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ABSTRACT OF THE DISSERTATION

Novel High Gain Antennas for Emerging CubeSats: Characterization of Deployable Mesh

Reflectors and Low-Profile, Metal-Only Stepped Reflectors

by

Vignesh Manohar

Doctor of Philosophy in Electrical and Computer Engineering
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Professor Yahya Rahmat-Samii, Chair

The advent of VLSI and microelectronics has made it possible to reduce the size of electronic

devices by several orders of magnitude while increasing their functional capabilities and re-

ducing production costs. This massive scaling has enabled the development of satellites that

can be as small as a cube of volume 10 cm x 10 cm x 10 cm. Such satellites, called ‘Cube-

Sats’, have revolutionized the satellite industry today. This reduced volume makes launching

CubeSats economically affordable, fostering the participation of small scale establishments

and universities in space programs. Owing to their small size, it is now possible to conceive

launching of multiple instances of the same CubeSat for advanced missions, which was not

economically viable with conventional satellites. Even though numerous CubeSats have been

launched, most of the current CubeSat missions operate at low data rates and low spatial

resolution. One of the major reasons for this is the absence of compact high gain antennas

that can integrate with the small CubeSat form factor while providing the required data

rates for deep space missions or spatial resolution for remote sensing. This work addresses

this very challenge by developing tools that can aid the integration of high gain antennas

with the small CubeSat form factor. In particular, we include the following: (a) an in-depth

understanding of umbrella reflector antennas with an emphasis on lower number of ribs to aid

stowage, (b) analysis of complex knit mesh surfaces to understand the tradeoff between mesh

density and RF transmission loss, (c) innovative feed designs that are optimized for efficient

illumination of reflector antennas and minimum volume, (d) characterization of chassis in-

ii



teraction with the antenna system, and (e) development of a metal-only, low-profile, stepped

parabolic reflector that can be 3D printed and readily integrated with the CubeSat chassis,

simplifying deployment. As a part of this dissertation, we describe the development of one of

the largest apertures at Ka-band: a 1m mesh-deployable offset reflector that can be stowed

in a volume of 10 cm x 10 cm x 30 cm. The success of this endeavor marks a major milestone

in the field of CubeSats, which allows advanced space missions at lower costs to become a

reality.
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CHAPTER 1

Introduction

High-performance satellites typically need to meet stringent RF requirements to deliver

the desired quality-of-service (QoS) along with heavy payloads. This precluded the use of

small-size satellites for many years. Conventional satellites typically operate at power levels

near 10 kW with precise satellite pointing and sophisticated antennas. This results in costs

ranging from $100M – $2B USD [1] with typical time frames greater than 5 years (from

proposal to launch). While it is not possible to completely replace conventional satellite

systems by small satellites, the vision and needs for future space concepts are beginning to

evolve. As small satellites gain popularity space becomes more accessible to the public, and

many grand missions can be envisioned at fractional costs.

The size and power consumption of electronics has been drastically reduced through the

development of very large scale integrated circuits, microelectromechanical systems (MEMS),

digital signal processing technologies, and low-power programmable systems. This scaling

of onboard electronics to smaller dimensions has made it practical to shrink the size and

weight of the satellite by orders of magnitude. As one might expect, a smaller weight

and volume leads to direct cost reductions in the satellite launch. Though the size limits

the multifunctional capabilities that a single satellite can offer, launching a small satellite

constellation can offer innumerable possibilities. These small satellites are often abbreviated

as SmallSats. The term SmallSats encompasses many different subclasses of small satellites,

the most notable being the CubeSat as discussed subsequent section. The revolutionary idea

behind the CubeSat concept was that designers could reduce the satellite volume to the

size of a secondary payload on conventional launch vehicles, thereby reducing the launch

costs considerably. This provides small universities, commercial companies, government

1



Figure 1.1: Number of CubeSat missions launched as a function of year by different sectors

(adapted from [2]). Note that this does not include CubeSat constellations that are being

developed for imaging, Internet of Things, etc.

organizations, and even hobbyists reasonable opportunities to access space.

While initial CubeSat missions were predominantly experimental missions launched by

startups and universities, the potential of CubeSats has recently excited the defense and

commercial sectors leading to several CubeSat missions being conceptualized on a large scale.

In fact, it is clear from Figure 1.1 that there has been a consistent rise in the participation

of the commercial sector in the development of CubeSats [2].

Antenna systems are key components for radar, remote sensing, and establishing a com-

munication link between the CubeSat and Earth. The inherent proportionality between the

antenna gain and antenna size leads to inevitable compromises between the size and weight

and link quality for the CubeSat. The scientific community is actively working towards the

development of novel antenna systems that can meet the specifications for data rate and

resolution while optimizing the physical size of the antenna system [3–7]. With potential

CubeSat missions operating over a broad range of frequencies from ELF band up to mmWave

bands, many types of antennas have been investigated in the literature, as illustrated in Fig-

ure 1.2.
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Figure 1.2: A graphical depiction of the various antenna types available to CubeSat designers

[4].

1.1 Existing Standards for Small Satellites

The SmallSat family can be subdivided into various categories as shown in Figure 1.3. The

“Cube” in CubeSat comes from a motivation to develop a standard chassis that would

facilitate a growth in commercial off-the-shelf (COTS) components [8]. According to the

standard, the cube chassis should be 10 × 10 × 10 cm3 and weigh less than 1.33 kg. The

CubeSat standard also designates this 1000 cm3 volume as 1U, representing 1 CubeSat-

volume.

The CubeSat program establishes a standard to which developers can adhere, thereby

promoting widespread usage of miniaturized satellites. This standardization of size and

weight allowed for the development of universal launch system for CubeSats, called the

Poly-Picosatellite Orbital Deployer (P-POD). With a standard deployer module, researchers

across the globe could easily collaborate to affordably participate in space missions through

CubeSats. The P-POD launcher allows three 1U CubeSats to be launched simultaneously,

potentially leading to the development of a 3U standard for advanced applications. The

dimensions of a 3U CubeSat occupies a total volume of 3000 cm3 and is identical to that

of three 1U CubeSat stacked on top of each other. Currently, standards such as 6U, 12U

and 27U have also begun to be considered. These standards are also shown in Figure 1.3,
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FastSat

CYGNSS-1

PhoneSat1.0

KickSat

500kg 100kg 10kg 1kg
MiniSat MicroSat NanoSat PicoSat

CubeSat
3U27U 12U 6U 1U 0.5U

Figure 1.3: Illustration of the SmallSat family. Within this family, SmallSats can be classified

by their mass as minisatellites, microsatellites, nanosatellites and picosatellites (adapted

from [9]). CubeSats generally fall within the NanoSat and PicoSat classification.

where a mass of 1.33 kg per 1U volume is assumed. It is of interest to note that there is

a slight inconsistency in the nomenclature for CubeSats. While the standard developed by

Cal Poly SLO refers to CubeSats as PicoSats, some organizations (such as NASA) classify

CubeSats within the NanoSat family [9], possibly due to the fact that the 1U CubeSat unit

has a mass just slightly greater than 1kg [8], which falls right on the boundary of NanoSats

and PicoSats.

1.2 Antenna Requirements for CubeSats

It has been widely accepted that the functionality of CubeSats are limited by the link budget

between the satellite and the Earth [10]. Thus, the key to achieving high performance

through CubeSats lies with the development of next generation antennas that can achieve

the right balance between physical size and electromagnetic demands. The key points to

consider while developing antennas for CubeSat missions are now discussed.
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Table 1.1: Representative frequency bands that have been explored for current and future

CubeSat missions [3].

Frequency CubeSat Missions Application

ELF band QuakeSat [11] Earthquake detection

VLF band Firefly Cubesat [12] Lightning detection

VHF band

Hit-Sat [13]

PW-Sat [14]

F-1 [15]

Communications

UHF band

RAX [16] Understand ionospheric irregularities

DICE [17] Ionosphere electron density measurements

AeroCube-4 [18]

SwissCube [19]
Communications

S band
Aeneas [20] Tracking cargo ships in sea

Goliat [21]

CINEMA [22]
Communications

X band MarCO [23] Deep space (Mars) communications relay

Ku band KSat (Hayato) [24] Moisture sensing for rain prediction

Ka band RainCube [25] Precipitation sensing

mmWave PolarCube [26] Tropospheric temperature profiling
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1.2.1 Frequency

One of the major motives of the CubeSat standard is to use commercial off-the-shelf (COTS)

components to construct a satellite. Given the availability of COTS components and the

licensing for amateur space missions, the VHF, UHF and S bands are the most popular

frequency ranges for CubeSat communications [27,28]. CubeSats have also been considered

for a variety of space applications and earth sensing applications that require the system to

process specific frequency bands as tabulated in Table 1.1. As CubeSats are being considered

for advanced missions, evolving to higher frequency bands for communications has now

become a necessity. With CubeSats being considered for deep space missions, the X and

Ka bands are currently a major area of research for antenna engineers, as these are the

bands used by the Deep Space Network (DSN) [29, 30]. Several CubeSats for earth science

missions at Ka band and mmWave bands have been conceptualized [25,26]. Although most

futuristic missions rely on the launch of a CubeSat constellation into space, the bands for

the intersatellite communication remain to be completely defined [31]. Ideas for establishing

intersatellite links at S and V band are discussed in [32,33].

1.2.2 Antenna Radiated Power, Gain and Radiation Pattern

The power radiated by a CubeSat is limited by two dominant factors: (a) the amateur fre-

quency bands restrict the power that can be transmitted and (b) the limited space within the

CubeSat poses challenges to integrate high power electronic circuitry. Thus, most CubeSat

missions that have been launched operate with low gain antennas (typically dipole anten-

nas/patch antennas) with a typical power of 1W. This results typical data rates between 1200

and 9600 bps [27]. An advantage of low-gain antennas for CubeSats is that its broad radia-

tion pattern avoids the need to integrate advanced pointing systems. As CubeSats are now

being considered for advanced space applications like deep space missions and high resolution

imaging, the needs for sophisticated antenna designs that can provide high gain and resolu-

tion, but meet the mechanical constraints of the CubeSat are beginning to evolve. It should

be noted that the gain of an antenna system increases, its radiation pattern beamwidth
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typically becomes narrower, necessitating the use of sophisticated pointing mechanisms that

add cost and complexity to the CubeSat. The polarization of the antenna is also a critical

consideration. The majority of the antenna systems that are developed for communications

tend to be circularly polarized due to its reduced sensitivity to the relative orientation of the

transmitting and receiving antennas [34]. Certain remote sensing missions require linearly

polarized antennas [35].

1.2.3 Antenna Material

Antennas in space must be capable of withstanding harsh environments. Depending on the

orbit in which the satellite is deployed, the antenna is subjected to a variety of adverse en-

vironmental conditions like atomic oxygen, ionospheric plasma, trapped radiation, etc [36].

Current antennas available as COTS components (typically in the UHF/VHF bands) are

most often wire antennas which are constructed from metallic tape springs [37, 38]. An-

tennas like these can be purchased from websites like www.cubesatshop.com. For S-band

communications, patch antennas are typically preferred, which use commercially available

space qualified substrate (such as Rogers RT/duroid) [34, 39]. For emerging CubeSat mis-

sions, high gain metal based deployable reflector antennas are attracting interest from the

antenna community. For lower frequencies, where the surface RMS error can be contained

to a fraction of wavelength, it is possible to use membrane based aperture antennas [40].

For higher frequencies, where the RMS surface tolerances are stringent, mesh-deployable re-

flectors are gaining popularity, and several recent investigations have explored their usage in

CubeSats [20,35]. Ideas to manufacture a solid deployable reflector antenna using composites

are discussed in [41].

1.3 Representative Current Antenna Concepts for CubeSats

A variety of antenna architectures have been investigated for CubeSats in the literature.

The different classes of antennas that have been investigated and developed for CubeSats,

as summarized in [3, 4], are listed below.
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Table 1.2: Categorized list of references based on current CubeSat Antenna Designs [3].

Antenna Type(s) Reference Image

Wire antennas [13,39,42–56]

Reflector antennas [20,35,41,57–63]

Reflectarray antennas [23,64,65]

Membrane antennas [40,57]

Planar and patch antennas [34,39,66–102]

Horn antennas and

guided wave structures

[32,58,103–106]
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1. Wire antennas: Wire antennas typically involve monopoles, dipoles, Yagi-Uda arrays

and helical antennas. They are common for low frequency applications (HF, VHF, and

UHF bands), where the wavelength is long and achieving good radiation efficiency

within a small volume is a challenge. The wire antennas are often stowed within the

CubeSat volume during flight and deployed once in orbit. The omnidirectionality of

dipoles also make them viable candidates for inter-CubeSat communications.

2. Reflector Antennas: The development of deployable reflector antennas for Cube-

Sats has recently attracted significant interest in the scientific community. Reflector

antennas offer the possibility of fine resolution and high gains, but they come with the

need for accurate satellite pointing and increased mechanical complexity.

3. Reflectarrays: The reflectarray structure consists of resonant patches on a grounded

dielectric substrate that emulate a curved reflector antenna. Reflectarrays can be

manufactured in the form of flat panels, and can thus be folded and stowed on the

CubeSat chassis .

4. Membrane antennas: The idea behind a membrane antenna is to implement the

antenna on a fabric-like material. This enables the antenna to be folded and stowed in

a compact volume. Membrane antennas are a feasible option for CubeSat applications

at lower frequencies where the surface RMS error tolerance is reasonable.

5. Planar and Patch antennas: Planar antennas like patch and slot antennas have

gained special attention for CubeSats since they can easily be seamlessly integrated

with the CubeSat chassis, resulting in minimal space usage.

6. Horn Antennas and Guided Wave Structures: Horn antennas can provide rea-

sonable gains and are amenable to fabrication and measurements, even at the university

levels. Horn antennas can be a viable option for CubeSats at higher frequencies, where

the dimensions of the horns are suitable for its integration with CubeSats.

Refer to Table 1.2 for a comprehensive collection of various works on the development of an-

tenna technology for CubeSats and representative figures. The list is by no means exhaustive,
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and readers are encouraged to explore the cited references for further reading.

1.4 Outline of this Work: Futuristic CubeSat Antenna Concepts

As is evident from the previous sections, a significant gap in the antenna technology for

CubeSats is the absence of compact high gain antennas capable of meeting the requirements

of data rates and spatial resolution for applications such as deep space communications

and remote sensing. The fact that the gain of an antenna scales directly with its physical

area poses a great difficulty for engineers while integrating high gain antennas with the

small form factor of CubeSats. We attempt to close this gap by developing novel tools

and antenna designs with the aim of facilitating the integration of high gain antennas with

CubeSats. The organization of this prospectus is as follows: The first part analyzes the

umbrella reflector in detail, which was amongst the first form of reflector antennas to be

used for CubeSats at Ka-band [20]. The surface of umbrella reflectors consists of a discrete

number of parabolic ribs that can fold itself into a compact volume for stowing. An important

engineering decision is the number of ribs that must be used. While a large number of ribs

improve the reflector performance, it increases the mechanical complexity for stowing and

deployment. This work looks to provide guidelines to achieve this tradeoff. In the second

part we present the development of one of the largest apertures for CubeSats at Ka-band

- a 1m mesh deployable offset reflector that can be stowed in a volume of 10×10×10 cm3.

This antenna was developed as a part of the RainCube project by NASA, which focuses

on the development of CubeSat deployable radars for precipitation sensing [6]. Particular

attention is given to the analysis of mesh surfaces with complex knits. This is critical

for CubeSats since a denser mesh improves RF efficiency but makes it difficult to tension

the mesh to maintain the parabolic profile. Further, we also develop an optimized feed to

maximize the aperture efficiency. Representative antenna measurement results conducted

at JPL are also presented. In the final part, we develop a novel metal-only, low-profile

stepped parabolic reflector architecture that can easily be integrated with a flat chassis

while providing efficiencies comparable to that of a classical reflector. Several theoretical
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Figure 1.4: Outline of this dissertation.

equations that describe the antenna surface is presented and a complete electromagnetic

analysis is carried out via full wave simulations. Most studies in this work are conducted

at a frequency of 35.75 GHz due to the recent excitement of remote-sensing missions with

CubeSats [6]. The outline of the work is diagrammatically illustrated in Figure 1.4.
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Part I

Umbrella Reflector Characterization
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CHAPTER 2

Characterization of Umbrella Reflector Antennas:

Analysis of Gain Loss and Estimation of

Optimal Feed Point

The umbrella reflector is one of the most popular forms of deployable reflectors for satellite

applications. One of the first CubeSats that used an umbrella reflector was the Aeneas

CubeSat, which was launched in 2012 [20]. In the recent past, umbrella reflectors have

been used to enable deep space missions and remote sensing with CubeSats [35, 107]. The

umbrella reflector surface consists of a discrete number of parabolic ribs that are connected

by surfaces called gores. Each gore surface is a section of a parabolic cylinder, bound between

two parabolic ribs. In deployable reflector antenna systems, the gore surface can be formed

by stretching a mesh between the two ribs. The gores cause the surface of reflector to

deviate from a true paraboloid, resulting in ambiguity of optimal feed position and pattern

degradation. As the number of ribs increase, the deviation of the umbrella reflector surface

from an ideal paraboloid reduces, increasing the RF efficiency. However, packaging a large

number of ribs into the small volume of the CubeSat bus can be a major challenge, making

lower number of ribs attractive for CubeSat applications. In the case of dual reflector systems,

as shown in Figure 2.1, the subreflector must be optimally positioned to account for the gores

Significant amount of work has been done in the past to characterize umbrella reflectors with

larger amount of gores. This chapter revisits the determination of the optimum feed location

and gain loss with an emphasis on a smaller number of gores. The underlying assumptions

and analysis of previous approaches are reviewed. Furthermore, comparison with results

from manually tuning using Physical Optics (PO)-based diffraction analysis is presented.
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(a)

PARABOLIC RIBS

GORE SURFACE

(b)

Figure 2.1: A representative example of umbrella reflector antenna that was used for previous

CubeSat applications [20]. (a) The umbrella reflector model. (b) Illustration of the reflector

being deployed in space.

These results pinpoint the cases in which the previous approximations are no longer valid,

necessitating a manual tuning of the feed location for optimal gain. The effects of feed taper

is also discussed, further extending previous works position. We also develop formulations

that relate the gain loss due to gores to the diameter, frequency and number of ribs to

provide several guidelines for the design of umbrella reflectors for CubeSats.

2.1 Mathematical representation of the gore surface

The surface of an umbrella reflectors consist of a discrete number of parabolic ribs, and a

parabolic cylinder like surface connecting them, called gores. If there are Ng gores, with Fr

being the focal length of each rib, the gore surface can be defined through two parameters

A and t as:
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x = t[cosφ′m + A(cosφ′m+1 − cosφ′m)] (2.1)

y = t[sinφ′m + A(sinφ′m+1 − sinφ′m)] (2.2)

z = t2/4Fr (2.3)

where, 0≤A≤1, 0≤t≤D/2, φ′m = 2π(m− 1)/Ng and m = 1, 2, .., Ng. This parameterization

is shown in Figure 2.2a. The three dimensional representation of the reflector surface is

illustrated in Figure 2.2b.

These equations be converted into a single equation of the form of z = f(x, y) as

zg =
ρ′2

4Fg(φ′)
(2.4)

where

Fg(φ) =
Frcos2(π/Ng)

cos2 φm+φm+1−2φ
2

(2.5)

ρ′2 = x′2 + y′2 (2.6)

φ′ = tan−1(y′/x′) (2.7)

An important observation from (2.4) and (2.5) is that the focal length of the umbrella

reflector is now a function of φ. The variation of Fg with φ is plotted in Figure 2.3. An

interesting interpretation of (2.4) and (2.5) is that the umbrella reflector can be viewed

as a family of parabolic curves, each having a focal length between Fr cos2 (π/Ng) and Fr.

Note the periodic variation of Fg. This periodicity manifests itself in aperture distributions

as cyclical phase variations causing grating lobes. As the number of gores increase, the

deviation of Fg from Fr begins to decrease. It is evident that there is no distinct focal point

for the umbrella reflector and thus, the position of the feed is not obvious.
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Figure 2.2: Mathematical representation of umbrella reflector surface with Ng = 8. (a)

Parameterization in XY plane. (b) Actual 3D representation of the reflector surface.

2.2 Finding the optimum feed location

This section revisits the problem of finding the optimal feed position for umbrella reflectors

with particular consideration for a low number of gores which are desirable for CubeSat

applications. Two approaches reported in the literature include: (a) a Physical Optics (PO)

approach combined with the parallel ray approximation and (b) finding the best-fit equivalent

paraboloid through minimizing the RMS error between an ideal paraboloid and an umbrella

reflector. The results from both these approaches are compared with manual tuning of the

feed location using exact PO analysis, i.e. diffraction analysis with no approximations. For

mmWave frequencies, considerable pattern degradation can occur with minor mechanical feed

positioning errors. This makes the determination of the accurate optimal feed point critical.

This study provides an effective way to judge the applicability of closed form expressions to

determine the optimal feed position. Additionally, we also consider the effects of feed taper

on the optimal feed location. The RMS deviation of the gores from the ideal paraboloid is

related to the gain loss for various configurations.

2.2.1 Physical intuition behind the optimal feed location

The aperture field method of analysis can provide some intuition behind choosing the feed

position. Consider the general equation for taper efficiency in (2.8). The numerator essen-

tially represents the power of the radiated fields at boresight, which is proportional to the
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Figure 2.3: Variation of Fg as a function of φ for Ng=5 and 10. Note the periodic nature

of Fg as a function of φ′. This periodicity results in cyclical variations in the amplitude

and phase at the reflector aperture, causing an ambiguity in the optimum feed point, and

far-field grating lobes.

aperture electric field Ea, where it is assumed that all fields are oriented in x or y direction.

The denominator has two terms: The aperture area and the total power in the aperture.

Since the total power in the aperture and aperture area can be assumed to be constant as

the feed position changes, we focus on the numerator of the efficiency equation.

η =
1

Aa

|
∫∫

s
Eads|2∫∫

s
|Ea|2ds

(2.8)

Referring to Figure 2.4, the aperture electric field can be described as

Ea = E0(ρ′, φ′)ejk(r′+z′) (2.9)

The numerator of (2.8)) can thus be written as (2.10).∣∣∣∣∫∫
s

Eads

∣∣∣∣2 =

∣∣∣∣∫∫
s

E0(ρ′, φ′)ejk(r′+z′)ds

∣∣∣∣2 (2.10)

The aim is thus, to maximize (2.10). Moving the feed position for umbrella reflector will have

minimal impacts on the amplitude distribution E0. The critical term that needs attention

in the phase term k(r′ + z′). For parabolic reflectors, r′ + z′ is a constant, with a tapered

amplitude distribution E0, resulting in uniform phase. This provides maximum directivity

along boresight. However, this is not the case for umbrella reflectors since the gore surface
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Figure 2.4: Finding the optimal feed position: The aim is to minimize the deviation in r′+z′.

The dotted lines show the ray paths for an ideal parabolic reflector [60].

deviates from the paraboloid. Thus, the aim is to minimize the deviation of this phase term

on the aperture. This can be carried out using multiple approaches, as will be discussed

subsequently.

2.2.2 Physical Optics approach

In [108], the parallel ray approximation is used to express the phase term in the PO integral,

(which bears resemblance to (2.10)) as ∆f(1+cos θ′) where ∆f denotes the deviation of gore

focal length Fg from the feed location and θ′ denotes the incident ray angle. The problem,

thus, reduces to simply finding a feed point that minimizes ∆f . Since the feed point is a

single point (independent of φ′), the optimal feed point just comes out to be the average

value of Fg and is thus given as:

Fopt
Fr

=
Ng

π

∫ π
Ng

0

cos2 π/Ng

cos2 ψ
dψ (2.11)

where ψ = 0 represents the parabolic curve passing through the center of the gore and

ψ = π
Ng

represents the rib. The integral in (2.11) can easily be evaluated as

Fopt
Fr

=
Ng

2π
sin

2π

Ng

(2.12)
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For large values of Ng, (2.12) can be expanded into its Taylor series to yield

Fopt
Fr

= 1− 2

3

(
π

Ng

)2

(2.13)

2.2.3 Best Fit Paraboloid approach

A different approach to estimate the optimal feeding point was highlighted in [109]. This

approach involved finding a best-fit paraboloid to the umbrella reflector through an RMS

error minimization process. Intuitively, the focus of this best fit paraboloid will be the point

that minimizes the phase deviation at the aperture and would be the optimal feed position

for the umbrella reflector system. The RMS error is defined as

∆zrms =

√
1

Ag

∫ D
2

cosφ◦

0

∫ y tanφ◦

0

(zg − zeq)2dxdy (2.14)

where,

zg =
x2 + y2

4Fg(φ′)
(2.15)

zeq =
x2 + y2

4Feq
(2.16)

where φ◦ = π/Ng and Ag = 1
4
(D

2
)2 sin 2φ◦. Note the correction in the integration limits for x

and y in [109]. The optimal focal length is then found my minimizing the RMS error defined

in (2.14). This can be done analytically, leading to the equations for optimal focal length

and the corresponding minimum RMS error.

Fopt
Fr

= cos2 φ◦
1 + 2

3
tan2 φ◦ + 1

5
tan4 φ◦

1 + 1
3

tan2 φ◦
(2.17)

∆zrms = 0.010758
D2 cos2 φ◦

Fr

tan2 φ◦(1 + tan2 φ◦)√
(1 + 2

3
tan2 φ◦ + 1

5
tan4 φ◦)

(2.18)

It is seen that for larger values of Ng, (2.17) can be approximated as (2.13). A comparison of

the focal lengths got by (2.12), (2.13) and (2.17) is shown in Figure 2.5. It is interesting to

note that none of these formulations for the optimal feed point directly involves the frequency

or the diameter of the reflector. For the RMS minimization procedure, the diameter of the
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reflector effects the RMS error but not the optimal focal length. It is worth noting that

this approach is primarily geometry based. The inherent assumption in this approach is

that the deviation of the umbrella reflector from the ideal paraboloid is small enough that

minimizing the ∆z between the gore and the paraboloid has the same effect as minimizing

the phase deviation in the exit aperture. The authors in [109] report that this method was

found suitable only when ∆zrms < 0.08λ.

2.2.4 Manual tuning of feed position

In this approach, the feed is moved along the axis of the reflector and the reflector antenna

performance is observed for each feed location using an exact PO analysis, i.e. PO without

any approximations. A cosine-q feed model is used to illuminate the reflector. The optimal

feed location must result in minimizing the gain loss at boresight. This is an important

investigation of the previous formulations, especially in the low gore regime, where the

underlying assumptions may not be valid.

2.3 Results and discussions

A comparison between the optimal feed locations computed via the two approaches defined

by (2.12), (2.17) and through manual tuning of the feed position is presented in Figure 2.5.

It can clearly be seen that none of the theoretical approaches result in the optimal feed

location for Ng < 15 for an aperture of diameter 1m and Fr/D = 0.5 at 35.75GHz.

In order to understand the importance of accurate feed positioning, we consider the case of

Ng = 10, D = 1m, Fr/D = 0.5 for analysis. The boresight gain loss computed through exact

PO analysis as a function of feed location for Ng = 10 is shown in Figure 2.6. The gain loss

is measured relative to an ideal paraboloid illuminated with the same edge taper with feed at

focus. Manual tuning predicts an optimal feed position of 0.4532m for uniform illumination

(0dB taper) and 0.4540m for optimal −10dB taper. The optimal location predicted by

(2.12), (2.17) and (2.13) results in the feed location being 0.4677m, 0.4686m and 0.4671m

respectively. Even though Ng = 10 also reduces the physical aperture area, it only accounts
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Figure 2.5: Comparison of the optimal feed positions got via (2.12), (2.17), (2.13) and manual

tuning of feed position [60].

for 0.4dB loss for the 0dB taper. For small feed displacements, the change in the spillover

and the taper losses are not significant. The surface deviation due to gores, thus, is the

primary reason for the gain loss. Note that the results of these analytical formulations are

independent of taper. This difference in the optimal feed positioning results in an additional

loss of approximately 4.5dB with respect to keeping the feed at the position predicted by

manual tuning. A significant observation here is also that the feed position does not heavily

depend on taper as is predicted by both the theoretical approaches.

With Ng = 10 being studied in detail, a valid question that arises is the minimum value

of Ng where the closed form expressions can be used. Figure 2.7 shows a comparison between

the optimal feed point predicted by (2.13) with the feed point predicted by manual tuning

and their corresponding gain loss. It is clearly seen that the closed form expressions can be

used when Ng > 15 (∆zrms = 0.11λ). Thus, for Ng < 15 one must resort to manually tuning

the feed position to get the optimal performance.
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Figure 2.6: Gain loss variation relative to an ideal reflector as a function of feed position for

Ng = 10, D = 1m and Fr/D = 0.5 at 35.75GHz as predicted by PO diffraction analysis [60].

2.4 Gain loss as a function of Number of Gores

A significant advantage of the best-fit paraboloid method lies in the fact that it yields the

RMS error between the umbrella reflector along with the optimal feed position. The RMS

error can be used to estimate the gain loss through Ruze’s equation, and ultimately result in

a closed form expression that relates the gain loss to the parameters of the umbrella reflector.

Starting from (2.18), the equation for the RMS error can be simplified using the following

approximation for a reasonable amount of gores (Ng > 20):

cos2 φ◦
tan2 φ◦(1 + tan2 φ◦)√

(1 + 2
3

tan2 φ◦ + 1
5

tan4 φ◦)
≈
(
π

Ng

)2

(2.19)

This simplifies the expression for the RMS error significantly to:

∆zrms = 0.010758
D

Fr/D

(
π

Ng

)2

(2.20)

Substituting this into the Ruze’s equation [110] yields

∆G(dB) = 685.811

(
ζ

∆zrms
λ

)2

= 7.73
ζ2

λ2

D2

(Fr/D)2

(
1

Ng

)4

(2.21)

Where ζ = (4Fr/D)
√

ln[1 + 1/(4Fr/D)2]. This leads to a very interesting result: for a given

Fr/D, the gain loss scales as the (
√
D/Ng)

4, implying that the number of gores required for
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Figure 2.7: Comparison between optimal focal lengths predicted by (2.13), manual tuning,

and the corresponding gain losses with reference to an ideal paraboloid [60].

the same gain loss scales only as the square root of the diameter.

It should be noted that if the amplitude distribution on the aperture of the reflector

is tapered, the equation for the RMS error presented in (2.14) must be suitably modified

to [111]:

∆zrms =

√
1

Ag

∫ D
2

cosφ◦

0

∫ y′ tanφ◦

0

(zg − zeq)2Q(ρ′)dx′dy′ (2.22)

Where Q(ρ′) and Ag are the taper function and the effective area respectively, given by [112]:

Q(ρ′) = C + (1− C)

[
1−

(
ρ′

D/2

)2
]p
, Edge taper(ET ) = 20 log10C (2.23)

Ag =

∫ D
2

cosφ◦

0

∫ y′ tanφ◦

0

Q(ρ′)dx′dy′ (2.24)

The value of p in (2.23) governs the slope of the taper. Representative simulation results that

highlight the dependency of gain loss on the number of gores for various aperture diameters

D at 35.75 GHz is shown in Figure 2.8.
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Figure 2.8: Variation of boresight gain loss as a function of Ng for various aperture diameters

D with an Fr/D of 0.5. The analytical gain loss is calculated by numerically solving (2.22)

and inserting the computed RMS error into Ruze’s equation.

2.4.1 Discussions on the Radiation Performance of Umbrella Reflectors

The discussion until this point was centered around finding the optimal feed position and

estimating the gain loss that results due to deviations of the umbrella reflector surface from

the ideal parabolic profile. In this section, we analyze the radiation patterns and the near

field aperture distributions of an umbrella reflector. As a representative case, we assume an

aperture diameter of 1m with an Fr/D=0.5 and Ng=15 at 35.75 GHz. Using Physical Optics,

the near field aperture distribution for this system when the feed is kept at Fr is simulated,

followed by moving the feed to Fopt. The near fields are shown in Figure 2.9. It is evident

that moving the feed to the optimal position significantly improves the phase uniformity in

the aperture leading to improved directivity, as seen in Figure. 2.10. It can also be observed

that the amplitude distribution remains unaffected as was predicted. A striking feature of

these near-field distributions is that they show a periodicity of π/Ng (as opposed to 2π/Ng).

This is expected due to the fact that each individual gore is symmetric about its center, and

therefore the deviation of the gore surface is identical for the two halves of a single gore. This

can also be seen from the variation of Fg with φ′ in Figure 2.3. This periodicity manifests
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(a) (b)

(c) (d)

Figure 2.9: Aperture distributions of an umbrella reflector of D = 1m, Fr/D = 0.5 with

Ng = 15 at 35.75GHz. (a) Normalized copol amplitude distribution when feed is at the

reference focus Fr (in dB). (b) Normalized copol amplitude distribution when feed is at the

optimal focus Fopt (in dB). (c) Copol phase distribution when the feed is at reference focus

Fr (in degrees). (d) Copol phase distribution when the feed is at reference focus Fopt (in

degrees). Note the uniformity of phase when the feed is kept at the optimum position.
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Figure 2.10: Comparisons between far field patterns for feed placed at Fr, Fopt and an ideal

paraboloid for Ng = 15, D = 1m and Fr/D = 0.5 at 35.75GHz.

itself in the far field as grating lobes, as seen in Figure 2.11. Note that 15 ribs result in 30

grating lobes in φ due to the periodicity in the aperture. These grating lobes can reduce

the efficiency of the system [111, 113, 114]. An approximate expression that can be used to

estimate the grating lobe location in the elevation plane can be given as [115,116]:

sin θg =
Ng

πD/λ
(2.25)

It is evident from (2.25) that as the value of Ng increases, the location of grating lobe move

further away from the main beam, to a point where its level is insignificant. This is also

verified through simulating the radiation patterns for an umbrella reflector of diameter 1m

and Fr/D of 0.5 with various Ng at 35.75 GHz. The results are shown in Figure 2.12 and

the details are tabulated in Table 2.1.
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Figure 2.11: Far fields for Ng = 15, aperture diameter D = 1m and F/D = 0.5 at 35.75 GHz.

(a) 3D representation of the normalized copolarized fields (dB) and (b) E-Plane copol pat-

tern.

Table 2.1: Dependency of grating lobe level and location on the number of gores Ng. The

analytical equation used for predicting grating lobe location is given by (2.25).

Ng
Boresight

directivity

Analytical

grating lobe location

Simulated

Grating lobe location
Grating Lobe Level

15 46.76 dB 2.29◦ 3.12◦ -18.63 dB

20 49.19 dB 3.06◦ 3.84◦ -24.01 dB

25 49.98 dB 3.83◦ 4.44◦ -29.65 dB

30 50.28 dB 4.59◦ 5.52◦ -33.58 dB

27



0 2 4 6 8 10

 (deg)

-60

-50

-40

-30

-20

-10

0

N
o

rm
a

liz
e

d
 F

a
r 

F
ie

ld
s
 (

d
B

)

N
g
=15

N
g
=20

N
g
=25

N
g
=30

Figure 2.12: Far-fields of umbrella reflector as a function of Ng to illustrate the behavior of

grating lobes as the number of gores increase. The details are tabulated in Table 2.1.
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2.5 Compensating For Gain Loss due to Umbrella Reflector Topol-

ogy - A Conceptual Study

The previous section described the details behind characterizing the radiation patterns of the

umbrella reflector. In this section, we provide some conceptual insights into compensating

for the pattern degradation caused by the umbrella reflector topology through the process of

conjugate phase matching [117]. The process of conjugate field matching involves simulating

the field distributions in the focal plane of the umbrella reflector when illuminated by a

plane wave travelling parallel to the axis of the reflector followed by designing an array

that can provide nearly the same amplitude distribution but a phase that is the conjugate

of the phase of the focal plane fields of the reflector antenna. As a representative case, a

10 rib umbrella reflector is considered with an aperture diameter of 1m and an Fr/D of

0.5 at 35.75 GHz, which is identical to the geometry studied in detail in Section 2.2. The

‘focal plane’ for this reflector is assumed to be at the optimal feed position determined in

the Section 2.2 as Fopt=0.454m. The magnitude and phase of the electric fields when the

umbrella reflector is illuminated by a plane wave traveling along the axis of the reflector

is shown in Figure 2.13. It can be observed that the focal plane distributions shows the

presence of 2 × Ng ‘grating lobes’, which are consistent with our observations about the

far-field characteristics of umbrella reflectors in Section 2.4. In order to conjugate match

this focal plane distribution, an array of 25 by 25 cosine-q point sources were used as feed.

The separation between each of these elements was chosen to be λ/2 which results in a

rectangular feed array of dimensions of 10 cm by 10 cm. The amplitude excitation for each

of these elements were chosen to be identical to the amplitude of the electric fields got via

simulation of the focal plane fields at the location of the element. The phase was chosen to

be conjugate of the phase of the focal plane fields at the element’s location. The amplitude

and phase excitations of the elements are shown in Figure 2.14. The ‘q’ for the cosine-q

elements were chosen to be 1 to model a typical patch antenna.

Finally, the far-fields of the umbrella reflector are simulated by using this focal plane

array as the feed. The far-field results are shown in Figure 2.15 where 3 cases are compared:
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(a) (b)

Figure 2.13: Focal plane fields at Fopt for Ng = 10, aperture diameter D = 1m and Fr/D =

0.5 at 35.75 GHz. (a) Normalized copol amplitude distribution (dB) and (b) copol phase

distribution. The dotted lines correspond to the location of the ribs, which are at φ =

0, 2π/Ng, 4π/Ng and so on.

(a) (b)

Figure 2.14: Excitation coefficients for the focal plane array to conjugate match the focal

plane fields of the umbrella reflector. (a) Normalized amplitude coefficients in dB. (b) Phase

coefficients in degrees.
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Figure 2.15: Comparing the far-fields of the umbrella reflector with the focal plane conjugate

matched array (directivity=49.06 dB) with the ideal reflector (directivity=50.58 dB) and the

umbrella reflector with a single cosine-q feed at Fopt (directivity=43.77 dB).

(a) far-fields of an ideal parabolic reflector with a single cosine-q feed at its focal point which

provides a 10 dB edge taper, (b) far-fields of the umbrella reflector with a single cosine-q feed

at Fopt which is configured to provide a 10 dB edge taper, and (c) far-fields of the umbrella

reflector with the focal plane array got via conjugate field matching. It is evident that the

conjugate field matching technique results in a more directive beam compared to using just

a single cosine-q feed. The directivities for cases (a), (b) and (c) are 50.58 dB, 43.77 dB

and 49.06 dB. Thus, the conjugate phase matching technique can recover almost 5 dB of

directivity compared to its single feed counterpart. The challenge, however, is the design

and fabrication of an array (or a subreflector) that can provide the required amplitude and

phase variation in its aperture. This will be a subject of future research in the area.
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Part II

Mesh Deployable Reflector Design for

RainCube
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CHAPTER 3

RainCube 1m Ka-Band Offset Mesh Deployable

Antenna - Development and Characterization

3.1 RainCube Mission - Needs and Objectives

Remote sensing is one of the key application areas for satellites. Many conventional satellites

have been launched to-date that use antennas to sense the power back-scattered by different

molecules in the atmosphere [118–120]. However, one of the major technological gaps that

we face today is the inability of such satellites to observe weather phenomenon that develops

over a small time span (few seconds to minutes). This is primarily due to the fact that

most conventional satellites have orbital periods of a much greater time span (few hours to

a few days). These missions, therefore, are generally unable to observe the short-time evo-

lution of weather processes, which is necessary to validate and improve existing numerical

weather models. One possible solution is to deploy several radars (as convoy or constella-

tion). This, however, is not economically feasible with conventional satellites. The arrival of

the SmallSat and CubeSat platforms make this endeavor practical today due to their cost

affordability. However, the challenge now shifts towards development of radars that can

meet the desired RF specifications while being able to integrate with very small platforms,

and be commercially viable. RainCube (Radar in a CubeSat) is a technology demonstra-

tion mission by the National Aeronautics and Space Administration (NASA) to enable such

Ka-band precipitation radar technologies on a low-cost, quick-turnaround platform.

Radar instruments have often been regarded as unsuitable for small satellite platforms

due to their traditionally large size, weight, and power. Recently, Jet Propulsion Laboratory

(JPL), in collaboration with University of California, Los Angeles (UCLA), has developed
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Table 3.1: Antenna Specifications to Facilitate Radars that meet the demands of Global

Precipitation Measurement Mission.

Parameter Value Parameter Value

Frequency 35.75 GHz Stowage 10x10x30 cm3

Polarization linear Antenna mass 2 kg

Return loss 15dB Diameter 1 m

Sidelobe level 17 dB Antenna Gain 45 dB

Bandwidth 20 MHz Beamwidth ≤0.7◦

a novel architecture compatible with a 6U CubeSat platform. The antenna system consists

of a 0.5m Cassegrain reflector antenna system, that can be stowed in a volume of 1.5U

(10×10×15 cm3) [35]. While this architecture meets Global Precipitation Measurement mis-

sion’s specifications of +12 dBZ vertical sensitivity (which is sufficient to detect light rain

and moderate snowfall), the 0.5m antenna aperture size is not sufficient for the horizontal

resolution needed for science missions [6]. Thus, the development of a compact 1.0m an-

tenna was envisioned to enable science missions which demand a constellation of low-cost

small satellites providing global, distributed, and frequent coverage for global profiling of

precipitation and breakthrough observation of precipitation processes [121]. An artist illus-

tration of the novel 1m reflector concept, which can be stowed in a volume of 3U is shown

in Figure 3.1.

3.2 Antenna Design for Next Generation RainCube Radar

Table 3.1 shows preliminary performance requirements for the RainCube 1m antenna. The

applicable antenna technologies are summarized in Table 3.2, which provides a qualita-

tive assessment of how well each option meets the key requirements. Microstrip patch and

waveguide slot array antennas require a bulky feed structure that makes them difficult to

fold compactly (resulting in poor stowed volume) [124]. In contrast, reflectors provide a good

balance between stowage efficiency and RF performance, as was noted in [35]. Even within
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(a)

(b)

Spacecraft
Bus

Reflector
Surface

BoomRib

Batten

(c)

Figure 3.1: Illustration of the novel 1m antenna developed for the next generation CubeSat

precipitation radars. (a) An artist illustration of the antenna in space, (b) the reflector

antenna system stowed in 3U volume and (c) deployed reflector [122,123].
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Table 3.2: Antenna options available for small satellite platforms and its associated qualities

for the desired aperture size (larger than 1m) at Ka band (Courtesy: JPL).

Technology Mass
Stowed

Volume

Surface

tolerance

(Ka-band)

Deployment

Mechanism

Technology

Readiness

Level [125]

µstrip patch High Poor Poor Folded panels
2

(folding)

W/G slot array High Poor Medium Folded panels
2

(folding)

Shape memory

reflector

Medium

/High
Poor Low

Ripple folding

mechanism

2

(CubeSat)

Inflatable

Membrane
Medium Good Medium

Rolled stowage

mechanism

2

(CubeSat)

Reflectarray Medium Good Medium Folded panels 4

Mesh reflector Low Good Medium Folded ribs 3

the domain of reflector antennas, several options exist today. Inflatable or frame supported

membrane reflectors show promise, but development of these antennas has not advanced

beyond the research stage due to technical risks associated with inflation and membrane sta-

bility. Shaped memory composite reflectors do not achieve the demanding surface accuracy

at Ka-band. A flat reflectarray can be deployed and can achieve relatively good efficiency

(∼50%), but mass will be relatively high for a 1m aperture [64]. Consequently, deployable

mesh reflector technology appears to offer the best combination of mass, stowed volume and

efficiency for this application. Moreover, in contrast to a reflectarray, the wide bandwidth

of reflector class antennas could enable a multi-frequency radar or enable the antenna to

support both the radar instrument, and a high data rate telecom downlink.

36



3.2.1 Reflector Configuration Selection

With the successful demonstration of the 0.5m reflector concept by JPL [107], we aimed to

push the envelope further for the next generation of CubeSats. As described in the previous

section, an aperture near 1 meter is desirable for achieving the required horizontal resolution.

This led to a collaborative effort between NASA, JPL, Tendeg llc., and UCLA in targeting a

1 meter aperture for the next evolution of high-gain CubeSat reflector antennas. Mechanical

constraints coupled with mm-Wave frequency sensitivities made it impossible to scale the

previous 0.5m umbrella reflector design. Therefore, we developed a completely new reflector

design—a 1 meter offset mesh reflector—that stows in a 3U (10×10×30 cm3) volume within

the CubeSat. The 0.5m Cassegrain reflector design could not be directly scaled for this

application for the following reasons:

1. The gain loss for an umbrella reflector largely depends on the number of ribs. A

1m reflector would require greater than 30 ribs to maintain a reasonable deviation

from an ideal surface and achieve a gain loss under 0.1dB as was seen in the previous

chapter [63,126]. This greatly increases the risk of rib jamming during deployment.

2. For Cassegrain systems, the number of deployment mechanisms used is decided by the

distance between the vertex of the main reflector and subreflector. A direct scaling of

the 0.5m design would thus add significant mechanical complexity to the system.

3. A larger subreflector would pose a greater mechanical constraint for packaging and

further increase the weight of the reflector system. Further, dual reflector systems typ-

ically require larger feed dimensions to appropriately illuminate the small subreflector,

increasing complexity of the system.

Though a symmetric single configuration has its advantages, the feed has to completely

rotate to face the reflector, complicating the feed deployment mechanisms. To balance these

tradeoffs, a single offset reflector configuration was chosen. The offset configuration alleviates

some of the difficulties faced during the deployment of symmetric reflectors: it avoids feed

blockage and facilitates feed positioning. The main disadvantages include an increased cross
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Figure 3.2: Deployment sequence developed for the 1m reflector by Tendeg LLC [123].

polarization and increased fabrication complexity, although a specialized feed horn can be

designed to minimize reflector cross-polarization as is described towards the end of this

chapter.

In the initial phases of the project, multiple reflector geometries were investigated that

could meet the specifications for the RainCube [127]. This led to finalizing the 1m offset

geometry. Once the geometry was known, a study on the impact of mesh and chassis on the

reflector performance was conducted. Several tools were developed to analyze mesh surfaces

with complex knits. Innovative ideas to design an optimized horn that maximizes reflector

efficiency were developed. The feed horn was fabricated and measured at UCLA. Several

reflector surfaces that were tested by Tendeg were characterized by UCLA to ensure that the

RMS deviation was minimal and the desired specifications were met. Prior to measurement

of the final surface, several tolerance studies relating the feed orientation and position were

conducted. This new geometry necessitated a completely new deployment mechanism to be

developed. The sequence is illustrated in Figure 3.2 and was developed by Tendeg LLC.
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10 dB beamwidth (XZ plane)=64°
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0.13m

F/D=0.75

Figure 3.3: Reflector antenna and horn feed with their respective coordinate systems. Note

that the feed horn antenna has been enlarged to emphasize its location.

3.3 Feed Horn Design

This section focuses on the development of a spline profiled optimized horn to illuminate the

one meter mesh deployable RainCube reflector design. Particle Swarm Optimization (PSO)

is used to design a horn capable of providing low cross polarization and sidelobe levels, while

conforming to the mechanical constraints imposed by the CubeSat standard. The horn was

fabricated by the UCLA machine shop using a 5-axis CNC milling machine and measured

using the planar bipolar measurement technique. The final measured results of the horn were

used as a feed model for subsequent reflector simulations to assess the performance of various

reflector surfaces created by Tendeg and to assess tolerance required for feed positioning.

3.3.1 Reflector Antenna Design and Feed Horn Antenna Requirements

The RainCube 1m geometry uses an F/D = 0.75 as illustrated in Figure 3.3, resulting in

half subtended angles of 32◦ and 31◦ in the XZ and YZ planes respectively. It is widely

known that the feed horn must provide a taper of 10dB at the edge of the reflector for

optimal aperture efficiency [112], leading to a 10dB beamwidth requirement of 64◦ and 62◦

in the XZ plane (E-Plane) and YZ plane (H-Plane) respectively. This requirement restricts

the minimum diameter of the horn. In order to minimize the spillover from the feed, the

backlobes and the sidelobes of the horn must be minimized. Further, the S11 must be as low

as possible to effectively deliver the input power to the horn. A detailed list of specifications

can be seen in Table 3.3.
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Table 3.3: List of specifications for the feed horn antenna. The geometry of the reflector

antenna can be seen in Figure 3.3

10dB Beamwidth (XZ-Plane) 64◦

10dB Beamwidth (YZ-Plane) 62◦

S11 <-20dB

Cross polarization <-25dB

Sidelobe Levels <-25dB

Achieving these electromagnetic requirements while satisfying the mechanical constraints

imposed by the RainCube architecture makes this design a major challenge. Pyramidal or

conical horns, though inexpensive and simple to design, are limited in length by the quadratic

phase error at its aperture. Potter horns are capable of providing low cross polarization at

the cost of complexity of prototyping and reduced bandwidth. Corrugated horns are also

capable of providing low cross polarization and sidelobes, but are typically heavier and

expensive to fabricate. Optimization techniques enables the designer to put more emphasis

on critical constraints and offers the possibilities of handling multiple design parameters. For

the RainCube project, a novel spline-profiled smooth walled horn is designed that achieves

the desired electromagnetic performance while satisfying the mechanical constraints of the

CubeSat. Particle Swarm Optimization (PSO) was used to optimize the horn profile for

the desired length, beamwidths, backlobe level and cross polarization level. A rectangular

to circular adapter is required to connect the optimized horn to the coax adapter. Since

the design uses commercially available coax adapters, the horn along with the rectangular

to circular adapter was optimized to provide optimal electromagnetic performance with

minimum length.

3.3.2 Horn Design Optimization Approach

Modern CAD simulation suites provide engineers the capabilities to simulate a full 3D an-

tenna structure including any microwave components preceding the antenna. These 3D CAD
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Figure 3.4: Compact horn antenna assembly comprising of a coaxial adapter, rectangular

to circular adapter [128], and a spline-profiled horn antenna. The rectangular to circular

adapter and a representative monotonic PCHIP spline profile are also illustrated.

modeling software suites can also be paired with optimization techniques to provide a de-

sign meeting important requirements, such as those shown in Table 3.3. Our aim was to

utilize these engineering advances to develop a high-performance feed horn that optimally

illuminates the 1m offset reflector antenna. In particular, HFSS was utilized to model and

simulate the horn antenna assembly shown in Figure 3.4, and Particle Swarm Optimization

was used to optimize the structure [129, 130]. An overview of the optimization process is

shown in Figure 3.5.

The horn antenna is essentially a body of revolution applied to a curve created from

a discrete number of splines. A representative set of splines are shown in Figure 3.4,

where the points P1, P2, and P3 are connected using splines. Since the length of the horn

was an important parameter, the horn model was integrated with HFSS with the hope to

optimize the performance parameters by tuning the geometry. To simplify the optimization

problem, the horn profile was optimized separately from the rectangular to circular waveguide

adapter. We refer to these to as the horn optimization problem and the waveguide adapter

optimization problem, respectively. The rectangular to circular waveguide adapter (seen in

Figure 3.4) uses a semicircular shape adapted from [128]. For the waveguide to coax adapter,
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Figure 3.5: Flow chart illustrating the key steps in the optimization process. The objective is

to design a horn that achieves the requirements shown in Table 3.3 while ensuring minimum

length.

a commercial off-the-shelf component was purchased separately. For simulation purposes, a

representative model was created in HFSS that was tuned for 35.75 GHz.

Referring to Figure 3.4, the spline profile can be shaped by adjusting the (z, x) positions

of the spline points {P0, ..., Pk}. Each spline segment {f1(z), ..., fk(z)} is defined by the spline

point positions {(z0, x0), ..., (zk, xk)} and the spline point slopes {m0, ...,mk} [131,132]. The

ith segment can be written by four Hermite basis functions as

fi(z) = h00(z̄)xi−1 + h01(z̄)xi + h10(z̄)(zi − zi−1)mi−1 + h11(z̄)(zi − zi−1)mi (3.1)

where z̄ represents the normalized independent variable z scaled as

z̄ =
z − zi−1

zi − zi−1

(3.2)

which maps z to the interval [0, 1] for the ith segment. The Hermite basis functions can be

defined as

h00(z̄) = 2z̄3 − 3z̄2 + 1 (3.3)

h10(z̄) = z̄3 − 2z̄2 + z̄ (3.4)

h01(z̄) = −2z̄3 + 3z̄2 (3.5)

h11(z̄) = z̄3 − z̄2 (3.6)

To facilitate fabrication, the splines were forced to be monotonic. This placed constraints

on the slopes {m0, ...,mk} at each of the points. The monotonicity was achieved by using
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a similar approach as was proposed in [133] and used in [132]. The process for finding

{m0, ...,mk} is detailed in Appendix D. Assuming an X-polarized horn (refer to Figure 3.3),

we quantified the performance using the fitness function

f(x) = (BWE,10 − 64◦)2 + (BWH,10 − 62◦)2 + S11 + 0.2Xp + 0.2BL + 0.5Lt (3.7)

where x is the vector of optimization variables, BWE,10 and BWH,10 are the E-plane and H-

plane 10dB beamwidths of the horn design in degrees, S11 is the impedance matching in dB,

and Lt is the total length of the horn antenna assembly in mm. The cross-polarization level,

Xp, is defined as the ratio of the worst case cross-polarization component within the forward

region of the D-plane (i.e. −90◦ ≤ θ ≤ 90◦, φ = 45◦) to the boresight copolar component in

dB. The backlobe BL is defined as the worst-case component (copol or xpol) observed in the

back region |θ| > 90◦ for the E, D, and H-planes to the boresight copolar component in dB.

The coefficients for each term in (3.7) are similar to a previous optimization study in [134].

The number of splines k is a tradeoff between the complexity of optimization and the

degree of freedom. Small values simplify the optimization problem (less parameters to opti-

mize) but might not give the optimizer enough degrees of freedom to find the optimal profile.

We ran the optimization for k = 3 and k = 5 and achieved similar horn geometries. Thus,

our initial observations have been that k = 3 was suitable for this optimization problem.

3.3.3 Simulated Results

This section details the simulation results of the optimized horn and analyzes its performance.

As a reference, we compare the far field patterns of the optimized horn to the far field patterns

of a conical horn designed to provide 10dB taper at the edge of the reflector. The patterns in

the principal planes are illustrated in Figure 3.6. The key advantage of the optimized horn

over the traditional conical horn is evident: the optimized horn provides nearly identical

10dB beamwidths in the E, D and H planes along with low cross polarization and sidelobe

levels. This can be explained by studying the difference in aperture distributions of the

two horns as shown in Figure 3.7. The fields at the exit aperture for a conical horn are

similar to the TE11 mode of the cylindrical waveguide, resulting in relatively stronger fields

43



at the edges. This leads to increased cross-polarization, edge diffraction, and backlobes. The

TE11 mode also comes with an increased presence of an Ey component leading to the higher

cross polarization in the D-plane. Further, the TE11 mode for the conical horn produces

different radiation patterns and beamwidths for the E-plane and H-plane. The optimized

horn, however, provides a dual-mode TE11 + TM11 distribution leading to a reduction in

the curvature of the fields. This leads to low cross polarization and symmetric patterns.

Further, the fields tend to be more concentrated near the center of the aperture resulting in

the optimized horn having a diameter slightly greater than a conventional horn to provide

identical 10dB beamwidths. An analytical study on the radiation characteristics of different

modes in a cylindrical waveguide can be found in Appendix C.

The simulated results of the optimized horn was then used for reflector analysis using

Physical Optics. The far field reflector patterns are shown in Figure 3.8. The peak directivity

and half-power beamwidth are 50.21dB and 0.56◦ respectively, which satisfy the specifications

for remote sensing. It should be noted that these simulation results do not include losses

due to mesh and supporting structures, which will be investigated in subsequent sections.

An important consideration for such horns is the radiation performance over frequency,

since the cancellation between the cross polarization of the TE11 and TM11 modes can, in

general, be sensitive to frequency. The far-fields at 35.5 GHz, 35.75 GHz (center frequency)

and 35.60 GHz are shown in Figure 3.9. It can be observed that the horn design provides

a very stable radiation pattern, and the far-fields in the E, D and H planes are still very

identical. Note that this bandwidth is much greater than the 20 MHz bandwidth required

for the RainCube mission.

3.3.4 Fabrication and Measurement

We fabricated the optimized horn using a CNC lathe machine. The horn profile was bored

out of a single piece of solid aluminum cylinder to ensure mechanical stability. The fabricated

horn, along with the coax adapter and rectangular to circular adapter is shown in Figure 3.10.

The S11 and the far field pattern measurements of the optimized horn was carried out to
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validate our horn design. The measured S11 of the horn is shown in Figure 3.11. As desired,

an S11 under -20dB is seen at 35.75GHz. In order to accurately measure the radiation

patterns of the optimized horn, the table-top near field bipolar planar measurement chamber

developed at UCLA [135, 136] was used. This technique involves measuring the near field

data on a grid of concentric rings, with data points sampled along circular arcs. A major

advantage of this technique is all major mechanical motions are rotational in nature, ensuring

minimal cable bending. This results in stable RF measurements, especially phase. After the

near field measurement, the data must be post processed to compute the far fields. First, the

data measured in the bipolar grid is interpolated to a uniform rectangular grid using Optimal

Sampling Interpolation (OSI). This interpolated data is then Fourier transformed to get the

far field. An overview of the measurement process is shown in Figure 3.12. Alignment of the

chamber is critical for mm-Wave frequency measurements since positioning tolerances are

strict. To ensure proper alignment, customized brackets for the optimized horn were built

using 3D printing.

The measurement setup is shown in Figure 3.13. The probe is positioned at a distance of

5.24λ above the aperture of the horn. The scan plane size (15.68λ diameter) is governed by

the valid angle, chosen to be 70◦. Figure 3.14 shows the measured near field data after OSI.

A comparison between the measured and the simulated far field radiation patterns in the

principal planes are shown in Figure 3.15. It can be seen that both measured and simulated

results agree well within the 10dB taper region. Further, the measured results show low

sidelobe and cross polarization levels as predicted by the simulation.

An important consideration for reflector antenna gain is the backlobe of the horn. Since

the near field technique is only valid in the forward direction, it does not inherently account

for backlobes. This issue is comprehensively discussed in [137], where methodologies to

estimate the losses due to spillover caused by the backlobes of the horn are discussed.
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Figure 3.6: Far field radiation patterns of the optimized horn feed compared to a standard

conical horn at 35.75 GHz. (a) E-plane pattern (b) D-plane pattern (c) H-plane pattern.

Note the significant performance improvement of the optimized horn. The solid lines and

dotted lines denote copol and xpol respectively.
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Figure 3.7: Electric field aperture distributions of (a) conical horn and (b) optimized horn.

Note the reduced curvature of the field lines towards the edge of the aperture for the opti-

mized horn.
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Figure 3.8: Far field reflector patterns with the simulated patterns of the optimized horn

at 35.75GHz. Solid and dotted lines represent copol and xpol respectively (peak directiv-

ity=50.21 dB).

47



(a) (b)

0 20 40 60 80
θ (degrees)

−40

−35

−30

−25

−20

−15

−10

−5

0

Fa
r-F

ie
ld

s (
dB

)

ϕ= 0
ϕ= 45
ϕ= 90

(c)

(d) (e)

0 20 40 60 80
θ (degrees)

−40

−35

−30

−25

−20

−15

−10

−5

0

Fa
r-F

ie
ld

s (
dB

)

ϕ= 0
ϕ= 45
ϕ= 90

(f)

(g) (h)

0 20 40 60 80
θ (degrees)

−40

−35

−30

−25

−20

−15

−10

−5

0

Fa
r-F

ie
ld

s (
dB

)

ϕ= 0
ϕ= 45
ϕ= 90

(i)

Figure 3.9: Simulated far-field patterns for the optimized spline profiled horn for RainCube

at different frequencies. (a) Normalized copol patterns (in dB) at 35.5 GHz. (b) Normalized

xpol patterns (in dB) at 35.5 GHz and (c) E, D and H-plane patterns at 35.5 GHz. (d),

(e) and (f) similarly represent patterns at 35.75 GHz (design frequency) and (g), (h) and

(i) represent patterns at 36 GHz. The dotted lines indicate the subtended angle over which

10 dB taper is desired. Note the stable performance of the horn.
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Figure 3.10: Optimized horn along with the rectangular to circular adapter and the coax

adapter. The horn has a profile of length 48.2mm (5.74λ) and an exit aperture diameter of

19.6mm (2.33λ).
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Figure 3.11: Measured reflection performance of the fabricated horn antenna assembly.
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Figure 3.12: An overview of the bipolar planar measurement process.

3D Printed Brackets

Optimized Horn Antenna

Figure 3.13: Measurement of the fabricated horn at 35.75 GHz using UCLA’s tabletop planar

bipolar near field chamber. 3-D printing was used to manufacture customized brackets for

alignment. Note that the brackets and the base plate were covered with absorbers during

actual measurement.
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Figure 3.14: Measured near field aperture distributions after OSI interpolation at 35.75 GHz

(a) Normalized copol amplitude distribution (in dB) (b) Normalized xpol amplitude dis-

tribution (in dB) (c) Copol phase distribution (in degrees) (d) Xpol phase distribution (in

degrees).
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Figure 3.15: Comparison between measured and simulated far field pattern for the optimized

horn at 35.75 GHz (a) E-plane pattern (b) D-plane pattern (c) H-plane pattern. The valid

angle for the measurement is chosen to be 70◦.
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3.4 RainCube Reflector Characterizations

3.4.1 Mesh Characterization

To facilitate deployment and reduce weight, the RainCube 1m reflector design uses a knitted

mesh surface. The mesh openings, however, cause transmission loss, resulting in reduced

antenna gain. This is a critical consideration for CubeSats since power on board is limited.

Further, the transmission losses at mm-Wave frequencies can be significant even for a tightly

knit mesh. Mesh opening size is typically described in terms of the Openings per Inch (OPI).

As the OPI increases, the mesh becomes denser, reducing transmission loss but increasing

the mechanical complexity and weight. In general, the knit structure can be very complex

(as visualized in Figure 3.17a), making direct full wave simulations unrealistic. Our aim

within this project was to generate a simple equivalent model that can be easily analyzed

and integrated with full wave solvers.

The analytical solution to the transmission coefficients of a simple wire grid model is

known through the formulations by [138] (equations (3.8)-(3.18). The reference coordinate

system is given in Figure 3.16.

TTE−TE = 1− k0I
−1
0 [cos θi + k0[γ1 cos2 φi + (δ2 − δ1) sinφi cosφi − γ2 sin2 φi]] (3.8)

TTM−TE = −k2
0 cos θiI

−1
0 [δ1 sin2 φi − (γ1 + γ2) sinφi cosφi + δ2 cos2 φi] (3.9)

TTE−TM = k2
0 cos θiI

−1
0 [δ1 cos2 φi + (γ1 + γ2) sinφi cosφi + δ2 sin2 φi] (3.10)

TTM−TM = 1− k0 cos θiI
−1
0 (1− k0 cos θi[γ2 cos2 φi + (δ2− δ1) sinφi cosφi− γ1 sin2 φi]) (3.11)
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I0

k0

= cos θi(1+k2δ1δ2−k2
0γ1γ2)+k0 sin2 θi[γ2 cos2 φi+(δ2−δ1) sinφi cosφi−γ1 sin2 φi]+k0(γ1−γ2)

(3.12)

where

α1 =
jb

π
ln

b

2πr0

(3.13)

α2 =
ja

π
ln

a

2πr0

(3.14)

γ1 = α1[1−
a
b

1 + a
b

sin2 θi cos2 φi] (3.15)

γ2 = −α2[1−
b
a

1 + b
a

sin2 θi sin
2 φi] (3.16)

δ1 = α1

a
b

1 + a
b

sin2 θi sinφi cosφi (3.17)

δ2 = −α2

b
a

1 + b
a

sin2 θi sinφi cosφi (3.18)

A comparison of the analytical Astrakhan’s formulation with full wave simulation was

presented in [139]. While the simple-wire grid model is well understood, the link between

the complex mesh and the equivalent Astrakhan wire grid remains to be defined.

A detailed investigation of the Astrakhan formulations [140] reveal a strong dependency

of the mesh transmission loss on the diameter of the constituent wires. This implies that

while generating the equivalent model of the complex mesh, the equivalent diameter that

represents the complex knit surface must be carefully chosen. As a representative example,

a complex tricot knit structure that was previously analyzed in [141] is considered. This

structure was simulated using Floquet analysis through full wave simulators. The knit

structure is shown in Figure 3.17a. The constituent wires of the mesh are assumed to

be of 0.0008” diameter, consistent with [58]. The mesh is assumed to be PEC for simplicity.
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Figure 3.16: Simple wire-grid model analyzed by Astrakhan.

If the OPI is known, the critical step is to find the equivalent diameter. Dense meshes

typically consist of intimate strands of wires that cross each other. These sections can be

replaced by an equivalent strip since the spacing (in wavelengths) is small enough that the

surface currents do not see the difference between the individual strands of wires and the

thin strip. This leads to an equivalent strip model with a certain width W . Using this

formation of the strip model, the wire grid model can be easily constructed using strip

wire equivalence [140, 142]. For the knit geometry considered, the process is illustrated

in Figure 3.17. The equivalent strip and wire grid model is illustrated in Figure 3.17b

and 3.17c respectively. The performance comparison between the mesh loss for normal

incidence for the complex knit (through full wave simulation) and the equivalent simple

wire grid model (through analytical Astrakhan formulations) is shown in Table 3.4. The

importance of choosing the right equivalent diameter can be clearly observed; if an equivalent

wire grid model having the same diameter as the constituent wires is used, the difference

between the simple model and the actual knit model is significant. Representative cases for

oblique incidence for 20 and 40 OPI is shown in Figure 3.18. Note that TE and TM refers

to electric field and magnetic field being oriented perpendicular to the plane of incidence,

respectively. It is evident from the results that the accuracy of the equivalent model increases

as the mesh gets denser, consistent with the previous hypothesis. In general, some knit
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(a) (b) (c)

Figure 3.17: A representative complex tricot knit pattern utilized to construct mesh reflectors

[141]. (a) Mesh structure. (b) Equivalent strip model with strip width W, scaled according

to the OPI. (c) Equivalent wire grid model of wire diameter D=W/2.

0 20 40 60 80
−2

−1.5

−1

−0.5

0

thetao(degree)

∆
G

o(
dB

)

0 20 40 60 80
−2

−1.5

−1

−0.5

0

thetao(degree)

∆
G

o(
dB

)
TE

TM

TM

TE

Equivalentowireogrid
Complexoknit
Equivalentowireogrid
Complexoknit

Equivalentowireogrid
Complexoknit
Equivalentowireogrid
Complexoknit

(a) (b)

Figure 3.18: Comparisons between the gain loss (∆G) of the complex knit mesh surface via

full wave simulations and the equivalent wire grid model for oblique incidence (φ = 0◦) using

Astrakhan’s formulations (a) 20 OPI. (b) 40 OPI.

structures could preclude the direct formation of the equivalent Astrakhan model. However,

the methodology presented in this section can still be used as a tool to simplify complex

knit structures to facilitate quick full wave simulation of complex knits. Thus, this section

provided an analytical basis to simplify the analysis complex mesh surfaces, which is an

important consideration for mesh reflectors.
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Table 3.4: Comparison between full wave simulated tricot knit mesh and the analytical

simple wire grid model for normal incidence (θi = φi = 0◦) at 35.75 GHz. The parameters

D, W and OPI are as defined in Figure 3.17.

OPI

Gain Loss ∆G (dB)

Tricot Knit Mesh
Equivalent Wire Grid Model

Deq = Dwire Deq = W/2

20 -0.56 -2.53 -0.43

30 -0.20 -1.01 -0.19

40 -0.09 -0.47 -0.11

3.4.1.1 Characterizing the RainCube Mesh

In this section, we use the foundations previously developed to characterize the mesh that

was finally used for the RainCube 1m reflector surface. The geometry of the mesh is shown

in Figure 3.19. This mesh provides an average of 30 OPI, with a wire diameter of 0.001”

leading to potentially acceptable transmission losses at Ka-band. In order to evaluate the

performance of this mesh, a simplified unit cell was created using EM simulation packages, as

shown in Figure 3.20. For mesh reflectors, the strands of the mesh are tensioned to maintain

the required profile. Since these strands can have multiple ways of crossing each other, the

junction can be complex to model. Thus, we investigated two junction models. The first

one (top figure in Figure 3.20) represents an ideal junction where all the strands are fused

at the junction (we refer to this as ‘hard contact’), whereas the second model has a more

practical junction, wherein the strands of the wire overlap each other at the junction (we

refer to this as ‘soft contact’) [59]. Both these models were analyzed using the concept of

periodic boundary conditions in conjunction with Finite Element Method (FEM). Based on

the reflector geometry (shown in Figure 3.21), it is evident that the angle of incidence for

the rays vary from θi = 5◦ to θi = 37◦. The mesh performance was thus evaluated at angle

of incidences of θi = 0, θi = 23◦ and θi = 37◦. We evaluate the performance for both TE and
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Figure 3.19: Photograph of the mesh used for the RainCube 1m antenna surface.

Figure 3.20: Modeling the complex mesh surface. We investigated two forms of contact:

hard contact (top) and soft contact (bottom). The simplified unit cell was then analyzed

using periodic boundary conditions.

TM polarizations. The results are tabulated in Tables 3.5 and 3.6. The simulations indicate

that the mesh openings results in a loss of 0.3-0.4 dB, which is consistent with measurements

of the mesh surface at JPL.
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Figure 3.21: Important angle of incidences to be considered for evaluating mesh performance.

Table 3.5: Transmission loss (in dB) for the soft contact model at 35.75 GHz at representative

angle of incidence.

θ=0◦ θ=23◦ θ=37◦

TE TM TE TM TE TM

0.38 0.30 0.32 0.31 0.24 0.35

Table 3.6: Transmission loss (in dB) for the hard contact model at 35.75 GHz at represen-

tative angle of incidence.

θ=0◦ θ=23◦ θ=37◦

TE TM TE TM TE TM

0.41 0.45 0.35 0.47 0.27 0.53
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(a) (b) (c)

Figure 3.22: Simulation setup to model chassis integration. (a) Proposed CAD model.

(b) Simulation setup to model the CubeSat chassis and the reflector support structure.

(c) Simplified model viable for full wave simulation.

3.4.2 Chassis Characterization

The close proximity of the support structures with the radiating elements of the CubeSat

system can affect the final reflector design performance. This makes characterizing the ef-

fects of the chassis interactions with the reflector system a critical design consideration. A

significant challenge of mm-Wave frequency simulations for CubeSats is the large structure

size in wavelengths. This section details the process by which the complex CAD was reason-

ably simplified to a model feasible for full wave simulation. The detailed CAD model of the

reflector along with the chassis is shown in Figure 3.22a. Before attempting any simulation,

the CAD model was simplified to make it feasible for full wave simulation. This simplifica-

tion is done in two stages. First, the CAD model is simplified to model two major structures:

CubeSat chassis and the reflector support structure as shown in Figure 3.22b. Second, any

faces of the structure that are not directly lit by the feed pattern are removed, as shown in

Figure 3.22c. The intuition behind this simplification is that the faces directly intercepting

the feed radiation will dominate the changes to the radiation pattern. This setup can now

be simulated within a reasonable timeframe. Since the feed pattern is much broader than

the reflector pattern, the interaction of chassis with the feed will be much more pronounced

than the interaction of the reflector pattern itself. This implies that the impact of the chassis

interaction will be maximum on the field that illuminates the reflector. In order to assess the
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Figure 3.23: Impact of chassis interaction on the reflector illumination fields. (a) Simplified

CAD model showing aperture on which the electric fields are observed. (b) Feed copolar

field amplitude without chassis. (c) Feed copolar field amplitude with chassis interaction.

(d) Feed cross polar field amplitude without chassis. (e) Feed cross polar field amplitude

with chassis interaction.

distortion in the illuminating fields, the fields at a rectangular aperture that passes through

the center of the projected aperture, as seen in Figure 3.23a, is observed. The results are

shown in Figure 3.23b-3.23e. The chassis effects can be clearly seen in the form of small

ripples in the distribution, and it stands to reason that the reflector pattern should be rel-

atively unchanged in the main beam region, considering that the main beam of the feed

pattern remains relatively unchanged. To verify our hypothesis, the feed+reflector system

was integrated with a full wave electromagnetic simulation tool, as shown in Figure 3.24.

The radiation pattern of the reflector when illuminated by the optimized horn with and

without the chassis are compared in Figure 3.25. Minimal deviations are seen in regions

away from boresight. It is evident that the chassis does not put any significant signature

on the far field patterns and thus, the mechanical structure for the RainCube design was

verified.
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Figure 3.24: Simulation setup for characterizing the impact of chassis using full wave simu-

lation.
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Figure 3.25: Representative E-Plane patterns showing the impact of chassis. (a) Wide angle

far field patterns and (b) near boresight patterns. These results show the minimal impact

of chassis.
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Figure 3.26: Prototype reflector using deployment testing [123].

3.5 Fabrication and Measurement of the RainCube 1m Reflector

The mesh reflector was fabricated by Tendeg LLC. The antenna surface consists of a mesh

surface that is tensioned to achieve the required parabolic profile. The structure uses two

opposing nets, which are supported by battens and ribs. The force reacted into each batten

was balanced between the front and backside nets ensuring precision and repeatability. The

reflector was put through multiple deployment cycles to ensure the reliability of the mechani-

cal system. To confirm that the reflector surface maintains a reasonable RMS deviation after

successive deployments, laser scanning of the surface was done, and a corresponding CAD

model was created which could be incorporated into electromagnetic solvers for RF charac-

terization. A representative diagram of the prototype reflector during deployment testing is

shown in Figure 3.26. A detailed description of the fabrication process of the reflector surface

is provided in [122]. After several iterations, the final fabricated reflector was mounted in the

JPL Mesa near-field chamber [143] for radiation pattern and gain measurements. A compar-

ison between the simulated and measured results are shown in Figure 3.27, where excellent

agreements can be seen. The measured directivity was 49.95 dB. An important note here is

that the near field measurement system only measures the pattern in the forward hemisphere

(0≤ θ ≤90◦), and thus the measured directivity is expected to be higher than the simulated

directivity (which considers the radiation pattern over the complete sphere) [137]. The gain

measurements are detailed in the subsequent section, which accounts for this ‘back’ radiation

apart from other practical losses such as mesh loss and reflection loss. The measured half

power beamwidth is 0.565◦ in the E-plane and 0.529◦ in the H-plane.
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Figure 3.27: Comparison of the measured radiation patterns with simulated results when the

feed is kept at the final optimized position at 35.75 GHz [122]. (a) E-Plane and (b) H-Plane.

Another critical parameter for antennas in radar and communication application is gain.

The gain of an antenna finally determines how much power gets received by the receiver.

Unlike the directivity, the gain includes all the loss sources that are present between the

transmitter and receiver. A comparison between gain and directivity for different frequencies

are shown in Figure 3.28. The predicted gain of 48.99 dB agrees well with the measured gain

of 49.18 dB. The difference between prediction and measurement stems from uncertainties in

measurement, and the fact that the simulation models used to predict the mesh transmission

loss were simplified models suitable for full-wave simulation. This measured gain, which

includes the spacecraft body panels, corresponds to an antenna efficiency of approximately

60%. It was found that the presence of the spacecraft body panels reduced the measured

gain by about 0.05 dB, consistent with our simulated predictions. A detailed gain-loss table

accounting for the various simulated losses is shown in Table 3.7 [122].
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Figure 3.28: Measured directivity vs gain plot for the RainCube 1m reflector. The measure-

ments were made with and without the support structures (side panels) to assess the impact

of chassis. The reflector antenna achieved a gain of 49.18 dB at 35.75 GHz, which matched

closely with simulated predictions [122].

Table 3.7: Gain-Loss table at 35.75 GHz based on simulations [122].

Loss Gain

Ideal Directivity - 51.46 dB

Spillover+Taper 1.43 dB 50.03 dB

Surface

RMS
0.7 dB 49.33 dB

Surface Mesh 0.3 dB 49.03 dB

Feed Mismatch 0.04 dB 48.99 dB

Total Gain (Simulated) 2.47 dB 48.99 dB
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Figure 3.29: Measured 3D normalized copol far fields (in dB) of the RIC-6U mesh deployable

reflector, that shows the appearance of multiple grating lobes [122].

3.6 Characterization and Reduction of Far-Field Grating Lobes

The previous sections detailed the measurement results of the 1m RIC-6U reflector, where

excellent agreement between simulation and measured results were seen [122]. A detailed

investigation of the measured far fields of the fabricated reflector revealed a set of six grating

lobes as shown in Figure 3.29. In this section, we attempt to understand the appearance of

these grating lobes and provide some potential techniques that can reduce the grating lobe

levels.

3.6.1 Grating Lobe Appearance

Grating lobes are a manifestation of periodic variations in the aperture distributions of the

antenna. If the length of the period is greater than a wavelength, the appearance of such

grating lobes are expected. The smaller the period is, the farther the grating lobes occur,

accompanied by a simultaneous reduction in their levels. For the RIC-6U mesh deployable

reflector, the source of this periodic variation stems from periodic deviations of the reflector

profile from an ideal paraboloid due to the tensioning of the mesh in between the support

structure forming triangular facets. Typically, these facets are arranged to form hexagons in
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Figure 3.30: Construction of the hexagonal facets of the mesh.

the projected reflector aperture as shown in Figure 3.30. The vertex of each of the triangles

are ‘pulled’ so that they lie on the true paraboloid. The triangular surface that connects

these nodes, however, are planar in nature and thus deviate from the paraboloid. Since the

majority of the triangles are identical in nature, and the curvature of the reflector is nominal,

each triangle deviates almost identically from the reflector, and this leads to periodicity in

the aperture of the reflector. The parameter s denotes the period of the deviations. As

one can expect, the deviation of the triangles from an ideal paraboloid is maximum at the

center and zero at the vertices, and thus distance between centers play a dominant role in the

appearance of grating lobes. The geometry of the hexagonal faceting results in grating lobes

in the planes corresponding to φ = 0◦, 30◦, 60◦, 90◦ and so on. The value of elevation angle

θ where the grating lobes appear depends on s and can be approximately found as [144]:

sin θg = 2
λ

s
for φ = 0◦, 60◦, 120◦ and so on (3.19)

sin θg =
2λ√
3s

for φ = 30◦, 90◦, 120◦ and so on (3.20)

In order to model the RainCube 1m reflector surface, the value of s was chosen to be 8λ. This

results in θg = 14.47◦ for φ = 0◦, 60◦, 120◦ and so on and θg = 8.29◦ for φ = 30◦, 90◦, 120◦

and so on. Since the grating lobes for φ = 30◦, 90◦, 120◦, .. are the nearest to the main

beam, their levels are significantly higher. It is seen that these analytical results match the

measured and simulated results presented previously.

In order to fully verify that it is indeed this hexagonal faceting that is causing these
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(a) (b)

Figure 3.31: Reflector surface with hexagonal facets created by UCLA to study the appear-

ance of grating lobes. (a) 3D view and (b) view in the aperture (XY) plane.

grating lobes to occur, computer codes were created that could create an STL file that

generates a reflector surface with hexagonal facets similar to the one illustrated in Figure 3.30.

The generated reflector is shown in Figure 3.31. This surface is then illuminated by a cosine-

q feed to provide a 10dB taper at the edge of the reflector. The corresponding 3D far fields

are shown in Figure 3.32. Note that the grating lobes occurring due to this surface is very

identical to those shown by the measured results of the RIC-6U reflector surface as shown in

Figure 3.29. The near-field aperture distributions can be seen in Figure 3.33 which clearly

shows the periodicity in the amplitude distribution. This completely validates our hypothesis

that the grating lobes are indeed a manifestation of the periodic deviations of the reflector

surface from an ideal paraboloid.

3.6.2 Reduction of Grating Lobes

Now that it has been proved that the periodicity of the deviation of the reflector is the

cause of the grating lobes, it is reasonable to expect that introducing a certain amount of

randomness in the error distribution can bring the level of the grating lobes down. To prove

this, we use a phyllotactic distribution of points in the aperture that are defined by the
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Figure 3.32: 3D far fields (copol component, in dB) of the reflector surface with hexagonal

facets shown in Figure 3.31. The approximate location and level of the grating lobe is also

illustrated. Note that the grating lobes show similar features to that of the RIC-6U surface

(Figure 3.29).

(a) (b)

Figure 3.33: Near field distribution of the CAD reflector surface with a hexagonal distribution

of the facets. (a) Amplitude distribution (in dB) and (b) phase distribution (in degrees).
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following equations [145]:

xk = R

√
k

N − 1
cos

(
πk

ψfib

)
+ Cx (3.21)

yk = R

√
k

N − 1
sin

(
πk

ψfib

)
+ Cy (3.22)

zk =
xk

2 + yk
2

4F
(3.23)

where N denotes the total number of points, k = 0, 1, 2..., N − 1, R denotes the radius of

the reflector aperture and ψphyll =
(

1+
√

5
2

)2

. The parameters Cx, Cy and F denote the offset

of the aperture in the x and y directions and the focal length respectively. The distribution

of the points is illustrated in Figure 3.34a. Once these points are obtained, a Delaunay

triangulation is applied to generate the CAD model of the reflector surface [146]. In order

to build an equivalent case to compare with the hexagonal mesh, N = 300 was chosen to

generate the CAD surface as shown in Figure 3.34. The average length of the triangles for

both the hexagonal and the phyllotactic mesh are kept almost identical (approximately 8λ

in the aperture). An insight into the reason why this randomness reduces the grating lobes

drastically can be got if the near field aperture distributions of this arrangement (shown in

Figure 3.35) is compared with the aperture distributions of the hexagonally faceted reflector

surface (shown in Figure 3.33). It is immediately obvious that the phyllotactic arrangement

introduces enough randomness that the notion of the periodicity is lost, thus reducing the

grating lobes. The corresponding 3D far fields are shown in Figure 3.36 where it can be

clearly seen that the far-fields no longer show the discrete spots, but are more ‘spread’ so

that its energy gets more distributed. This reduces the grating lobes by more than 15 dB in

the planes that the hexagonal faceting showed grating lobes, at the cost of a marginal increase

in the overall sidelobe envelope. Representative line cuts of the far field that illustrate the

comparison of the performance of the hexagonal mesh with the phyllotactic arrangement

is shown in Figure 3.37. An interesting observation is that the phyllotactic facets tend

to show some signature of ‘lobes’ in planes that the hexagonal facets did not. However,

the overall levels are much lower, and thus satisfies the sidelobe envelope constraints. The
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(a)

(b) (c)

Figure 3.34: Reflector surface with phyllotactic facets created by UCLA to study the ap-

pearance of grating lobes. (a) Distribution of points on the aperture. (b) 3D view and (b)

view in the aperture (XY) plane for the constructed CAD model by Delaunay triangulation.
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(a) (b)

Figure 3.35: Near field distribution of the CAD reflector surface with a phyllotactic dis-

tribution of the facets. (a) amplitude distribution (in dB) and (b) phase distribution (in

degrees).

Figure 3.36: 3D far fields (copolarized component, in dB) of the reflector surface with phyl-

lotactic facets as shown in Figure 3.34. Note that compared to the hexagonal facets (Fig-

ure 3.32), the grating lobes almost disappear and a marginally high sidelobe envelope is

seen.
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Figure 3.37: Far field comparison in various planes between the hexagonal faceting and the

phyllotactic arrangement of the facets. (a) φ=0◦ plane, (b) φ =90◦ plane. Note the drastic

reduction in grating lobe in the φ =90◦ plane. The solid lines denote copol and the dotted

lines denote cross-pol. The directivity for the ideal reflector is 50.47 dB. The hexagonal and

phyllotactic faceting results in directivities of 50.37 dB and 50.33 dB respectively.

directivities and the beamwidths are compared in Table 3.8, where it can be seen that the

phyllotactic arrangement has minimal impact on the boresight directivity and half power

beamwidths. While these results are encouraging, the feasibility of practically implementing

such an arrangement remains to be investigated. If required, the faceting algorithm can be

paired with an optimization engine to achieve the desired faceting for the required sidelobe

envelope [144,147].

Table 3.8: Comparison of directivity and beamwidths for various kinds of faceting

Phyllotactic Mesh Hex Mesh Ideal

Directivity (dB) 50.33 50.37 50.47

HPBW (φ=0◦) 0.56◦ 0.56◦ 0.55◦

HPBW (φ=30◦) 0.56◦ 0.56◦ 0.56◦

HPBW (φ=90◦) 0.56◦ 0.56◦ 0.56◦
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3.7 Reduction of Linear Cross-Polarization for Offset Reflectors

While offset reflectors simplify deployment and result in compact geometries compared to

symmetric reflectors, the asymmetry in the structure causes a high level of cross polarized

fields in the plane perpendicular to the offset plane. This can also be seen in the simu-

lated/measured results of the RainCube 1m reflector in Figure 3.27b. This can be a major

consideration of remote sensing applications since the cross polarized fields can cause pol-

lution of back-scattered data, or for communication applications since the cross polarized

fields can reduce the boresight directivity of the system. Based on the research conducted for

the RainCube 1m design, it is possible to develop a profiled horn so that it illuminates the

reflector such that the reflector itself does not produce any cross polarized fields. In order

to accomplish this, the profile of the horn is again discretized into three splines as was done

in the previous case. However, an important difference in this design is that the horn must

produce a cross polarization in one of its principal planes. This requires the generation of an

additional TE21 mode within the geometry [148]. For details on the features of this mode,

refer to Appendix C. The asymmetry of this mode requires some asymmetry in the physical

cross-section of the horn. Thus, a screw was introduced as a part of the horn structure as

seen in Figure 3.38. However, the inclusion of this screw can adversely impact the S11 of

the horn, and thus an additional screw to tune the input impedance was incorporated. The

screw diameters were chosen to be 1.85mm, which matches an ANSI 1-72 screw size.

Another signification difference between this horn and the previous horn for RainCube

is the approach used for optimization. While the previously described horn optimizes its

profile by considering the parameters of just the horn (for example, the S11 and horn far-

field patterns), the approach for this horn involved a co-simulation of the feed and the

reflector system. In other words, every run of the optimizer involved simulating the horn

far-field patterns (with the desired profile and screw position chosen by the optimized) and

incorporating this into a PO based reflector simulation [149,150]. The fitness function to be

minimized was chosen to be:

f(x) = S11 − 10D0 + 3Xp (3.24)
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(a) (b)

Figure 3.38: Horn geometry designed to reduce reflector xpol at 35.75 GHz. (a) Profile of

the horn showing the location of the screws that generate the TE21 mode and tunes the

input impedance of the horn and (b) view from the mouth of the horn.

where x represents the vector of optimization variables (which include the start and end

point of every spline and the position and depth of the two screws). D0 is the boresight

reflector directivity and Xp is the maximum reflector cross-pol found within the φ = 45◦

and φ = 90◦ planes. The final radiation patterns of the horn and reflector are shown in

Figure 3.39. The simulated directivity of the reflector was 50.34 dB and the simulated S11

at 35.75 GHz was found to be -31 dB.

It is important to note the orientation of the horn relative to the reflector in Figure 3.39a.

The screw position and depth was optimized so as to cancel out the reflector crosspol with the

horn oriented such that the TE21 screw points towards the bottom edge of the reflector. If the

horn gets rotated by 180◦ so that the screw now points towards the top edge of the reflector,

the horn cross polarized can reinforce the cross polarized fields of the reflector resulting in a

higher crosspol compared to a conventional cosine-q feed as shown in Figure 3.40.

3.7.0.1 Tolerance Studies

Since the basis of the horn design to reduce reflector crosspolarization is the cancellation of

the reflector crosspolarized fields with that of the horn, it can be surmised that the design can

be rather sensitive to the depth of the TE21 screw (which essentially controls the magnitude

of TE21 mode relative to the other modes). The impact of varying the distance of the
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Figure 3.39: (a) Reference coordinate system chosen for the optimization routine. Note that

the screw points towards the bottom edge of the reflector. (b) Final optimized far field

patterns of the feed horn and (b) corresponding far-fields of the 1m RainCube reflector.

Note the drastic reduction in the crosspolarization of the reflector compared to using a

conventional feed (which is approximately 22 dB).
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Figure 3.40: Comparison of reflector radiation patterns (φ = 90◦ plane)when the horn is

oriented in its optimal position (screw at bottom) with the case when the horn is rotated so

that the screw faces the top edge of the reflector (screw at top) and a conventional cosine-q

feed at 35.75 GHz.
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Figure 3.41: Sensitivity of the reflector cross polarized to variation in the screw distance zs.

(a) Feed geometry. (b) horn patterns and (b) reflector patterns as zs increases.

screw (zs) from its optimal position (zopt) on the radiation pattern of the horn as well as

the reflector antenna is shown in Figure 3.41. It can be observed that at 35.75 GHz, if the

TE21 screw depth is increased by just 0.3mm, the cross polarization of the reflector increases

by more than 15 dB making it comparable to the crosspolarization level seen when using a

conventional horn design, even though the cross polarization level of the horn increases by

only 4 dB. This makes the design very sensitive to fabrication errors and other errors that

can arise while integrating the designed horn with the reflector antenna.

3.7.0.2 Fabrication and Measurement of the Horn

The advantage of the design philosophy described in this work is that the horn structure is

still a body of revolution and thus can be manufactured using CNC lathe machines that can

ensure the surface accuracy required for mmWave applications. The two screws (TE21 screw

and the impedance tuning screw) are added through radial holes drilled after fabrication.

The horn was fabricated by ProtoLabs, following which the screws were screwed in manually.

However, it was extremely difficult to ensure that the depth of the screw was precise. The

measured S11 of the horn is shown in Figure 3.42. The horn (along with the screws) was

then mounted in the UCLA bipolar chamber (similar to the previously described horn).
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Figure 3.42: Measured S11 of the horn. The center frequency of 35.75 GHz is denoted by

dotted lines.

The measured near-fields at distance of 5.24λ away from the mouth of the horn is shown

in Figure 3.44. Note the appearance of the cross polarized fields in the horn pattern as

expected. The far-field patterns are finally computed through the FFT of these measured

near-fields and probe compensation. The measured and simulated far fields are compared in

Figure 3.45. Note that the patterns agree reasonably well. However, the minor differences

in the cross-polarized fields stemming from fabrication inaccuracies can potentially make

cancelling the reflector cross-polarization difficult.

3.7.0.3 Measured Horn Patterns as Feed For Reflector

In this section, we integrate the measured far-field patterns from the previous section into

the PO reflector analysis software and analyze its result. Figure 3.46a and 3.46b shows the

radiation pattern when the measured radiation patterns are used for illumination compared

to the conventional cosine-q feed. Both orientations of the horn are considered as was done

in the previous study. It can be observed from these patterns that there is only a marginal

reduction in the xpol level when the horn is positioned such that the screw faces the bottom

edge, which is a result of the sensitivities of the cross pol cancellation to the depth of the

screw. However, the fact that the cross pol increases beyond what is usually seen with a
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Figure 3.43: Horn mounted in UCLA bipolar planar near-field chamber.

cosine-q feed when the horn is rotated by 180 degrees is consistent with results in Figure 3.40.

Figure 3.46c-f compare the performance of the measured feed patterns with the simulated

feed patterns. An interesting note here is that the patterns agree very well for the case when

the horn is oriented with screw pointing towards the top edge of the reflector (Figure 3.46f).

This again suggests that while the horn’s measured radiation pattern is reasonably close to

the simulated patterns, the cancellation of the reflector cross polarization is rather sensitive.

Future research in this area will involve the conceptualization of a feed design which is not

as sensitive to design parameters. Also, measuring the feed along with the reflector can

lead to a much better performance assessment since the errors that can be produced during

post-processing can be avoided.
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(a) (b)

(c) (d)

Figure 3.44: Measured near-field of the horn. (a) Normalized copol magnitude (in dB), (b)

copol phase (in degrees), (c) normalized xpol magnitude (in dB) and (d) xpol phase (in

degrees).
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(a) (b)

(c)

Figure 3.45: measured far fields of the horn compared to simulation. (a) E-plane, (b) D-plane

and (c) H-plane.
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Figure 3.46: Reflector far-field patterns (a),(b) comparison of cosine-Q feed performance

with the measured patterns. (c),(d) comparison of simulated feed performance (screw facing

bottom) with the measured patterns. (e),(f) comparison of simulated feed performance

(screw facing top) with the measured patterns. Patterns on the left and right represent

XZ-plane and YZ-plane respectively.
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Part III

Metal-Only, Low-Profile, Stepped

Parabolic Reflector Antenna
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CHAPTER 4

Synthesis and Analysis of High Gain, Metal-Only, Low

Profile Stepped Parabolic Reflector Antenna

This chapter describes an intuitive approach for synthesizing low profile, metal-only high

gain stepped reflector antennas that can aid emerging CubeSat missions for remote sens-

ing and communications. The reflector surface consists of a discrete number of confocal

parabolic sections which scatter in phase, ultimately resulting in a focused beam in the far

field. The metal only structure avoids the need for dielectric characterization, which is es-

sential for reflectarrays, transmitarrays, lenses, and other dielectric based antennas. Further,

the parabolic sections provide a distinct advantage over the conventional Fresnel Zone Plate

antenna (FZP) since parabolic sections ensure a greater uniformity of phase in the aperture

of the antenna, and the radiation is unidirectional. Using this technique, it is possible to

achieve depths of the order of one wavelength while ensuring performances comparable to

conventional parabolic reflectors, making it very suitable for mmWave applications. Starting

from a symmetric stepped reflector synthesis, two distinct approaches to synthesize offset

stepped reflectors are explored in this chapter. Each of these approaches provide interesting

tradeoffs between mechanical complexity and electromagnetic performance, as will be high-

lighted. A thorough analysis of the frequency performance of stepped parabolic reflectors is

also presented, followed by a discussion on the prototyping and measurement of a stepped

reflector prototype.
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4.1 Existing Options for Low-Profile High Gain Antennas

Fresnel Zone Plate antenna (FZP) were one of the first antennas that were developed to

achieve high gain from a low profile aperture. Investigations on microwave reflecting FZP’s

began as early as the 1930’s [151–156] and continued into more recent investigations [157–

159]. The original FZP concept began with investigations by Lord Rayleigh and Wood [160]

in the 1800’s, and interesting applications and new designs for FZP’s are still continuing

for optical frequencies and beyond [161–172]. Though FZP can take many forms, a typical

design essentially uses a set of flat, metallic rings located in one plane, achieving significant

reduction in volume of the antenna. The flat nature of the FZP causes the windloading force

to be 1/8th of conventional solid or wire meshed reflectors of similar size [173], making it a very

suitable candidate for high gain applications from a mechanical standpoint. However, the

low aperture efficiency of the FZP is often a concern for engineers, which arises from a higher

sidelobe envelope compared to a conventional parabolic dish bidirectional radiation [174] and

bidirectional radiation. For large apertures, the number of rings for an FZP can severely

limit frequency response in terms of its 1dB gain bandwidth [175].

An alternative “flat reflector” design that has become popular within the antenna com-

munity is the reflectarray, which consists of resonant patches on a grounded dielectric sub-

strate that provide the necessary phase correction to achieve a uniform phase at the exit

aperture [177]. While this has demonstrated significant potential, the presence of dielectric

material can pose concerns for certain applications, such as deployable spaceborne anten-

nas. Dielectrics often increase losses and limits the power handling capacity and limit the

bandwidth of the antenna. Another challenge for reflectarray analysis is the large computa-

tional time and resources needed to simulate the resonant structures. Recently, metal-only

designs have become an interesting research focus for reflectarrays, especially for mmWave

operation [178]. Several metal-only reflectarray concepts have been produced, providing de-

cent aperture efficiencies at frequencies as high as 100 GHz [179–181]. The advancements in

computer technology have aided another metal-only approach where a flat plate is deformed

by optimizing the height of individual pixels. After optimizing the pixel heights, the sur-
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Figure 4.1: Various architectures of low profile reflectors that have been under investigation

[176].

face profile is generated by smoothing the pixeled surface through B-splines to generate the

surface profile [182, 183]. This process provides the flexibility to meet multiple constraints

for specific applications. In this approach, a tradeoff is made between achieving improved

efficiencies and computation complexity and time.

In this chapter, we revisit the notion of zoned reflectors to present an intuitive synthesis

procedure to achieve a low profile, high-efficiency, metal-only reflector antenna that provides

radiation efficiencies comparable to reflectarrays and deformed flat plate reflectors. The re-

flector aperture is constructed using a family of paraboloids such that the scattering from

each individual section adds in-phase in the far field, resulting in high aperture efficiency.

This technique is especially useful for mmWave frequencies and beyond, where a profile

height of the order of 1 cm can easily be achieved. Engineers can thus retain the mechanical

advantages of the FZP (like wind-loading), while achieving radiation efficiencies comparable

to classical reflectors. For space applications, the stepped parabolic reflector can potentially

be integrated with the chassis, thereby eliminating the need of complex deployment mecha-
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nisms. Note that even though the reflector itself may not need deployment, the feed must

still be deployed such that its phase center aligns with the focal point of the stepped reflector.

This can be alleviated by using a dual reflector configuration as discussed in [184].

Recent trends in fabrication technology also make this investigation timely. The structure

can possibly be printed using advanced 3D printers or machined using CNC tools, where

fabrication time and cost for development can be significantly reduced [185].

Even though this architecture fits within the well-known zoned reflector category, a de-

tailed characterization of this concept and an assessment of its full potential has not been

done to the best of the author’s knowledge (a brief description can be found in [173,186]).

Figure 4.1 shows an illustration of the various options available for designing a high gain,

low profile reflector antenna. All of these are symmetric designs. In many practical situa-

tions, however, an offset reflector geometry is desirable since it avoids feed blockage. In this

chapter, we also discuss the development of a low profile, stepped offset reflector using multi-

ple parabolic sections from a novel and practical point of view. Multiple techniques exist to

generate an offset geometry as will be dicussed subsequently. Each technique has its own spe-

cial mechanical and RF characteristics. A detailed description of the frequency performance

of the stepped parabolic reflector antenna (for both symmetric and offset configurations) is

also provided and validated through measurements.

4.2 Surface Formulations

In this section, we elaborate on the formulations that describe the surface geometry for both

symmetric and offset configurations. The synthesis technique is based on the fundamental

geometric property of a paraboloid: the total path length for a ray that emanates from

the focus and gets reflected off the reflector surface to the exit aperture is 2F , with a

corresponding phase of 2kF , where k = 2π/λ (λ being the wavelength). One can thus

envision a family of N paraboloids of focal lengths Fn that can provide the same phase at
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Figure 4.2: Diagrammatic illustration of the stepped parabolic reflector concept with a depth

of h0. Each section provides a modulo 2π phase at the exit aperture. Note that s must be

an integer [176].

its exit aperture if the following phase condition is met:

2kFn = 2kF + 2(n− 1)sπ (4.1)

implying that Fn = F +(n−1)sλ/2, where s is an integer and n = 1, 2, 3, .., N . This concept

is illustrated in Figure 4.2.

As will be shown in the formulations that follow, it is this factor s that provides the

flexibility to tradeoff mechanical complexity with radiation efficiency and bandwidth. An

important note here is that as the focal length of the parabola changes, it must be shifted

appropriately so that the feed remains at the focus for each of the sections.

4.2.1 Symmetric Stepped Reflector

Based on the concept introduced in the preceding section, we select a focal length of F ,

aperture diameter of D and a profile height of h0. The nth parabolic section can then be

expressed as:

zn =
ρ2

4
(
F + (n− 1)sλ

2

) − (n− 1)s
λ

2
(4.2)
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Ideal parabola

Stepped Parabolic Reflector

Figure 4.3: Profile of a symmetric stepped parabolic reflector with h0 = 1λ (0.839 cm at

35.75 GHz), s = 2, D = 1m and F/D = 0.5 [176].

where ρ satisfies an−1 ≤ ρ ≤ an defined by

an = 2

√(
h0 + (n− 1)s

λ

2

)(
F + (n− 1)s

λ

2

)
(4.3)

or, in other words, between the (n− 1)th and nth section boundaries. Note that a0 = 0. An

example profile of a symmetric stepped reflector with aperture diameter D = 1m, F/D = 0.5,

s = 2 and h0 = 1λ (0.839 cm at 35.75 GHz) is shown in Figure 4.3. In this case, the number

of sections present is 13.

4.2.2 Offset Stepped Reflector

There can be multiple ways of extending the formulation developed for a symmetric reflector

to an offset geometry. In this section, two interesting options are described to generate the

geometry for an offset paraboloid. One can directly intersect the symmetric stepped reflector

geometry by a cylinder of the required radius a at the desired offset height d, similar to the

classical approach of generating an offset reflector [187]. Since this results in a geometry

which is horizontal, we call this Horizontal Flat Offset Stepped Reflector (HFOSR). The

other approach involves generating the offset reflector on an inclined plane tangential to the

midpoint of the first section. We call this Inclined Flat Offset Stepped Reflector (IFOSR).

The fundamental difference between these two approaches is that for HFOSR, the surface
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is composed of incomplete circular arcs, whereas the IFOSR consists of complete elliptical

rings. The fact that one has this flexibility of choosing between two totally different offset

architectures is a distinct difference between this approach and the reflectarray approach or

FZP [188] approach. Each architecture has its own unique electromagnetic and mechanical

properties as is subsequently discussed. For the IFOSR case, the structure is constrained to

lie between the two lines given by: zl1 = d
2F

(x − d
2
) and zl2 = zl1 + h0 (Figure 4.4). The

equation for the parent paraboloid for the nth section is given by:

zn =
ρ2

4
(
F + (n− 1)sλ

2

) − (n− 1)s
λ

2
(4.4)

The intersecting cylinder that is used to generate the nth section has a radius an and offset

dn given by

an =
ρ′n1 − ρ′n2

2
(4.5)

dn =
ρ′n1 + ρ′n2

2
(4.6)

respectively, where ρ′n1 and ρ′n2 are the roots of the equation,

ρ′2
1

4(F + (n− 1)sλ
2
)
− ρ′

d

2F
+

[
d2

4F
− h0 − (n− 1)s

λ

2

]
= 0 (4.7)

The quadratic equation presented in (4.7) is found by equating (4.4) with the equation

defining zl2. This is essentially finding the intersection between the parabolic surface and

the line defined by zl2. A 3D view of an offset stepped reflector with h0 = 1λ, s = 2, D = 1m,

d = 0.6312m and F = 0.75m using both approaches is shown in Figure 4.5.

4.3 Geometry Considerations

In this section, we detail the mechanical considerations for the stepped parabolic reflector

approach, such as the ring width, number of rings, and feed positioning. It is important to

note that there is always a tradeoff between the electromagnetic features that one desires and

the depth that one can achieve with the stepped parabolic reflector approach. Increasing the

number of rings can facilitate a lower profile while limiting the frequency performance and
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h0

(a)

(b)

Figure 4.4: Inclined Flat Offset Stepped Reflector (IFOSR) construction. (a) 2-D profile

(b) The process of generating the 3D geometry: The parent paraboloid is intersected by a

cylinder of radius an and an offset distance of dn, which are computed by solving (4.7) [176].
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θl=30.16°

(a)

1.0 m
0.5m

θl
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F

θu=23.47°

θl=36.06°

(b)

Figure 4.5: Perspective views of the two approaches to generate an offset stepped reflector

discussed in this work. (a) HFOSR and (b) IFOSR. Note the large difference in θu and θl

for the HFOSR [176].

increasing fabrication complexity due to reduction of ring widths. The ring width also plays

a major role in deciding the simulation technique suitable for characterizing the antenna. If

the rings that are heavily illuminated are lesser than a wavelength, the radiated fields would

be diffraction dominated, necessitating the use of full wave techniques such as method-

of-moments (MoM). However, if these rings are larger than 4 to 5 wavelengths, Physical

Optics (PO) becomes a viable option for simulation, which can be significantly easier on

computational resources than the conventional MoM approach.

4.3.1 Estimation of Number of Rings

Even though the method of synthesis for symmetric and offset reflectors stem from the same

concept of achieving a modulo 2π phase at the exit aperture, the method of selecting the

family of paraboloids differ for each approach. Thus, one expects the number of rings for

each case to be different, as will be highlighted.
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4.3.1.1 Symmetric Stepped Reflectors

For a reflector with N rings, the last ring must satisfy the following equation:

h0 =
(D/2)2

4
(
F + (N − 1)sλ

2

) − (N − 1)s
λ

2
(4.8)

Solving for N, one gets the number of rings as:

N =
1

sλ

(
−(h0 + F ) +

√
(F − h0)2 +

D2

4

)
+ 1 (4.9)

Typically, one can assume that h0 � F , leading to

N ≈ 1

sλ

(
−F +

√
F 2 +

D2

4

)
+ 1 (4.10)

Interestingly, the form in (4.10) is very similar to the number of rings for an FZP, which is

given as [157]:

NFZP =
2

λ

(
−F +

√
F 2 +

D2

4

)
(4.11)

Thus, the stepped parabolic reflector approach reduces the number of rings by a factor of

approximately 2s. It should be noted that the total number of rings for an FZP include both

metallic rings (reflecting zones) and the gaps between them (transmitting zones).

4.3.1.2 Offset Stepped Reflectors

The number of rings for the two offset approaches can be very different. For the IFOSR,

the number of rings can be expressed as N = 2N0

s
+ 1 where N0 is the positive root of the

equation

N2
0

(
d2

4F 2
+ 1

)
+ N0

(
d2

4Fλ
+
F

λ
+
h0

λ

)
+

(
Fh0

λ2
− D2

16λ2

)
= 0 (4.12)

For the HFOSR approach (a symmetric reflector intersected by an offset cylinder), the

number of rings can be computed by subtracting the number of rings present in the clearance

height (0 ≤ ρ ≤ (d−D/2) from the number of rings required to make the parent paraboloid

(radius = d+D/2). The approximate number of rings can be given as (assuming h0 � F ):

N =
1

sλ

√F 2 +

(
d+

D

2

)2

−

√
F 2 +

(
d− D

2

)2
 (4.13)
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For our particular case of D = 1m, F/D = 0.75 and d = 0.6312m shown in Figure 4.5,

the HFOSR results in 37 rings, whereas the IFOSR case only results in 8 rings for the same

profile height of h0 = 1λ. Based on these geometrical differences, it is reasonable to expect

that the IFOSR and HFOSR would have very different electromagnetic performance. Further

analysis, shown in a later section, confirms this expectation, where we observe a decreased

efficiency and a frequency scanning property for the HFOSR.

4.3.2 Width of Ring

It is intuitive that the number of rings and the ring width have an inverse relationship.

The greater the number of rings that are required to make the aperture, the narrower the

individual rings are. The width of a ring n in the projected aperture can be expressed as:

wn = an − an−1 (4.14)

where an and an−1 can be calculated through the equations given previously in (4.3) and

(4.5) for symmetric and IFOSR configurations respectively. The width for the HFOSR

configuration uses the same equation form as the one for symmetric after suitably accounting

for the number of rings that are present in the clearance height.

The ring width for the nth section within the symmetric reflector (D = 1m, F/D = 0.5)

is shown in Figure 4.6a, and that for an offset configuration with D = 1m, d = 0.6312m and

F/D = 0.75 is shown in Figure 4.6b. It should be noted that for the IFOSR, the average

of the top and the bottom portion of the ring is plotted. Each ring has a vertical height of

approximately λ, with the exception of the last ring. The last ring has a height lesser than

wavelength so that the exact aperture diameter of 1m is achieved.

It is evident that the ring width for the HFOSR is narrower than the IFOSR due to

higher number of rings. This makes the simulation and fabrication of the IFOSR more

straightforward and scalable.
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Figure 4.6: Ring widths for symmetric stepped parabolic reflector and offset stepped

parabolic reflector with an aperture diameter of 1m, h0 = 1λ and s = 2 at 35.75 GHz.

(a) Comparison between symmetric stepped reflector and conventional FZP. (b) Compari-

son between HFOSR and IFOSR [176].

4.3.3 Feed Considerations

While the positioning of the feed for a symmetric configuration is intuitive, for the offset

configuration, the tilt of the feed and the feed taper is not immediately obvious. For IFOSR,

the tilt of the reflector plane provides a greater symmetry between the subtended angles

of the feed (denoted as θl and θu in Figure 4.5). This makes balancing the feed spillover

and taper relatively simpler than the HFOSR case. For classical horn feeds that provide

symmetric patterns, the spillover plus taper efficiency for the HFOSR is expected to be

lower than the IFOSR. This will be confirmed by simulations to follow.

4.3.4 Geometry Tradeoffs

It is evident that the geometry considerations differ between two approaches for generat-

ing offset stepped reflectors. This flexibility in synthesis technique allows one to achieve

interesting tradeoffs between mechanical constraints and electromagnetic performance. For

IFOSR, one can achieve a low profile reflector with a smaller number of rings, which reduces

the frequency sensitivity of the structure. However, the IFOSR’s main beam will be tilted

at an angle with respect to the overall footprint of the reflector (see Figure 4.5b). This tilt
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can be advantageous for certain applications, but it may complicate its integration with a

flat chassis if a normal-directed beam is desired. The HFOSR, on the other hand, requires a

larger number of rings to achieve the same profile height. While this structure can easily be

integrated with the chassis structure, the increased number of rings increases its frequency

sensitivity. Ultimately, the selection between the two approaches largely depends on the

design constraints of the system and the desired antenna performance.

4.4 Simulation Results for the Stepped Parabolic Reflector An-

tenna

An endearing feature of the stepped parabolic reflector approach is that each section is

a paraboloid, which are inherently smooth and monotonic. This leads to realizable com-

putational meshing requirements, which results in reasonable simulation times. For this

particular design, which is a 1m aperture at Ka band, the fact that the rings near the center

(that are most illuminated) have a width of more than four wavelengths allows the structure

to be solved using a Physical Optics engine, which significantly reduces simulation times.

A comparison of results obtained via PO with the ones obtained via a full-wave MLFMM

simulation for some representative cases is shown in the subsequent section. For this work, a

cosine-q feed that provides a 10dB feed taper at the subtended angle of θu+θl
2

(see Figure 4.5)

is used. An important consideration for such stepped reflector architectures is the shadowing

of the outer rings by the higher edges of the preceding rings. The PO solver automatically

takes this into account by forcing currents to zero in these shadow regions. The feed for the

offset cases are tilted to the mean of the subtended angles from the edge of the reflector on

the feed location (bisect angle).

4.4.1 Symmetric Configuration

Figure 4.7 shows the results for a symmetric stepped reflector with D = 1m and F/D = 0.5.

We also plot the patterns of an ideal parabolic reflector and an FZP, both having the same D
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Figure 4.7: Far field pattern comparison for a stepped symmetric reflector of depth h0 = 1λ

(0.839 cm at 35.75 GHz) and s = 2 with a classical symmetric paraboloid. (a) E-plane pattern

and (b) D-plane pattern. The peak directivities for the ideal parabolic reflector, symmetric

stepped reflector and FZP reflector are 50.57 dB, 49.54 dB and 40.41 dB respectively [176].

and F/D. The peak directivities for the ideal parabolic reflector, symmetric stepped reflector

and FZP reflector are 50.57 dB, 49.54 dB and 40.41 dB respectively. It is evident that the

stepped parabolic design is capable of achieving efficiencies much higher than conventional

FZPs. The reason for the stepped parabolic reflector performing significantly better than

the conventional FZP is twofold: (a) the FZP construction does not ensure that the rays

that emanate from the focus are equiphase at the aperture, resulting in a higher sidelobe

envelope and (b) the FZP radiates equally on both sides and It can be seen that the radiation

pattern for the stepped parabolic reflector compares well with the ideal paraboloid, verifying

the stepped parabolic reflector concept.

4.4.2 Offset Configuration

As discussed in the previous sections, there can be two approaches to design an offset stepped

reflector, leading us to expect different performance for each case. The detailed geometries

for each of these approaches are shown in Figure 4.5, and the corresponding radiation pat-

terns are shown in Figure 4.8. The boresight directivities for ideal offset parabolic reflector,

HFOSR and IFOSR are 50.45 dB, 48.95 dB and 49.92 dB, respectively. Some interesting ob-
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servations emerge from these results. The HFOSR suffers from reduced efficiency. This can

be justified from the fact that the geometry behaves similar to a uniformly excited phased

array (see Figure 4.5a). Since the average width of the ring is greater than a wavelength,

the far field pattern shows a grating lobe at approximately θ = sin−1 1
W/λ

, where W is the

average width of the ring, which evaluates to 18.10◦ for our geometry. The small ring width

(compared to IFOSR) causes the grating lobe to be noticeably high, reducing the directivity

of the system. The asymmetry of the structure also leads to suboptimal aperture efficiencies.

The IFOSR does not suffer from the same issues since (a) the average ring width for the

IFSOR is much larger. This results in potential grating lobes being pushed farther from the

main beam, with a corresponding reduction in magnitude due to the element patterns of a

parabolic section and (b) the main beam is not directed towards the normal of the surface

(see Figure 4.5b).

4.5 Physical Optics vs Full Wave (MLFMM) comparison for stepped

parabolic reflector

The patterns that were presented in the previous sections were based on Physical Optics

(PO) approach, which minimizes computational resources and time. However, the PO tech-

nique does not fully account for the edge currents in the structure and ignores inter element

interaction. In this section, we compare the results generated by PO with the ones generated

through a full wave simulator (MLFMM) that fully accounts for edge diffraction and inter

element interactions. A comparison of the radiation patterns for the symmetric stepped re-

flector, IFOSR and HFOSR are shown in Figure 4.9 and the directivity values are tabulated

in Table 4.1. It is evident that both the approaches agree well. This is expected since the

feed taper does not illuminate the outer rings (which are of the order of 1λ) strongly, causing

diffraction effects to be minimal.
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Figure 4.8: Far field pattern comparisons for a stepped offset reflector of depth h0 = 1λ

(0.839 cm at 35.75 GHz) and s = 2 (through both HFOSR and IFOSR approaches) and a

classical paraboloid. (a) Wide angle E-plane pattern. (b) Near boresight E-plane pattern.

(c) Wide angle H-plane pattern. (d) Near boresight H-plane pattern. The E-Plane is the

plane of offset. The boresight directivities for ideal offset parabolic reflector, HFOSR and

IFOSR are 50.45 dB, 48.95 dB and 49.92 dB, respectively [176].

Table 4.1: Comparison of Directivity Values Calculated through PO and MLFMM at 35.75

GHz [176].

PO MLFMM

Symmetric Stepped 49.54 dB 49.95 dB

IFOSR 49.92 dB 50.10 dB

HFOSR 48.95 dB 49.43 dB
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Figure 4.9: Comparison between PO and MLFMM for stepped parabolic reflector design

with h0 = 1λ, s = 2 and D = 1m at 35.75 GHz. H-plane results are shown here. (a)

Symmetric stepped reflector with F/D = 0.5. (b) HFOSR with F/D = 0.75. (c) IFOSR

with F/D = 0.75. The directivities are tabulated in Table 4.1.
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4.6 Frequency Response of Parabolic Stepped Reflector

Since the stepped reflector has dimensions which are based on a specific frequency of oper-

ation, its frequency response is an important consideration. It is intuitive that for a given

wavelength λ, the phase at the center of the exit aperture and the edge of the exit aperture

differ by δ, which is given by:

δ =
2π

λ
(2FN−1 − 2F0)− 2π

λ0

(2FN−1 − 2F0) (4.15)

where λ0 represents the central wavelength, which results in a uniform aperture phase distri-

bution (δ = 0). A good rule-of-thumb for the maximum phase difference that one can have

across the aperture is π, which results in a reasonable gain drop. Thus, the value of δ is set

to δ = ±π for estimating the upper and lower bounds of frequency [189]. Thus, from (4.1)

that FN−1 − F0 = s(N − 1)λ0/2, the following equation can be derived:

fl,h =
f0

1± 1
4N ′

(4.16)

Where fl and fh represent the lower and higher bounds of frequency and N ′ = s(N − 1)/2.

For the case where 1/4N ′ � 1, the two-sided bandwidth can be estimated as:

BW =
fh − fl
f0

≈ 1

s(N − 1)
(4.17)

which is applicable for both offset and symmetric reflectors. One can see similarities between

the classic FZP, which is given as BWFZP = 2/NFZP [158] (if we assume a phase error of

π rather than π/2). However, the factor s gives the designer a potentially added flexibility

to get a larger bandwidth at the cost of an increased depth if desired. Below we describe

several interesting insights specific for the symmetric and offset configurations.

4.6.1 Bandwidth Observations for Symmetric Configurations

There are two cases that are of interest to antenna engineers. The first case is stepped

reflectors with a very low profile height (h0 � F ), where the two-sided bandwidth reduces

to

BW ≈ λ

−F +
√
F 2 + D2

4

(4.18)
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Figure 4.10: Bandwidth performance of the symmetric stepped reflector configuration, where

increasing the height h0 can result in bandwidth increases. The different colors represent

various F/D values as indicated in the figure [176].

where (4.10) was inserted into (4.17). Interestingly, this expression exactly matches previous

derivations for path length bandwidth of both FZP’s and reflectarrays [157, 189]. This

implies that for stepped reflectors with very low profile height, there are negligible bandwidth

improvements over FZP’s or reflectarrays (unless perhaps the element bandwidth is also

considered).

In the case where one cannot assume h0 � F , the bandwidth becomes

BW ≈ λ√
(F − h0)2 + D2

4
− (F + h0)

(4.19)

The bandwidth in this region monotonically increases with h0 until BW → ∞ at h0 =

D2/16F , which is expected since this height is equal to that of an ideal parabolic reflector.

This is illustrated for several representative values of F/D and aperture sizes in Figure 4.10,

where it becomes clear that the bandwidth can be improved by increasing the reflector height.

These results do reveal that these improvements are only useful for smaller aperture sizes

with potentially larger F/D ratios.

It should also be emphasized that the aperture phase errors are circularly symmetric in

the aperture. Thus, the beam will remain at broadside, and no scanning will be observed.
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Figure 4.11: Far-field patterns at different frequencies for the stepped offset reflector. (a)

IFOSR and (b) HFOSR. The details are tabulated in Table 4.2 and 4.3 [176].

4.6.2 Bandwidth Observations for Offset Configurations

The intuitive parabolic geometry for the offset design allows us to guess the distribution even

before simulations: for the IFOSR, the reflector surface is composed of confocal parabolic

sections with complete elliptical rims resulting in a phase distribution which is circularly

symmetric at the exit aperture. This results in the broadside directed far field radiation

pattern. With the aperture distribution phase errors for the IFOSR showing similarities to

the symmetric configuration, many of the observations for the symmetric configuration are

also applicable to the IFOSR. Increasing the height also enables the tradeoff between height

h0 and the bandwidth.

The situation for the HFOSR, however, becomes interesting. For the HFOSR, the re-

flector surface consists of rings that are only parts of a circle. For off-center frequencies, a

phase gradient will develop along the plane of offset, leading to beam scanning as frequency

changes. The extent to which the HFOSR scans can be estimated by array theory as:

θ0,l = − sin−1 1

βlW

π

(N − 1)
, θ0,h = sin−1 1

βhW

π

(N − 1)
(4.20)

where θ0 represents the scan angle, W is the average ring width and βl,h = 2π/λl,h, with λl,h

being wavelengths corresponding to fl and fh respectively. For our HFOSR geometry, the

theoretical formula in (4.20) predicts a scan angle of approximately ±0.25◦, which is similar
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Table 4.2: Frequency Performance for IFOSR [176].

Frequency Max. Gain Scan angle

34.51 GHz 45.57 dB 0

35.75 GHz 49.91 dB 0

37.07 GHz 45.20 dB 0

Table 4.3: Frequency Performance for HFOSR [176].

Frequency Max. Gain Scan angle

35.50 GHz 48.83 dB -0.20◦

35.75 GHz 48.95 dB 0

36.00 GHz 48.92 dB +0.25◦

to the scan values in Table 4.3. The far field patterns are shown in Figure 4.11.

A final note on these aperture antennas should emphasize that these apertures are band-

width limited by the path delay bandwidth alone. Unlike reflectarrays, there are no resonant

elements that further restrict the bandwidth.

4.7 Fabrication and Measurement of a Stepped Reflector Proto-

type

While the previous section focused on a comprehensive analytical formulation of the stepped

reflector (both symmetric and offset configurations), this section will focus on the fabrication

and measurement of a prototype of an offset stepped reflector (HFOSR). In order to ensure

that the reflector can be readily fabricated and measured, a frequency of 19 GHz was chosen,

and the aperture diameter was chosen to be 20 cm. The F/D was chosen to be 0.5 to ensure

that the feed can be suitably positioned. The profile of the stepped reflector along with the

3D simulation model can be seen in Figure 4.12. The final CAD file that was created and

sent for CNC milling can be seen in Figure 4.13. Two important points must be noted here:
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(a) In order for this to be CNC milled effectively, each section had to be connected with

a suitable slope. This connecting section is created in a way that the part of the section

that is present in the PO-shadow region of the preceding section is removed as illustrated in

Figure 4.14. This ensures that the impact of the connected sections on the radiated far-fields

is minimal. For the dimensions under consideration, the last ring gets completely shadowed

by the section before it and therefore gets removed from the CAD model. (b) Since the

reflector was milled, a solid base for the reflector is essential. Thus, the reflector profile was

subtracted from a cylinder that had an additional thickness of 0.5 mm. This adds weight to

the reflector, however, as advanced techniques such as metal 3D printing are beginning to be

explored, this additional height can be significantly reduced. The fabrication was done by

Protolabs inc using a CNC mill machine. The final prototype is shown in Figure 4.15a. The

stepped reflector was then mounted in the UCLA spherical near-field measurement range

as shown in Figure 4.15b. A Narda 638 standard gain horn was used to feed the reflector.

In order to estimate the performance of the stepped reflector via simulations, a cosine-q

feed which models the main beam of the feed horn was used. The simulation model also

incorporates a model of the extended back-plate which was a part of the mounting bracket.

Both the feed model and the reflector model is shown in Figure 4.16.

A comparison of the measured far-fields at 19 GHz are shown in Figure 4.18. A compar-

ison of the directivities and the beamwidths are shown in Table 4.4. Some key observations

are:

1. Directivity and beamwidths : It can be observed that the measured directivity

is approximately 0.6 dB higher than the simulated value. This can be attributed to

the fact that the chamber does not accurately measure backlobes due to the presence

of absorber. The measured patterns also exhibit marginally narrower beamwidths

compared to simulation results. This could stem from the fact the horn profile is

proprietary and thus cannot be exactly modeled in simulations.

2. High sidelobe envelope : A very interesting phenomenon that can be seen in both

the measured and simulated data is the presence of a high-sidelobe envelope which was
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20 cm

10 cm

No of rings = 8
Average step width = 1.40λ

(a)

Ideal 
parabolic 
reflector

7.89mm

(Approx. 12 times 
reduction of profile)

(b)

Figure 4.12: (a)Simulation model and (b) profile for the fabricated stepped reflector at

19GHz. The stepped reflector has a diameter of 20 cm and an F/D of 0.5.

not necessarily seen in the previous simulation results for the 1m reflector at 35.75 GHz.

This arises dominantly due to the ripples in the amplitude distribution caused by the

parabolic sections and will be a topic for detailed investigation in the next section.

Note that the measured results do not recover the envelope fully on the negative side,

which is most likely due to the presence of supporting structures.

For this particular architecture, the upper and lower frequency bounds were predicted

using 4.16 at 17.88 GHz and 20.26 GHz, with a scan angle of approximately ± 0.25◦, as

predicted by (4.20). The stepped reflector was measured for both these frequencies and

compared to simulations. The pattern comparisons are shown in Figure 4.19, and the details

are tabulated in 4.5. The scanning of the beam can clearly be visualized through Figure 4.20.

Note that this particular geometry results in an efficiency of approximately 50% with a

12 time reduction in the profile of the reflector. However, if a larger F/D is used, efficiencies

near 60% can be obtained. However, for this case, the reduction in profile height compared

to ideal parabolic reflector will reduce.

4.8 Investigating High Sidelobe Profile for the Stepped Reflector

An interesting feature of stepped reflectors, especially the HFOSR, is a high sidelobe envelope

that appears in the vicinity of the region where a grating lobe is expected. While this feature
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20 cm

1.28 cm

Figure 4.13: Fabricated prototype of the stepped reflector. The reflector surface was built

via CNC machining and weighed approximately 800 grams.

This is removed

connecting 
section

x (m)

z (m)

Feed Position

Rays from 
feed

Figure 4.14: Generation of the ‘connecting’ sections for the stepped reflector geometry. The

section is essentially generated by ensuring only the part of the section that falls within the

shadow region of the preceding section is removed to ensure minimal impact on performance.
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(a)

(b)

Figure 4.15: (a) Fabricated prototype of the offset stepped reflector with an aperture di-

ameter of 20 cm and F/D of 0.5 at 19 GHz. (b) Stepped reflector mounted in the UCLA

spherical near-field chamber.
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1.16’ 1.51’

2.57’

NARDA 638 model

Figure 4.16: Simulation model which includes the CAD model of the fabricated reflector

along with the back plate, which was a part of the bracket used to mount the reflector inside

the near-field chamber. The simulation model for the feed horn (Narda-638) is also shown. A

cosine-q feed that models the main beam of the feed horn was used for comparing simulated

and measured results (see Figure 4.17).
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Figure 4.17: Simulated far-fields of the simplified feed model at different frequencies, and

the equivalent cosine-q feed that was used to compare simulated and measured results. (a)

E-plane. (b) H-plane.

Table 4.4: Comparison between simulated and measured results at 19GHz. The location of

the peak of the main beam is denoted by θp and φp respectively.

Simulated Measured

Directivity 28.40 dB(θp=0,φp=0) 29.04(θp=-0.6,φp=0)

HPBW (E-Plane) 5.73 5.67

HPBW (H-Plane) 6.81 6.13
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Figure 4.18: Comparing simulated results with the measured radiation patterns at 19 GHz.

(a) E-plane copol, (b) E-plane xpol, (c) H-plane copol and (d) H-plane xpol.

Table 4.5: Directivities at various frequencies for the HFOSR. The location of the beam peak

is denoted by θp and φp in elevation and azimuth respectively.

Simulated Measured

Directivity (17.88 GHz) 27.62 dB (θp=-2.5◦, φp =0◦) 28.33 (θp=-3, φp=0)

Directivity (19 GHz) 28.40 dB (θp=-0◦, φp =0◦) 29.04 dB (θp=-0.6◦, φp=0)

Directivity (20.26 GHz) 28.84 dB (θp=2.5◦, φp =0◦) 29.54 dB (θp=2◦, φp=0◦)
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Figure 4.19: Comparing simulated results with the measured radiation patterns at lower and

upper frequency bounds. (a) E-plane copol at 17.88 GHz, (b) E-plane xpol at 17.88 GHz,

(c) E-plane copol at 20.26 GHz and (d) E-plane xpol at 20.26 GHz.
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Figure 4.20: Illustration of the beam scan as the frequency changes for the HFOSR. (a) Sim-

ulated results and (b) measured results.

is always present, its level relative to the peak keeps reducing as the aperture size increases,

making it insignificant for larger apertures. This can be seen from the results presented in

the earlier sections of this chapter - simulations of the 1m reflector at 35.75 GHz ( 120λ

diameter) had an envelope which was almost 40 dB down, whereas the 20 cm reflector at 19

GHz ( 12.6λ diameter) had an envelope which was approximately 20 dB down. This section

looks to provide some theoretical insights into this and attempts to justify this behavior.

We start the analysis by taking the 20 cm reflector at 19 GHz as the reference case.

First, to show that indeed scaling this aperture to larger dimension will reduce the envelope,

the geometry is scaled by a factor of 2 and 3, keeping the F/D constant. This results in

a set of three geometries as shown in Figure. 4.21a-c. The far-fields for each are shown in

Figure 4.21d, where it is evident that as the aperture grows larger, the sidelobe envelope

tends to reduce. Also note that the extent (width) of the sidelobe envelope is relatively

unchanged as the geometry scales. This gives an indication that this envelope is a manifes-

tation of the number of parabolic sections per unit length of the stepped reflector, since that

remains unchanged as the geometry scales. If one looks at the near-field distributions for

each of these geometries, one clearly sees that the amplitude distribution is not smooth, as

one might expect from a parabolic reflector, but consists of ripples. Representative near-field
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distributions for the 20 cm HFOSR is shown in Figure 4.22. A deeper look into this reveals

that the ripples in the amplitude pattern seem to align well with the position of each indi-

vidual parabolic sections, alluding to the fact that the far-field distribution can have several

plane wave spectrum components that have spatial frequencies at and near the number of

rings per unit length of the HFOSR design.

With this knowledge, one can intuitively understand the generation of this sidelobe en-

velope - the FFT of a single sinusoidal distribution which is finite in length is a sinc function

whose peak is determined by the frequency of the sinusoid and a beamwdith which is decided

by the length of the sinusoid. The HFOSR near-field distribution does not consists of just

one sinusoid, but multiple of them whose frequency are in the vicinity of the number of rings

per unit length, each generating their own sinc functions. Thus, the final result will be an

addition of the contribution of the sinc functions corresponding to each individual sinusoid.

As the HFOSR scales, the periodicity of the sinusoids remain almost unchanged causing

their respective peaks to be at the same location (resulting in an unchanged width of the

sidelobe envelope). However, as these sinusoids extend over a larger length, the beamwidths

of the corresponding sinc functions reduce so that the overlap between them also reduces

ultimately reducing the level of the sinusoid. Conversely, for a smaller length, each sinc

function will be relatively broad and thus would add up to a relatively large value. The

following subsection will prove this quantitatively.

Note that the HFOSR geometry is much more susceptible to the generation of the high

sidelobe level since it consists of multiple sections of almost the same width. The symmetric

or the IFOSR configurations typically result in a significantly large first section which is much

more illuminated than the steps that follow it, and thus the periodicity is not as strong.
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(a) (b)

(c)

(d)

Figure 4.21: Studying the behavior of the far-field patterns as the geometry scales. (a) x1

scaled version. (b) x2 scaled version. (c) x3 scaled version. (d) Comparison of the far-field

patterns
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(a) (b)

(c)

Figure 4.22: Near-field distributions for the 20 cm (x1 scaled) stepped reflector simulated

2 cm away from the aperture. (a) Normalized copol magnitude distribution (in dB). The

dotted red lines represent every individual section. (b) Copol phase distribution (in degrees).

(c) Line-cut along x-axis with the blue lines denoting the approximate location of individual

sections. Note the ripples in the amplitude coincide well with the position of each section.
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Figure 4.23: Comparison of the results from Fourier transforming the near-field distributions

along the x-axis for the stepped reflector as the geometry scales. Note that the number of

cycles per unit length that make up the sidelobe envelope are almost the same, with similar

levels.
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4.8.1 Analytical Model for the near Field Distribution

In this section, we attempt to provide a quantitative explanation for the high sidelobe enve-

lope generated by the HFOSR, especially for apertures that are smaller. To begin, consider

a 1D electric field distribution for simplicity expressed as:

Ex(x
′) = FDC +

N2∑
i=N1

Fi sin

(
2πix′

L

)
(4.21)

Where 0 ≤ x ≤ L. The FDC represents the magnitude of the DC component and the Fi

corresponds to the amplitude of the ith sinusoid that has Ni cycles over a length L. From an

electromagnetic perspective, the number of cycles per unit length is an important parameter

since it signifies the periodicity. Thus, one can write (4.21) as:

Ex(x
′) = FDC +

N2∑
i=N1

Fi sin (2παix
′) (4.22)

where αi = i/L is the number of cycles per unit length for the ith sinusoid. Since the Fourier

transform of each individual sine function provides a summation of two sinc functions, the

Fourier Transform of this 1D line distribution (which gives us the plane wave spectrum) can

be expressed as:

Ax(x
′) = FDCLsinc

kxL

2
+

1

2j
L

N2∑
i=N1

Fi

[
sinc(kx + 2παi)

L

2
− sinc(kx − 2παi)

L

2

]
(4.23)

Where kx = k sin θ. Thus, one observes that each sine function of α cycles per unit length

provides two sinc functions having a maxima at ± sin−1 (λα). The fact that a sinusoid

amplitude ripple results in a grating lobe for both positive and negative values of θ is also a

good indication that the ripples in the amplitude is responsible for the high sidelobe envelope

of the HFOSR. A deeper look into (4.23) reveals several interesting features:

1. As one incorporates a greater range of αi into the distribution for the same length

L, the corresponding sinc functions spread across a greater angular range, thereby

increasing the width of the sidelobe envelope.

2. For a small L, the sinc function corresponding the each αi will be broad enough that

they overlap significantly. This causes the sidelobe envelope to rise significantly. How-

118



(a) (b)

Figure 4.24: Understanding the behavior of sidelobe envelope as the design scales to larger

dimensions using analytical equations. (a) Simulated results and (b) Analytical obtained

with αi = 30, 31.., 55, Fi = 1 and FDC = 30dB. Note that the analytical model accurately

recovers the trends seen for the sidelobe envelope.

ever, as L increases, the sinc functions will grow narrower and thus reducing the overlap,

ultimately reducing the level of the sidelobe envelope.

3. The other factor that determines the relative level of the sidelobe envelope is the ratio

between FDC and the each of the Fi. If FDC completely dominates, then the far field

will not see any effect of the sinusoid ripples.

To relate this to the behavior of the stepped reflector, we first study the FFT of the near-

fields of the 20 cm, 40 cm and 60 cm HFOSR designs each with an F/D=0.5. As one can

see from Figure 4.23, the number of cycles per unit length (αi) remain roughly constant as

the design scales, resulting in similar width of the envelope. Now if one uses (4.21) such

that αi ranges from 30 to 55 in steps of 1, all Fi are chosen to be identical, and the Fdc is

chosen to be 30 dB greater than Fdc, one can observe that one recovers an almost similar

sidelobe envelope (width and level) as the design scales as. This is illustrated in Figure 4.24.

From this exercise, it becomes clear that a diameter of around 50λ is desirable if one wants

to ensure a lower sidelobe. Note that this is consistent with the 1m reflector simulations at

35.75 GHz (diameter of 120λ), where the sidelobe envelope was below 40 dB.
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CHAPTER 5

Conclusions

The recent advances in the field of VLSI and microelectronics has led to a drastic reduction

in the size of electronic devices, while increasing its functionality. This massive scaling has

resulted in the development of CubeSats, which are fully functional satellites but can be

as small as a cube of volume 10x10x10 cm3 and weight under 1.33 Kg. This significantly

reduces the cost of developing and launching CubeSats, thereby enabling widescale access to

space missions. While most CubeSat missions that have been launched use patch or wire an-

tennas because of their ease of integration with the CubeSat, such antennas cannot meet the

requirements for space missions that require high data rates and/or spatial resolution. The

inherent proportionality between physical size of the antenna and its gain makes achieving

the tradeoff between RF performance and mechanical complexity a major challenge.

This research addresses this very challenge. A significant aspect of this dissertation in-

volved the development of one of the largest aperture antennas at Ka-band for NASA’s

RainCube mission – a 1m mesh deployable offset reflector antenna that can be stowed in a

volume of just 3U (10x10x30 cm3). This project was a collaboration between UCLA, JPL and

Tendeg LLC. The motivation behind this research was to enable a constellation of CubeSat

based precipitation radars that can observe weather phenomenon that develops over a small

time span. Some of the key contributions of this research were: (a) Studying the RF perfor-

mance of complex knit mesh surfaces to establish the relation between number of openings,

wire diameter and RF transmission loss, (b) development of an optimized horn feed using a

combination of particle swarm optimization and finite element analysis, (c) fabrication and

measurement of the feed horn and (d) assessing the impact of chassis on reflector radiation

pattern. The dissertation also describes the RF analysis of the CAD reflector surface that
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was generated through laser-scanning of the fabricated reflector. Further, the appearance

of grating lobes that occur due to periodic errors caused by mesh faceting were studied,

and recommendations were made to reduce their levels. The reflector antenna achieved a

measured gain of 49.2 dB and beamwidths of 0.6◦ at 35.75 GHz. These results matched very

closely with simulations, and marked a major milestone in the arena of high gain antennas

for CubeSats.

The drive to develop antennas that can enable advanced CubeSat missions requiring high

data rates also led to the analysis of well-known architectures from the point of view of its

integration with the small CubeSat form factor. One class of reflector antennas that has

been widely used for space applications is the umbrella reflector. The surface of an umbrella

reflector consists of a discrete number of parabolic ribs which are connected through surfaces

called gores. The gore surface has zero curvature in one direction, causing it to deviate from

an ideal parabolic surface. While a large number of ribs improve the RF performance, it

increases the mechanical complexity making it unsuitable for CubeSats. This dissertation

revisited the previous works that have been published on this topic with the perspective of

facilitating the integration of umbrella reflectors with CubeSats. In particular, the closed

form expressions to determine the optimal feed location were studied, and their range of

applicability was demonstrated through parametric tuning of feed position. Further, several

closed form expressions were developed that related the boresight gain loss of the umbrella

reflector to its geometrical parameters and frequency of operation. The periodic errors

that stem from the umbrella reflector topology results in far-field grating lobes, which were

characterized as a part of this work.

This research also develops a novel metal-only, low-profile architecture that can be inte-

grated readily with CubeSats. The reflector surface consists of multiple parabolic sections

that scatter in phase to provide a directive beam. Profile heights of the order of half a wave-

length can be obtained using this technique, making it very suitable for CubeSat missions at

mmWave frequencies. Since the antenna consists of discrete sections, it can be 3D printed

making it an economical solution for CubeSats. A prototype of an offset stepped parabolic

reflector was built and measured with very encouraging results. Since the reflector aperture
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Figure 5.1: Major contributions of this research.

consists of discrete parabolic sections, the near-field amplitude distribution of such reflectors

have periodic ripples, which can manifest themselves as a wide sidelobe envelope. Insights

into this phenomenon were provided through the development of simplified numerical models

that can represent this phenomenon.

The key contributions of this research are highlighted in Figure 5.1. As advanced space

missions with CubeSats become a reality, we look forward to several futuristic missions with

CubeSats that were impossible before, and the development of novel out-of-the-box antennas

to support these missions.
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APPENDIX A

Extending Formulation of Umbrella Reflectors for

Controlling Surface Between Ribs

It was seen in chapter 2 that the equation of the umbrella reflector surface with a rib focal

length of Fr could be derived as:

zg =
ρ′2

4Fg(φ′)
(A.1)

Where Fg is expressed as:

Fg(φ) =
Frcos2(π/Ng)

cos2 φ
′
m+φ′m+1−2φ′

2

(A.2)

where φm = 2π(m − 1)/Ng and ρ′ and φ′ represent the polar aperture coordinates. The

coordinate system can be seen in Figure A.1. Equations (A.1) and (A.2) can now be combined

to yield:

zg =
ρ′2

4Fr/α2
=
ρ′2α2

4Fr
(A.3)

where α can be defined as:

α =
cos

φ′m+φ′m+1−2φ′

2

cos π/Ng

(A.4)

Thus, at points where φ′ becomes 0, 2π/Ng, 4π/Ng and so on, α becomes 1, so that equation

A.3 reduces to the equation of a parabolic curve. These formulations, however, allows for

the formulation of wider family of surfaces. This can be achieved by introducing a factor κ

in the expression of α as follows:

α′ =

[
cos

φ′m+φ′m+1−2φ′

2

cos(π/Ng)

]κ
(A.5)

This results in a new surface whose features depend on κ, and can be defined as:

zκ =
ρ′2

4Fr/α′2κ
=
ρ′2α′2κ

4Fr
(A.6)
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Figure A.1: Coordinate system reference for the umbrella reflector.

It is intuitive by an inspection of (A.6) that if κ = 0, the equation of the surface would

reduce to the equation of an ideal paraboloid. For κ = 1, the equation would result in an

umbrella reflector. Regardless of the value of κ, the value of α′ will be 1 when φ′ is on the

ribs. Thus, the value of κ essentially modulates the surface between the ribs. Representative

surfaces corresponding to various values of κ are shown in Figure A.2. Owing to the fact

that a single parameter κ can modulate the surface between the ribs, this surface equation

can be paired with an optimizer to optimize the surface geometry of the reflector for future

applications.
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Figure A.2: Surfaces created by different values of κ in (A.6). (a) κ = 0 - ideal paraboloid.

(b) κ = 1 - Umbrella reflector, (c) κ = 3, (d) κ = 5. (e) Profile of the surface along the

φ = π/Ng for various values of κ. Note that as the value of κ increases, the surface tends to

bend more inward from the rib.
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APPENDIX B

Computing the Normals for an Umbrella Reflector

Surface

In this appendix, we derive the equations of the normals to the umbrella reflector surface

at the general point on its surface. This is especially useful when one does Physical Optics

(PO) analysis of the reflector since the PO current JPO at every point on the reflector can

be expressed as JPO = 2n̂× ~Hi where n̂ is the unit normal and ~Hi is the incident magnetic

fields. To start the derivation, we assume the general equation developed for the κ based

surfaces in Appendix A. The normals for the umbrella reflector can be simply derived by

substituting κ=1 in the general equations. The generic equation derived in Appendix A was:

zκ =
ρ′2

4Fr/α′2κ
=
ρ′2α′2κ

4Fr
(B.1)

where

α′ =

[
cos

φ′m+φ′m+1−2φ′

2

cos(π/Ng)

]κ
(B.2)

The variables ρ′ and φ′ represent the polar aperture coordinates and can be related to

rectangular coordinates as:

ρ′ =
√
x′2 + y′2 (B.3)

φ′ = tan−1 y
′

x′
(B.4)

To compute the normal, we express the surface in the form F (x, y, z) = z−f(x, y) = 0. The

equation for the normal can then be derived by taking the gradient of F (x, y, z).

The function F (x, y, z) can thus be expressed as:

F (x′, y′, z′) = zκ −
ρ′2α′2κ

4Fr
= 0 (B.5)
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The gradient of F can now be computed as:

∇F (x′, y′, z′) =
∂F

∂x′
x̂+

∂F

∂y′
ŷ +

∂F

∂z′
ẑ (B.6)

In order to compute the gradient, the following derivatives are necessary:

ρ
∂ρ

∂x
= x (B.7)

ρ
∂ρ

∂y
= y (B.8)

∂α′

∂x
= −K ′(x′, y′) 1

cos π
Ng

sin

(
φ′m + φ′m+1 − 2 tan−1(y′/x′)

2

)
y′

x′2 + y′2
(B.9)

∂α′

∂y
= K ′(x′, y′)

1

cos π
Ng

sin

(
φ′m + φ′m+1 − 2 tan−1(y′/x′)

2

)
x′

x′2 + y′2
(B.10)

K ′(x′, y′) = κ

[
cos

φ′m+φ′m+1−2φ′

2

cos(π/Ng)

]κ−1

(B.11)

The components for ∇F can now be computed as:

(∇F )x = − 1

4Fr

(
2ρ′

∂ρ′

∂x
α′2 + 2ρ′2α′

∂α′

∂x

)
(B.12)

(∇F )y = − 1

4Fr

(
2ρ′

∂ρ′

∂y
α′2 + 2ρ′2α′

∂α′

∂y

)
(B.13)

(∇F )z = 1 (B.14)

These equations can be readily used to compute the reflector normals for PO analysis.
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APPENDIX C

Cylindrical Waveguide Modes and their Applications

for Reflector Antenna Feed Development

In this appendix, we revisit the modes that can be excited within a cylindrical waveguide

from the perspective of developing innovative feeds for reflectors. The TE and TM modes

for an infinite cylindrical waveguide can be derived as [190]:

TEnm modes:

Eρ =
−jωµn
k2
cρ

(A cosnφ−B sinnφ)Jn(kcρ)e−jβz (C.1)

Eφ =
−jωµ
kc

(A sinnφ+B cosnφ)J ′n(kcρ)e−jβz (C.2)

TMnm modes:

Eρ =
−jβ
kc

(A sinnφ+B cosnφ)J ′n(kcρ)e−jβz (C.3)

Eφ =
−jβn
k2
cρ

(A cosnφ−B sinnφ)Jn(kcρ)e−jβz (C.4)

Where Eρ and Eφ represent the components of the electric field in the cylindrical coor-

dinate system, and β =
√
k2 − k2

c , where k = ω
√
µε. kc represents the cut-off wave number

which is defined as:

kc =
P ′nm
a

for TEnm (C.5)

kc =
Pnm
a

for TMnm (C.6)

where Pnm and P ′nm represent the mth root of Jn and J ′n respectively. A and B represent

excitation coefficients and control the orientation of the mode. Feed horns for reflectors

typically use 3 modes: TE11 (fundamental mode), TM11 and TE21. The field distributions
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Figure C.1: Modal field distributions for (a) TE11 mode, (b) TM11 mode and (c) TE21 mode

assuming an aperture of diameter 2λ.

for each of these modes are shown in Figure C.1 where an aperture diameter of 2a = 2λ is

assumed for the horn. In a typical reflector design, the aperture diameter is chosen to get

the required 10 dB beamwidths.

The equations for the far-field corresponding to the TE and TM modes are derived

as [191]:
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Far-fields for TEnm mode:

Eθ = jn+1nωµ

2

[
1 +

β

k
cos θ + Γ

(
1− kc

k
cos θ

)]
Jn(kca)Jn(ka sin θ)

sin θ
sinnφ

e−jkr

r
(C.7)

Eφ = jn+1kaωµ

2

[
β

k
+ cos θ − Γ

(
kc
k
− cos θ

)]
Jn(kca)J ′n(ka sin θ)

1−
(
k
kc

sin θ
)2 cosnφ

e−jkr

r
(C.8)

Far-fields for TMnm mode:

Eθ = −jn+1ka
kc

sin θ

[
kc
k

+ cos θ + Γ

(
kc
k
− cos θ

)]
J ′n(kca)Jn(ka sin θ)

1−
(

kc
k sin θ

)2 cosnφ (C.9)

Eφ = 0 (C.10)

Where Γ represents the reflection coefficient at the aperture of the antenna. For this section,

this is assumed to be 0, which can be justified by the fact that if the antenna aperture is of

the order of a wavelength, the mismatch between the guided wave impedance and free space

impedance is minimal. Note that these equations provide far-fields assuming that the TEnm

fields are oriented along y direction and the TMnm fields are oriented along x direction.

In order to ensure both modes are polarized along y, the φ in (C.9) can be substituted by

φ+ π/2.

The first step in understanding how these equations can aid the design of horn feed anten-

nas, the analytical far-field equations were compared to full-wave simulation results in CST

where a cylinder of 1λ radius and height of 2λ was created and multiple modes were excited

on one end via a waveport. A comparison between the results from the analytical formula-

tions and full-wave simulations is shown for the TE11, TE21 and TM11 in Figures C.2, C.3

and C.4 respectively. It is evident that the analytical equations provide results that closely

match full-wave simulation results allowing us to use the analytical equation to develop and

understand the radiation properties of different modes.

Now, from the TE11 far-field pattern (Figure C.2), it can be observed that the radia-

tion patterns in the two principal planes are significantly different. The E-plane pattern is

relatively narrower with higher sidelobe level, whereas the H-plane pattern is broader with

lower sidelobe envelope. This asymmetric illumination results in reduced aperture efficiency

of the reflector antenna. It is also intuitive from the TM11 radiation patterns (Figure C.4a,
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C.4b) that if a small amount of TM11 is combined with the TE11 mode, it could potentially

result in symmetric feed pattern. Further, it can be observed that the cross pol patterns

of the TE11 and TM11 bear resemblance to each other and thus if the combined correctly,

the resultant pattern can have almost zero cross polarization. Indeed, it can be seen from

Figure C.5 that if the radiation patterns (electric field amplitude) of the TM11 is scaled by

a factor of 0.4 and added to the TE11 radiation patterns, the resulting pattern has a very

symmetric beam and a cross polarization under -40 dB. While this removes the feed cross

pol, the inherent asymmetry in the offset reflector geometry architecture will result in the

reflector radiation pattern having high cross polarization in the plane orthogonal to the offset

plane. This can be counteracted by the feed itself producing a cross pol that can cancel the

cross-polarized currents on the reflector surface. If one observes the TE21 far-field patterns

(Figure C.3) it can be seen that this mode produce cross-pol that has a similar appearance

to that seen from typical offset reflectors. Thus, if one adds a scaled version of these fields to

the previous TE11 + 0.4TM11 combination, it is possible to achieve an illumination which is

symmetric as well as reduces the reflector cross polarization. Through tuning the excitation

coefficients, it was seen that if the radiation pattern of the TE21 is scaled by a factor of

0.15j and added to the previous combination of TE11 and TM11, the resulting pattern has

a cross-polarization level similar to a typical offset reflector (Figure C.5c, C.5d). Note that

for all these runs, the analytical formulations were used for computations.

The feed patterns thus generated were imported as a point source into a reflector sim-

ulation software, and the resulting patterns are shown in Figure C.6. It can be seen that

the TE11 mode provides a broader beam and lower sidelobes in the yr − zr plane due to an

increased edge taper. This is corrected by adding the TM11 mode which provides symmetric

illumination. However, this mode changes the cross polarization of the reflector antenna min-

imally. Finally, when TE21 mode is added, the reflector copol patterns are not significantly

affected, however the reflector cross polarization reduced by almost 10 dB.
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(a) (b)

(c) (d)

Figure C.2: Comparison between the far-fields resulting from the analytical equations and

full-wave simulation for the TE11 mode. (a) Full-wave copol, (b) Analytical copol, (c) Full-

wave xpol and (d) analytical xpol. All plots represent normalized amplitude in dB scale.

The aperture is assumed to have a diameter of 2λ at 35.75 GHz.
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(a) (b)

(c) (d)

Figure C.3: Comparison between the far-fields resulting from the analytical equations and

full-wave simulation for the TE21 mode. (a) Full-wave copol, (b) Analytical copol, (c) Full-

wave xpol and (d) analytical xpol. All plots represent normalized amplitude in dB scale.

The aperture is assumed to have a diameter of 2λ at 35.75 GHz.
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(a) (b)

(c) (d)

Figure C.4: Comparison between the far-fields resulting from the analytical equations and

full-wave simulation for the TM11 mode. (a) Full-wave copol, (b) Analytical copol, (c) Full-

wave xpol and (d) analytical xpol. All plots represent normalized amplitude in dB scale.

The aperture is assumed to have a diameter of 2λ at 35.75 GHz.
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(a) (b)

(c) (d)

Figure C.5: Far-fields of modes combined to give desirable characteristics for illumination.

(a) Copol and (b) xpol for TE11 + 0.4TM11. (c) Copol and (d) xpol for TE11 + 0.4TM11 +

j0.15TE21. Note that the analytical formulations are used to generate these results. All

plots represent normalized amplitude in dB scale.
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Figure C.6: Reflector patterns when illuminated by the far-fields corresponding to a combi-

nation of different cylindrical modes. (a) Reflector geometry showing the coordinate systems

- the feed coordinate system is indicated by a subscript of ‘f’ and the reflector far-field ra-

diation pattern coordinate system is indicated with subscript ‘r’. (a) φ = 0 plane (xr − zr

plane) and (b) φ = 90 plane (yr − zr plane). Note that the feed patterns are all polarized

along the yr axis.
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APPENDIX D

Determining the Slopes for Monotonic PCHIP spline

In this appendix, we describe the equation used to generate the spline profiled horn described

in Chapter 3.

Given two points defined by (zi−1, xi−1) and (zi, xi), the equation of the PCHIP spline

fi(z) that connects them can be expressed as (refer to Figure D.1) [133]:

fi(z) = h00(z̄)xi−1 + h01(z̄)xi + h10(z̄)(zi − zi−1)mi−1 + h11(z̄)(zi − zi−1)mi (D.1)

where z̄ represents the normalized independent variable z scaled as

z̄ =
z − zi−1

zi − zi−1

(D.2)

which maps z to the interval [0, 1] for the ith segment. The Hermite basis functions can be

defined as

h00(z̄) = 2z̄3 − 3z̄2 + 1 (D.3)

h10(z̄) = z̄3 − 2z̄2 + z̄ (D.4)

h01(z̄) = −2z̄3 + 3z̄2 (D.5)

h11(z̄) = z̄3 − z̄2 (D.6)

Thus, the unknowns in (D.1) are mi−1 and mi. The choice of these variable ultimately

determine the monotonicity of the splines. In order to find the values of mi, first define the

slopes of a straight line that connects the two points. We denote this as ∆i. Thus,

∆i =
zi+1 − zi
xi+1 − xi

(D.7)

The process followed is as follows:
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Figure D.1: A representative spline profile through the points (x0, y0), (x1, y1), (x2, y2) and

(x3, y3). These points are marked by red dots. The values of ∆i and initial values of mi are

tabulated. These initial values must be corrected to ensure monotonicity as described in the

text.

1. Initialize mi. A good starting guess is to choose: mi = ∆i+∆i−1

2
. The values of m

corresponding to the starting point and ending point can be chosen to be the slope of

the line following and preceding it respectively. If ∆i = 0, set mi=mi+1=0.

2. Define αi = mi/∆i and βi = mi+1/∆i .

3. If αi and βi are such that (α2
i +β2

i ) < 9, then retain the original values of mi and mi+1

.

4. If αi and βi are such that (α2
i + β2

i ) > 9, then define mi = ταi∆i and mi+1 = τβi∆i,

where τ = 3√
α2
i+β

2
i

.
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APPENDIX E

Phase Center of Reflector Antennas

E.1 Phase Center Derivation

The position of the phase center, in general, is a complex function of geometry and excitation

of the antenna. For reflector antennas, the dependency on the illumination of the feed

antenna can make things even more unintuitive. However, through some simplifications and

assumptions, one can find an estimate of the phase center, after which one can optimize.

This work was motivated by the formulations presented in [192]. To start with, consider the

well-known expression relating the current distribution to the far-field pattern:

~Efar = −jωµ
4π

e−jkr

r

∫
~J(r′)ejkr̂.r

′
dr′ (E.1)

where the vectors r̂ and r′ are vectors that point from the far-field origin to the far-field

direction and a specific point on the AUT respectively. The question of finding the phase

center can thus be posed in the following manner: where should the far-field coordinate

origin be positioned so that the integral itself results in a function which has a phase that

is weakly dependent on the observation angle in the region of interest. For specific cases,

one can find an analytical phase center for the entire radiation pattern. This usually arises

as a consequence of the symmetry in the current distribution of the antenna - if one finds

an origin such that J(−r′) = J(r′) for all r′, the exponential factors combine to give a real

function (sine or cosine). For complex geometries, such as reflector antennas, an estimate of

the phase center can still be obtained if one finds a far-field origin such that the quantity∑
ri
r− r̂.r′i is weakly dependent of θ and φ. Note that this does not account for any current

asymmetry that could arise due to the fact that the reflector is offset, or a non-ideal feed

illumination.
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Figure E.1: Coordinate definitions for reflector phase center estimation.

E.2 Formulation

Consider the geometry shown in Figure E.1. The limits of the reflector aperture along x

and y directions are denoted by (x1, x2) and (y1, y2) respectively. The location of the phase

center is denoted as (xr, yr, zr). Assuming that the reference origin is located at the focal

point, the problem of finding the phase center can be mathematically expressed as locating

a point (xr, yr, zr) such that the quantity rε expressed as (E.2)), is independent of far-field

observation angles θ and φ.

rε = lim
rc→∞

∑
i

[(RiA +RiB)− rc] (E.2)

If (x, y, z) refers to a point on the reflector, referring to Figure E.1, the point must satisfy

the equation:

z =
x2 + y2

4F
− F (E.3)

The observation point (xc, yc, zc) can be related to the phase center (xr, yr, zr) and rc through:

xc = xr + rc sin θ cosφ (E.4)

yc = yr + rc sin θ sinφ (E.5)

zc = zr + rc cos θ (E.6)
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The quantity RiA +RiB can be generally written as:

rt = RiA +RiB =
√
x2 + y2 + z2 +

√
(x− xc)2 + (y − yc)2 + (z − zc)2 (E.7)

Since the reflector is a continuous, analytically defined surface, one can express (E.2) as:

rε = lim
rc→∞

 1

Ap

x2∫
x1

y2∫
y1

rtdxdy − rc

 (E.8)

where Ap is the area of the aperture expressed as (x2 − x1)(y2 − y1), and rt is expressed in

(E.7). To evaluate this expression, we note that:√
x2 + y2 + z2 =

√
4F (z + F ) + z2 = z + 2F =

x2 + y2

4F
+ F (E.9)

Thus, the expression for rt becomes:

rε =
x2 + y2

4F
+F+

√
(x− xr − rc sin θ cosφ)2 + (y − yr − rc sin θ sinφ)2 + (z − zr − zc cos θ)2

(E.10)

Post some algebraic evaluations, and noting that one can use lim
x→0

√
1− x = 1 − x/2, we

arrive at:

rε =

[
x2

1 + x1x2 + x2
2

12F
+
y2

1 + y1y2 + y2
2

12F
+ F

]
−
[
x1 + x2

2
− xr

]
sin θ cosφ−

[
y1 + y2

2
− yr

]
sin θ sinφ−[

x2
1 + x1x2 + x2

2

12F
+
y2

1 + y1y2 + y2
2

12F
− F − zr

]
(E.11)

Now, finding (xr, yr, zr) such that rε is independent of (θ, φ) is straightforward. One can

simply use

xr =
x1 + x2

2
(E.12)

yr =
y1 + y2

2
(E.13)

zr =
y2

1 + y1y2 + y2
2

12F
− F (E.14)

to ensure that the terms that depend on the far-field observation angles completely disappear.

Conventionally, offset reflector defined in terms of aperture radii along x and y axis (denoted
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as a and b respectively), focal distance F , offset height d and clearance H. These parameters

can be related back to the variables in Figure E.1 through:

x1 = d− a (E.15)

x2 = d+ a (E.16)

y1 = −y2 = b (E.17)

The equations (E.12-E.14) can thus be written in the following form:

xr = d (E.18)

yr = 0 (E.19)

zr =
a2 + b2

12F
− (F − d2

4F
) (E.20)

These equations denote that the phase center is located in the XZ plane (plane of offset), on a

line parallel to z-axis that passes through the center of the projected aperture. These results

are consistent with the derivations in [192]. Again, it is important to note that this does

not take into account any asymmetry present in the current distribution, which commonly

occurs in offset reflectors. The illumination of the reflector surface in the plane of offset

can be different due to unequal path lengths, causing the phase center to deviate from this

analytical formulation. The phase center for a symmetric reflector can be got by substituting

d = 0 in the equations for offset reflectors (E.18)-(E.20), which result in:

xr = 0 (E.21)

yr = 0 (E.22)

zr =
a2 + b2

12F
− F (E.23)

It can be seen from these equations that the analytical phase center lies very near the

vertex of the paraboloid. The positions of the analytical phase centers for two representative

geometries are shown in Figure E.2. The first geometry is a symmetric reflector of diameter

0.5m and F/D of 0.5, whereas the other is an offset reflector of diameter 1m with an F/D of

0.75 and an offset height d of 0.6312m. Both these geometries are inspired by the reflector

antennas developed for the RainCube mission [107, 122]. It can be seen that the position
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Figure E.2: Analytically determined phase centers for two representative geometries. (a)

Symmetric reflector with diameter of 0.5m and F/D of 0.5 and (b) offset reflector with

diameter 1m and F/D of 0.75.

of the phase center predicted via these analytical equations is somewhere in between the

vertex and the rim along the axis of the reflector. The subsequent sections will analyze the

effectiveness of these equations via comparison with full-wave simulations.

E.3 Simulation Results and Optimization of phase center

E.3.1 Finding the phase center through Particle Swarm Optimization

The pervious section elaborated on the analytical estimation of the phase center for symmet-

ric and offset reflector. In this section, we use particle swarm optimization (PSO) to evaluate

how effective the analytical equations are. In order to do this, we focus on the main-beam

region (until the far-field magnitude decays to approximately 10 dB from its peak), and find

the far-field reference that minimizes the phase variation in the φ = 0, 45, 90 degree planes.

The fitness function to minimize is given by the following equation:

f(x) =
F (φ = 0) + F (φ = 45) + F (φ = 90)

3
(E.24)

where x represents the vector of optimization variables consisting of the displacement of

the far-field coordinate system in the x, y and z directions. F represents the mean-square
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Figure E.3: Phase center for symmetric parabolic reflector antenna with aperture diameter

D=0.5m and F/D of 0.5.

deviation of the phase of the copol component, expressed as:

F (φ) =
1

M

M∑
m=1

[∠Eco(θm, φ)− ∠Ēco(φ)]2 (E.25)

where M denotes the number of observation points inθ and Ēco represents the mean of the

phase variation given as:

Ēco(φ) =
1

M

M∑
m=1

∠Eco(θm, φ) (E.26)

An important point to note here is that moving of the far-field coordinate system does

not necessitate a re-simulation of the entire reflector system - the effect can be mathemat-

ically modeled by multiplying the far-field with a phase factor of exp(−jk(∆x sin θ cosφ +

∆y sin θ sinφ+∆z cos θ)) where ∆x, ∆y and ∆z represents the displacements in the far-field

origin along the x, y and z direction respectively.

E.3.2 Symmetric Reflector

In this section, we investigate the case of a symmetric 0.5m reflector with an F/D of 0.5 as

was used for a recent RainCube mission [107]. A cosine-Q feed which provides a 10 dB taper

at the edges of the reflector and points along the axis of the reflector is used to simulate
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the far-fields of the reflector. The positions of the analytical phase center and the optimized

phase center is shown in Figure E.3a. The phase of the far-field with each of the phase

center is compared in Figure E.3b. It is evident that for this case, the analytical equations

predict the phase center very well. This is expected since the geometry of the reflector and

the illumination are symmetric.

E.3.3 Offset Reflector

In this section, we consider the 1m offset geometry described (Diameter=1m, offset height

d=0.6312). We consider the cases of F/D of 0.5, 0.75 and 1 to evaluate how close the an-

alytical equations come to the optimized phase center. The position of the analytical and

optimized phase center are shown in Figure E.4. Immediately, it can be seen that the dif-

ference in the analytical and optimized phase center reduces at the F/D increases. This is

intuitive since the asymmetry in the reflector reduces as the F/D increases. Representative

far-field phase results for F/D=0.5 are compared in Figure E.5. It is immediately evident

that the analytical equations provide a very good estimation, however it may not necessarily

be the best phase center especially in the offset plane where the reflector is not symmetric

(and thus the current distributions are not fully symmetric). In the φ=0 (XZ) plane, the

analytical phase center provides a phase gradient, which can be corrected through optimiza-

tion. For all the cases, the feed is tilted to point towards the center of projected aperture

and a cosine-q feed which provides a 10 dB illumination at the subtended angle is used. A

comparison of the fitness values for the analytical and optimized phase center are presented

in Table E.1.
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Figure E.4: Comparison of the phase center locations got via analytical formulations (red

+) and optimization (blue x).

Table E.1: Comparison of fitness value at the optimized phase center (PC) with the analytical

phase center for various geometries.

Case
Fitness at

optimized PC

Fitness at

analytical PC

Symmetric (D=0.5m, F/D=0.5) 0.0459 0.0463

Offset(D=1m, F/D=0.5) 0.5501 2.5682

Offset(D=1m, F/D=0.75) 0.2965 1.3759

Offset(D=1m, F/D=1) 0.1824 0.5443
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Figure E.5: Comparing the performance of the analytical phase center with the optimized

phase center for F/D=0.5. (a) Far-field phase contour with the analytical phase center. (b)

Far-field phase contour with the optimized phase center. (c) φ = 0 line cut comparison. (d)

φ = 90◦ line cut comparison.
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APPENDIX F

Focal Plane Distribution for Symmetric Reflectors

This appendix provides insights into the focal plane distribution of the electric fields for a

symmetric parabolic reflector when illuminated by a plane wave. The closed form equations

governing the focal plane copolarized electric field distribution for a symmetric reflector

as well as the axial variation of the copolarized field along the reflector axis are derived

in [193,194] as:

Eco(t, φ) = jk sin2 θm
J1(kt sin θm)

kt sin θm
(F.1)

Eco(z
′) = jk sin2

(
θm
2

)
sin(k∆z sin2 θm

2
)

k∆z sin2 θm
2

ejk∆z cos2 θm
2 (F.2)

where t,φ and z represent the observation point in the cylindrical coordinate system and θm

is the half-subtended angle of the reflector at the focal point which is related the F/D ratio

of the reflector as:

θm = 2 tan−1

(
1

4F/D

)
(F.3)

It should be noted that these equations are derived under the assumption that θm is small

(implying a large F/D ratio). However, these equations still can be suitably applied for

reflector geometries with reasonably small F/D ratios. As a representative example to

evaluate the applicability of these equations, the focal plane fields of a symmetric reflector

with an aperture diameter of 1m and an F/D of 0.5 are computed through (F.1) and (F.2)

and compared to the results from full-wave PO simulation. This geometry results in a θm

of 53.13◦, and some differences between the analytical and simulation results are expected.

The results are shown in Figure F.1 and F.2 where one can see that the analytical equations

provide a very good approximation to the simulated results. One of the major difference

between the analytical equations and simulated results from (F.1) is that the equation is
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Figure F.1: Focal plane fields (copolarized component) for a symmetric reflector of aperture

diameter 1m and F/D=0.5 at 35.75 GHz. (a) Analytical focal plane fields, (b) simulated

focal plane fields. All values are in dB. (c) and (d) show the comparison between the

analytical and the simulated result along x=0 and y=0 axis. Note that the point x=0 and

y=0 corresponds to the focal point of the reflector.

independent of φ, whereas the simulated results show a dependence on φ. Nonetheless, it is

evident that these equations are a very good approximation and can be used perform initial

evaluations.

A very interesting point here is to note that the fields decay at a much slower pace axially

than they do radially. This can be an important consideration for applications that require
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Figure F.2: Variation of the copolarized electric field magnitude along the reflector axis in

the vicinity of the focal point for a symmetric reflector of diameter 1m and F/D=0.5 at

35.75 GHz. Note the excellent comparison between the analytical and simulated results.

the near-field energy to be confined within a very small volume. Also, a close examination of

(F.2) and (F.2) reveal that the focal plane fields are strongly dependent of the sine of the half

subtended angle θm and the wave number k (which is directly proportional to frequency).

Since the dependence on θm is rather weak due to the fact that sin θm changes only from

0.707 to 1 for θm changing from 45◦ to 90◦, the only way to achieve a very focused spot in

the near-field is to ensure a high frequency of operation.
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