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Abstract 
 

Spatial and Temporal Dynamics of Wildlife Use of a Human-Dominated Landscape 
 

by  
 

Cheryl Ellen Hojnowski 
 

Doctor of Philosophy in Environmental Science, Policy, and Management 
 

University of California, Berkeley 
 

Professor Justin S. Brashares, Chair 
 
 
In many of the world’s natural areas, humans now play, work, or live alongside large-bodied 
species of wildlife including ungulates, meso-carnivores, and even apex predators. The 
behavioral adjustments of these species to human activities have implications for individual 
fitness, population persistence, and community structure, as well as for human safety. Theory 
suggests that wildlife in human-dominated landscapes should modify their habitat use to avoid 
interactions with people, but that such avoidance may occur only in response to fine-scale spatial 
and temporal variation in human activity. Yet studies of the impacts of human disturbance on 
wildlife rarely quantify the fine-scale dynamics of human use. In this dissertation, I seek to link 
wildlife avoidance behavior more directly to the type, timing, intensity, and spatial distribution 
of human activity, thereby informing efforts to preserve relatively undisturbed spaces for large 
mammals in natural ecosystems regularly used by people.  
 
I first consider spatiotemporal use of the landscape by grizzly bears (Ursos arctos) in areas of 
high recreation in Kananaskis Country, Alberta, Canada. For each day of the active bear season, 
I quantified numbers of people and vehicles using all trails, roads, and facilities located within 
the home ranges of GPS-collared bears. I estimated human disturbance at bear GPS positions as 
a function of both distance to human-use features and the average daily use on those features. 
Analyses revealed that when bears were in habitats adjacent to recreation infrastructure, they 
modified their behavior in response to daily, weekly, and seasonal fluctuations in human activity, 
avoiding the times and places of highest recreation. Bears responded to recreation patterns that 
were spatially and temporally consistent, highlighting the need to preserve predictable patterns of 
human use in the study area. This research demonstrates the value of quantifying fine-scale 
dynamics of human activity and focusing on areas of high overlap between wildlife and people 
to elucidate avoidance behavior of wild animals in human-dominated landscapes.  
 
Further, I evaluate the effect of incorporating fine-scale estimates of recreation intensity on the 
predictive accuracy of resource selection function models developed to quantify habitat use of 
GPS-collared grizzly bears. Models that included static proxies for human disturbance were 
compared against those that estimated daily numbers of recreationists and vehicles within bear 
home ranges. When bears were in close proximity to trails, roads, and facilities, top models were 
those that rigorously quantified human use, indicating that bear habitat selection was 
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significantly influenced by the fine-scale dynamics of recreation activity. My results suggest that 
when spatial overlap between human activity and wildlife is high, static representations of 
human disturbance may be less effective for describing wildlife behavior. 
 
Last, I expand my focus to multiple species. Spatiotemporal patterns of occurrence of large 
mammals, recreationists, and domestic dogs were assessed using camera traps deployed within 
critical wildlife habitat bordering the town of Canmore, Alberta. Recreation was categorized by 
type of user, and daily numbers of recreationists and domestic dogs were quantified over a 
twenty-month period. Coyotes (Canis latrans) demonstrated the clearest temporal shifts in 
response to recreation intensity, and hikers and off-leash dogs spatially displaced several species. 
Results also suggested that study species responded most to past rather than current levels of 
human activity. My findings underscore the importance of spatial scale in recreation impact 
studies and indicate that recreation can have measurable effects on fine-scale habitat use and diel 
activity of large mammals.  
 
The research presented in this dissertation adds to the growing body of literature on wildlife 
behavioral responses to human disturbance in general and outdoor recreation in particular. 
Human activity is increasing in most natural ecosystems, and my work suggests timely new 
approaches for quantifying human use and measuring its impacts on wildlife behavior in 
landscapes where presence of people is widespread.  
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1. Introduction 
 
Maintaining space for wildlife is one of the key challenges facing conservation biologists on an 
increasingly human-dominated planet. Human encroachment on wildlife habitat has already led 
to drastic declines in populations of large mammals across the globe (Ceballos and Ehrlich 
2002), while mounting evidence indicates that individuals of many species that persist in human-
dominated landscapes are fundamentally changing their behavior in response to the presence of 
people (Frid and Dill 2002; Ordiz et al. 2011; Oriol-Cotterill et al. 2015a). In particular, wildlife 
behavioral responses to human disturbance are expected to resemble responses of prey species to 
risk of predation, even when human activity is non-lethal (Frid and Dill 2002, Beale and 
Monaghan 2004). That is, wild animals should perceive human disturbance as a form of risk that 
they seek to minimize or avoid.  
 
For prey species, total avoidance of predation risk is typically impossible due to resource 
acquisition needs (Lima and Dill 1990; Lima 1998). Studies of predation risk effects have 
instead revealed mechanisms of fine-scale avoidance of predators by prey. By quantifying subtle 
variations in the behavior, density, and distribution of predators, researchers have revealed prey 
avoidance of predators within the space of minutes (Caro 1994) or hours (Creel et al. 2005), over 
distances as small as several meters (Broekhius et al. 2013). Detailed quantification of patterns of 
predation risk has also revealed that prey persistence depends on the existence of fine-scale 
spatial and temporal refugia, where risk of prey encountering predators is low (Durant 1998; 
Kaufmann et al. 2007).  
 
Approaches to quantifying fine-scale patterns of predation risk should be relevant to 
investigations of wildlife behavior and persistence in natural areas used regularly by people. 
Wildlife in human-dominated landscapes also face trade-offs between acquiring resources and 
reducing risk of encounter with people, often making complete avoidance of human activity 
impossible (Basille et al. 2009; Oriol-Cotterill et al. 2015b). Therefore in human-dominated 
landscapes, coexistence between wildlife and people likely depends on preservation of spaces 
and time periods of low human activity, so that animals can avoid people at fine scales (Oriol-
Cotterill et al. 2015a). Moreover, like predation risk, human disturbance is a dynamic process, 
and responses of wildlife can be expected to be influenced by the number of people on the 
landscape at any given time, their location, and the duration of their activity.  
 
Investigations of the impacts of human disturbance on wildlife behavior have only recently 
begun to quantify fine-scale fluctuations in the intensity, timing, and spatial extent of human 
activity. Nonetheless, initial studies suggest that directly linking wildlife avoidance responses to 
the dynamics of human use could both inform conservation planning and facilitate a more 
mechanistic understanding of wildlife behavior in human-dominated environments. For example, 
Rogala et al. (2011) used hourly counts of people and vehicles on trails and roads, respectively, 
to estimate thresholds of human activity likely to spatially displace elk (Cervus candadensis) and 
wolves (Canis lupus) over variable distances. In Nepal, distinguishing types of human activity 
and spatial fluctuations in numbers of people on trails and roads demonstrated that tigers 
(Panthera tigris) offset their diel activity to coexist with people, indicating maintenance of tiger 
populations was possible even in high human-use areas, as long as the potential for temporal 
avoidance of people was preserved (Carter et al. 2012). By quantifying human disturbance at 



 

2 
 

multiple spatial and temporal scales, Oriol-Cotterill et al. (2015) showed that GPS-collared lions 
(Panthera leo) optimized their behavior to utilize resources in high human-use areas; the authors 
then suggested clustering human activity to provide lions more space to utilize resources and 
avoid people.  
 
In this dissertation, I seek to advance the growing body of literature linking wildlife behavior to 
fine-scale spatial and temporal variation in human use of the landscape. I focus on the responses 
of large mammalian carnivores and ungulates to variations in the type, timing, intensity, and 
spatial distribution of recreation activity in provincial protected areas in the Rocky Mountains, 
Alberta, Canada. I aim to 1) better understand how animals adjust their spatiotemporal use of the 
landscape in response to fine-scale variation in intensity of human activity; 2) test whether 
quantifying human use improves our understanding of wildlife behavior, and 3) identify the 
characteristics of human activity that have the potential to displace wildlife. 
 
Study system 
 
I conducted my field studies in Kananaskis Country, Alberta, Canada, a 4,500 km2 multiple-use 
area bordered by Banff National Park to the north and extending from the front ranges of the 
Canadian Rocky Mountains east toward Calgary. This region retains a number of large- and 
medium-sized carnivores and ungulates, including wolves, cougars (Puma concolor), grizzly 
bears (Ursus arctos), wolverines (Gulo gulo), coyotes (Canis latrans), lynx (Lynx lynx), bobcats 
(Lynx rufus), black bears (Ursus americanus), moose (Alces alces), elk, bighorn sheep (Ovis 
Canadensis), mountain goats (Oreamnos americanus), mule deer (Odocoileus hemionus), and 
white-tailed deer (Odocoileus virginianus). The mountainous provincial parks of western 
Kananaskis are also locally considered “Calgary’s playground,” with an estimated four million 
annual visitors. Though recreation is restricted to non-motorized use, networks of trails and 
facilities are extensive, roads are well-developed, and the combination of steep topography and 
low productivity largely confines both humans and wildlife to valley bottoms. Parts of western 
Kananaskis are among the most developed landscapes in the world where grizzly bears still 
persist (Gibeau et al. 1998).  
 
Thus overlap between humans and wildlife is high in Kananaskis Country, making it an ideal 
location to study the impacts of human activity on spatiotemporal use of the landscape by large 
mammals. For the first two chapters of my dissertation, I use data collected on grizzly bears in 
Peter Lougheed Provincial Park and the adjacent Spray Valley Provincial Park (c. 600 km2; 
50.72°N, 115.12°W). During the grizzly bear active season, human use in these parks consisted 
primarily of hiking, bicycling, and drive-in and backcountry camping, plus associated vehicle 
traffic. Many bear food resources were found in valley bottom habitat, where human activities 
were also concentrated.  
 
The study area for my third chapter was the northern boundary of Bow Valley Wildlife 
Provincial Park and adjacent municipal lands surrounding the town of Canmore (c. 100 km2; 
51.07°N, 115.36°W). While habitat and topography in this area was generally similar to Peter 
Lougheed and the Spray Valley Parks, human activity was substantially higher and consisted of 
recreation on dense trail networks, residential development, and vehicle traffic on high-volume 
roads and highways. This study area was also located in a broad valley that was considered a 
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movement pinch-point for large mammals traveling between Banff National Park and 
Kananaskis Country. Although the human activity was widespread in the valley, few alternative 
routes with similarly high-quality habitat existed for wildlife. 
 
Overview of Dissertation 
 
In chapter two, I investigate the behavior of grizzly bears in areas of high recreation intensity. I 
used Global Positioning System (GPS) radio-collars to obtain fine-scale locations on bears 
whenever they were within 500 m of a human-use feature, and I quantified spatial and temporal 
variation in daily numbers of people using trails, roads, and facilities. I calculated a human 
disturbance index for each bear GPS location, based on 1) the distance between the GPS location 
and nearby human-use features, and 2) the average daily human use on those features. Although 
study animals overlapped broadly with human activity, analysis of disturbance indices suggested 
that bears made fine-scale behavioral adjustments to avoid the times and places of highest 
recreation intensity. Avoidance varied with type of human use. Bears responded to daily 
fluctuations in human activity on roads, weekly and seasonal fluctuations in activity on trails, 
and seasonal fluctuations in activity in facilities. Bears also increased their selection for forest 
cover in high human-use areas. My results suggest that continued coexistence between bears and 
people in the study area depends on preserving predictable recreation patterns and limiting 
intensity of human use. My findings also underscore that in cases of broad-scale overlap between 
people and carnivores, new insights into carnivore avoidance behavior may be obtained by 
studies that focus within the more limited spatial extent of high human-use areas, and that 
quantify variation in human activity at multiple spatial and temporal scales.  
 
In chapter three, I assess whether including estimates of average daily recreation levels improved 
models developed to predict grizzly bear habitat selection. Specifically, I compared three sets of 
habitat suitability models. The first set incorporated measures of distance to nearest trail, road, 
and facility, a conventional proxy for intensity of human use. The second model set also used 
distance to nearest feature, but categorized trails, roads, and facilities as having a high or low 
level of human use. The third model set included estimates of not only distance to nearest trail, 
road, and facility, but also the average daily number of people or vehicles using each of these 
features. I applied these models to describe the occurrence of GPS-collared grizzly bears at a 
relatively broad spatial scale, where human activity was diffuse, and at a finer scale, where bear-
human overlap was high. I used Akaike’s Information Criterion and k-folds cross-validation to 
evaluate model performance. I found that at a broad spatial scale, grizzly bear habitat selection 
was best predicted by the second model set, while at a fine spatial scale, bear habitat use was best 
predicted by the third set. I conclude that by rigorously quantifying human use dynamics, 
ecologists may better evaluate disturbance impacts on wildlife behavior and occurrence, 
particularly when wildlife-human overlap is extensive. My findings are applicable to other 
analytical approaches and other types of human disturbance. 
 
In chapter four, I evaluate whether non-consumptive, non-motorized recreation influences diel 
activity patterns and space use of large mammals in the Bow Valley, Alberta, Canada, along the 
edges of Banff National Park, Bow Valley Wildland Provincial Park, and the town of Canmore. I 
used an existing camera trap data set to quantify spatiotemporal patterns of wildlife, human, and 
domestic dog detections at 66 survey sites over a 20 month period. To test for temporal 
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displacement of large mammals by recreationists, I compared activity patterns of study species 
on wildlife versus human trails. I also developed models predicting the probability of wildlife 
detection during daily periods of high human activity. To test for spatial displacement of 
wildlife, I modeled the probability that study species would be detected at camera sites on any 
given day as a function of numbers of recreationists and domestic dogs, human infrastructure 
covariates, and habitat covariates. I also modeled the relative intensity of wildlife use of camera 
sites in relation to these covariates. Probability of daytime detection of most study species 
declined with increasing intensity of recreation, proximity to human infrastructure, or density of 
human infrastructure. Off-leash dogs were negatively associated with habitat use of black bears, 
elk, mule deer and white-tailed deer, and hikers were negatively associated with habitat use of 
cougars and white-tailed deer. My results provide evidence for stand-alone effects of recreation 
on spatiotemporal activity of large mammals. However, I suggest managers should also consider 
the potential combined impacts of outdoor recreation, expanding residential development, and 
increasing vehicle traffic at protected area boundaries.  
 
In the final chapter of this dissertation, I draw general conclusions and make recommendations 
for future research to better understand and protect wildlife living in natural landscapes shared 
with humans. 
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2. Grizzly Bears Differentiate Fine-Scale Patterns of Human Activity in High-
Use Recreation Areas 
 
Summary 
 
Some large carnivores spend significant time in high human-use areas, raising questions about 
whether and how such individuals modify their behavior to avoid people. In this study, I 
investigated the behavior of grizzly bears (Ursus arctos) when they were in areas of high 
recreation intensity in two provincial parks in Kananaskis Country, Alberta, Canada. I used 
Global Positioning System (GPS) radio-collars to obtain fine-scale locations on bears whenever 
they were within 500 m of a human-use feature, and I calculated a human disturbance index for 
each GPS location, based on 1) the distance between the location and nearby trails, roads, and 
facilities, and 2) the daily number of people or vehicles using these three types of anthropogenic 
features. Although study animals overlapped broadly with human activity, analysis of 
disturbance indices suggested that bears made fine-scale behavioral adjustments to avoid the 
times and places of highest recreation intensity. Avoidance varied with type of human use. Bears 
responded to daily fluctuations in human activity on roads, weekly and seasonal fluctuations in 
activity on trails, and seasonal fluctuations in activity in facilities. Bears also increased their 
selection for forest cover in high human-use areas. My results suggest that continued coexistence 
between bears and people in the study area depends on preserving predictable recreation patterns 
and limiting intensity of human use. In cases of broad-scale overlap between people and large 
carnivores, new insights into carnivore avoidance behavior may be obtained by studies that focus 
within the more limited spatial extent of high human-use areas, and that quantify variation in 
human activity at multiple spatial and temporal scales.  
 
Keywords: grizzly bears, Ursus arctos, recreation, avoidance behavior, coexistence, fine scale 
 
Introduction 
 
Wildlife responses to human disturbance have been likened to the behavior of prey under risk of 
predation, even when human activity is non-lethal (Beale and Monaghan 2004, Frid and Dill 
2002). Most commonly, wild animals simply seek to avoid people, whether through fleeing 
(Kerbiriou et al. 2009, Moen et al. 2012); hiding (Dickson et al. 2005, Kolowski and Holekamp 
2009, Ordiz et al. 2011); or changes in habitat selection (Berger 2007, Dyer et al. 2001, Gill et al. 
1996), timing of activity (Carter et al. 2012, Ordiz et al. 2012, Rasmussen and Macdonald 2012), 
or both (Hebblewhite and Merrill 2008, Theuerkauf et al. 2003). A number of recent studies 
emphasize that such avoidance behaviors are exhibited not only by typical wildlife prey species, 
but also by large carnivores in response to human activity (Oriol-Cotterill et al. 2015a). 
  
As human populations increase, however, total avoidance of human disturbance appears 
impossible for some large carnivores, which are instead living within human-dominated 
landscapes (Carter et al. 2012; Llaneza et al. 2012; Oriol-Cotterill et al. 2015a). Studies of prey 
responses to predators suggest that in such cases of broad-scale overlap between people and 
wildlife, quantifying fine-scale patterns of human disturbance could better elucidate large 
carnivore avoidance strategies. For example, by closely examining the abundance, temporal 
activity, and shifting spatial distribution of predators, researchers have documented prey 
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responses to predation risk within the space of minutes (Caro 1994) or hours (Creel et al. 2005), 
over distances as small as several meters (Broekhius et al. 2013). Like predation risk, human 
disturbance is a dynamic process, and impacted species can be expected to respond to the 
number of people on the landscape at any given time, their location, and the duration of their 
activity. Yet most investigations of wildlife responses to people use static proxies to represent 
human disturbance, such as distance to or density of linear features (e.g., Basille et al. 2009). 
This practice may not only limit detection of fine-scale avoidance strategies of large carnivores 
in response to subtle changes in human use. It also has practical conservation implications, 
because management decisions about maintaining large carnivores in human-dominated 
environments are typically driven by concerns about human safety and therefore depend on 
reliable assessments of the degree to which carnivores avoid people.  
 
In Kananaskis Country, Alberta, Canada, grizzly bears (Ursus arctos) overlap broadly with 
human activity due to distribution of bear food resources and widespread recreation. Though past 
research has identified a 500 m zone of influence around human use features such as trails, roads, 
and facilities (Ciarniello et al. 2009, IGBC 1998, Gibeau et al. 2001), some sub-adult and adult 
female bears regularly use these areas, which we hereafter refer to as the “front country”. These 
front-country bears are not food-conditioned, and their behavior is likely driven instead by 
avoidance of predation by conspecifics, particularly adult males that depredate cubs and sub-
adults and typically stay farther away from human activity (the despotic distribution, Elfstrom et 
al. 2014); presence of critical natural food resources near recreation infrastructure, and lack of 
alternative habitat (Gibeau et al. 2001, Gill et al. 2001). Avoidance of human disturbance by 
front-country bears is poorly understood, particularly as some individuals are seen by visitors on 
dozens of occasions each year and consistently display tolerant behavior toward people. Human 
activity in this region is also almost always non-lethal, so bears may not associate people with 
risk. 
 
Recent studies have quantified fine-scale movements of brown bears following human 
approaches on foot (Ordiz et al. 2013, Moen et al. 2012) but have not considered spatiotemporal 
use of human-dominated landscapes by bears more comprehensively. Published research on 
grizzly bear behavior within areas of high human activity is scant (but see Donelon 2004). 
Because overlap between bears and people is so extensive in parts of the Kananaskis front 
country, this is an ideal system to investigate whether bears actively alter their fine-scale habitat 
selection and temporal activity patterns in response to human disturbance. Recreation levels are 
not uniform in the front country, which could allow bears to select for locations or times of low 
recreation intensity. Forest also comprises greater than 60% of available habitat and provides 
good cover for wildlife, so bears could conceal themselves from people at relatively small 
distances (Moen et al. 2012). A more nuanced understanding of the avoidance behavior of 
grizzly bears could inform efforts to conserve habitat and reduce encounters between bears and 
people, issues that are critical for both bear persistence and human safety in Kananaskis Country 
and beyond (Ordiz et al. 2013, Oriol-Cotterill et al. 2015). 
 
In this study, we used GPS collars to collect fine-scale locations on grizzly bears that regularly 
used front-country habitats. We quantified daily human activity on all trails, roads, and facilities 
located within the home ranges of GPS-collared bears, and we asked whether, within the smaller 
spatial extent of the front country, bears were nonetheless attempting to avoid people. If bears 
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adjusted their behavior in response to fine-scale variations in human disturbance, while also 
exploiting the front country for important food resources and protection from conspecifics, then 
this could suggest a substantial degree of adaptive behavior. We expected that bears would avoid 
the areas of highest human disturbance, both spatially and temporally. We also expected that 
bears would select for forest cover more in the front country, compared to selection for forested 
areas at the scale of their full home range. This study provides important new information on the 
avoidance behavior of a large carnivore in areas of high overlap with people. 
 
Materials and Methods 
 
STUDY AREA 
Kananaskis Country is a 4,200 km2, multiple-use protected area located east of Calgary, Alberta, 
and stretching west to the Continental Divide. This study was conducted in Peter Lougheed and 
Spray Valley Provincial Parks (50.72°N, 115.12°W; area = approx. 600 km2) in western 
Kananaskis Country (Fig. 1). Topography in these parks was defined by the Rocky Mountains, 
with elevation ranging from ~1600 m at valley bottom to greater than 3000 m along the Alberta-
British Columbia border. Climate was continental and dry (~470mm annual precipitation), with 
relatively wetter winters than summers, and with more precipitation at higher elevations. Valley 
bottoms were dominated by coniferous forests, primarily lodgepole pine (Pinus contorta) and 
white spruce (Picea glauca), mixed with Douglas fir (Pseudotsuga menziesii), subalpine fir 
(Abies lasiocarpa) and Engelmann spruce (Picea engelmannii) at higher elevations. Conifer 
stands were interspersed with patches of wetland forest, shrubs and grassy meadows. Major 
waterways included the Kananaskis River and Upper and Lower Kananaskis Lakes. 
 
Recreation in these parks was limited to non-motorized activities, chiefly hiking, biking, and 
camping, which were permitted only on designated trails and facilities. Road access into Peter 
Lougheed and the Spray Valley was via Highway 40, a two-lane paved highway, or the Smith-
Dorrien Trail, a wide gravel road. My study area included ~70 km of roads, nearly all of which 
were paved (~40 km of Highway 40, the southernmost 17 km of which were closed annually 
from Dec 1 – June 15; ~five km of the unpaved Smith-Dorrien Trail; the 13-km paved 
Kananaskis Lakes Trail, and ~10 km of paved, secondary roads into campgrounds and other 
facilities; Fig. 1). The study area also included ~220 km of hiking and biking trails; eight auto-
accessible campgrounds (~600 total campsites); three walk-in campgrounds (74 campsites); 17 
day-use areas; two boat launches; a major visitor center; a lodge with 22 cabins and 13 additional 
campsites; and a 40-lot, seasonal cottage community along the Lower Kananaskis Lake shore. 
This infrastructure was located almost entirely in the valley bottoms. Visitation to all of 
Kananaskis Country was estimated at greater than 4 million people/year, and although rigorous 
figures for Peter Lougheed and the Spray Valley were not available, annual visitation was likely 
greater than 400,000 people, with the highest visitation occurring during the late spring through 
early fall, particularly July and August.   
 
Grizzly bears were listed as a threatened species in Alberta, and the Kananaskis Country 
population was estimated at around 50 bears, with Peter Lougheed and the Spray Valley 
considered important areas for cub growth and survival. Bears in this region relied almost 
exclusively on plant foods, with meat constituting only about 10% of female and 20% of male 
diets (Felicetti et al. 2005). Bears may have been limited by the environment’s productivity, and 
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reproductive outputs were low (Cattet et al. 2005). Bear food items included yellow hedysarum 
roots (Hedysarum sulphurescens), flower bulbs, grasses, sedges, dandelions, clover, and horsetail 
(Equisetum arvense) in the spring, and cow parsnip (Heracleum maximum), berries (particularly 
the buffaloberry Shepherdia canadensis), and hedysarum in the summer and fall; sources of 
animal protein included ant hills, ground squirrels, and occasional ungulates. Almost all bear 
plant foods were found in open areas, and many foods (e.g., buffaloberry, grasses, dandelions, 
clover) occurred in areas where human activity had opened the forest canopy, i.e., along trails, 
roadsides, and in facilities.  
 
DATA COLLECTION 
Grizzly bear data 
Bears were captured in culvert traps and through free-range darting in May – June 2014 and May 
– June 2015. Capture and immobilization methods followed Alberta Wildlife Animal Care 
Committee Class protocol and were approved by the Alberta Ministry of Environment and 
Sustainable Resource Development, Alberta Ministry of Environment and Parks, and University 
of California, Berkeley Animal Use and Care Committee. Capture operations were overseen by 
Alberta Environment and Parks staff, who targeted adult and sub-adult female bears that spent 
significant time in the front country and were known from previous, VHF telemetry-based 
monitoring. Female bears were targeted because their home ranges were contained entirely 
within the study area, while male bears in this region had home ranges up to 2,700 km2 (Stevens 
and Gibeau 2005). Male bears also frequently slip their collars. Bears were fitted with GPS 
Iridium radio-collars (Vectronic Aerospace GmbH, Berlin, Germany and Followit, Lundesberg, 
Sweden) that were programmed to take a location once every 60 minutes (1 collar) or once every 
30 minutes (all other collars) during the time of year when bears were active (May 1 – October 
31). Only 3D GPS fixes with a dilution of precision (DOP) of < 10 (Frair et al. 2010) were used 
in analyses. To avoid bias associated with any changes in bear behavior related to the effects of 
handling, I excluded all locations within one week of an animal’s capture and immobilization. 
Fixes associated with trapping locations and with two roadkill drop-off sites were also removed. 
With DOP ≥ 10 locations excluded, collar fix rates ranged from 92.5 – 96.6%. 
 
Human use data 
From June – Oct 2014 and May – Oct 2015, I estimated daily human activity on three classes of 
anthropogenic features located within the home ranges of GPS-collared grizzly bears (Fig. 1): 1) 
trails, including hiking and multiple-use hiking and biking trails (n = 26); 2) roads, including 
primary and secondary roads (n = 6); and 3) facilities, including campgrounds (n = 7), day-use 
areas (n = 5), and miscellaneous features such as a visitor’s center, a lodge, and administrative 
buildings (n = 5). I used eight motion-triggered cameras (Bushnell, Overland Park, USA), 16 
heat-triggered trail counters and eight magnetic vehicle counters (TrafX, Canmore, Canada) to 
quantify human use directly on 20 trails and four separate segments of two primary paved roads 
(Fig. 1). Trail counters were installed on hiking-only trails, and cameras were installed on 
multiple-use trails, because trail counters could not consistently detect bicycles. Trail counters 
and cameras produced timestamped data for each hiker, biker or group passing the counter or 
camera; these data were then summarized into hourly and daily totals. On trails less than 4 km in 
length (one-way; n = 17), only one counter or camera was deployed; on longer trails (n =3), trail 
counters were deployed every 3-5 km, since human use declined with distance from trailhead. 
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Vehicle counters were located in pairs, on opposite sides of the road, at two sites on Highway 40 
and two sites on the Kananaskis Lakes Trail. Counter locations were selected to capture spatial 
variation in traffic flow, because traffic declined with increasing distance from the study area’s 
northern boundary, as people exited roads to pull into trailheads, day-use areas and 
campgrounds. Each counter recorded the number of vehicles per hour in the nearest lane of 
traffic; these data were summarized into daily totals. Based on data collected by trail and vehicle 
counters, I extrapolated human-use counts on two additional secondary roads and six additional 
trails. To estimate daily use at facilities, I consulted with campground managers and conducted 
visual surveys of parking lots.  
 
Vehicle counter accuracy was assessed against visual observations of vehicles. All counters 
over-counted slightly, but counter data were within 10% of visual observations. This discrepancy 
was of little consequence for analyses, since all vehicle counters over-counted and comparison of 
traffic levels between different roads and time periods was relative. Trail counters were known to 
be reliable based on previous studies in the region (J. Herrero, personal communication). 
 
ANALYSES  
My analyses consisted of three steps, which are described in detail below. First, I delineated 
grizzly bear home ranges. Next, to evaluate whether bears increased their use of forest cover 
when near human activity, I evaluated habitat selection of bears within their full home ranges, 
compared to bears’ habitat selection within the front-country. Last, using only those GPS collar 
fixes obtained within 500 m of a trail, road, or facility, I examined whether the probability of 
bear occurrence at locations within the front-country was influenced by the timing and intensity 
of human activity. I carried out all statistical calculations in the statistical software R 3.3.1 (R 
Development Core Team 2016), and I extracted values of environmental and human disturbance 
variables using ArcGIS 10.2.2 (Environmental Systems Research Institute 2014) and Geospatial 
Modeling Environment 0.7.3 (GME; Beyer 2014). GIS layers for landcover and human-use 
features were provided by Alberta Environment and Parks. 
 
Home range delineation 
I randomly sampled 1,000 locations per bear to delineate each animal’s full home range and 500 
front-country locations per bear to delineate each animal’s front-country home range. Front-
country locations were those within 500 m of a trail, road, or facility. Home ranges were based 
on the 90% isopleth (Borger et al. 2006) from kernels created using the fixed Gaussian Kernel 
Density Estimate. Although GPS locations in these samples were probably auto-correlated, I did 
not sub-sample further, because auto-correlated data can contain important biological 
information (De Solla et al. 1999).  
 
Habitat selection 
To test whether bears selected for specific habitat types within their full home ranges and within 
their front-country home ranges, I conducted a compositional analysis (Aebischer et al. 1993) 
using the package ‘adehabitatHS’ in R (Calenge 2006). For each individual, I randomly selected 
1,000 GPS locations in the full home range and 500 GPS locations in the front-country home 
range. The percentage of bear GPS locations that were located within each habitat type (habitat 
use) was compared to the percentage of the entire full or front-country home range covered by 
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each habitat type (habitat availability). Habitat type was described from an existing landcover 
map for the study area derived from Landsat imagery (Foothills Model Forest Grizzly Bear 
Research Program 2009). Major habitat types included forested (including closed and moderate 
coniferous and mixed tree stands); herbaceous / grassy; shrubs, and barren areas with <5% 
vegetation. Water (lakes and the Kananaskis River) was excluded. Overall landcover 
classification accuracy was estimated at 75% (Kappa = 0.46). To improve accuracy, I visually 
checked the landcover map against orthophotos in ArcMap (ArcGIS 10.2.2) to identify 
misclassified areas larger than five pixels in size. I corrected these misclassifications using ARIS 
Grid and Raster Editor (ARIS B.V. 2016). 
 
To test whether bear selection for habitat types in their full home-ranges differed from habitat 
selection in the front country, I calculated the Ivlev’s electivity index (Krebs 1999) for each 
habitat type in both the full and front-country home ranges. I used the formula E = (p-q)/(p+q), 
where p is the habitat used and q is the habitat available, represented as proportions or 
percentages (Broekhius et al. 2013). When E > 0, preference occurred for a particular habitat 
type; when E < 0, avoidance occurred. I compared Ivlev’s electivity indices for bears’ full home 
ranges and front-country home ranges using a permutation test with n = 1,000 repetitions in the 
R package ‘perm’ (Fay and Shaw 2010). A permutation test was chosen to account for small 
sample sizes. 
 
Bear occurrence in relation to human activity 
Spatiotemporal patterns of human activity 
Recreation levels in Peter Lougheed and the Spray Valley varied substantially by month and by 
day of the week. Therefore I divided all human-use data and bear GPS locations into 2 major 
seasons, non-peak season (1 May – 30 June and 1 Sept – 31 Oct) and peak season (1 July – 31 
Aug), and also into weekends (including holidays) and weekdays. This created four main time 
periods: non-peak season-weekend; non-peak season-weekday; peak season-weekend, and peak 
season-weekday. Peak season and non-peak season dates were defined based on the local 
academic school year (which influenced vacation times for families using the study area) and 
exploratory analysis of the human-use data collected for trails, roads, and facilities. 
 
I calculated average daily human-use events, N, for each trail, road, and facility, for each of the 
four time periods. A human-use event was defined as 1) for trails: all hikers or bikers passing a 
trail counter or camera within one minute of each other; 2) for roads: a vehicle passing a vehicle 
counter, and 3) for facilities: an occupied campsite or parking space. For trails, N was not an 
absolute count of people, because trail counters and cameras often could not differentiate 
between 1 and 2 hikers or bikers passing simultaneously, and because wildlife are likely more 
affected by the number of groups of people on a trail each day, rather than the absolute number 
of people (Herrero 2007; J. Herrero, personal communication). Human use was assumed to occur 
only on maintained linear features; i.e., I assumed people did not go off trails or roads. Some 
trails, roads, and facilities were closed during certain dates; human-use events on these dates 
were not included in calculations of N.  
 
I used a Mann-Whitney U test with paired samples to test for significant differences in N 
between weekends and weekdays and between the peak and non-peak season. I used linear 
mixed effects (LME) models to test for differences in N between all four time periods, with the 



 

11 
 

name of the trail, road, or facility included as a random effect. I also used LME models to test for 
spatial variation in N; specifically, I tested whether N values differed significantly between 
individual trails, roads, and facilities, with time period included as a random effect. 
 
Overall and diurnal patterns of bear space use 
Next, I quantified the level of recreation-related disturbance that bears would experience at 
different times and locations in the front country. I randomly selected 200 front-country GPS 
locations per bear per time period, or a maximum of 50% of a bear’s total front-country locations 
in the given time period, whichever was smaller (Table 1). I generated an equal number of 
random “absence” points within each bear’s front-country home range. Based on diurnal 
fluctuations in N, I classified bear locations into three categories representing time of day: night 
(locations from 10:00 pm to 6:00 am, inclusive); morning/evening (6:30 am – 9:30 am and 6:30 
pm – 9:30 pm), and daytime (10:00 am – 6 pm). Each absence point was assigned a time 
sequence (season, day of the week, and time of day) that matched that of an actual bear GPS 
location. I calculated a trail-specific, road-specific, and facility-specific disturbance index for 
each actual GPS location and each random absence point, using the formula 1 − (1 − 1/𝐷𝐷)𝑁𝑁 
(Beale and Monaghan 2004), where N was equal to the average number of human-use events per 
day for any given anthropogenic feature in a particular time period (peak season-weekend, peak 
season-weekday, non-peak season-weekend, or non-peak season-weekday), and D was equal to 
the distance to that feature. Each actual GPS location and random absence point was assigned a 
separate disturbance index value for trails, roads, and facilities, because bears may perceive these 
features differently. 
 
This formula assumes that the level of disturbance perceived by an animal is proportional to both 
the intensity of human use and the distance from that use (Beale and Monaghan 2004). At low 
values of N, disturbance indices declined exponentially with distance; at higher values of N, the 
decline approximated a negative logistic curve. The formula is artificially inflated at large values 
of N, so average daily vehicle counts were rescaled from 0 to 150 by dividing absolute counts by 
20. For bear locations or random points that overlapped directly with a human-use feature, D was 
set equal to 1, resulting in a disturbance index of 1. For points that occurred during trail, road, or 
facility closure dates, N was equal to 0. Bears were often within 500 m of more than one trail, 
road, or facility, so disturbance indices were also cumulative; i.e., final disturbance index values 
reflected the sum of the disturbance indices for each trail, road, or facility within 500 m of a 
given point.  
 
To assess whether the probability of bear presence at locations in the front country was 
influenced by the intensity and timing of human activity, I compared the disturbance indices at 
actual bear locations to those at random points using Generalized Linear Mixed Models 
(GLMMs) with a binomial error structure and logit link function (R package ‘lme4’, Bates et al. 
2016). For the binomial response variable, “1” represented actual bear GPS locations and “0” 
represented randomly generated points. I built several candidate models with disturbance index 
(continuous) and habitat type (categorical) as spatial explanatory variables and with time of day 
(categorical) as a temporal variable interacting with disturbance index (Table 2). One-way 
ANOVAs suggested significant associations between trails and forested areas, between roads and 
both grassy and forested areas, and between campgrounds and shrubs. Therefore, an interaction 
between habitat and disturbance index was not included in candidate models. Elevation was also 
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not included, as it did not vary significantly across front-country, valley-bottom locations. Food 
availability was excluded because bears in our study area use many different food resources, the 
availability of which has not been quantified at a fine enough resolution to be informative. At a 
coarse scale, bears select for greenness as a proxy for food (Mace et al. 1999), and all human-use 
features included in my analyses were located in medium-quality habitat based on greenness 
indices (Stevens 2005). To reflect differences in sample sizes (number of GPS locations) per 
bear, I included a random intercept in candidate models (Gillies et al. 2006). Backward 
elimination procedures were performed to exclude from final candidate models those covariates 
that did not contribute significantly (p ≥ 0.05) to the variation in occurrence of bear locations. 
Models were ranked using the Akaike Information Criterion corrected for small sample sizes 
(AICc).  
 
Weekly and seasonal patterns of bear space use 
GLMMs were formulated to detect whether changes in bear space use occurred in association 
with daily fluctuations in recreation activity, because candidate models included an interaction 
between time of day and disturbance index. However, GLMMs could not pinpoint whether bears 
modified their habitat use in response to within-week or seasonal variations in human activity. 
Therefore I also used LME models to compare disturbance index values at actual (i.e., presence-
only), daytime bear GPS locations, for the peak versus non-peak seasons and for weekends 
versus weekdays, for each type of human-use feature. The response variable was disturbance 
index (continuous), and the explanatory variable was season or day of the week. Bear ID was a 
random effect. I compared significant differences in average daily human-use events, N, to 
significant differences in disturbance index values. For example, if N on trails was significantly 
higher in the peak season than the non-peak season, then trail-related disturbance indices at bear 
locations would also be expected to be significantly higher in the peak season, if bears were not 
modifying their behavior to avoid people. Daytime bear locations were used because this is when 
bears were expected to respond most to human use, since human activity was highest during the 
day.  
 
For further insight, I constructed analogous LME models with the distance to the nearest high-
use trail, road, or facility as the response variable. High-use trails and facilities were those with ≥ 
10 human-use events per day, and high-use roads were those with ≥ 100 vehicles per day. I 
compared distance from presence-only, daytime bear GPS locations to the nearest high use trail, 
road or facility, for the peak versus non-peak seasons and for weekends versus weekdays. If 
bears modified their behavior to avoid human disturbance, then distances between high-use 
features and bear locations should have been significantly greater during those time periods 
when N on those features was significantly higher.  
 
Results 
 
GPS location data were collected on five adult and sub-adult female grizzly bears from June – 
Oct 2014 and May – Oct 2015. I obtained 40,013 total GPS locations, or an average of 8,002 ± 
3,921 locations per bear (range: 2,456 – 12,898 locations per bear). Of these, 16,430 locations 
were in the front-country, i.e., within 500 m of a trail, road, or facility. An average of 3,286 ± 
1,778 locations per bear occurred in the front country (range: 816 – 5,337 locations per bear). 
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Front-country locations represented 40.9% ± 16.9% (range: 25.0% – 60.1%) of each bear’s total 
locations. 
 
The mean size of the full home ranges of study bears was 102.9 ± 38.1 km2 (range: 57.3 – 148.1 
km2). Mean front-country home range size was 21.7 ± 5.1 km2 (range: 16.1 – 28.6 km2). 
 
HABITAT SELECTION 
Bears showed significant habitat preferences within both their full home ranges and their front-
country home ranges, with grass and shrub significantly preferred over forest and barren areas 
(for full home ranges: λ = 0.035, p = 0.008; for front-country home ranges: λ = 0.074, p = 0.021) 
(Fig. 2). Bears selected for forest significantly more in the front country than at the full home 
range scale (z = 1.974, p = 0.024) (Fig. 2), and they selected for grass significantly less in the 
front country than at the full home range scale (z = -1.67, p = 0.048) (Fig. 2). 
 
BEAR OCCURRENCE IN RELATION TO HUMAN ACTIVITY 
Spatiotemporal patterns of human activity 
For all three types of human-use features, the average number of daily human-use events, N, was 
significantly higher on weekends than weekdays and in the peak season than the non-peak season 
(Table 3). There was also significant temporal variation in N between each of the four time 
periods (peak season-weekend, peak season-weekday, non-peak season-weekend, non-peak 
season weekday); patterns of significance varied by type of human-use feature (Table 3). In all 
four time periods, N values differed significantly between individual trails (F = 17.66, p < 
0.001), roads (F = 17.66, p < 0.001), and facilities (F = 11.12, p <0.001) (Table A1), indicating 
high spatial variation in human use as well.  
 
Overall and diurnal patterns of bear space use 
There was strong support for only one GLMM predicting bear space use in relation to timing and 
intensity of recreation in the front country (Table 2). This model identified only habitat and an 
interaction between road-related disturbance and time of day as significant predictors of bear 
space use (Table 2). Study animals avoided road-related disturbance during the daytime (z = -
2.013, p = 0.044), suggesting bears were more likely to be found at locations farther away from 
high-use roads during the day. During the mornings, evenings, and at night, bear avoidance of 
road-related disturbance was significantly less than during the daytime (for mornings and 
evenings, z = 3.713, p < 0.001; for nights, z = 5.489, p < 0.001) (Fig. 3), suggesting that bears 
moved closer to high-use roads during these hours. Consistent with habitat selection results, 
GLMMs indicated bears avoided forested habitat (z = -2.009, p = 0.044). 
 
Trail-related disturbance and facility-related disturbance indices at bear locations did not 
contribute significantly to the explained deviance for any candidate models (p > 0.05), indicating 
that bear space in relation to human activity on trails and facilities was not significantly different 
than expected if space use was random. Interactions between time of day and trail- and facilities-
related disturbance indices also were not significant, suggesting bears did not adjust their space 
use in response to diurnal fluctuations in human activity on these features. 
 
Weekly and seasonal patterns of bear space use 
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LME models indicated that there was no significant difference in trail-related disturbance indices 
at daytime bear locations on weekends compared to weekdays (F = 0.359, p = 0.550) (Table 3; 
Fig. 4), even though trail N was significantly higher on weekends than weekdays  
(t = -6.478, p < 0.001). Bears were significantly farther away from the nearest high-use trail on 
weekends compared to weekdays (F = 3.94, p = 0.049) and during the peak season compared to 
the non-peak season (F = 14.22, p < 0.001) (Table 3; Fig. 4).  
 
LME models also showed no significant difference in facility-related disturbance indices at 
daytime bear locations in the peak season versus the non-peak season (F = 1.965, p = 0.161), 
even though N was significantly higher in summer than in the spring and fall months (t = 2.656, 
p = 0.012). Bears were significantly further from the nearest high-use facility in the peak season 
than the non-peak season (F = 15.830, p < 0.001) (Table 3; Fig. 4).  
 
Discussion 
 
BEAR RESPONSES TO RECREATION IN THE FRONT COUNTRY 
My results indicate that study bears attempted to avoid encountering people in the front country. 
Specifically, bears increased their use of forest cover when in high human-use areas, and they 
modified their behavior in response to fine-scale spatiotemporal variation in human activity on 
trails, roads, and in facilities. Although bears did not avoid high human disturbance for all 
features in all time periods, in no cases did bears prefer times and places of higher human 
disturbance, no matter the type of human use. Instead, bears appeared to use high human-use 
areas when risk of encountering people was low, and to avoid these areas when risk of detection 
by people was highest, as has been documented for other large carnivores (Oriol-Cotterill et al. 
2015b).  
 
Consistent with past studies (Gibeau et al. 2002, Northrup et al. 2012), bears avoided all roads or 
at least high-use roads during the day, but they demonstrated significantly less avoidance of 
roads during the mornings, evenings, and at night. Bears did not appear to modify their daytime 
habitat use in response to significantly lower traffic levels on weekdays and during the non-peak 
season. This may be because daytime road traffic was relatively high on all roads, even during 
non-peak season weekdays, and vehicles were the most lethal threat to bears in the study area. 
Bears foraged along grassy roadsides, which provided little cover, and used roads as movement 
corridors. Daytime traffic levels were likely always too high to provide consistent security for 
these activities.  
 
In contrast to roads, bears did not exhibit a diurnal response to human activity on trails and in 
facilities. Bears’ lack of adjustment to daily fluctuations in numbers of people on trails was 
unexpected, but most trails were located in fairly dense forest. This may have allowed bears to 
step into cover or use nearby, well-concealed game trails during the daytime as people 
approached, thereby reducing the need for increased avoidance during daily periods of high 
human use. Many facilities are campgrounds, where human use levels do not fluctuate widely 
over the course of a day. Campgrounds were fullest at night, when people were inactive, and in 
the morning and the evening, when people were active, but also had large numbers of occupants 
during daytime hours. Thus, there was likely no predictable daily quiet time in campgrounds that 
would signal lower levels of human disturbance to bears.  
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Instead, study animals appeared to modify their spatial distribution in response to both within-
week and seasonal fluctuations in trail-related disturbance, and in response to seasonal 
fluctuations in facility-related disturbance. Bears selected locations farther away from high-use 
trails throughout the day on weekends and during the peak season, when the number of hikers 
and bikers was greatest. Bears also selected for daytime locations farther away from facilities in 
the peak season, when daily visitation at facilities was significantly higher than in the spring and 
fall. Bears’ use of locations closer to facilities in the non-peak season may be attributable not 
only to changes in human-use levels, but also to bears’ attraction to natural food resources 
available near some facilities in the spring and fall. 
  
Bears preferred grass and shrub over forest habitat in both the front country and at the full home-
range scale. This is not surprising, given that almost all bear plant foods grew in open areas. 
Nonetheless, bears selected for forest significantly more, and open grassy areas significantly less, 
in the front country compared to their full home ranges. This suggests study animals may have 
used forest cover to conceal themselves from people and thereby reduce risk of encounters in the 
front country. Brown bears in Sweden have also been observed to use denser cover when closer 
to human activity (Ordiz et al. 2011), and this has been reported for other large carnivores as 
well (e.g., spotted hyenas (Crocuta crocuta): Boydston et al. 2003, Kolowski and Holecamp 
2009; lions (Panthera leo): Schuette et al. 2013; cougars (Puma concolor): Dickson et al. 2005). 
  
STUDY LIMITATIONS 
While this study produces clear patterns regarding the spatial and temporal dynamics of bear 
avoidance of humans, its findings warrant consideration of potential weaknesses. First, my 
sample size of five bears is smaller than hoped, though it is consistent with similarly detailed, 
GPS-based studies of large carnivores (e.g., Broekhius et al. 2013). My population of interest 
was limited to those bears that consistently used front-country habitats, and this population was 
relatively small. The individuals sampled represented greater than 50% of front-country bears, 
and thus they should have provided a reasonable representation of bear behavior in the region. 
Second, my choice of home range estimator affected the distribution of random absence points 
within bears’ front-country home ranges. A more liberal method, such as minimum convex 
polygon, likely would have generated more absence points located farther from human-use 
features, which may have led to disturbance indices at actual bear locations being greater than 
expected if space use was random. No home range estimator is free from bias, however. 
Minimum convex polygons tend to overestimate animal space use (Douglas-Hamilton et al. 
2005, Macdonald et al. 1980), and my use of this method would have included large areas 
outside of the front country within bears’ front-country home ranges.  
 
This study could be improved by inclusion of additional years of data, particularly data from a 
year in which there was a good Shepherdia berry crop. Shepherdia berries represent a critical 
bear food resource when present, and could motivate bears to tolerate higher levels of human 
activity in exchange for high nutritional reward (Lima and Dill 1990). At the same time, 
conservation officers close many trails and facilities during abundant berry seasons, thereby 
using a management intervention to reduce human disturbance for bears. In 2014 and 2015, there 
was a total berry crop failure in Kananaskis Country, and comparison to a good berry year could 
provide additional insights into bears’ front-country behavior.  
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FINE-SCALE AVOIDANCE AS ADAPTIVE BEHAVIOR  
By overlapping with human use at a broad scale, but actively avoiding people once they were 
within high recreation areas, Kananaskis’ front-country bears demonstrated a behavioral 
flexibility that is arguably adaptive (Elfstrom et al. 2014). Because human activity was 
widespread but also non-lethal in the study area, complete avoidance of people was probably not 
only impossible for bears, but also would have come at too great a nutritional cost, as animals 
would have lost access to prime foraging areas located near human-use features (Lima and 
Bednekoff 1999, Sih and McCarthy 2002). Most front-country bears were sub-adults and young 
mothers with cubs, who may not have access to high-quality, backcountry habitat due to their 
dominance status, and for whom adult male bears are a greater threat than humans (Kaczensky et 
al. 2006, Nevin and Gilbert 2005, Steyaert et al. 2016). Thus these individuals were likely in 
high human-use areas because broad-scale avoidance of human use, at the level of the home 
range, would decrease the odds of their and their offspring’s survival (Steyaert et al. 2016). Fine-
scale avoidance, in contrast, may have been the most efficient strategy for front-country bears to 
reduce probability of encounter with people, minimize encounters with adult male bears, and 
maximize nutrition. 

 
MANAGEMENT IMPLICATIONS 
My results provide support for management interventions that facilitate bears’ avoidance of 
people by 1) limiting overall recreation levels, and 2) maintaining spatial and temporal 
predictability in recreation patterns. Study bears appeared to recognize and take advantage of 
predictably quieter times and places in the front country, using habitats closer to roads or closer 
to high-use roads in the morning, evenings, and at night; habitats closer to high-use trails on 
weekdays and in the non-peak season; and habitats closer to high-use facilities in the non-peak 
season. Managing recreation intensity, timing, and spatial extent is essential not only to limit 
encounters between bears and people, which can have direct fitness costs for bears (Herrero et al. 
2005), but also to prevent displacement of bears from important food resources. Ordiz et al. 
(2013) found that brown bears in Sweden reduced their foraging time when experimentally 
approached by hikers, even during hyperphagia. Recreation is increasing in Kananaskis Country, 
and if bears continue to avoid high disturbance intensity, as they did in this study, then they may 
lose access to important nutritional resources as more places in the front country become areas of 
high human use.  
 
Management interventions like aversive conditioning, which aims to heighten animals’ 
association of human activity with risk, may be a complementary strategy for maintaining or 
increasing bear avoidance of people in the study area. However, conditioned bears still require 
access to alternative, minimally-disturbed habitats where they can meet their dietary needs. 
Therefore attempts to manage bear behavior in the front country must be accompanied by efforts 
to ensure sustainable levels and patterns of recreation.  
 
CONCLUSION 
This work augments a handful of recent studies that have rigorously quantified human 
disturbance and, by so doing, have empirically confirmed fine-scale behavioral adjustments 
made by large carnivores living in human-dominated landscapes (Carter et al. 2012, Oriol-
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Cotterill et al. 2015b, Rogala et al. 2011). I sought to quantify not only the distribution of human 
use, but also spatial and temporal fluctuations in its intensity, thereby going beyond coarse-scale 
estimates of human activity that blur variation in space and time. I also focused on areas of high 
overlap between grizzly bears and people, where the dynamics of human activity were most 
likely to have direct impacts on bear behavior. In complex, shared landscapes like the 
Kananaskis front country, investigations of human activity impacts on wildlife may profit from 
more detailed assessment of the behavior of both study animals and people, and from recognition 
that both human disturbance and wildlife response are dynamic processes, which vary over 
multiple spatial and temporal scales. 
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Tables and Figures 
 
Table 1. Numbers of front-country bear GPS locations (presence points) per time period 
included in GLMMs. These numbers include bear locations during all times of day (night, 
morning/evening, and daytime). LME models used the same sample of points, but only daytime 
locations. 

Bear ID Peak weekend Peak weekday Non-peak 
weekend 

Non-peak 
weekday Total 

39 75  200  200  200  675 
104 194  200  200  200  794  
139 165  200  200 200  765  
151 87  200  42  75  404  
152 90  200 200 200 690 

Total 611 1,000 842 875 3,328 
 
 
 
 
Table 2. Summary of model selection statistics for GLMMs analyzing the probability of bear 
occurrence in the front country in relation to habitat type, disturbance index, and an interaction 
between disturbance and time of day, denoted by “:”. All models included a random intercept for 
bear. Final candidate models were only those for which all explanatory variables contributed 
significantly to the variation in probability of bear occurrence (the dependent variable). DistRD 
denotes disturbance related to roads. Models were ranked according to Akaike weights (wi) 
based on AICc. Included are number of parameters, the log likelihood and AICc differences (Δi). 

Rank Model K log 
likelihood AICc Δi wi 

1 Habitat + DistRD:time 7 -4552.2 9120.5 0 1.00 

2 Habitat + DistRD  6 -4567.7 9147.4 26.9 0.00 

3 Habitat 5 -4572.1 9154.3 33.8 0.00 

4 DistRD:time  4 -4585.4 9180.7 60.2 0.00 

5 DistRD 3 -4600.8 9207.6 87.1 0.00 
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Table 3. Comparison of differences in average daily human-use events (N), disturbance indices at 
daytime bear GPS locations, and distance between daytime bear GPS locations and the nearest high-use 
anthropogenic feature, in different time periods. A ‘+’ (or ‘–’) indicates the given N, disturbance index, or 
distance value was greater (or less) in the first time period listed, compared to the second, but the 
difference was not significant. A ‘+++’ (or ‘– – –’) indicates the given value was significantly greater (or 
significantly less) in the first time period listed, compared to the second. 

TRAILS N Disturbance Index Distance 

Weekend – Weekday +++ + +++ 

Peak – Non-peak +++ +++ +++ 

Peak weekend – Peak weekday +++ + + 

Peak weekend – Non-peak weekend +++ +++ + 

Peak weekend – Non-peak weekday +++ +++ +++ 

Peak weekday – Non-peak weekend –  +++ + 

Peak weekday – Non-peak weekday +++ +++ +++ 

Non-peak weekend – Non-peak weekday +++ + +++ 

 
ROADS N Disturbance Index Distance 

Weekend – Weekday +++ +++ + 

Peak – Non-peak +++ +++ + 

Peak weekend – Peak weekday +++ +++ +++ 

Peak weekend – Non-peak weekend +++ +++ – 

Peak weekend – Non-peak weekday +++ +++ + 

Peak weekday – Non-peak weekend – – – 

Peak weekday – Non-peak weekday + +++ – 

Non-peak weekend – Non-peak weekday + +++ + 
 
FACILITIES N Disturbance Index Distance 

Weekend – Weekday +++ +++ – 

Peak – Non-peak +++ – +++ 

Peak weekend – Peak weekday + – + 

Peak weekend – Non-peak weekend + – – – +++ 

Peak weekend – Non-peak weekday +++ + +++ 

Peak weekday – Non-peak weekend – – – – + 

Peak weekday – Non-peak weekday +++ + +++ 

Non-peak weekend – Non-peak weekday +++ +++ + 
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Fig. 1. Map of study area with locations of trail counters, vehicle counters, and monitored 
facilities indicated by green, yellow, and orange dots, respectively. The extent of the front 
country considered in the study is shown in light beige, with front-country GPS locations of 
study bear 139 (in pink) overlain for illustration. The location of the study area within the 
province of Alberta is indicated by the red rectangle in the inset map.  
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Fig. 2. Habitat selection for bears using Ivlev’s index for preference/avoidance. Values > 0 
indicate that a habitat type was used more than available (preference) and values < 0 indicate 
habitat type was used less than available (avoidance). The analysis was carried out for GPS 
locations vs. front-country home ranges (dark grey) and for GPS locations vs. full home ranges 
(light grey). 
 
 
 
 

 
Fig. 3. The relationship between the road-related disturbance index and the probability of bear 
presence during the daytime (10:00 am – 6:00 pm), morning or evening (6:30 am – 9:30 am; 
6:30 pm – 9:30 pm), and at night (10:00 pm – 6:00 am). Fitted lines displayed are averages ± 
95% confidence intervals. The interaction between road-related disturbance and time of day was 
significant, suggesting that bear avoidance of human activity on roads was dependent on time of 
day. This interaction was not significant for trails or facilities.  



 

22 
 

 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
is

tu
rb

an
ce

 In
de

x

Type of Human Use Feature

Weekend
Weekday

Trails Roads

4a)

Facilities
0

0.05

0.1

0.15

0.2

0.25

0.3

Di
st

ur
ba

nc
e I

nd
ex

Type of Human Use Feature

Peak season
Non-peak season

Trails Roads Facilities

4b)

 

0

50

100

150

200

250

300

350

Di
st

an
ce

 to
 N

ea
re

st
 H

ig
h-

Us
e 

Fe
at

ur
e 

(m
)

Type of Human Use Feature

Weekend
Weekday

FacilitiesTrails Roads

4c)

0

50

100

150

200

250

300

350

D
is

ta
nc

e 
to

 N
ea

re
st

 H
ig

h-
U

se
 F

ea
tu

re
 (m

)

Type of Human Use Feature

Peak season
Non-peak season

Trails Roads

4d)

Facilities

 
 
Fig. 4. Average disturbance index values (4a & 4b) and distance to nearest high human-use 
feature (4c & 4d) at daytime front-country bear locations, depending on type of human-use 
feature, day of the week, and season. For all types of human-use features, the average daily 
human use, N, was significantly higher on weekends than weekdays and in the peak season than 
the non-peak season. High human-use features were those for which N ≥ 10 (for trails and 
facilities) or N ≥ 100 (for roads). Error bars represent 95% confidence intervals.  



 

23 
 

Supplementary Material 
 
Table S1. Summary of average daily human-use events, N, for trails and roads in the study area, by time 
period. For trails, estimated average daily absolute counts are in parenthesis and italics to the right of N 
values. For three trails longer than 4 km in length (one-way), counters are indicated by numbers “1” and 
“2” (e.g., “Three Isle 1”, “Three Isle 2”). 

 Peak weekend Peak weekday Non-peak weekend Non-peak weekday 
TRAILS     
Wedge Pond 22 (58) 13 (28) 13 (30) 4 (8) 
Elbow Lake 1 103 (222) 45 (93) 70 (142) 22 (45) 
Highwood Meadows 51 (136) 26 (66) 46 (128) 20 (43) 
Ptarmigan Cirque 90 (280) 39 (105) 76 (269) 22 (52) 
Mt Everest Expedition 36 (97) 22 (55) 17 (43) 7 (16) 
Lower Lake 17 (40) 7 (16) 8 (18) 3 (5) 
Eau Claire Interpretive 10 (22) 4 (10) 4 (2) 2 (4) 
Marl Lake Interpretive 25 (63) 19 (44) 15 (39) 4 (7) 
Rockwall Interpretative 5 (10) 5 (10) 3 (5) 2 (2) 
Boulton Interpretive  13 (31) 10 (22) 7 (16) 2 (4) 
Three Isle 1 70 (137) 33 (62) 38 (71) 12 (28) 
Elbow Lake 2 42 (107) 13 (38) 27 (64) 9 (23) 
Upper Lake East 68 (129) 27 (45) 45 (81) 11 (25) 
Galatea 2 84 (263) 20 (48) 69 (198) 14 (34) 
Three Isle 2 39 (88) 19 (45) 18 (36) 6 (13) 
Galatea 1 110 (277) 29 (62) 94 (232) 20 (41) 
Terrace South 13 (30) 5 (11) 8 (18) 3 (8) 
Lodgepole 29 (73) 22 (52) 8 (20) 4 (7) 
Pocaterra south 3 (8) 2 (4) 2 (3) 1 (1) 
Bill Milne  41 (111) 34 (91) 22 (56) 11 (25) 
Lakeside 23 (58) 18 (42) 10 (26) 3 (7) 
Pocaterra north 8 (26) 4 (12) 6 (21) 2 (8) 
Wheeler 31 (81) 22 (53) 11 (30) 3 (6) 
Spruce Rd 20 (47) 16 (39) 10 (25) 4 (10) 
Elk Pass 12 (39) 6 (18) 9 (31) 3 (8) 
Whiskey Jack 3 (8) 2 (4) 2 (3) 1 (2) 
Fire Lookout 5 (12) 3 (6) 3 (7) 2 (6) 
Bill Benson 20 (48) 16 (40) 10 (24) 4 (8) 
WWL Lodge Connector 20 (47) 16 (35) 10 (24) 4 (8) 

ROADS 
    

Hwy 40 Elpoca 1,251 640 915 386 
Hwy 40 Eau Claire 3,133 1,816 1,736 995 
KLT Boulton 1,454 807 789 302 
KLT PVIC 1,731 969 1,072 477 
Smith-Dorrien south 838 508 488 154 
Lakeshore Dr 34 20 22 11 
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3. Quantifying human activity improves wildlife occurrence models: A case 
study with grizzly bears  
 
Summary 
  
Conservation biologists are increasingly concerned about the diverse impacts of human 
disturbance on wildlife behavior. Yet most investigations of wildlife response to human activity 
do not estimate directly either the intensity of human use or its spatial and temporal variation. 
Instead, analyses typically rely on proxies to represent human impacts. In this study, I assessed 
whether including estimates of average daily recreation levels improved models developed to 
predict grizzly bear (Ursus arctos) habitat selection in two protected areas in Kananaskis 
Country, Alberta, Canada. Specifically, I compared three sets of habitat suitability models. The 
first set incorporated measures of distance to nearest trail, road, and facility, a conventional 
proxy for intensity of human use. The second model set also used distance to nearest feature, but 
categorized trails, roads, and facilities as having a high or low level of human activity. The third 
model set included estimates of not only distance to nearest trail, road, and facility, but also the 
average daily number of people or vehicles using each of these features. I applied these models 
to describe the occurrence of GPS-collared grizzly bears at a relatively broad spatial scale, where 
human activity was diffuse, and at a finer scale, where bear-human overlap was high. I used 
Akaike’s Information Criterion and k-folds cross-validation to evaluate model performance. I 
found that at a broad spatial scale, grizzly bear habitat selection was best predicted by the second 
model set, while at a fine spatial scale, habitat selection was best predicted by the third set. By 
rigorously quantifying human use dynamics, ecologists may better evaluate disturbance impacts 
on wildlife behavior and occurrence, particularly when wildlife-human overlap is extensive. 
Paradigms from community ecology may suggest improved methods for measuring human 
activity. My findings are applicable to other analytical approaches and other types of human 
disturbance. 
 
Keywords: grizzly bears, Ursus arctos, human disturbance, habitat suitability models, resource 
selection function 
 
Introduction 
 
Human activity occurs in nearly all of the world’s natural areas, with wide-ranging implications 
for wildlife behavior, population dynamics, and community structure (Frid and Dill 2002, 
Hebblewhite and Merrill 2008, Oriol-Cotterill et al. 2015a). Ecologists investigating the impacts 
of human disturbance on large mammals are frequently interested in habitat selection of study 
animals, which is commonly assessed using habitat suitability models (e.g., Beckmann et al. 
2012, Berland et al. 2008, Llaneza et al. 2012, Oriol-Cotterill et al. 2015b). These models 
estimate the likelihood that an animal will occur in a particular location on the landscape, given a 
number of predictor variables associated with that location (Hirzel and Le Lay 2008), including 
estimates of human disturbance. However, the human disturbance variables used in most habitat 
suitability models do not represent direct estimates of human activity or its spatiotemporal 
variation. Instead, wildlife ecologists commonly use proxies meant to reflect the intensity of 
human use, such as distance to nearest settlement, road or trail; or density of these anthropogenic 
features within a pre-defined radius. This practice allows the relatively straightforward 
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quantification of human disturbance from existing maps or remote sensing products, but it may 
have two key shortcomings. First, reliance on static proxies limits the ability of researchers to 
assess how temporal changes in the number of people on the landscape impact wildlife habitat 
selection. Second, proxies typically fail to account for spatial variation in activity across different 
human use features. A number of studies have shown that wildlife responds not to the presence 
or number of anthropogenic features per se, but rather to the number of people using those 
features (Coleman et al. 2013, Hebblewhite and Merrill 2008, Whittington et al. 2005). This 
suggests that a more mechanistic understanding of wildlife behavior may be achieved by 
rigorously quantifying the spatiotemporal dynamics of human activity.  
 
Recreation is one type of human disturbance that is well-suited to more rigorous estimation in 
the context of habitat suitability models. In protected areas, recreation and associated vehicle 
traffic are often confined to defined trails, roads, and facilities, which makes robust monitoring 
of human use feasible. In areas where recreation is well-developed, human presence on the 
landscape is regular (often daily), persistent over time, and spatially widespread (Beeco and 
Brown 2013), potentially impacting wildlife across multiple spatial and temporal scales. 
Technology for counting people on trails and vehicles on roads is also readily available, and 
visitor monitoring studies have recently applied a number of new tools to estimate intensity of 
recreation activity (D'Antonio et al. 2010, Meijles et al. 2014, Wolf et al. 2012). However, these 
tools have been used primarily to understand visitor behavior, while efforts to assess visitor 
impacts on the surrounding biotic and abiotic environment remain limited (Monz et al. 2010, 
Larson et al. 2016). This may be because visitor impact studies require not only financial 
resources to purchase needed equipment, but also substantial staff time to conduct field work and 
analyze data. Yet participation in outdoor recreation and ecotourism is increasing worldwide 
(Balmford et al. 2009, Cordell 2012), underscoring the need to evaluate whether investment in 
more robust human use monitoring can improve our understanding of wildlife behavior.  
 
In this chapter, I seek to assess whether rigorous estimates of recreation intensity improve 
predictions of habitat selection patterns of grizzly bears (Ursus arctos) living in two provincial 
parks in Alberta, Canada. My previous work demonstrated significant spatial and temporal 
variation in recreation intensity across this landscape (Chapter 1). I constructed habitat suitability 
models for bears at broad and fine spatial scales, and all models included a measure of human 
disturbance as a predictor variable. The broad spatial scale corresponded to the full extent of 
grizzly bear home ranges, which included sizeable areas where presence of people was rare. 
Fine-scale models, in contrast, focused on valley bottom portions of bear home ranges, where 
human activity was pervasive. Within each spatial scale, I compared the fit and predictive 
success of models that incorporated only static proxies for human disturbance, to those of models 
that rigorously quantified the spatial and temporal characteristics of human use. Since large parts 
of the full home ranges of study bears were separated from human activity by considerable 
distances, I hypothesized that proxies would be sufficient to develop a robust, broad-scale habitat 
suitability model. At a fine scale, however, I expected that bear behavior would be more directly 
influenced by recreation, due to close proximity of bears to people. Therefore I hypothesized that 
the best fine-scale model would directly quantify intensity of human use. 
 
Materials and Methods 
 



 

26 
 

STUDY AREA 
This study was conducted in Peter Lougheed and Spray Valley Provincial Parks (50°N, 115°W; 
area = approx. 600 km2) on the eastern slopes of the Rocky Mountains in western Kananaskis 
Country, Alberta, Canada (see Fig. 1, Chapter 1). Elevation in the study area ranged from ~1600 
m at valley bottom to greater than 3000 m along the Alberta-British Columbia border. Climate 
was continental and dry (~470mm annual precipitation), with relatively wetter winters than 
summers, and with more precipitation at higher elevations than valley bottoms. Valley bottoms 
were dominated by coniferous forests, primarily lodgepole pine (Pinus contorta) and white 
spruce (Picea glauca), mixed with Douglas fir (Pseudotsuga menziesii), subalpine fir (Abies 
lasiocarpa) and Engelmann spruce (Picea engelmannii) at higher elevations. Conifer stands were 
interspersed with patches of wetland forest, shrubs and grassy meadows. Major waterways 
included the Kananaskis River and Upper and Lower Kananaskis Lakes. 
 
Recreation in these parks was limited to non-motorized activities, chiefly hiking, biking, and 
camping, which were permitted only on designated trails and facilities. Road access into Peter 
Lougheed and the Spray Valley was via Highway 40, a two-lane paved highway; the Kananaskis 
Lakes Trail, a two-lane paved road, and the Smith-Dorrien Trail, a wide gravel road (see Fig. 1, 
Chapter 1). The study area included ~220 km of hiking and biking trails; ~70 km of roads, nearly 
all of which were paved; 8 auto-accessible campgrounds (~600 total campsites); 3 walk-in 
campgrounds (74 campsites); 17 day-use areas; a major visitor center; a lodge with 22 cabins and 
13 additional campsites; and a 40-lot, seasonal cottage community along the Lower Kananaskis 
Lake shore. For the purposes of this study, I classified this recreation-related infrastructure into 
three categories: 1) trails, including both hiking and biking trails; 2) roads, including primary and 
secondary, paved and unpaved roads; and 3) facilities, which comprised all campgrounds, day-
use areas, and the visitor’s center and other buildings. These human-use features were almost 
entirely concentrated in the valley bottoms. Visitation to Peter Lougheed and the Spray Valley 
was estimated to be greater than 400,000 people/year (D. Fizor, personal communication), with 
the highest visitation occurring from the late June through early September.   
  
SPECIFICATION OF HABITAT SUITABILITY MODELS 
I used resource selection function (RSF) models (Manly et al. 1993) to investigate the probability 
of grizzly bear presence in relation to spatial environmental and human disturbance variables. I 
specified all RSF models as generalized linear models (GLMs) with a binomial error structure 
and a logit link function (Boyce et al. 2002); the binomial response variable was either 0 or 1, 
with 1 representing actual bear presence and 0 representing randomly generated absence points. 
All statistical analyses were conducted using R 3.3.1 software (R Development Core Team 
2016). I extracted values of environmental and human disturbance covariates using ArcGIS 
10.2.2 (Environmental Systems Research Institute 2014) and Geospatial Modeling Environment 
0.7.3 (GME; Beyer 2014). 
 
Grizzly bear data 
I used GPS collar locations collected from five adult and sub-adult female grizzly bears during 
2014 – 2015. Data from female bears were used because their home ranges were fully contained 
within the study area and because all female bears retained their collars for at least one complete 
non-hibernation season (May – Oct). Collars were programmed to record a location once every 
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60 minutes (one collar) or once every 30 minutes (four collars). For a complete description of 
grizzly bear GPS data collection and analysis, see Chapter 1.  
 
Habitat selection of grizzly bears varies seasonally (Gibeau 2000); therefore I used only bear 
locations collected during hyperphagia, when bear behavior is focused on eating to gain weight 
for hibernation (July 15 – Oct 31; Donelon 2004). Locations obtained during the spring breeding 
season were excluded. There was no berry crop in 2014 or 2015, limiting the need to divide 
hyperphagia into summer and fall components. Because I was interested in evaluating models 
that accounted for the effect of human disturbance on bear behavior, I used only GPS locations 
taken during the daytime (9:00 – 18:00), when recreation activity was highest (Chapter 1). 
 
Recreation occurred in the home ranges of all study animals but was concentrated in specific 
areas such as valley bottoms. Therefore I considered bear habitat selection at two spatial scales, 
based on the degree of overlap with human activity. First, I classified all bear GPS locations 
occurring within 500 m of a road, trail, or facility (25-60% of locations per bear, Chapter 1) as 
“front-country” locations, in accordance with previous grizzly bear studies that identified a 500 
m zone of influence around human-use features (Ciarniello et al. 2009, IGBC 1998, Gibeau et al. 
2001). I expected that within this zone, recreation dynamics may be very important to bear 
habitat selection. I randomly sampled 300 front-country locations per bear to delineate the front-
country home range of each animal. Next, I considered the extent of each bear’s full home range, 
which can be quite large in Kananaskis Country (up to 1,000 km2 for females, Stevens and 
Gibeau 2005), with some areas separated from human activity by several kilometers or by 
significant physical features such as mountain ranges. I expected that when bears were in these 
more remote areas, their behavior would be less influenced by human disturbance. I randomly 
sampled 600 locations per bear to delineate the full home range of each study animal. Home 
ranges were based on the 90% isopleth (Borger et al. 2006) from kernels created using the fixed 
Gaussian Kernel Density Estimate.  
 
I constructed separate sets of RSF models to predict the distribution of bear locations within 1) 
the full home ranges of individuals (a relatively broad spatial scale) and 2) the subset of 
individual home ranges located in the front-country (a finer spatial scale, where human-bear 
overlap was high). In addition to the randomly sampled presence points, I generated 600 random 
absence points within each bear’s full home range and 300 random absence points within each 
front-country home range. I estimated the value of six environmental and three human 
disturbance predictor variables at each actual bear location and at each random absence point, as 
described below. Values at random points represented availability of resources, while values at 
presence points represented bears’ resource use.  
 
Predictor variables  
I considered the following environmental covariates as predictor variables in RSF models: 
landcover, elevation, slope, aspect, greenness, and edge density. Landcover type was described 
from an existing landcover map for the study area derived from Landsat (Eastern Slopes Grizzly 
Bear Project 2000), collapsed to five major landcover types: avalanche slopes (the reference 
category); forested (including both coniferous and mixed coniferous-deciduous forests); 
herbaceous; shrubs; and barren areas with less than 5% vegetative cover. Overall classification 
error was estimated at 24 ± 3.2%. To reduce this error, I visually checked the landcover map 
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against orthophotos in ArcMap (ArcGIS 10.2.2) to identify misclassified areas larger than five 
pixels in size. I then corrected these misclassifications using ARIS Grid and Raster Editor (ARIS 
B.V. 2016). Elevation (m), slope (degrees), and aspect class (northeast, southeast, southwest, 
northwest, and flat) were derived from a 30x30 m Digital Elevation Model (DEM). To estimate 
greenness, I used a seamless greenness vegetation map generated by Wierzchowski (2000) on the 
basis of tasseled-cap transformations of spectral reflectance from Landsat images. Edge density 
was included as an indicator of landscape complexity and was derived in FRAGSTATS 
(McGarigal et al. 2012) on the corrected landcover map using a 250-m diameter moving 
window. 
 
I also considered three human disturbance covariates: disturbance related to trails, disturbance 
related to roads, and disturbance related to facilities. Trails, roads, and facilities were treated 
separately because bears likely perceive them differently (J. Paczkowski, personal 
communication). Values of human disturbance covariates were estimated in three ways: 
 
Distance to nearest human-use feature. Using existing anthropogenic GIS layers, I calculated the 
distance in meters from each bear presence and absence point to the nearest trail, road, and 
facility. Distance to nearest human-use feature is a common and simple proxy used in wildlife 
habitat suitability modeling.  
 
Distance to nearest high-use human feature. Habitat selection of grizzly bears and other large 
carnivores has previously been evaluated by categorizing anthropogenic features into high- and 
low-use and considering only high-use features in analyses (e.g., Gibeau et al. 2002, 
Hebblewhite and Merrill 2008). I used a combination of motion-triggered cameras (Bushnell, 
Overland Park, USA), heat-triggered trail counters, magnetic vehicle counters (TrafX, Canmore, 
Canada), and consultations with Kananaskis Country staff to estimate daily human use on 29 
trails, six roads, and 17 facilities located within the home ranges of GPS-collared bears. Data 
were collected from June – Oct 2014 and May – Oct 2015. Trail counters were installed on 15 
hiking-only trails, and cameras were deployed on eight multiple-use trails and bike paths. Trail 
counters and cameras produced timestamped data for each hiker or biker, which were then 
summarized into daily totals. For trails longer than 4 km (n =4), trail counters or cameras were 
deployed every 3-5 km, because human use declined with distance from trailhead. Vehicle 
counters were located in pairs, on opposite sides of the road, at two sites on Highway 40 and two 
sites on the Kananaskis Lakes Trail. Vehicle counter locations were selected to capture spatial 
variation in traffic flow, since traffic decreased with distance from the Trans-Canada Highway, 
which is located approximately 35 km from the study area’s northern boundary. Each counter 
recorded hourly counts of vehicles in the nearest lane of traffic; these data were summarized into 
daily totals. Counter accuracy was assessed against visual observations of vehicles. Based on 
data collected by trail and vehicle counters, I extrapolated human use counts on six additional 
trails and two additional secondary roads. To estimate use at facilities, I consulted with 
campground managers and conducted visual surveys of parking lots. See Chapter 1, Fig. 1 for a 
map of monitored trails, roads, and facilities. 
 
For each bear presence or absence point, I calculated the distance in meters to the nearest high-
use trail, road, or facility. High-use roads were those with greater than 100 vehicles per day, and 
high-use trails or facilities were those with greater than 10 human-use events per day. A human-
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use event was defined as a group of hikers or bikers passing a trail counter or camera within one 
minute of each other, or an occupied parking space or campsite in facilities (Chapter 1). I 
considered this second approach to estimating human disturbance to be a mixed-proxy approach, 
since it included a coarse approximation of the intensity of human activity on anthropogenic 
features.  

 
Human disturbance index. I estimated a trail-related, road-related, and facilities-related 
disturbance index at each bear GPS location and each randomly generated absence point (Fig. 1). 
This represented an attempt to quantify human disturbance directly, without use of proxies. The 
disturbance index was calculated using the formula 1 − (1 − 1/𝐷𝐷)𝑁𝑁 (Beale and Monaghan 
2004), where N was equal to the average number of human-use events or vehicles per day on any 
given anthropogenic feature, and D was equal to the distance to that feature in meters. This 
formula assumes that human disturbance is proportional to both the intensity of human use and 
the distance from that use (Beale and Monaghan 2004). At low values of N, the disturbance 
index declines exponentially with distance; at higher values of N, the decline approximates a 
negative logistic curve. 
 
For all types of human-use features, values of N differed significantly between weekends and 
weekdays, and between the summer (1 July – 31 Aug) and the fall (1 Sept – 31 Oct) (Chapter 1). 
Therefore unique values of N were assigned to each bear GPS location depending on the season 
and day of the week when it was obtained (summer-weekend, summer-weekday, fall-weekend, 
or fall-weekday). Each random absence point was assigned a date that matched that of an actual 
bear location and was given a corresponding N value. 
 
Disturbance indices were artificially inflated at large values of N, so average daily vehicle counts 
were rescaled from 0 to 100 by dividing absolute counts by a constant. For bear GPS locations 
and random absence points that occurred during trail, road, or facility closure dates, N was equal 
to 0. For bear locations or absence points that overlapped directly with a human-use feature, D 
was set equal to 1.  
 
In calculating disturbance indices, I capped D at a maximum of 500 m. When bears were greater 
than 500 m from a human-use feature, the influence of human activity was considered to be 0. 
The reasons for this were twofold. First, locations greater than 500 m from human-use features 
were outside of the above-defined zone of influence (Ciarniello et al. 2009, Gibeau et al. 2001) 
where bear behavior is most likely to be affected by human use. Second, disturbance indices 
typically levelled off at or very close to zero at distances beyond 500 m.  
 
Bears were often within 500 m of more than one trail, road, or facility, so disturbance index 
values were also cumulative; i.e., final values of trail-related, road-related, and facilities-related 
disturbance covariates reflected the sum of the disturbance indices for each trail, road, or facility 
within 500 m of a given point.  
 
I used a Spearman’s rho (ρ) correlation analysis and analysis of variance inflation factors (VIF) 
to test for collinearity between predictor variables and between predictor variables and the 
dependent variable. VIF analysis was conducted using the ‘fmsb’ package in R (Nakazawa 
2017). For all pairwise combinations of predictor variables, ρ was less than 0.60 and the VIF was 
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less than 4.0, providing no evidence of collinearity; thus all variables were retained in candidate 
models.  
 
MODEL EVALUATION 
Based on the three approaches to estimating human disturbance covariates described above, I 
constructed three sets of RSF models. The first set of models used distance to nearest trail, 
distance to nearest road, and distance to nearest facility as the three human disturbance 
covariates. I termed these RSF models “distance-proxy models.” In the second set of RSF 
models, termed “mixed-proxy models,” the three human disturbance covariates were distance to 
nearest high-use trail, distance to nearest high-use road, and distance to nearest high-use facility. 
The third set of RSF models, or “disturbance index models,” used the trail-related disturbance 
index, road-related disturbance index, and facilities-related disturbance index as human 
disturbance covariates. All combinations of environmental predictor variables were included in 
each set of RSF models. Separate models were constructed for the full home range and front-
country home range. 
 
Model selection 
Within each set of models, I used the Akaike Information Criterion for small sample sizes 
(AICc) to select the model that best fit the data. That is, I used AICc to select the top model 
among distance-proxy RSF models, the top model among mixed-proxy RSF models, and the top 
model among disturbance-index RSF models, for both the full home range scale and the front-
country home range scale. This resulted in three top candidate models at each spatial scale (Table 
1). I then compared the AICc scores of these three top models to determine which model type 
(distance-proxy, mixed-proxy, or disturbance-index) best fit the data overall. I conducted an 
analysis of deviance to ensure that final candidate models retained only those environmental and 
human disturbance covariates that contributed significantly to the variation in bear presence. 
Starting from a full model that included all predictor variables, I performed backward 
elimination procedures to exclude those covariates that did not contribute significantly (p ≥ 0.05) 
to the explained deviance. I estimated coefficients for all covariates retained in the top models 
selected by AICc (Table 2). 
 
Model prediction 
While AIC assists in selecting the model that best fits the data, it provides little insight into the 
degree to which model predictions correspond to actual habitat use. That is, if all candidate 
models poorly predict actual bear habitat selection, AIC will simply select the best model among 
these poor candidates. Therefore, I used k-folds cross validation to assess the predictive accuracy 
of the top distance-proxy, mixed-proxy, and disturbance-index models identified by AICc at each 
spatial scale (Boyce et al. 2002). Because grizzly bear GPS locations fit a presence/available 
(use-versus-availability) design, rather than a presence/absence design, other methods commonly 
used to assess predictions of logistic regression models (e.g., classification tables, confusion 
matrices, receiving operating characteristics) were not appropriate (Boyce et al. 2002). 
 
I followed Huberty’s (1994) rule of thumb to partition the data in each of the top models into five 
groups, with an equal number of data points in each group. I trained each model iteratively on 
four of the five data sets, with the fifth data set serving as a test group. I first used each best-fit 
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model to predict the RSF scores for the training data. Predicted RSF scores represented the 
probability of grizzly bear presence on a scale from 0 to 1. In a good model, it would be expected 
that low predicted RSF scores would be associated with absence points, and high scores with 
presence points. I binned the predicted RSF scores into ten geometric interval bins scaled 
between the minimum and maximum scores for each model; these bins represented the range of 
RSF scores available on the landscape. Next, I used the training model to predict RSF scores for 
presence locations only in the testing data set. Thus, each presence-only cross-validation point 
was assigned a predicted RSF score. I calculated the proportion of cross-validation use points 
that fell into each of the ten RSF bins (Fig. 2, 3), and I computed the Spearman’s rank correlation 
(ρ) between the proportion of cross-validation points within individual bins and the bin rank 
(Table 3). A strong positive correlation would indicate a model with good predictive 
performance, as more presence points would fall into higher RSF bins. I repeated this process for 
all training and test groups and each of the six top models. I compared the average Spearman’s ρ 
for the top distance-proxy, mixed-proxy, and disturbance-index model at each spatial scale to 
determine which model best predicted bears’ habitat selection within both their full home ranges 
and within the front country.  
 
Results 
 
Mean home range size for the five female grizzly bears monitored was 102.9 ± 38.1 km2 (range: 
57.3 – 148.1 km2). Mean front-country home range size for these animals was 21.7 ± 5.1 km2 
(range: 16.1 – 28.6 km2). 
  
HABITAT SELECTION IN THE FULL HOME RANGE  
All three top models (distance-proxy, mixed-proxy, and disturbance-index) included all predictor 
variables except elevation, which was excluded based on results of analysis of deviance (Table 
1). All top models indicated that bears selected for higher greenness and higher edge density, and 
that they selected against steep slopes and forested habitat (Table 2a). The top distance-proxy 
and mixed-proxy models also suggested bears selected areas further from roads and closer to 
trails and facilities (Table 2a).  
 
The top mixed-proxy model had the lowest AICc score. The top distance-proxy model also 
received some weight, but the mixed-proxy model was nearly four times as likely to be the best 
fit model (Table 1). Cross-validation indicated that the mixed-proxy model also had the best 
predictive accuracy at the full home range scale, although all three top models (distance-proxy, 
mixed-proxy, and disturbance-index) displayed significant positive Spearman-rank correlations 
across RSF bins (Table 3a, Fig. 2), suggesting all models predicted actual bear habitat selection 
relatively well. The mixed-proxy model was slightly more significant overall, however, and this 
model also showed the most consistency between k-folded sets (Table 3a, Fig. 2).  
 
HABITAT SELECTION IN THE FRONT COUNTRY  
Analysis of deviance excluded elevation, slope, and edge density from all three model types 
(distance-proxy, mixed-proxy, disturbance-index); all other predictor variables were retained 
(Table 1). All top models indicated that bears selected for areas of higher greenness and for grass 
and shrub habitat, and that bears avoided roads and/or road-related disturbance in the front 
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country (Table 2b). The top distance-proxy and mixed-proxy models also suggested bears 
selected for areas closer to facilities (Table 2b).  
 
The disturbance-index model was the best model overall, in terms of both fit and predictive 
accuracy. This model had the lowest AICc score and was the only model to receive weight 
(Table 1). It also displayed the most significant positive average Spearman rank correlations 
across RSF bins (Table 3b, Fig. 3) and showed the strongest differentiation between low, middle 
and high RSF bins (Fig. 3).  
 
The average Spearman rank correlation for the top distance-proxy model was not significant 
(Table 3b, Fig. 3), suggesting this model did not predict bear habitat selection well in the front 
country. For the mixed-proxy model, the average Spearman rank correlation was significant, but 
there was high variation between k-folded sets, and correlations were not significant for three 
individual sets (Table 3b). Both the mixed-proxy and distance-proxy models poorly 
discriminated the proportion of grizzly bear presence points in the middle RSF bins (Fig. 3).  
 
Discussion 
 
Differentiation of human use levels improved the success of RSF models in predicting grizzly 
bear occurrence. For full home ranges of study animals, the best model fit and predictive 
accuracy was demonstrated by the mixed-proxy model. Even though the spatial extent of bear-
human overlap was limited at this broader scale, this result indicates that rough approximations 
of human use intensity (i.e., high versus low use) nonetheless improved predictions of grizzly 
bear habitat selection. Within the front country, the disturbance-index model was the best 
predictor of bear presence, suggesting that when overlap between people and bears was high, 
bear habitat selection was more heavily influenced by the dynamics of human activity. These 
results are consistent with analyses of fine-scale responses of wolves (Canis lupus) and elk 
(Cervus canadensis) to human activity on trails and roads in Banff National Park, which showed 
that wolf and elk space use were best predicted by models that included an interaction between 
distance to anthropogenic feature and numbers of people or vehicles using that feature (Rogala et 
al. 2011).   
 
Although all three top models performed well at the full home range scale (Table 3; Fig. 2), this 
was not the case for the front country (Fig. 3), where proxy-based models were relatively poor 
predictors of bear habitat selection. This is likely because the two proxy-based models did not 
adequately account for the dynamics of human activity, which appeared to have a greater effect 
on bear behavior in the front country. Habitat and terrain are also more uniform in the front 
country, and therefore proxy models may not have distinguished as clearly between used and 
available locations based primarily on environmental covariates. Bears’ full home ranges, in 
contrast, contained more diverse values for environmental variables, such as sizeable barren 
areas above tree-line that are not found in valley bottoms.  
 
INTERPRETING BEAR BEHAVIOR 
For front-country habitat in which bears were more likely to encounter humans, the disturbance-
index model allows a more nuanced interpretation of bear behavior. For example, this model 
indicated that bears neither avoided nor selected for facilities-related disturbance, while the two 
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proxy-based models suggested that bears selected for areas near facilities (Table 2b). In contrast 
to the proxy models, the disturbance-index model accounted for variability in human use levels 
among different facilities, on different days of the week, and across different seasons. Thus the 
disturbance-index model could discriminate between bear selection for a given location (such as 
areas near facilities), versus bear selection for disturbance levels at that location. The results of 
this model can be interpreted in two ways. First, bears may have responded to spatial differences 
in human use, avoiding the highest-use facilities in the study area and using areas closer to less-
busy facilities. Second, bears may have responded to temporal variation in activity at facilities, 
selecting for areas closer to facilities on weekdays or during the fall, when human use lower. 
Habitats close to facilities provide key food resources for bears in the study area, and the 
disturbance-index model suggests that bears may balance these benefits against potential costs of 
proximity to human activity by using facility-adjacent areas when and where human use is lower. 
In fact, previous analyses (Chapter 1) showed that bears selected for human use associated with 
facilities in the fall, when human activity was lower and seasonal bear foods were available, but 
bears avoided facilities in the summer, when human activity was very high. Because the 
distance-proxy and mixed-proxy models did not rigorously quantify the dynamics of human use, 
they do not allow for an interpretation that bears may optimize their behavior when in areas of 
high human activity. Instead, they appeared to overemphasize bear selection for areas near 
facilities in the fall months.  
 
IMPLICATIONS FOR MODELING IMPACTS OF HUMAN ACTIVITY 
Grizzly bears and many other wildlife species respond to human activity in ways that resemble 
the responses of prey species to predators (Frid and Dill 2002, Ordiz et al. 2011, Oriol-Cotterill 
et al. 2015a). Studies of predator-prey interactions typically examine variation in both the density 
and the distribution of the predators, and in this paper, I attempted to quantify human activity 
with similar rigor. My human disturbance index was derived from a simple model of predation 
risk, which assumes that behavioral changes among prey are a function of both the number of 
and distance to predators (or recreationists, in this case) (Beale and Monaghan 2004). In this 
way, my disturbance-index models treat humans as just one more species on the landscape. This 
conceptualization may be particularly apt when the presence of people in wildlife habitat is 
regular, long-term, and spatially widespread. Such steady human activity can occur in a variety 
of contexts, e.g., in protected areas that allow extensive recreation; in and around settlements 
built within wildlife habitat (Llaneza et al. 2012); in former wildlife habitat that animals have 
recolonized, including urban areas (Magle et al. 2016, Northrup et al. 2012, Poessel et al. 2016); 
and in multiple-use landscapes where people engage in subsistence practices such as grazing 
livestock and gathering timber and non-timber forest products (Carter et al. 2012). The superior 
performance of disturbance-index models in the front country suggests that when human-wildlife 
overlap is high, application of tools from community ecology could improve insights into human 
impacts on wildlife behavior.  
 
The results of this study also highlight an opportunity to test the value of rigorously quantifying 
human disturbance in other contexts. In addition to the RSF models used here, occupancy models 
(MacKenzie et al. 2005) can also easily incorporate measures of human use. Moreover, telemetry 
is not required to study wildlife habitat selection in relation to people; studies based on camera 
trap images, wildlife sign and visual observations are also appropriate. Counting people can be a 
starting point for investigations of wildlife response to different types of recreation activity, such 
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as hiking versus biking (Taylor and Knight 2003), or to different types of human use, e.g., 
tourism versus subsistence harvest of forest products (Carter et al. 2012). Moreover, rigorous 
investigations of human activity and its impacts on wildlife need not be limited to quantifying 
intensity of human use. For example, proliferation of GPS technology makes it increasingly 
feasible to track human movements on a very fine scale, and a recent study incorporated this 
technology to investigate real-time changes in grizzly bear movements in response to encounters 
with hikers (Ordiz et al. 2013). 
 
Overall, I encourage a more dynamic approach to investigating the effects of human disturbance 
on wildlife species. If rigorous estimation of the intensity of human use is not possible, 
researchers can improve relevant proxies by better accounting for spatial and temporal variation 
in human activity. For example, levels of human use could be estimated for a subset of sample 
localities and then combined with expert opinion to define multiple categories of human use 
intensity (e.g., low, medium, high) across a study area. Ecologists can also distinguish between 
levels of disturbance during the day versus the night and, where relevant, between different days 
of the week and seasons of the year. Although collection of detailed human use data and its 
subsequent analysis may be challenging, this theme is ripe for development of new methods and 
analytical techniques. When counting people on the landscape is feasible, doing so is a logical 
first step toward understanding wildlife responses to humans on a finer scale.   
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Tables and Figures 

Table 1. Summary of model selection statistics for resource selection function (RSF) models 
analyzing the probability of grizzly bear occurrence in relation to environmental and human 
disturbance predictor variables, at the scale of full home ranges and at the scale of front-country 
home ranges. TR denotes trails; RD denotes roads, and FAC denotes facilities. Models were 
ranked according to Akaike weights (wi) based on AICc. All full home range models had 16 
parameters, and all front-country models had 14 parameters. 

FULL HOME RANGE RSF    

Rank Model type Description AICc Δi wi 

1 Mixed-proxy 
Habitat + Greenness + Slope + Aspect + Edge Density + 
Distance.High.TR + Distance.High.RD + 
Distance.High.FAC  

7766.4 0 0.79 

2 Distance-
proxy 

Habitat + Greenness + Slope + Aspect + Edge Density + 
Distance.TR + Distance.RD + Distance.FAC 7768.9 2.5 0.21 

3 Disturbance-
index 

Habitat + Greenness + Slope + Aspect + Edge Density + 
Disturbance.TR + Disturbance.RD + Disturbance.FAC 7809.4 43.0 0 

 
FRONT-COUNTRY HOME RANGE RSF 

Rank Model type Description AICc Δi wi 

1 Disturbance-
index 

Habitat + Greenness + Aspect + Disturbance.TR + 
Disturbance.RD + Disturbance.FAC  4519.9 0 1.00 

2 Mixed-proxy Habitat + Greenness + Aspect + Distance.High.TR + 
Distance.High.RD + Distance.High.FAC  4535.6 15.7 0 

3 Distance-proxy Habitat + Greenness + Aspect + Distance.TR + 
Distance.RD + Distance.FAC 4542.2 22.3 0 
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Table 2a. Model coefficients, z-scores, and p-values for significant variables in the top distance-
proxy, mixed-proxy, and disturbance-index resource selection function (RSF) models of grizzly 
bear habitat selection within the full home ranges of study animals. 

DISTANCE-PROXY RSF     

Variable Estimate Standard Error z-score p-value 

Landcover: Forest -0.815 0.106 -7.675 <0.001 

Slope  -0.018 0.003 -5.791 <0.001 

Edge density 3.47 x 10-3 4.01 x 10-4 8.665 <0.001 

Greenness 0.015 2.65 x 10-3 5.792 <0.001 

Distance.TR -5.38 x 10-5 1.47 x 10-5 -3.665 <0.001 

Distance.RD 6.65 x 10-5 2.21 x 10-5 3.003 0.003 

Distance.FAC -3.77 x 10-5 1.23 x 10-5 -3.072 0.002 
   
MIXED-PROXY RSF  

Variable Estimate Standard Error z-score p-value 

Landcover: Forest -0.818 0.106 -7.699 <0.001 

Slope  -0.018 0.003 -5.683 <0.001 

Edge density 3.45 x 10-3 4.00 x 10-4 8.623 <0.001 

Greenness 0.015 2.65 x 10-3 5.837 <0.001 

Distance.High.TR -4.12 x 10-5 1.13 x 10-5 -3.653 <0.001 

Distance.High.RD 5.95 x 10-5 2.18 x 10-5 2.724 0.006 

Distance.High.FAC -4.65 x 10-5 1.18 x 10-5 -3.932 <0.001 
   
DISTURBANCE-INDEX RSF 

Variable Estimate Standard Error z-score p-value 

Landcover: Forest -0.798 0.104 -7.664 <0.001 

Slope  -0.022 0.003 -6.905 <0.001 

Edge density 3.16 x 10-3 3.98 x 10-4 7.948 <0.001 

Greenness 0.015 2.65 x 10-3 5.692 <0.001 
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Table 2b. Model coefficients, z-scores, and p-values for significant variables in the top distance-
proxy, mixed-proxy, and disturbance-index resource selection function (RSF) models of grizzly 
bear habitat use within the front-country. 

DISTANCE-PROXY RSF     

Variable Estimate Standard Error z-score p-value 

Landcover: Grass 0.498 0.223 2.235 0.025 

Landcover: Shrub 0.473 0.213 2.219 0.027 

Greenness 0.017 4.59 x 10-3 2.561 0.010 

Distance.RD 2.41 x 10-4 7.80 x 10-5 3.085 0.002 

Distance.FAC -7.16 x 10-5 2.26 x 10-5 -3.174 0.002 
 
MIXED-PROXY RSF  

Variable Estimate Standard Error z-score p-value 

Landcover: Grass 0.490 0.223 2.198 0.028 

Landcover: Shrub 0.469 0.213 2.199 0.028 

Greenness 0.015 4.57 x 10-3 2.505 0.012 

Distance.High.RD 2.39 x 10-4 7.83 x 10-5 3.047 0.002 

Distance.High.FAC -7.15 x 10-5 2.19 x 10-5 -3.264 0.001 
 
DISTURBANCE-INDEX RSF 

Variable Estimate Standard Error z-score p-value 

Landcover: Grass 0.726 0.226 3.217 0.001 

Landcover: Shrub  0.671 0.210 3.191 0.001 

Greenness 9.41 x 10-3 4.57 x 10-3 2.060 0.039 

Disturbance.RD -0.597 0.140 -4.248 <0.001 
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Table 3a. Cross-validated Spearman rank correlations (ρ) between resource selection function 
(RSF) bin ranks and proportions of cross-validated use locations for individual and average 
model sets, for full home ranges of study bears. Results are presented by model type: distance-
proxy, mixed-proxy, and disturbance-index. 

Set Distance-proxy RSF Mixed-proxy RSF Disturbance-index RSF 

 ρ p-value ρ p-value ρ p-value 

1 0.867 0.001 0.855 0.001 0.784 0.007 
2 0.900 <0.001 0.964 <0.001 0.840 0.002 
3 0.855 0.001 0.915 <0.001 0.827 0.003 
4 0.967 <0.001 0.936 <0.001 0.806 0.004 
5 0.855 0.001 0.976 <0.001 0.830 0.003 

Average 0.988 <0.001 0.999 <0.001 0.964 <0.001 
 

 

Table 3b. Cross-validated Spearman rank correlations (ρ) between resource selection function 
(RSF) bin ranks and proportions of cross-validated use locations for individual and average 
model sets, for front-country home ranges of study bears. Results are presented by model type: 
distance-proxy, mixed-proxy, and disturbance-index. 
Set Distance-proxy RSF Mixed-proxy RSF Disturbance-index RSF 
 ρ p-value ρ p-value ρ p-value 

1 0.689 0.028 0.259 0.469 0.851 0.002 
2 0.772 0.009 0.634 0.049 0.875 <0.001 
3 0.245 0.496 0.626 0.053 0.978 <0.001 
4 0.665 0.036 0.729 0.017 0.821 0.004 
5 0.098 0.789 0.394 0.260 0.867 0.001 

Average 0.515 0.128 0.709 0.022 0.964 <0.001 
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Fig 1. Map of front-country disturbance indices for trails, roads, and facilities for weekends 
during the fall (1 Sept – 31 Oct), for the southern portion of the study area. GPS locations for 
grizzly bears (Ursus arctos) are also from fall weekends. For map display purposes, individual 
disturbance indices for trails, roads and facilities were re-scaled from 0-1 and overlaid to show a 
composite index. In disturbance-index RSF models, however, trail-related, road-related, and 
facilities-related disturbance indices were included as separate covariates, because response of 
bears to human activity may differ depending on type of human-use feature.   
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Fig. 2. Frequency of categories (bins) of resource selection function (RSF) scores for withheld use 
locations (i.e., testing data) of grizzly bears, for the top RSF models of bear habitat selection at the scale 
of full home ranges. (A) depicts the top distance-proxy model; (B) depicts the top mixed-proxy model, 
and (C) depicts the top disturbance-index model. Mean (±/S.D.) frequency values by RSF-score bin are 
illustrated. Spearman rank correlations for mean frequency values by bins indicated that all models were 
good predictors of cross-validated use locations, with the mixed-proxy model having the highest 
correlation (ρ = 0.999, p <0.001).  
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Fig. 3. Frequency of categories (bins) of resource selection function (RSF) scores for withheld use 
locations (i.e., testing data) of grizzly bears, for the top RSF models describing bear habitat selection 
within the front country. (A) depicts the top distance-proxy model; (B) depicts the top mixed-proxy 
model, and (C) depicts the top disturbance-index model. Mean (±/S.D.) frequency values by RSF-score 
bin are illustrated. Spearman rank correlations for mean frequency values by bins indicated that the 
disturbance-index model had the highest correlation (ρ = 0.964, p <0.001) and best predicted cross-
validated use locations. The mixed-proxy model was also significant (ρ = 0.709, p = 0.022), while the 
distance-proxy model was not (ρ = 0.515, p = 0.128). 
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4. Spatial and temporal displacement of large mammals by recreationists and 
domestic dogs in the Bow Valley, Alberta 
 
Summary 
 
Public demand for outdoor recreation is a key contributor to increased human activity at the 
boundaries of North American protected areas. However, the impacts of recreation on wildlife 
remain unclear. In this study, I assessed whether non-consumptive, non-motorized recreation 
influenced diel activity patterns and space use of large mammals in the Bow Valley, Alberta, 
Canada, along the edges of Banff National Park, a neighboring provincial park, and the town of 
Canmore. I used camera trap data to quantify spatiotemporal patterns of wildlife, human, and 
domestic dog detections at 66 locations monitored over a 20-month period. To test for temporal 
displacement of large mammals by recreationists, I compared activity patterns of study species 
on wildlife versus human trails. I also developed models predicting the probability that study 
species were photographed during daily periods of high human activity. Coyotes were less active 
during the day on trails used by humans, and probability of daytime detection of most study 
species declined with increasing intensity of recreation, proximity to human infrastructure, or 
density of human infrastructure. To test for spatial displacement of wildlife, I modeled the 
probability that study species would be detected at camera sites on any given day as a function of 
numbers of recreationists and domestic dogs, density of or proximity to human infrastructure, 
and habitat characteristics. I also modeled the relative intensity of wildlife use of camera sites in 
relation to these parameters. Off-leash dogs were negatively associated with habitat use of black 
bears, elk, mule deer and white-tailed deer, and hikers were negatively associated with habitat 
use of cougars and white-tailed deer. My results provide evidence for stand-alone effects of 
recreation on spatiotemporal activity of large mammals. However, managers should also 
consider the combined impacts of outdoor recreation, expanding residential development and 
increasing vehicle traffic on patterns of wildlife occurrence at protected area boundaries.  
 
Keywords: recreation, protected areas, large mammals, camera trap, habitat use, diel activity 
patterns 
 
Introduction 
 
Increased human population density has been documented at the edges of protected areas (PAs) 
around the world (Brambilla and Ronchi 2016, Radeloff et al. 2010, Wittemyer et al. 2008), with 
concomitant declines in biodiversity and connectivity of wildlife habitat (Wade and Theobald 
2010, Wood et al. 2015). In Western Europe and North America, residential development near 
PAs has been driven primarily by access to scenic open space and outdoor recreation 
opportunities (Gimmi et al. 2011, Kramer and Doran 2010). While outdoor recreation 
experiences may increase public support for conservation (Zaradic et al. 2009), a recent review 
found frequent negative impacts of non-consumptive, non-motorized recreation on wildlife 
behavior, physiology, and fitness (Larson et al. 2016), suggesting recreation may be limit the 
occurrence of wildlife in PA buffer zones. Moreover, if recreation is associated with growing 
residential areas and management resources are limited, recreation at PA edges may be more 
intensive, more dispersed, and less well-regulated than recreation within PAs, potentially 
increasing the likelihood of negative effects on wildlife. 
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Nonetheless, the evidence for displacement of wild animals by recreationists remains mixed, 
with relatively few studies conducted explicitly to examine this issue (Larson et al. 2016). In the 
case of large-bodied mammals, species and individuals often differ in their tolerance of human 
activity (Frid and Dill 2002). Working in southern Alberta, Canada, Muhly et al. (2011) found 
that large mammalian carnivores were displaced from trails used by greater than three 
recreationists per day, while ungulates were tolerant of recreation levels nearly ten times higher. 
Two studies of mammalian meso-carnivores in California PAs suggested that coyotes (Canis 
latrans) and bobcats (Lynx rufus) avoided non-motorized human activity on trails both spatially 
and temporally (George and Crooks 2006, Reed and Merenlender 2008), but mule deer 
(Odocoileus hemionus) adjusted their behavior only temporally (George and Crooks 2006). More 
recently, two large-scale, multi-species occupancy studies found few associations between non-
motorized recreation and space use or diel activity of large mammals, suggesting instead that 
habitat variables were most important in predicting wildlife occurrence (Kays et al. 2017, Reilly 
et al. 2017). Wildlife spatial and temporal responses to people may also be dependent on local 
context, with relevant factors including the presence of domestic dogs (Weston and Stankowich 
2014), intensity of other forms of anthropogenic activity in the area (Erb et al. 2012), and 
availability of alternative wildlife habitat (Gill et al. 2001). 
 
On the southeastern border of Banff National Park in the Canadian Rocky Mountains, 
participation in non-consumptive, non-motorized recreation is growing rapidly in association 
with expanding residential development in and around the town of Canmore (Fig. 1). This area 
provides an ideal opportunity to investigate the effects of recreation on wildlife use of critical 
habitat along PA edges. Located just 3 km from the national park boundary, Canmore is situated 
within the Bow River Valley, a wide floodplain that is a key movement corridor for large 
carnivores and ungulates traveling between Banff National Park and Kananaskis Country, a 
group of large provincial protected areas to the southeast (Fig. 1). In the early 1990s, the Alberta 
government designated formal wildlife corridors in the lands surrounding Canmore, providing 
legal recognition of the Bow Valley’s significance as an animal movement pinch-point. Since 
this time, however, the human population of Canmore has tripled, from 5,000 to nearly 18,000 
permanent and semi-permanent residents. Alongside this urban growth, a network of official and 
unofficial recreation trails has proliferated adjacent to and within animal movement corridors. 
Understanding wildlife responses to human activity on these trails on wildlife is an urgent 
conservation and management need.  
 
In this study, I analyzed camera-trap data to assess whether non-motorized recreation was 
displacing large mammals from the habitat patches and wildlife corridors remaining around the 
town of Canmore. I focused on eight species of conservation and management interest: wolves 
(Canis lupus), cougars (Puma concolor), grizzly bears (Ursus arctos), black bears (Ursus 
americanus), coyotes, elk (Cervus canadensis), white-tailed deer (Odocoileus virginianus), and 
mule deer. I used camera trap images to estimate numbers of recreationists on trails and to 
quantify spatiotemporal patterns of wildlife detections. For each study species, I assessed 
whether timing and intensity of recreation was associated with 1) changes in diel activity patterns 
(i.e., temporal displacement of wildlife) and 2) changes in habitat use (i.e., spatial displacement). 
I also quantified the influence of nearby human infrastructure and habitat characteristics on 
timing and location of wildlife occurrence. Based on previous studies, I expected wildlife 
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responses to human activity to vary by species (Crooks 2002), with large carnivores most likely 
to be negatively associated with recreationists, and ungulates most likely to be unaffected or 
positively affected by recreation activity (Kays et al. 2017, Muhly et al. 2011, Reilly et al. 2017). 
These analyses provide the first quantitative assessment of the impacts of recreation on large-
bodied mammals in the Canmore and Bow Valley area and generate new insights into 
interactions between recreation and persistence of wildlife along PA boundaries.  
 
Materials and Methods 
 
STUDY AREA 
This study was conducted in the Bow Valley, Alberta, along the boundary of Bow Valley 
Wildland Provincial Park and on adjacent, undeveloped municipal lands surrounding the town of 
Canmore (50°N, 115°W; Fig. 1). Bow Valley Wildland Provincial Park borders Banff National 
Park and is part of a larger group of provincial PAs collectively referred to as Kananaskis 
Country. Climate in the study area is continental and dry (~470mm annual precipitation), with 
relatively wetter winters than summers, and with more precipitation at higher elevations than 
valley bottoms. Vegetation types included mixed coniferous/deciduous forest stands, coniferous 
forest, open grasslands, and riparian areas along the Bow River and other watercourses in the 
valley bottom. Common tree species included lodgepole pine (Pinus contorta), white spruce 
(Picea glauca), subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea engelmannii), and 
trembling aspen (Populus tremuloides), while buffaloberry (Shepherdia canadensis) and a 
variety of willows, shrubs and grasses were common in the understory. Elevation in Bow Valley 
Wildland Park ranges from 1300 m to greater than 3000 m, though all areas surveyed in this 
study were below 1650 m. 
 
Human activity was widespread both within and immediately adjacent to the study area (Fig. 1). 
A variety of non-motorized recreation activities, particularly hiking and mountain biking, 
occurred on an extensive network of official and unofficial trails within the wildland park and on 
municipal land. Domestic dogs were allowed with hikers on all trails, although municipal and 
provincial regulations required that dogs be leashed. Recreationists included both residents of the 
town of Canmore and out-of-town visitors, with Canmore receiving greater than 4 million visits 
per year (Government of Alberta, unpublished data). The study area was adjacent to a number of 
secondary roads in the town of Canmore and was bisected by the Trans-Canada Highway 
(Highway 1), where traffic levels can exceed 25,000 vehicles per day (Rogala et al. 2011), and 
the Bow Valley Trail (Highway 1A), which is used by up to 3,300 vehicles per day (Rogala et al. 
2011).  
 
DATA COLLECTION 
Alberta Parks Ecology Department staff and volunteers deployed camera traps at 66 survey sites 
beginning in May 2015. Cameras were deployed for a two-year period and were serviced 
approximately monthly; the analyses presented here include those data collected from 
deployment through December 31, 2016. Survey locations were selected by overlaying the study 
area with a 1x1 km grid and placing one camera trap on a human or wildlife trail within each 
grid cell (Fig. 1). Camera placement within the grid cell was not random but rather occurred at a 
location thought to maximize the probability of capturing wildlife. Many human trails were 
longer than 1 km, but cameras were located on a different human trail within each grid cell 
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whenever possible. Cameras were primarily Reconyx Hyperfire and Silent Image; Reconyx 
Rapidfire and Ultrafire were also used (Reconyx Inc., Holmen, WI, USA). All cameras used no-
glow infrared technology to minimize disturbance to wildlife and make cameras less noticeable 
to people. When triggered, cameras took a burst of 5 photos, 1 second apart, with no delay 
between consecutive bursts. Cameras were placed on trees approximately 40 cm above the 
ground on human trails, and approximately 80 cm above the ground on wildlife trails. All camera 
models except Silent Image were placed inside security boxes, and cameras were locked to trees 
using steel cables. The minimum distance between cameras was 430 m.   
 
Photos and data were stored in TimeLapse2 Image Analyser (Greenberg 2016) and Microsoft 
Access, respectively. Photos of humans were permanently deleted after data entry, in accordance 
with Government of Alberta protocols. All human and wildlife images were coded as events, 
with one event consisting of all individuals captured within one minute of each other. Thus, a 
group of four hikers was entered as one event comprised of four individuals; two mule deer 
traveling together were recorded as one event comprised of two individuals. Only event data 
were used for subsequent analyses, and in the following text, “detections” refer to events, not 
individuals. Wildlife photos taken within 30 minutes of a prior detection of the same species 
were not considered independent captures and were not used in analyses (Ohashi et al. 2013, 
Wang et al. 2015). 
 
COVARIATES 
I characterized each camera site by the number of hikers, bikers, runners, on-leash dogs, and off-
leash dogs recorded on the given trail (recreation covariates); distance to urban edge, distance to 
the nearest parking lot, road density, and trail density (human infrastructure covariates); 
elevation, slope, greenness, ungulate relative abundance, enhanced vegetation index (EVI) value, 
and percent forest cover (habitat covariates); and trail type, season, and number of days each 
camera functioned per month (nuisance covariates) (Table 1). All human infrastructure and 
habitat covariates were projected in Universal Transverse Mercator, North American Datum of 
1983, Zone 11N, which was also the projection used in subsequent analyses. Hiker, biker, 
runner, and on-leash and off-leash dog events were summed for three time periods: the given day 
(e.g., May 24, 2015), the two weeks immediately prior to the given day (e.g., May 11 – 24, 
2015), and the month (e.g., May 2015). Distance from camera locations to urban edge and 
nearest parking lot were extracted in ArcMap 10.4 (Environmental Systems Research Institute 
2014) using existing anthropogenic layers maintained by Alberta Environment and Parks. I used 
the kernel density tool in ArcGIS to calculate road and trail density within 500 m, 1 km, and 2 
km radii of each camera site, and in subsequent analyses I chose the radius that minimized model 
Akaike’s Information Criterion (AIC) for each species. Due to large differences in vehicle 
traffic, the Trans-Canada Highway was assigned a weight of 10 for road density calculations, 
while all other roads were assigned a weight of 1. Elevation (m) and slope (degrees) were 
derived from a 30x30 m Digital Elevation Model (DEM). Greenness was used only in bear 
models and was estimated from a seamless greenness vegetation map generated by 
Wierzchowski (2000) on the basis of tasseled-cap transformations of spectral reflectance from 
Landsat images. Relative ungulate abundance was the total number of mule deer and white-tailed 
deer events per month, divided by the number of days the camera operated during that month; 
this covariate was used in cougar models only. EVI values were included in coyote and ungulate 
models and were obtained from MODIS data available for the southern Canadian Rocky 
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Mountains; I used the maximum EVI value recorded at each camera location during the study 
period. I calculated percent forest cover by reclassifying an existing landcover map for the study 
area as forested or not forested and using the kernel density tool in ArcMap to calculate the 
percent forest at 300 m, 500 m and 1 km radii from the camera (Wang et al. 2015). In analyses, I 
chose the radius for percent forest cover that minimized model AIC for each species. Trail type 
was human trail or wildlife trail. Season was spring (Apr – June); summer (July – Aug); fall 
(Sept – Oct); or winter (Nov – March).  
 
I standardized all continuous covariates by subtracting by the mean and dividing by the standard 
deviation (z-transformation). To test for associations between variables, I conducted an analysis 
of variance inflation factors (VIF) and correlation analyses between covariate pairs in R version 
3.3.1 (R Development Core Team 2016); VIF analysis was implemented in the ‘fsmb’ package 
(Nakazawa 2017). I discarded variables for which r > 0.60 or VIF > 3.0. On-leash dogs were 
correlated with hiker and runner events at all three temporal scales (daily, biweekly, and 
monthly; r > 0.70), and therefore on-leash dog events were excluded from subsequent analyses. 
 
TEMPORAL ANALYSES 
I used two approaches to test the influence of human activity on diel activity patterns of study 
species. First, I quantified overlap between the overall daily activity pattern of recreationists in 
the study area and the activity patterns of wildlife species on human trails and wildlife trails. 
Second, I created diel activity models to describe the probability that study species were 
photographed during daily periods of high human activity.  
 
Overlap between recreationist and wildlife activity patterns 
I used the non-parametric kernel density estimation technique described in Ridout and Linkie 
(2009) to 1) estimate the overall diel activity pattern of recreationists in the study area; 2) 
estimate the diel activity patterns of each study species on human trails and on wildlife trails; 3) 
calculate overlap between the overall recreationist activity pattern and the diel activity patterns 
of each study species on human trails, and 4) calculate overlap between the overall recreationist 
activity pattern and the diel activity patterns of each study species on wildlife trails. Ridout and 
Linkie’s technique treats the times of all camera images (i.e., capture times) as random variables 
from a continuous circular distribution. Capture times are converted to radians, and kernel 
density estimation is used to generate a probability density function that represents the activity 
pattern of a given species. A coefficient of overlap (Δ) can then be calculated to quantify the 
degree of overlap between two activity patterns. The coefficient of overlap (Δ) is the integrated 
difference between the two kernel density functions and ranges from 0 to 1, with 0 indicating no 
overlap and 1 indicating complete overlap (Ridout and Linkie 2009).  
 
I first combined all hiker, biker, and runner events at all cameras, for the entire study period. I 
used the capture times for these events to calculate an overall activity pattern for recreationists in 
the study area (Reilly et al. 2017). Next, I categorized wildlife detections by trail type, and I 
created separate probability density functions describing the activity pattern of each study 
species on human trails and on wildlife trails. All wildlife detections for the entire study period 
were used. I then calculated the coefficient of overlap, ∆�, between the activity pattern of each 
study species on human trails and the overall activity pattern of recreationists in the study area. I 
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used ∆�4, which is recommended for sample sizes > 50 (Ridout and Linkie 2009). I did the same 
for wildlife trails, calculating the overlap between the activity pattern of each study species on 
wildlife trails and the overall recreationist activity pattern. I obtained 95% confidence intervals 
for each ∆�4 estimate by generating 1,000 bootstrap samples. For each study species, I compared 
the 95% confidence interval for ∆�4 for human trails to the corresponding 95% confidence interval 
for ∆�4 for wildlife trails. I considered the difference in activity patterns to be significant if 
confidence intervals did not overlap. All statistical procedures were carried out in the R 3.3.1 
using the package ‘overlap’ (Meredith and Ridout 2017). 
 
Diel activity models 
Because recreationist activity patterns differed substantially between months of the year and 
between weekends and weekdays, I also used the kernel density estimation approach described 
above to estimate separate weekend and weekday probability density functions for recreationist 
activity for each month in the study period. I first combined hiker, biker, and runner events at all 
cameras. I then categorized these events by year, month, and day of the week (weekend or 
weekday), resulting in 40 separate probability density functions describing recreationist activity 
(i.e., one activity pattern for May 2015 weekdays, one for May 2015 weekends, etc.). For each 
probability density function, I considered the time interval that corresponded to 40% of 
recreationist detections on either side of the mean (analogous to an 80% confidence interval) to 
be the high human activity period for the day. I classified wildlife detections that occurred during 
this high human activity period with a “1”, and those that occurred outside of this period with a 
“0”, for the appropriate month and day of the week. I used Generalized Linear Mixed Models 
(GLMMs) to predict the probability of species’ detection during high human activity periods as a 
function of recreation covariates, human infrastructure covariates, trail type, and season (Table 
1). GLMMs had a binomial error structure (0/1) and used the logit link function; separate models 
were constructed for each study species. Camera was included as a random effect, and hours of 
daylight was included as an offset. Starting with a null model with no predictor variables, I used 
forward stepwise procedures to include only those covariates and interactions that contributed to 
the explained deviance (p < 0.05). To test whether species responded to current versus past levels 
of recreationist activity, I compared models that included hiker, biker, runner, and off-leash dog 
events on the day that the wildlife detection occurred to models that summed these events over 
the two weeks prior to the given detection. I then chose the time period (one day or two weeks) 
that minimized model AIC. Final candidate models included only significant covariates, and AIC 
was used to select the top model. Analyses were carried out in the ‘overlap’ (Meredith and 
Ridout 2017) and ‘lme4’ (Bates et al. 2017) packages in R 3.3.1. 
 
SPATIAL ANALYSES 
To quantify habitat use of study species, I constructed daily occurrence models to evaluate the 
probability that species would be detected at camera sites on a given day, and I created visit 
frequency (VF) models (Kays et al. 2017) to assess relative intensity of wildlife use of surveyed 
locations. 
 
Daily occurrence models 
Daily occurrence models predicted the probability of detecting each study species on a given day 
as a function of recreation covariates, human infrastructure covariates, habitat covariates, trail 
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type and season (Table 1). Models were GLMMs with a binomial response and logit link 
function, and camera was included as a random effect. For each study species and for each day 
that cameras operated, I recorded a “1” if the species was detected that day, and a “0” if the 
species was not detected. As for diel activity models, I compared the AIC of models that 
included the total hiker, biker, runner, and off-leash dog events for the given day, against the 
AIC of models that included the total recreationist and off-leash dog events over the previous 
two-week period. Separate models were created for each species, and I used forward stepwise 
procedures to retain only significant variables in final candidate models. AIC was used to select 
the top model. Analyses were carried out in the ‘lme4’ (Bates et al. 2017) package in R 3.3.1. 
 
Visit frequency models 
While daily occurrence models predicted the probability of detecting a species on a particular 
day, VF models quantified the intensity with which study species used a given camera location 
over the course of a month. I considered that concordance between these two types of models 
would bolster study results. For each study species, I totaled the number of detections per month 
at each camera; this was the monthly visit frequency (VF) for each species. I also summed all 
hiker, biker, runner, and off-leash dog events at each camera for each month. I used GLMMs 
with a Poisson response and log link to model the monthly VF of each species as a function of 
recreation, human infrastructure, habitat, and nuisance covariates (Table 1). The number of days 
that each camera functioned during the given month was included as an offset, and camera was a 
random effect. As described above, I used forward stepwise procedures to retain only those 
covariates that significantly contributed to the explained deviance, and I used AIC to select the 
top model. I checked for over-dispersion by assessing the residual deviance against the residual 
degrees of freedom. For mule deer and white-tailed deer, the residual deviance was more than 
twice the residual degrees of freedom and therefore the monthly number of detections of each of 
these species was treated as a negative binomial response rather than a Poisson response. 
Analyses were carried out in the ‘lme4’ (Bates et al. 2017) package in R 3.3.1. 
 
Results 
 
Thirty-three wildlife trails and 33 human trails were surveyed for a total of 36,145 camera days, 
capturing 116,266 independent images of people and 6,948 images of the eight study species 
(Table 2). On average, cameras were functional for 93.7 ± 8.4% of days deployed. Hikers, 
bikers, and runners comprised greater than 96% of human detections (Table 2); other types of 
non-motorized recreation included climbing, horseback riding, skiing, and snowshoeing. Hiker, 
biker, runner, and off-leash dog activity varied substantially in space and time (Table 3).  For 
wildlife species, I considered 100 detections to be the minimum necessary to ensure model 
convergence and statistical rigor. Images of wolves and grizzly bears did not meet this threshold 
(Table 2), and therefore these species were excluded from analyses of temporal activity and 
space use. 
 
TEMPORAL ACTIVITY 
With the exception of coyotes, there were no significant differences in overlap between the 
overall activity pattern of recreationists in the study area and the activity patterns of study 
species on wildlife trails versus human trails (Table 4). Coyote overlap with the overall 
recreationist activity pattern was significantly higher on wildlife trails compared to human trails 
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(Fig. 2, Table 4). Cougars overlapped the least with human activity, while white-tailed deer and 
black bears overlapped the most (Table 4). 
 
Diel activity models indicated that probability of detecting coyotes during daily periods of high 
human activity was negatively associated with the number of hiker events and that the detecting 
probability of black bears was negatively associated with off-leash dog events (Table 5). For 
both these species, models that summed hiker and off-leash dog events over a two-week period 
had lower AIC (i.e., were more parsimonious for the given data) than models that totaled hiker 
and dog events on the given day. Recreation covariates were not significant predictors of diel 
activity of other study species.  
 
Human infrastructure covariates were negatively associated with detections of cougars, elk, and 
white-tailed deer during daily periods of high human activity, with different infrastructure 
covariates identified as significant for each of these species (Table 5). Associations between 
human infrastructure covariates and black bear activity patterns were mixed, with probability of 
daytime bear activity negatively associated with road density but positively associated with 
proximity to urban edge (Table 5). Infrastructure covariates were not significant predictors of 
diel activity of coyotes or mule deer. 
 
Consistent with the results of the overlap analysis, diel activity models suggested that coyotes 
were significantly more likely to use wildlife trails than human trails during daily periods of high 
human activity. Season was a significant determinant of timing of diel activity of black bears, 
elk, mule deer, and white-tailed deer (Table 5).  
 
SPACE USE 
Recreation covariates were significant predictors of habitat use of all study species (Table 6). In 
particular, hikers and off-leash dogs had negative impacts on several species. For black bears, 
elk, mule deer, and white-tailed deer, daily occurrence models indicated that probability of 
detection on a given day declined as off-leash dog events increased. Monthly visit frequencies 
(VF) of black bears, elk, and white-tailed deer were also negatively associated with off-leash 
dogs (Fig. 3, Table 6). Hiker events were negatively associated with daily probability of 
occurrence of both cougars and white-tailed deer and with the monthly VF of white-tailed deer 
(Fig. 3, Table 6). Coyote spatial responses to dogs and human recreationists were mixed, and 
bikers, hikers, and runners did not impact space use of black bears, elk, and mule deer (Table 6). 
For all species, daily occurrence models that included the sum of hiker, biker, runner, and off-
leash dogs events over the previous two weeks had lower AIC than models that incorporated 
events on a given day.  
 
The impact of human infrastructure covariates on daily probability of occurrence and monthly 
VF varied by species. Space use of coyotes and mule deer was positively associated with human 
infrastructure. Daily probability of coyote detection increased with increasing road density and 
decreasing distance to parking lots; coyote monthly VF also increased at higher road density 
(Table 6). Daily probability of mule deer detection increased with increasing trail densities 
(Table 6). Elk responses to human infrastructure were mixed, with daily probability of elk 
detection and elk monthly VF increasing with higher road densities but decreasing with higher 
trail densities. Trail density was negatively associated with monthly VF of cougars (Table 6; Fig. 
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3). Human infrastructure covariates were not significantly related to space use of black bears and 
white-tailed deer. 
 
Habitat covariates were significant predictors of daily occurrence and/or VF of black bears, mule 
deer, and white-tailed deer (Table 6). Black bears, cougars, and coyotes all preferred human 
trails over wildlife trails, and season was a significant predictor of daily detections and/or VF for 
all species except coyotes (Table 6). 
 
The results of the daily occurrence and VF models were generally similar, although daily 
occurrence models tended to identify a greater number of significant associations than VF 
models (Table 6). Of 31 significant variable associations, daily occurrence and VF models had 
17 variables in common. Daily occurrence models identified 12 significant associations that were 
not identified by VF models, and VF models produced 2 significant associations not identified 
by daily occurrence models. Model predictions did not contradict each other for any covariates. 
 
Discussion 
 
Recreation covariates were significant predictors of habitat use of all study species analyzed 
(Table 6). In particular, hikers and off-leash dogs appeared to have the potential to spatially 
displace wildlife from habitat patches and corridors located along the edges of several PAs and 
the town of Canmore, Alberta. In addition, either recreation or human infrastructure covariates 
were significant predictors of diel activity for all species except mule deer (Table 5). These 
results differ from those of two recent, regional-scale studies that emphasized the importance of 
environmental variables over recreation in predicting wildlife occupancy and habitat use (Kays et 
al. 2017, Reilly et al. 2017). In contrast to these studies, my analyses focused on a relatively 
small spatial area (~90 km2; Fig. 1), within which habitat variables did not vary greatly. Human 
activity dynamics were clearly a more important determinant of wildlife behavior at this fine 
scale.  
 
This study also provides novel insights into the temporal scale over which wildlife adjust their 
behavior to human activity. By comparing diel activity and daily occurrence models that 
included daily versus biweekly numbers of recreationists, I found strong evidence that animals 
responded to recreation over extended periods (e.g., two weeks), rather than simply real-time 
(daily) human use.  
 
SPATIOTEMPORAL RESPONSES TO HUMAN ACTIVITY 
Of the species considered, coyotes exhibited the strongest temporal response to human activity. 
Spatial responses of coyotes were also strong, with models of space use identifying more 
significant associations with human activity covariates for coyotes than for any other study 
species. Both daily occurrence and VF models identified only positive associations between 
coyotes and human infrastructure, a finding that is consistent with other studies documenting 
increases in coyote occurrence with greater proximity to and intensity of urbanization (Ordeñana 
et al. 2010). VF models also identified positive relationships between coyotes and recreation 
covariates, although daily occurrence models suggested a mix of positive and negative 
associations between coyote space use and recreation activity. This result contradicts those of 
George and Crooks (2006) and Reed and Merenlender (2008), both of which reported spatial 
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displacement of coyotes by recreationists. However, other studies have demonstrated increases in 
coyote occurrence on hiking trails, even when human use is high (Kays et al. 2017), or no 
relationship between coyote space use and recreation (Reilly et al. 2017). Previous research has 
found that coyotes are able to persist in areas of high human activity by shifting their temporal 
activity, rather than their spatial habitat use (Kays et al. 2017, Reilly et al. 2017, Tigas et al. 
2002), and in this study, coyotes were the only species to significantly decrease their daytime 
activity on human trails compared to wildlife trails that had no recreation.  
 
The impacts of recreation on temporal activity of other study species were less clear. Although 
the activity patterns of cougars, elk, mule deer, and white-tailed deer on human trails overlapped 
less with the overall pattern of recreationist activity, compared to activity patterns of these 
species on wildlife trails (Table 4; Fig. 2), these differences were not statistically significant. 
Cougars in this study were primarily nocturnal, and ungulates were crepuscular (Fig. 2). This 
may have limited their baseline level of overlap with the peak hours of human activity, perhaps 
making strong activity shifts unnecessary. Temporal overlap between black bears and 
recreationists was relatively high, but black bears likely foraged on berries throughout the day 
and night during the summer (Nelson et al. 1983), and berries were abundant on human-use trails 
in the study area. Nonetheless, for all study species except mule deer, diel activity models 
identified at least one negative relationship between recreation or human infrastructure 
covariates and probability of wildlife detection during daily periods of high human activity. 
 
Daily occurrence and VF models provided clear evidence of the negative impacts of off-leash 
dogs on space use of black bears and all three ungulate study species. Indeed, off-leash dogs had 
the most consistently negative influence on wildlife space use of any recreation covariate (Table 
6). Relatively few studies of the effects of human disturbance on wildlife explicitly consider 
domestic dogs (Weston and Stankowich 2014), although dogs on hiking trails have been 
implicated in declines of bighorn sheep (Ovis canadensis) in the southwestern United States 
(Krausman et al. 1995). In addition to spatially displacing wildlife, dogs may affect animals’ 
physiology and energy expenditures by raising stress levels or increasing flight distances 
(Martinetto and Cugnasse 2001, Pelletier 2006). Off-leash dogs move unpredictably and can 
chase animals, which may lead to ‘sensitization’ of wildlife and increased intensity of responses 
like avoidance, flight, or stress (Glover et al. 2011, Weston and Stankowich 2014). Surprisingly, 
off-leash dogs did not appear to negatively impact space use of cougars or coyotes in the study 
area. These two species may be less likely to perceive dogs as a potential predator, although 
cougar occurrence has been negatively associated with domestic dogs in northern California 
(Reilly et al. 2017). 
 
In contrast to off-leash dogs, human recreationists on trails and human infrastructure did not 
elicit negative spatial responses in most study species. Human presence is pervasive in the Bow 
Valley near Canmore, and all study species were likely habituated to people to some degree, 
perhaps allowing them to use suitable habitats close to town that their wilderness counterparts 
would avoid (Papouchis et al. 2001). Nonetheless, habitat use of cougars and white-tailed deer 
was negatively impacted by either hikers or increasing trail density in both daily occurrence and 
VF models, suggesting these two species are susceptible to spatial displacement by people on 
trails. This result was somewhat unexpected for white-tailed deer, but it was not surprising for 
cougars, which are known to be sensitive to human activity (Dickson and Beier 2002, Dickson et 
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al. 2005). Even though cougars, black bears, and coyotes all preferred human trails to wildlife 
trails, cougars avoided human trails when hiker numbers or overall density of human trails was 
high. These three carnivore species likely selected human trails not because of any attraction to 
people, but because human trails were wider and less obstructed than wildlife trails, thereby 
facilitating movement for hunting and traveling (Harmsen et al. 2010). 

 
STUDY LIMITATIONS 
My spatial analyses did not account for imperfect detection of study species at camera trap 
locations, which could have biased estimates of wildlife space use in relation to human activity 
(Gu and Swihart 2004). While occupancy models (MacKenzie et al. 2002, MacKenzie et al. 
2005) could have addressed this issue, I chose not to use an occupancy approach, due to the 
limited capacity of occupancy models to include temporal variability in covariates predicting 
wildlife space use. Because the cameras used in this study functioned for an extended time 
period, the resulting dataset captured significant daily, weekly, and seasonal differences in 
recreation levels at camera locations. I expected that this temporal variation in human activity 
would influence both the probability that study species used camera locations and the probability 
that species were detected at cameras. However, occupancy models can only incorporate 
temporal variation into covariates predicting the probability of detecting study species, while 
covariates for habitat use or occupancy must remain constant at each site over the course of a 
sampling season. I concluded that for this study, using constant values for recreation-related 
occupancy covariates risked obscuring the effects of finer-scale temporal dynamics of human 
activity on wildlife habitat use. Revealingly, my daily occurrence models, which accounted for 
day-to-day variation in recreation levels, identified seven more significant relationships between 
wildlife occurrence and recreation covariates than did VF models, which summed hikers, bikers, 
runners, and off-leash dogs for a given month, thereby masking finer-scale temporal variability 
in human activity.  
 
I attempted to minimize the uncertainty caused by imperfect detection by developing two 
different spatial models, the results of which were largely concordant. Kays et al. (2017) also 
found that VF models produced similar results to occupancy models that accounted for 
detectability. Moreover, detection rates in this study were likely high and consistent across 
camera survey sites. All study species were large-bodied; all cameras were Reconyx brand, 
programmed identically, and placed set at standardized heights and distances from trails; 
vegetative cover was similar across camera locations; bait was not used; and the “sites” that I 
was interested in included only the area within the immediate vicinity of each camera, i.e., sites 
were equivalent to the range of the camera, and not further. Variables that are often included as 
detection covariates in occupancy models, such as trail type, season, and effort, were included as 
predictors in my spatial analyses. 
 
My analyses also did not address potential spatial dependence between cameras. However, the 
minimum distance between cameras was consistent with other, similar studies of recreation and 
human development impacts on large mammals (e.g., Reilly et al. 2017, Wang et al. 2015). 
While typical home ranges for cougars, black bears, coyotes, and elk were as large as or larger 
than the study area, I was interested in relative habitat use by study species within this area, and 
whether variation in recreation levels drove differential space use. In addition, placement of 
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cameras on independent trails should have minimized the probability that humans would have 
visited multiple camera locations on a given day.   
 
MANAGEMENT IMPLICATIONS AND FUTURE RESEARCH 
My results suggest that hikers and, in particular, off-leash dogs are displacing some species of 
large mammals from habitat along the edges of Banff National Park, Kananaskis Country 
provincial parks, and the town of Canmore, Alberta. Land managers could reduce the impacts of 
recreation in the study area by decommissioning trails, particularly unofficial trails that have 
emerged within wildlife corridors, or by limiting the number of recreationists on trails (e.g., 
through a day-use fee system). Further, while some species of wildlife may have been habituated 
to the presence of humans, this effect did not extend to off-leash dogs, which displaced most 
study species. Since the majority of all dogs on trails in the study area were off-leash (58.2%; 
Table 2), even though leashing is required, off-leash dogs appear to pose a major management 
challenge. Compliance with leash laws could be increased by increasing enforcement effort, 
raising fines, developing outreach programs to foster leashing as a community social norm, and 
better informing the public about the detrimental effects of dogs on wildlife (Williams et al. 
2009). My analyses could not test the impacts of on-leash dogs on study species due to high 
correlations between numbers of on-leash dogs and recreationists. Managers seeking to better 
understand the relationship of dogs and wildlife should consider closing some trails entirely to 
domestic dogs, and then comparing wildlife use of dog-free areas to wildlife use of trails that 
allow domesticated canids. 
 
Wildlife species are rarely impacted by one type of human disturbance in isolation from others 
(Didham et al. 2007, Sala et al. 2000). Increased human activity in the study area occurred 
primarily in the form of outdoor recreation, residential development, and vehicle traffic. Notably, 
increases in these forms of human activity appear to be common at the edges of North American 
PAs (Gimmi et al. 2011, Kramer et al. 2010), and they are likely to be interconnected. A 
comprehensive study of threatened and endangered species in the United States identified 
outdoor recreation as a leading independent cause of species decline, but recreation was also 
highly associated with urbanization and residential development, with 39% of species 
endangered by recreation also endangered by urbanization (Czech et al. 2000). Urbanization, in 
turn, was also highly associated with the presence of roads (Czech et al. 2000). While my results 
provide evidence that recreation alone impacts wildlife, land managers should consider the 
cumulative and interacting impacts of recreation, urbanization, and vehicle traffic on wildlife in 
the study area. Notably, the two most sensitive species in this study, wolves and grizzly bears, 
were not detected with sufficient frequency to be included in analyses. These two species are 
likely already being limited by the individual or combined effects of recreation, residential 
development, and high-use roads. Moreover, the impacts of human activity on rare species 
inhabiting PA edges may not be immediate but rather become evident only after several decades 
(Wood et al. 2015), suggesting that policy makers should consider the potential for time lags and 
cumulative effects when weighing proposals for future developmentand associated recreation 
infrastructure. 
 
My analyses focused on a relatively small area of habitat at the edges of Banff National Park, 
Bow Valley Wildland Provincial Park (Kananaskis Country), and the town of Canmore. While 
recreation covariates were generally important to spatiotemporal use of the study area by large 
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mammals, these effects also clearly varied across species. It seems likely that these effects also 
vary across habitats or spatial scales, suggesting that a regional-level investigation of large 
mammal occupancy patterns across the eastern slopes of the Canadian Rocky Mountains would 
be valuable for contextualizing the results presented here. Such a study could examine the 
responses of wildlife to a variety of anthropogenic and environmental factors, with the goal of 
identifying those variables that are most important in shaping wildlife occurrence and temporal 
activity at broad versus fine spatial scales. 
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Tables and Figures 

Table 1. Covariates used in diel activity (DA), daily occurrence (DO), and visit frequency (VF) 
models. 

Category Covariate Description Model 

Recreation Hikers Total number of hiker events recorded by each 
camera on a given day (DA, DO), over the previous 
two-week period (DA, DO), and per month (VF) 

DA, DO, VF 

Recreation Bikers Total number of biker events recorded by each camera 
on a given day (DA, DO), over the previous two-week 
period (DA, DO), and per month (VF) 

DA, DO, VF 

Recreation Runners Total number of runner events recorded by each 
camera on a given day (DA, DO), over the previous 
two-week period (DA, DO), and per month (VF) 

DA, DO, VF 

Recreation Off-leash 
dogs 

Total number of off-leash dog events recorded by each 
camera on a given day (DA, DO), over the previous 
two-week period (DA, DO), and per month (VF) 

DA, DO, VF 

Human 
Infrastructure 

Dist.Urban Distance (m) from each camera to urban edge DA, DO, VF 

Human 
Infrastructure 

Dist.Parking Distance (m) from each camera to the nearest parking 
lot 

DA, DO, VF 

Human 
Infrastructure 

Road.Density Density of roads within a 500 m, 1 km, and 2 km radius 
of each camera 

DA, DO, VF 

Human 
Infrastructure 

Trail.Density Density of trails within a 500 m, 1 km, and 2 km radius 
of each camera 

DA, DO, VF 

Habitat Elevation Elevation (m) at camera location DO, VF 
Habitat Slope Slope (degrees) at camera location DO, VF 
Habitat Greenness Greenness vegetation map (Wierzchowski 2000) based 

on tasseled-cap transformations of spectral reflectance 
from Landsat images (bears only) 

DO, VF 

Habitat Ung.RAI Number of deer detections per month, divided by the 
number of days the camera operated (cougars only) 

DO, VF 

Habitat max.EVI Maximum value of the Enhanced Vegetation Index 
during the study period (coyotes, ungulates) 

DO, VF 

Habitat Percent.forest % forest within 100 m, 300 m, or 500 m radius of the 
camera 

DO, VF 

Nuisance Season Spring (Apr-June), summer (July-Aug), fall (Sept-Oct), 
winter (Nov-Mar) 

DA, DO, VF 

Nuisance Trail.type Human trail or wildlife trail DA, DO, VF 
Nuisance Effort Number of days the camera was operational each 

month 
VF 
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Table 2. Summary statistics for recreationists, domestic dogs, and wildlife study species 
captured by cameras. Events are all individuals captured within one minute of each other, and 
mean event size is the number of individuals per event. 

Species Cameras captured 
(out of 66) (%) 

Number of detections 
(events) 

 Mean event size 
± SD 

Hikers 49 (74.2%) 66,107  1.59 ± 0.52 
Bikers 38 (57.6%) 28,566  1.99 ± 0.61 
Runners 39 (56.0%) 17,053  1.48 ± 0.42 
All human trail use 55 (83.3%) 116,266  1.94 ± 0.62 
On-leash dogs 41 (62.1%) 12,473  1.12 ± 0.09 
Off-leash dogs 52 (78.8%) 17,365  1.16 ± 0.17 
Black bears 57 (86.3%) 397  1.09 ± 0.19 
Cougars 47 (71.2%) 170  1.11 ± 0.25 
Coyotes 53 (80.3%) 989  1.12 ± 0.17 
Elk 50 (75.8%) 972  1.73 ± 0.65 
Grizzly bear 20 (30.0%) 28  1.58 ± 0.47 
Mule deer 66 (100%) 1,653  1.51 ± 0.31 
White-tailed deer 65 (98.5%) 2,695  1.36 ± 0.18 
Wolf 24 (36.4%) 44  1.32 ± 0.62 
 
 
Table 3. Summary statistics for recreation covariates included in temporal and spatial analyses. 

Recreation 
covariate 

One-day average 
± SD (range) 

Two-week average 
± SD (range) 

Monthly average 
± SD (range) 

All trails    
Hikers 1.84 ± 5.13 (0 – 197) 25.99 ± 60.20 (0 – 983)  51.34 ± 109.05 (0 – 1279) 
Bikers 0.76 ± 2.89 (0 – 59) 10.80 ± 34.06 (0 – 480)  22.18 ± 69.73 (0 – 777) 
Runners 0.46 ± 1.52 (0 – 24)   6.49 ± 17.74 (0 – 164)  13.22 ± 35.64 (0 – 276)  
Off-leash dogs 0.42 ± 1.16 (0 – 17) 5.83 ± 12.47 (0 – 131) 11.16 ± 23.62 (0 – 200)  
 

Human trails     
Hikers 3.09 ± 6.62 (0 – 197)  43.81 ± 76.44 (0 – 983)  100.76 ± 137.90 (0 – 1279) 
Bikers 1.45 ± 3.91 (0 – 59)  20.58 ± 45.40 (0 – 480)  26.34 ± 47.00 (0 – 777)  
Runners 0.85 ± 2.01 (0 – 24)  12.01 ± 23.29 (0 – 164)  43.88 ± 93.86 (0 – 276)  
Off-leash dogs 0.64 ± 1.28 (0 – 17)   8.96 ± 12.63 (0 – 131)  22.03 ± 29.73 (0 – 200)  
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Table 4. Overlap (∆�4) between the overall activity pattern of recreationists in the study area and 
activity patterns of study species on wildlife trails and on human trails. The difference in overlap 
is statistically significant for coyotes (bolded row) at p < 0.05; 95% confidence intervals do not 
coincide. Wolves and grizzly bears are not included due to insufficient detections. 

Species Wildlife Trail ∆�4 (95% CI) Human Trail ∆�4 (95% CI)    Difference 
  (Human – Wildlife) 

Black bear   0.577 (0.500 – 0.654)  0.637 (0.579 – 0.695)   0.060 
Cougar   0.371 (0.248 – 0.493)  0.292 (0.223 – 0.362)  -0.079 
Coyote   0.590 (0.521 – 0.656)  0.481 (0.450 – 0.517)  -0.109 
Elk   0.505 (0.457 – 0.554)  0.466 (0.425 – 0.507)  -0.039 
Mule deer   0.561 (0.526 – 0.596)  0.542 (0.504 – 0.580)  -0.019 
White-tailed deer   0.637 (0.609 – 0.665)  0.608 (0.573 – 0.643)  -0.029 
 
 
 
Table 5. Significant variables from top diel activity models describing the probability of species’ 
detection during daily periods of high human activity as a function of recreation, human 
infrastructure and nuisance covariates (Table 1). Times of hiker, biker, and runner events were 
combined, converted to radians, and fitted with a kernel density function; “high human activity 
periods” correspond to the interval of the day that contained 40% of recreationist detections on 
either side of the mean (80% of total detections). Models were binomial Generalized Linear 
Mixed Models built separately for each species. Top models were those with the best Akaike’s 
Information Criterion (AIC); all top models had >2 units difference with other candidate models 
(Burnham and Anderson 2002). 

Species Variable Estimate SE z p 

Black bears Off-leash dogs -0.577 0.189 -3.059 0.002 
 Dist.urban -0.381 0.111 -3.440 <0.001 
 Road.density -0.315 0.139 -2.273 0.023 
 Season:spring 0.896 0.434 2.062 0.039 
Cougars Dist.urban 0.438 0.221 1.981 0.047 
Coyotes Hikers -0.300 0.127 -2.359 0.018 
 Trail.type:wildlife 0.627 0.318 1.974 0.048 
Elk Dist.parking 0.276 0.129 2.136 0.033 
 Road.density -0.203 0.098 -2.072 0.038 
 Season:winter 0.974 0.260 3.748 <0.001 
Mule deer Season:summer -0.513 0.158 -3.253 0.001 
 Season: winter 0.428 0.188 2.276 0.023 

White-tailed deer Trail.density -0.198 0.064 -3.109 0.002 
 Season:summer -0.390 0.106 -3.687 <0.001 
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Table 6. Significant variables from the top daily occurrence and visit frequency (VF) models, by species. For daily occurrence 
models, binomial Generalized Linear Mixed Models (GLMMs) were used to model the probability that a species was photographed on 
a given day at a given camera, as a function of recreation, human infrastructure, habitat, and nuisance covariates (Table1). For VF 
models, Poisson GLMMs were used, and the response variable was the total number of detections of the species per month at each 
camera. For both sets of models, camera was a random effect. Top models were those with the best Akaike’s Information Criterion 
(AIC); all top models had >2 units difference with other candidate models (Burnham and Anderson 2002). 

  Daily occurrence model Visit frequency model 

Species Variable Estimate SE z p Estimate SE z p 

Black bears Off-leash dogs -0.258 0.130 -1.988 0.047 -0.390 0.1565 -2.493 0.013 
 Greenness 0.359 0.130 2.758 0.006     
 Trail.type:wildlife -0.757 0.280 -2.707 0.007 -0.839 0.292 -2.871 0.004 
 Season:spring 1.749 0.183 9.562 <0.001     
 Season:summer 1.655 0.177 9.354 <0.001     

Cougars Hikers  -0.490 0.181 -2.703 0.007     
 Trail.type:wildlife -1.603 0.370 -4.331 <0.001 -1.166 0.300 -3.889 <0.001 
 Season:winter 

Trail.density 
0.508 0.163 3.122 0.002 0.700 

-0.353 
0.154 
0.165 

4.546 
-2.143 

<0.001 
0.032 

Coyotes Bikers 0.136 0.047 2.907 0.004     
 Hikers -0.138 0.048 -2.889 0.004     
 Runners -0.192 0.055 -3.467 <0.001     
 Off-leash dogs 0.277 0.050 5.483 <0.001 0.237 0.072 3.310 <0.001 
 Dist.parking -0.493 0.199 -2.469 0.014     
 Road.density 0.485 0.194 2.502 0.012 0.732 0.162 4.523 <0.001 
 Trail.type:wildlife -1.860 0.374 -4.975 <0.001 -1.428 0.342 -4.178 <0.001 

Elk Runners 0.179 0.075 2.387 0.017     
 Off-leash dogs -0.453 0.077 -5.920 <0.001 -0.247 0.056 -4.392 <0.001 
 Road.density 1.203 0.214 5.616 <0.001 1.126 0.213 6.150 <0.001 
 Trail.density -1.072 0.223 -4.803 <0.001 -1.050 0.225 -4.662 <0.001 
 Season:winter -1.017 0.091 -11.175 <0.001 -1.085 0.087 -12.485 <0.001 

Mule deer Off-leash dogs -0.337 0.074 -4.584 <0.001     
 Trail.density 0.342 0.143 2.398 0.016 0.269 0.121 2.231 0.026 
 Slope 0.422 0.142 2.956 0.003     
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  Daily occurrence model Visit frequency model 

Species Variable Estimate SE z p Estimate SE z p 
 Season:winter -1.106 0.070 -15.704 <0.001 -1.016 0.100 -10.115 <0.001 
 Elevation     0.504 0.121 4.154 <0.001 

White-tailed deer Bikers -0.135 0.067 -2.009 0.045     
 Hikers -0.172 0.080 -2.143 0.032 -0.263 0.109 -2.420 0.016 
 Runners 0.147 0.066 2.226 0.026     
 Off-leash dogs -0.344 0.078 -4.391 <0.001 -0.260 0.101 -2.566 0.010 
 Elevation -0.757 0.129 -5.883 <0.001 -0.579 0.117 -4.960 <0.001 
 Percent.forest 0.308 0.133 2.328 0.020     
 Season:winter -0.699 0.050 -13.860 <0.001 -0.532 0.079 -6.713 <0.001 
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Fig. 1. Map of the study area showing the locations of cameras, roads, trails, protected areas, and 
the town of Canmore and its associated development footprint. Bow Valley Wildland and 
Canmore Nordic Center Provincial Parks are part of Kananaskis Country, a 4,200 km2 protected 
area that extends to the south and east. Inset: location of Canmore in the province of Alberta, 
Canada.  
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Fig. 2. Kernel density estimates of daily activity patterns of six study species on human trails 
(blue dotted line) and wildlife trails (orange dotted line); data for grizzly bears and wolves are 
not shown due to small sample sizes. The activity pattern of recreationists is shown in gray.. 
Overlap between the overall activity pattern of recreationists in the study area and coyote activity 
patterns on human trails was significantly lower than the overlap between recreationist and 
coyote activity on wildlife trails (95% confidence intervals did not coincide). Overlap of other 
species with recreationist activity was not significantly different on human versus wildlife trails.  
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Fig. 3. Relationships between (left panels) total hiker events over the previous two weeks and 
probability of cougar and white-tailed deer detection on a given day (daily occurrence model 
results), (upper right panel) the density of human trails and monthly visit frequency (VF) of 
cougars, and (lower right panel) monthly hiker events and monthly VF of white-tailed deer (VF 
model results). Monthly VF was the number of detections of each species per month at each 
camera. The x-axis values are z-transformed; units are standard deviations above or below the 
mean, which is centered at zero. See Table 3 for mean and standard deviation of hiker events. 
Shading represents 95% confidence intervals. Confidence intervals for the cougar VF model are 
truncated due to limited detections. 
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Fig. 4. Relationships between (left panels) total off-leash dog events over the previous two 
weeks and probability of black bear, elk, mule deer, and white-tailed deer detection on a given 
day (daily occurrence model results) and (right panels) monthly off-leash dog events and 
monthly visit frequency (VF) of black bear, elk, mule deer, and white-tailed deer (VF model 
results). Monthly VF was the number of detections of each species per month at each camera. 
The x-axis values are z-transformed; units are standard deviations above or below the mean, 
which is centered at zero. See Table 3 for mean and standard deviation of off-leash dog events. 
Shading represents 95% confidence intervals. Confidence intervals for bear and elk VF models 
are truncated due to limited detections of these species.  
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5. Conclusion 
 
Key findings 
 
As human populations continue to grow, it is likely that more natural areas across the globe will 
become landscapes that are shared between wildlife and people. Large mammals inhabiting these 
landscapes must navigate the complex dynamics of human disturbance, which will be 
determined by spatial and temporal variation in density and type of human activity. Taken 
together, my studies suggest approaches for achieving a more nuanced interpretation of wildlife 
avoidance behavior in relation to human use. This dissertation is novel in its focus on areas of 
high overlap between people and wildlife, and in its rigorous quantification of the timing, 
intensity, and spatial distribution of human activity.  
 
My second and third chapters clearly demonstrate that spatiotemporal variation in levels of 
human disturbance can shape the habitat selection patterns of wildlife living in areas where 
human activity is widespread. In my first chapter, analyses showed that grizzly bears adjusted 
their behavior in response to daily, weekly, and seasonal fluctuations in recreation on roads, 
trails, and in facilities, using areas near busier anthropogenic features at times when human 
activity on those features was lower. Bears also increased their use of forest cover when close to 
recreation infrastructure, lending support to recent studies documenting that large carnivores 
utilize multiple strategies to avoid people in areas of high human activity (Oriol-Cotterill et al. 
2015b). My second chapter confirmed that quantifying spatiotemporal variation in human 
activity improves prediction of grizzly bear habitat selection in high human use areas. My results 
suggested that, at minimum, conservation biologists should distinguish high- and low-intensity 
categories of human use, both in space and time, and that in areas of high overlap between 
wildlife and people, continuous estimates of human activity levels best describe wildlife 
behavior. 
 
My fourth chapter identifies types and levels of non-motorized recreation that displaced large 
mammalian carnivores and ungulates from critical habitat linking two large protected area 
systems. I used camera trapping data to demonstrate that most study species shifted their 
temporal activity patterns to avoid human disturbance associated with trails, roads, or residential 
development, while also spatially avoiding off-leash dogs and/or hikers. This final chapter 
retains a fine-scale approach, but it expands my focus from one to multiple species.  
 
Landscapes where people and wildlife coexist have been characterized by peaks and troughs of 
human disturbance. Throughout my dissertation, I investigate ways to quantify these fluctuations 
in human activity and measure wildlife response. My final chapter also moves toward 
identification of those peaks of human activity that are too high or occur too frequently for wild 
animals to continue to utilize an area.   
 
Future research  
 
This dissertation suggests several directions for future research. First, investigations of wildlife 
behavioral responses to the fine-scale dynamics of human activity are few, and future studies 
should continue to evaluate the utility of rigorously quantifying human disturbance to gain a 
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more mechanistic understanding of wildlife behavior in landscapes shared with people. My work 
focuses on non-motorized recreation, but regular human presence in wildlife habitat can take a 
number of forms, including residential development and other activity near settlements, livestock 
grazing, and gathering of timber and non-timber forest products. Unique approaches will likely 
be needed to estimate the timing, intensity, and spatial extent of these different activities, and the 
scales of estimation best suited for assessing impacts on wildlife may also vary. Future research 
could begin to elucidate best practices for quantifying human activity in diverse landscapes.  
 
While my studies focus on habitat selection and diel activity of wildlife, the development of 
technology to track both human and wildlife movements creates an additional opportunity to 
measure wildlife behavioral adjustments to people in real time. For example, Ordiz et al. (2013) 
quantified brown bear movement patterns in response to experimental approaches by people, 
finding that bears increased their energy expenditures and reduced foraging time after encounters 
with humans, with potential demographic consequences. Moreover, many studies of wildlife 
behavioral responses to human disturbance refer to the possibility of population-level 
consequences, but these have rarely been confirmed with empirical data. In one example, 
researchers linked reduced population viability of an endangered bird to altered habitat selection 
patterns and foraging regimes during tourist seasons (Kerbiriou et al. 2009). Connecting 
reproduction and survivorship of wild animals to their behavioral responses to humans will be 
essential to assess whether wildlife populations in human-dominated landscapes are equally 
viable as their wilderness counterparts. 
 
While this dissertation adds to the growing body of literature investigating the mechanisms by 
which wildlife adjust their behavior around people, the ability of large carnivores and ungulates 
to navigate and avoid human activity is only one determinant of whether these species will 
persist. Human attitudes and behaviors are at least as important, if not more so. For example, my 
research demonstrates that the willingness of private citizens to limit their recreation activity and 
to follow regulations, such as leashing of off-leash dogs, will be critical to wildlife conservation 
in my study area. The Theory of Planned Behavior (Azjen 1985) and other paradigms employed 
in human dimensions of wildlife research could help to reveal those factors shaping human 
behavior in coexistence landscapes, with the goal of promoting behaviors that facilitate 
persistence of wildlife (Marchini and MacDonald 2012). 
 
Traditional approaches to conservation have advocated large-scale separation between wildlife 
and people. Though large reserves and wilderness areas are doubtless still needed, recent studies 
suggest they may be complemented by efforts to maintain wildlife populations in habitats 
regularly used by people (Llaneza et al. 2012; Carter et al. 2012; Oriol-Cotterill et al. 2015a). 
However, biologists and managers seeking to conserve wildlife in human-dominated landscapes 
are in need of models of success. Some factors affecting long-term, sustainable coexistence 
between people and wildlife cannot be controlled, such as wildlife life history traits, but many 
other factors can be managed. These include tolerance of local people for wild animals; social 
norms related to the environment and responsible behavior; presence of effective incentives for 
human behavioral change; planning of infrastructure in a way that maintains space for wildlife; 
and efforts to modify animal behavior when needed, such as aversive conditioning. Researchers 
working in shared landscapes across the globe should record and communicate lessons learned 
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and strategies that appear effective for maintaining viable populations of wildlife in the midst of 
human activity. 
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