changes to the electron density contours.  Particularly evident are the changes in

the characteristic  angles and the associated contours about this C=O bond CP (region b),

where the applied field reduces both θ and ϕ .  Accordingly, the contours intersecting the bond

path become less positively curved, while those intersecting the interatomic surface become

more negatively curved.  This increased negative curvature of the trough contours due to the

applied field necessitates a corresponding increase to the curvature in the corner regions. 

We can assess the magnitude of these offsetting effects by following a segment of a C=O

bond CP exterior contour lying in the mirror plane perpendicular to the molecular plane.  

The segment of interest lies between the convex CP on the C end of the molecule, its

“origin,"  and the  convex CP on the  molecule’s  O end,  its  “terminus."  Initially,  the  field

contours sit inside the no-field contours but at  its terminus the field contours are situated

outside the no-field contours.  At some point along their paths the field and no-field contours

cross.  We find that this crossing point occurs either on or very close to the ZGC boundary

separating the O corner region form the trough region (e.g., in region c).  Whether the ZGC

boundary acts as a kind of “hinge” around which the density “swings” from an applied field is

a subject we are investigating.  Regardless, crossing at this point makes assessing the change

to total curvature in the convex region of the O atom undemanding.  

As shown in Figure 5, the total curvature of a contour in this region is given by twice the

angle α made by the intersection of the tangent to the contour at the ZGC point with a vector

in the contour plane and perpendicular to the internuclear axis.  Clearly, the crossing of the

field contour from inside to outside (Figure 4, region c) increases this angle and hence the

total curvature of the convex O region.  

Our calculations reveal that all  of the external  field-no-field contour pairs cross from

inside to outside at or near the ZGC boundary separating the convex O and trough regions.

Therefore, the field increases the total curvature of the external contours in the corner regions
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of the O atom, which is offset by increased negative curvature in the trough region.  

Turn now to the contours  in  the same plane but  internal  to  the C=O bond CP.   As

mentioned, the field reduces the curvature of these contours where they intersect the bond

path, hence there must be compensating changes at other points along the contour.  Inspection

of Figure 4 reveals that around the O atom, the compensating curvature is localized to the

region occupied by p-orbitals participating in π -bonding.  

The contours around the C atom behave quite differently.  Beginning with the response

in the mirror plane perpendicular  to the molecular  plane,  the field reduces convexity and

increases negative curvature throughout the region occupied by the C  p π -orbitals.  There

appears to be a small compensating increase from field induced positive curvature along the

corner line extending from the C nucleus to infinity.  However, the bulk of the offsetting

positive curvature comes from the field induced convexity on the O atom.  

The field induced changes to the contours in the molecular plane are complicated by the

fact  that  there  are  a  greater  number  of  troughs  and  corners  over  which  to  distribute

compensating effects.  Even so, the field increases at least one of the characteristic angles of
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Figure 6.  Contours of  ρ(r ) in the molecular plane of formaldehyde with and without a 100MV/cm
uniform electric field applied along the C=O internuclear axis, pointing from O to C.  The C–H and C=O
bond saddle points (top and bottom right resp.) are shown in more detail with bold lines designating the
interatomic surface  and the lighter line the internuclear axis  (bond path).   The unperturbed charge
density with black contours and the field induced density with dashed blue contours.  



the C–H bond CP and thus in this plane increases the contour curvature along the C–H bond

path  and  flattens  the  contours  of  the  corresponding  trough,  while  having  a  smaller  but

opposite effect on the C=O trough.  

Beyond these attendant local changes to the electron density, we note similarity between

the  long-range inductive  effect  and the  field  induced responses  to  the contour  curvatures

around the C–H and C=O bond CPs (Figure 6).  

Of course, the inductive effect deals with changes to the electron density in one part of a

molecule  due  to  electron  donating  or  withdrawing  groups  in  another  part.   Induction  is

pictured as propagating through σ  bonds linking one region of a molecule to another.  

In  this  context,  consider  how  the  effects  of  an  applied  field  propagate  through

neighboring bonds of formaldehyde.  The increased characteristic angle(s) of the C–H bond

CP requires that the curvature of the contours interior to the double cone defining this bond

also increase.  These contours, though interior to the C–H cone are exterior to the C=O cone.

This  fact  geometrically  links  the  effects  of  the  field  at  the  C–H  and  C=O  bond  CPs.

Specifically, the field causes the curvature of the contours intersecting the C=O bond path to

decrease; which makes its external contours along the trough line more negatively curved; the

increased  negative  curvature  to  these  contours  must  now  be  offset  with  more  positive

curvature elsewhere along the contour; which is realized by increasing the contour curvature

along the corner delineating the C–H bond path.  We designate this type of behavior as out-

of-phase coupling—with the obvious implication that  in-phase coupling occurs when the

characteristic angles on neighboring bond CPs change in the same direction.  

Whether a perturbation induces in-phase or out-of-phase coupling appears to be solely

determined by the relative values of the electron density at neighboring critical points.  When

these values are equivalent, as for example along the C backbone of an alkane, neighboring

critical points will couple in-phase, otherwise, neighboring bonds will couple out-of-phase.

We hypothesize (supported by preliminary calculations) that the magnitude of the out-of-

phase  response  will  scale  with  the  difference  in  the  value  of  the  charge  density  at  the

neighboring  bond CPs.   Regardless,  as  this  coupling  effect  propagates  from neighbor  to

neighbor, it is possible to alter the field induced response around a particular bond by altering

ρ(r cp) of  a  distant  bond,  which  could  be  achieved  with  substituents—adding  electron

donating or withdrawing groups—or simply by altering bond lengths via steric effects.  
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Returning to the broader question regarding the overall changes to the isosurfaces from

the applied field:.  In the planes examined, the cumulative effect of the field is to increase

total  Gaussian  curvature  on  the  O-atom  at  the  expense  of  the  C  atom.   The  resulting

curvature-polarization  produces  a  deeper  trough  separating  the  O  and  C  atoms  through

increased  convexity  in  the  region  coincident  with  O  p π -orbitals  that  is  offset  by  a

contraction  of  the  corresponding  region  on  the  C  atom.   The  hyperbolic  points  on  the

isosurfaces defining the C–H trough become less negatively curved.  

These observations, drawn from an inspection of the contours in just two planes, are

suggestive of a more closed shell—but not more ionic—C=O bond resulting from a field

induced  reduction  to  its  π  character.   FortunatelyNext,  we  may  move  beyond  simply

“suggestive” to a more definitive statement of the field’s effects by using gradient bundle

analysis  (GBA)  to  calculate  the  global  curvature  distribution  and  its  field  induced

change [19–23].  

GBA is a natural extension of QTAIM.  As Bader commented [7], “further study of the

gradient  vector  field  of  the  electron  density  leads  to  a  complete  theory  of  structure  and

structural stability." In accordance with this comment, GBA provides the tools to holistically

analyze ∇ ρ(r ).  

Just  as  QTAIM  defines  a  nonarbitrary  partitioning  of  a  molecule  into  Bader  atoms

bounded by ZFSs, GBA further partitions Bader atoms into gradient bundles (GBs) bounded
12

Figure 7.   Contours  of  ρ(r ) in  the  molecular  plane  of  formaldehyde  with  a  set  of  gradient  paths
originating at the O nuclear CP at bottom-left.  Moving down a pair of neighboring paths in the corner
(cyan) region sweeps out an increasingly wider area, while in a trough region (green), neighboring paths
sweep out an increasingly narrow area.  



by ZFS.  And just as Bader atoms impose a global geometry on a molecule and allow one to

unambiguously determine the energy related properties  of its  atoms;  GBs impose a local

geometry  which  allows  one  to  determine  the  continuous  distribution  of  these  properties

within an atom.  

By way of illustration Figure 7, depicts a gradient field that originates at the O-atom and

sweeps out an area that covers the O side of the C=O trough of formaldehyde.  In this 2D

simplification, at the O nucleus, where all gradient paths are radial, an individual gradient

path can be specified by a single angle, say θ.  The field is constructed so that the angular

distance between neighboring gradient paths is held constant at some value dθ.  

The area bounded by neighboring paths is a GB.  Its boundary is a ZFS, hence its energy

and energy energy-and energy related properties are well-defined.  However, these properties

are defined only as the integral over the entire GB.  As the angle dθ approaches zero, a GB’s

properties become functions of the single variable θ.  

But  However, as we proceed along neighboring gradient paths, they diverge in regions

where  the  contour  curvatures  are  positive  (corners)  and  converge  where  the  contour

curvatures are negative (troughs).  It has been demonstrated that the area of a gradient bundle

is determined only by the curvature of the contours it intersects [24].  Hence, gradient bundle

area serves as a measure of total contour curvature along gradient paths.  

The extension to 3D is straightforward.  We construct a gradient field consisting of a

conceptually  infinite  number  of  gradient  paths  (in  practice  more  than  20,000)  uniformly

distributed around each nuclear CP.  Each of these paths may be specified by a pair of angular

spherical coordinates (θ , ϕ ) that give the direction of the gradient near the nucleus, where all

gradient paths are radial.  At some distance from the nucleus these paths are no longer radial

and in fact may be space curves characterized by both curvature and torsion.  A differential

gradient bundle is now defined as an infinitesimal differential volume element with, in the

simplest case, a triangular cross section whose edges are defined by three gradient paths.  By

integrating some 3D geometric or field variable within a differential gradient bundle, say ρ(r )

, one gets a 2D “condensed” function  P(θ , ϕ ) that depends only on  θ and  ϕ , the variation

along the gradient having been integrated out.  With condensed properties depending only on

θ and ϕ , it is convenient to represent their values on a sphere.  

Condensed properties have units of the input property per steradian (sr) or square radian.

13



Thus  P(θ ,ϕ ) has atomic units of  electrons /sr; condensed energy,  E (θ ,ϕ ), of  Eh/ sr; and

condensed volume, V (θ , ϕ), units of a0
3
/ sr.  Integrating a condensed property over all θ and

ϕ  recovers the corresponding Bader atom property,  e.g., integrating  P(θ , ϕ ),  E (θ , ϕ ), and

V (θ , ϕ ) recovers the Bader atom’s electronic population, energy and volume respectively.  

The condensed volume is descriptive of the charge density’s intrinsic geometry, as can

be seen from the behavior of the gradient paths depicted in Figure 7.  The paths bounding a

GB diverge as they pass through regions of convexity, hence increasing GB volume.  When

passing  through  concave  regions  the  opposite  is  true,  with  neighboring  gradient  paths

converging and reducing gradient bundle volume.  When passing through saddle regions GBs

expand  in  one  direction  and  contract  in  the  perpendicular  direction.   GB  volume  is

determined  only  by  the  Gaussian  curvature  of  the  contours  contained  in  the  gradient

bundle [24].  Hence, V (θ ,ϕ ) serves as a measure of total isosurface curvature along gradient

paths and is solely determined by local geometry.  

As  a  means  of  clarifying  this  issue,  the  condensed  volume  for  the  O  atom  of

formaldehyde is represented in Figure 8, with the integrated condensed volume mapped onto

a sphere and depicted in the lower left of the figure.  

Just as QTAIM analysis gives special consideration to the CPs of ρ(r ) as representative

of electron density topology, GBA takes particular notice of extremal points of V (θ , ϕ ).  In
14

Figure 8.   The  condensed  volume  of  the  O  atom  of  formaldehyde  (left)  shown  with  representative
gradient bundles (right).  



this  way the  complexity  of  ∇ ρ(r ) and  its  geometry  can  be  rationalized  in  terms  of  the

behavior of a few special GBs about every atom of a molecule.  Accordingly, also shown in

Figure 8 and designated with red circles are four V (θ , ϕ ) extremal points, two maxima and

two minima.  

The gradient bundles corresponding to these extremal regions are shown on the right.

Note that the maxima gradient bundles lie for the most part  along corners while  minima

intersect isosurfaces near point of ZGC.  Still, the gradient bundle containing the C=O bond

path diverges umbrella-like near the interatomic surface and takes in volume from the C=O

trough region.  The other maximum lies along what is essentially the O lone pair region.  The

in-plane  V (θ , ϕ ) minimum is  noteworthy as  it  appears  to  nearly  coincide  with the  ZGC

boundary separating the C=O trough from the O corner regions (see Figure 4a).  

As  already  demonstrated,  an  activating  electric  field  alters  isosurface  curvature  and

hence the distribution of condensed volume.  These global effects are represented in Figure 9

where once again the resulting  condensed volume of  formaldehyde is  shown (NEF, left)

alongside its field-induced condensed volume (EEF, center) and on the right the condensed

volume difference function,  ΔV EEF=V EEF−V NEF.  Positive values (red) indicate an increase

in gradient bundle volume, which is partially realized by a decrease in the volume of other

GBs (blue). 
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The field’s effects are subtle  but noticeable,  with small  shifts  in the locations  of the

V (θ , ϕ ) CPs.  The condensed volume difference map brings these differences into stark relief.

Most dramatic is the increase in corner character and the corresponding expansion of GB

volume in the O lone pair regions.  The increased curvature in this region is achieved through

an increase in negative Gaussian curvature in the trough regions.  (Recall that GBs passing

through regions of more negative curvature contract more rapidly and hence lose volume.) 

These  observations  are  supported  by  changes  in  total  curvature  (condensed  volume)

between formaldehyde’s unique bonding and non-bonding regions (bond bundles and lone

pair  bundles)  identifiable  using  GBA [24].   Table  1  lists  the  total  regional  volumes  and

electron counts of formaldehyde partitioned into Bader atoms, and again with Bader atoms

further partitioned and organized into bond and lone pair regions.  
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Figure 9.  The GB condensed volume of formaldehyde in the no field situation (left), due to an applied
field (center),  and their difference (right).   Red shading indicates  GBs where the field has increased
volume by inducing more corner character, while blue shading indicates a loss of GB volume.



Observed expansion and contraction of low-density contours at the ends of the molecule

in Figure 4 is verified by the respective increase and decrease of the O and H atomic basin

volumes.   About  the  C  atom,  observed  increased  curvature  towards  the  H atoms  in  the

molecular  plane  and  decreased  curvature  in  the  π -bonding  p-orbital  region  in  the

perpendicular plane, is here supported by an increase in volume of the C wedge of the C–H

bonds and a corresponding decrease in the C wedge of the C=O bond.  Also verified is the

noted preferential accumulation of condensed volume in the O lone pairs, offset by depletion

in its wedge of the C=O bond.  

Looking at atomic basins, overall volume shifts from the H atoms to the O atom, with the

C atom relatively unchanged, and the same is true for the interatomic redistribution of charge,

though with less preference for the O atom.  When bonds are considered, the picture becomes

that of increased volume in the O lone pairs, offset by depletion in the C–H and C=O bonds.

Redistribution of charge density between bonds is slightly different, with the O lone pairs still

experiencing the greatest increase at the expense of the C=O bond, in agreement with the

general chemistry view.  While the C–H bond electron counts increase due to the field, this is

merely  the  C wedges’  gains  offsetting  the  H wedges’  losses,  similar  to  their  changes  in

volume.  Altogether, the tabulated values paint a concise and chemically relevant picture of

formaldehyde’s response to an electric field.  

With the GBA results we can say with more surety that the field activates the O atom of
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Table 1.  Changes to regional volumes,  V , and electron counts,  ρ, in formaldehyde due to an applied
external electric field of 100 MV/cm pointing from the O nuclear position to the C.  Atomic basins (top)
and bond and lone pair regions (bottom) are truncated at the ρ=0.001 isosurface.  Complete gradient
bundle integration tables are available in the SI.  

Region

V [au] 𝜌 [e]

NEF EEF
∆EE

F

%∆EE

F NEF EEF ∆EEF

%∆EE

F

O atomic basin
133.

0
139.

3 6.2 4.7 8.92 8.99 0.07 0.8

C atomic basin 68.2 68.6 0.5 0.7 5.06 5.09 0.03 0.5

- -



the  carbonyl,  not  through  increased  charge  separation,  but  by  increasing  the  negative

curvature of the trough delineating the C=O bond and particularly so in the molecular plane.

This increased curvature is offset by an increase in corner character centered on the O lone

pair regions.  

We now turn to a GBA of the carbonyl of KSI – an enzyme where the intramolecular

electric  field is  known to activate  the bound carbonyl.   While  a  more complete  gradient

bundle analysis of KSI is available  (cite to be added),  here we focus exclusively on the

carbonyl  O atom.   It  is  thought  that  eEnzyme efficiency in general  and KSI specifically
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Figure 10.   The condensed  volume about  the  carbonyl  oxygen atom in  KSI,  mapped onto  a  sphere
centered at the oxygen nuclear critical point.  Contours on the sphere indicate low (blue) to high (white)
values of condensed mean curvature (bottom-left).   The active site of KSI is depicted at top with the
plane and gradient paths of interested indicated.  The middle row consists of two different angles of the
active site with contours of ρ(r ) on the indicated plane along with two gradient paths: one leaving the
sphere at a minimum and terminating at a ring critical point (green), and the other at a maximum and
terminating at an O–H bond critical point (red).  At bottom-right is a zoomed image of the sphere and
the gradient paths.  



results from the perfect positioning of residues  in and around surrounding the active site in

order to preactivate the enzyme [25] (Figure 10).  For KSI, notable are the Tyr16 and Asp103

residues forming hydrogen bonds with the substrate carbonyl O atom.  Conventional wisdom

attributes carbonyl activation through hydrogen bonding to a density shift from the O to the H

atom,  which  we  do  not  observe.   However,  there  are  changes  to  isosurface  curvature

consistent with those associated with the field induced activation of formaldehyde.  Most

pronounced is the deepening of the V (θ , ϕ) minimum indicative of greater trough character

along the boundary separating the maxima of C=O bond path and the O–H bond with Tyr16

(the lone pair maximum of formaldehyde).  This increased trough character is made possible

by  more  corner  character  along  the  O–H  bond  path.   However,  as  a  similar  change  in

trough/corner character is not observed to result from the hydrogen bond with Asp103, it is not

the hydrogen bond per se that is responsible for these significant curvature changes.  Rather,

the hydrogen bond between the carbonyl O and Tyr16 is part of a hexagonal ring that must be

accompanied by a depression line and a concave region above and below the ring.   GBs

passing through depressions are necessarily low volume, thus allowing for greater corner

character between the carbonyl O and Tyr16.  The net result is a deepening of the C=O trough

and yielding this interaction more closed shell like.  

Thus, we have a consistent picture for the mechanism of carbonyl activation as resulting

from interactions that increase corner character on the side of the O atom opposite the C=O

bond CP, which is compensated through increased negative curvature in the C=O trough.  

4.  Summary

One of the challenges facing chemistry is the integration of first principles calculations

with molecular  design and synthesis.   This  task is  complicated  by the fact  that  much of

synthesis’ mechanistic foundation derives from early 20th century heuristic concepts predating

quantum mechanics [26–28].  Perhaps the most fundamental of these are those dealing with

electron mobility, which is often represented with the curvy arrow formalism introduced in

1922  by  Kermack  and  Robinson [28].   For  nearly  a  century,  the  supposed  mechanisms

governing  electron  redistribution  and  related  phenomena  have  been  empirically  tuned  to

account for an ever-greater number of chemical reactions.  And now, taken together, these

mechanisms  comprise  a  predictive  formalism  that  is  incredibly  useful  when  designing
19



synthetic  strategies.   However,  at  best  they  have  obscure  quantum  mechanical

connections [29].   In  the  absence  of  such  connections,  first  principles  methods  provide

synthetic chemists with limited chemical insight.  

Here we have shown that the traditional view of carbonyl activation, thought to result

from  enhanced  charge  separation,  may  be  tweaked  to  make  it  consistent  with  quantum

mechanical  observations.  Specifically,  rather  than  dramatic  shifts  of  electron  density,

activation results from subtle variations of  ∇ ρ(r ) that can be quantified by the changes to

isosurface curvature along gradient paths.  An attractive facet of this new perspective is that

allowed changes to isosurface curvature are constrained by rigorous mathematical principles.

If these findings can be shown to apply to a broader range of chemical reactions, then much

of  our  hard-won  mechanistic  understanding  of  chemical  reactions  will  survive,  but

withreceive a 21st century update.  More importantly this update should lower the barrier to a

more complete inclusion of first principle methods in the tool kit of the synthetic chemist.  

Computational methods

All DFT calculations were performed with the Amsterdam Modeling Suite [30–32] ab

initio software  using the  Perdew-Burke-Ernzerhof  (PBE)  functional [33] and a  triple-zeta

with polarization (TZP) all-electron basis set.  Analysis was performed within the Tecplot

360 visualization package [34] using the Gradient Bundle Decomposition software of the in

house Bondalyzer package by the Molecular Theory Group at Colorado School of Mines. 
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