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Abstract

This study presents a novel approach for inferring the incidence of in-
fections by employing a quantitative model of the serum antibody response.
Current methodologies often overlook the cumulative effect of an individ-
ual’s infection history, making it challenging to obtain a marginal distribution
for antibody concentrations.

Our proposed approach leverages approximate Bayesian computation (ABC)
to simulate cross-sectional antibody responses and compare these to observed
data, factoring in the impact of repeated infections. We then assess the em-
pirical distribution functions of the simulated and observed antibody data uti-
lizing Kolmogorov deviance, thereby incorporating a goodness–of–fit check.
This new method not only matches the computational efficiency of preceding
likelihood-based analyses but also facilitates the joint estimation of antibody
noise parameters.

The results affirm that the predictions generated by our within–host model
closely align with the observed distributions from cross–sectional samples
of a well–characterized population. Our findings mirror those of likelihood–
based methodologies in scenarios of low infection pressure, such as the trans-
mission of pertussis in Europe. However, our simulations reveal that in set-
tings of higher infection pressure, likelihood–based approaches tend to un-
derestimate the force of infection. Thus, our novel methodology presents
significant advancements in estimating infection incidence, thereby enhanc-
ing our understanding of disease dynamics in the field of epidemiology.

Introduction

Serum antibodies specific to a particular pathogen not only act as a histori-

cal marker for past infection, but elevated concentrations may also suggest a

recent encounter with the same pathogen and possibly, associated protective

immunity1. In clinical settings high antibody levels have been commonly

characterized as exceeding a threshold or cutoff level to identify recently in-

fected subjects. In sero–epidemiology the same approach is used for classify-

ing seropositive and seronegative subjects, but often with a somewhat lower

cutoff, to capture less recent infections2,3,4. Using a fixed cutoff ignores vari-

ation in seroresponses between individuals and variation in time since the

most recent infection1. As current serum antibody levels carry information

about the infection history of the sampled persons, it is possible to not just

determine the prevalence of infection but also infer the seroincidence: the

rate with which seroconversions occur in the study population5.
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Most studies using serology to estimate incidence rely on directly de-

tecting seroconversions6,7, or using age profiles of seroprevalence to infer

incidence8,9. More recently, machine learning methods have been employed

to exploit the kinetics of the seroresponse10.

The serum antibody response to infection can be described quantitatively

by a within–host model, relating a transient increase in antigen present to an-

tibody mediated pathogen removal or inactivation. When the time course of

the seroresponse to infection is known quantitatively, any antibody concen-

tration measured in a population sample may be translated into a time when

the most recent infection occurred. This is not completely straightforward

because infections occur randomly, and people are also sampled randomly,

independent of their infection history. Moreover, there is strong variation in

seroresponses among individuals. A high antibody concentration in a cross–

sectional sample implies that infection occurred recently, but also that the

sample came from a person who seroconverted to a high concentration. A

low antibody concentration may indicate that the sampled subject serocon-

verted a while ago, but it is also possible that that person seroconverted to

a low antibody concentration not so long ago. Thus, low and high antibody

concentrations contribute different information to measurement of the seroin-

cidence. Such a backcalculation approach11 is feasible but requires prior

assumptions about the distribution of seroincidence due to the uncertainty

associated with low cross–sectional antibody levels12. A simpler and com-

putationally efficient approach to estimate seroincidence assumed a Poisson

infection rate for incident infections to find the marginal distribution of an-

tibody concentrations in a cross–sectional population sample5. Allowance

could be made for variable infection rates: estimates of the seroincidence

could be obtained for small cross–sectional samples sizes (N < 50) and

variation of incidence among subsets of population data could be studied13.

Over time refinements were added, accounting for non–exponential antibody

decay, age at first infection and antibody noise14.

The within–host model proposed by de Graaf et al.15,16 appeared to eas-
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ily fit a variety of longitudinal serological data17,13,18,19. This model allows

for adaptative responses because the current response to infection depends

on the baseline antibody level, just before the infection event. There is also

a threshold for the baseline antibody concentration, above which the subse-

quent seroresponse makes a “small” jump, surmised to correspond to a mild,

asymptomatic infection15 when the previous infection occurred recently.

Current estimates of seroincidence have ignored the influence of elevated

baseline levels on repeated infections. When the infection pressure is high

enough so that a person may have experienced multiple infections at the age

of sampling, the current seroresponse not only depends on the most recent

infection, but on the complete infection history of that person. Although

it could be shown that a marginal antibody distribution exists for an ex-

posed population20, a closed expression that can be plugged into a likelihood

function is not available. High infection pressures may however occur dur-

ing outbreaks or in endemic situations where a single individual may have

many infections over a lifetime21. High baseline serum antibody concentra-

tions at the time of infection may be associated with (partial) immunity or

asymptomatic infections. Therefore it is desirable to be able to apply the

within–host model for repeated infections in seroincidence calculations14.

The present paper takes a new and more flexible approach, simulating cross–

sectional antibody distributions and comparing these with observed popula-

tion samples.

Seroresponse to infection

The within–host model assumes that exposure is followed by an infection

phase where antibody concentrations increase exponentially and pathogen

multiplication is inhibited proportionally to circulating antibody concentra-

tions15. At the time pathogens are cleared, the (net) antibody production is

downregulated, beginning a phase of prolonged antibody decay16. More de-

tails are given in the Appendix (A.1). The time course of the seroresponse
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then becomes:

y(τ) =

 y0eµ1τ 0 ≤ τ ≤ t1

y1
(
1 + (r − 1)yr−1

1 α(τ − t1)
)− 1

r−1 t1 ≤ τ
. (1)

Where y0 is the baseline antibody concentration. At τ = 0 the subject is

exposed and at τ = t1 pathogens are cleared. As antibody levels increase

during infection and decrease after infection, at t1 antibody concentrations

are at a maximum y1. Antibody decay is described by a power function

with parameters α (rate) and r (shape) allowing for non–exponential shapes,

indicative of within–host heterogeneity in antibody production16.

Suppose the rate parameters µ0 (net growth rate of pathogens), µ1 (net

rate of increase of serum antibodies), and c (“efficacy” of antibodies in re-

moving pathogens) remain fixed for successive infections in the same host.

Then the baseline antibody level at time of infection determines the next peak

antibody level15

y1 = y0

(
1 +

(µ1 − µ0)b0
cy0

) µ1
µ1−µ0

, (2)

where b0 is the initial pathogen concentration. When the antibody concen-

tration at the time of infection exceeds a threshold

y0 > ymin =
µ0b0
c

, (3)

the pathogen concentration decreases monotonically and the antibody con-

centration makes a “small jump” (Fig. 3 in de Graaf et al.15) correspond-

ing to a mild (presumably asymptomatic) infection. When longitudinal anti-

body data are available for a cohort of infected subjects the model parameters

(µ0, µ1, c
∗ = c/b0) may be estimated, defining the relation between baseline

y0 and the following peak y1 (eq. 2), estimates shown in Figure A3 in the

Appendix.

Figure 1 here.
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At the time of the first infection, some time after birth, antibody concen-

trations are presumed to be low (ignoring short–lived maternal immunity)

and the first seroresponse tends to reach a high peak level, corresponding to

a “large jump”, likely symptomatic15. When the next infection happens to

occur not too much later, antibody concentrations likely have not returned to

low levels and the new infection may be milder, corresponding to a “small

jump”, presumably asymptomatic. Figure 1 shows the time course of pertus-

sis (IgG–PT) antibody levels during the life of a hypothetical person, with a

sequence of symptomatic and asymptomatic infections.

Estimating seroconversion rates

In a population exposed to an infectious pathogen, individuals seroconvert

with a certain frequency, dependent on the infection pressure. Serum anti-

bodies measured in a random sample from such an exposed population have

a distribution that depends upon the infection rate λ: when λ is low there is

a high chance of sampling from individuals who were never infected or were

infected a long time ago, leading to low antibody levels. When λ is high

there will be more individuals with high antibody levels, as the probability

of a recent infection increases.

With known kinetics of the seroresponse, and assuming that infections

occur as a Poisson process, antibody levels in a cross–sectional sample can

be used to estimate the infection rate λ for the sampled population5. It is

possible that a sampled subject has not been infected at all: when a sample

has been collected at a young age or when the infection rate is low the proba-

bility cannot be neglected that a sampled subject has escaped infection. This

profoundly influences the estimation of incidences from cross–sectional pop-

ulation sample data14. Moreover, antibody measurements are prone to noise:

measurement noise associated with the high sensitivity of assays, but also

noise caused by antibodies in the blood sample that were not elicited by the

ongoing seroresponse but that do react with the used antigens (termed M–
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noise and B–noise respectively14).

In assessing the likelihood for cross-sectional data the main problem is

how to deal with past events: an individual may not have been infected at

all; they may have had a single infection or they may have experienced two

or more infections during their lifetime. Previous analyses14 dealt with only

two categories (0, and 1 or more infections). Only the most recent infection

was accounted for, and the influence of antibodies remaining from previous

infections was ignored. Inclusion of one or more infections prior to the most

recent one complicates the calculation of the resulting antibody distribution20

to the extent that likelihood analysis becomes cumbersome.

Fitting based on simulation

In contrast, simulation of serum antibody levels following repeated infec-

tions is straighforward, see e.g. Figure 1. Thus, one can generate a simu-

lated cross-sectional sample by repeatedly simulating a life history of serore-

sponses, ending at a given age at which the subject is sampled. Simulated

ages can be matched with the ages of subjects in a population sample to ob-

tain comparable simulation results. Now one would like to know how well

antibody levels in the simulated sample match with the observed antibody

levels in the population sample.

For a sample of Nobs observed antibody concentrations and another sam-

ple of Nsim simulated antibody concentrations the empirical distribution func-

tions (EDFs)

Fobs(y) =
1

Nobs

Nobs∑
i=1

[Yobs,i ≤ y] and Fsim(y) =
1

Nsim

Nsim∑
i=1

[Ysim,i ≤ y]

(4)

can be used to assess the similarity of the observed and simulated samples.

Three different classes of statistics for measuring the distance between EDFs

have been explored:
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1. Based on the positive and negative differences

D+ = maxy (Fobs(y)− Fsim(y))

D− = maxy (Fsim(y)− Fobs(y))
(5)

the (two sample) Kolmogorov–Smirnov (KS) test statistic22

DKS = max(D+, D−), (6)

may be calculated. DKS can be directly translated into a probability

pKS
23.

Alternatively, the Kuiper (KP) test statistic may be calculated24

V = D+ +D−, (7)

providing higher sensitivity to differences in the tails of the EDFs.

2. On the other hand, Cramér–von Mises and related tests measure the

distance between distribution functions as

Nobs

∫
(Fobs(y)− Fsim(y))

2
w(y)dFsim(y), (8)

where the weighting function w(y) = 1/ (Fsim(y)(1− Fsim(y))) de-

fines the Anderson–Darling (AD) test statistic which can be calculated

as25

A2 = −Nobs−
Nobs∑
i=1

2i− 1

Nobs
(log(Fsim(Yobs,i)) + log(1− Fsim(Yobs,Nobs+1−i))) ,

(9)

for ordered data Yobs,1 < Yobs,2 < · · · < Yobs,Nobs .

It should be noted that ties (in observed or simulated data) are not con-

sidered because these will be unlikely in these (real number) data.

3. The Kullback–Leibler (KL) divergence for the two samples Y obs and
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Y sim can be approximated by

DKL(Yobs||Ysim) =

Nobs∑
i=2

log

(
Nobs(Ysim,j − Ysim,k)

Nsim(Yobs,i − Yobs,i−1)

)
, (10)

where j and k are chosen such that

max(Ysim,j) ≤ Yobs,i < min(Ysim,k), (11)

using the estimator proposed by Perez–Cruz26. As above, please note

that ties (in observed or simulated data) are not accounted for.

Since calculation of these statistics requires mostly sorting and addition or

subtraction, they are simple to implement and can be calculated at high speed.

They are therefore well suited to use for estimation requiring repeated evalu-

ations.

Implementation

Simulation of a cross–sectional sample of antibody concentrations for any

subject in a population with λ infections per unit time starts with choosing

an age a at which a blood sample is taken. For the sampled subject a set

of kinetic parameters (µ0, µ1, c
∗, α, r) and initial state y0 are assigned by

random selection from the posterior predictive samples from the longitudinal

model, as described in Teunis et al.16.

Step 1 Then an interval is sampled from an exponential distribution with

rate parameter λ: if the interval is longer than the age of the subject,

a random sample from a (lognormal) B–noise distribution (parameters

µ, σ) is returned as Ysim. When the interval is shorter than the age of

sampling, the end of the interval is the age at which the first infection

occurs.

Step 2 Now the next interval is sampled, and checked against the remaining

time until age of sampling. The seroresponse model is then employed
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to calculate the antibody concentration at the end of the current infec-

tion period (either the next infection or the age of sampling), using

eqns. A.2 and A.3 (in the Appendix) and then eqn. 1. When the end-

point is the age of sampling, a random sample from the B–noise distri-

bution is added to the antibody concentration and the result is returned

as the current Ysim.

Step 3 When the age of sampling has not been reached, the antibody con-

centration at the endpoint is used as the new baseline y0 and the proce-

dure is repeated from Step 2.

Noise is only added at the end, when the antibody level at sampling time has

been calculated. It is assumed that B–noise represents antibodies that react

with the assay antigen, but are not involved in the ongoing seroresponse,

possibly because of cross–reactivity with related pathogens.

The above procedure is repeated for each individual needed for the pop-

ulation sample. When simulating for the purpose of fitting to observed data,

the simulated ages can be matched with the ages in the observed population

sample.

In case the baseline y0 at time of infection is to be ignored, only the

last interval is needed (the most recent interval that ends with taking a blood

sample). The antibody concentration at age of sampling is calculated from

the duration of the last interval (step above), with the parameter vector

(µ0, µ1, c
∗, α, r) and initial state y0 as used above. For simplicity, M–noise

was ignored in the present study.

To optimize for speed, functions for simulating antibody levels from the

longitudinal model, random parameter selection, noise sampling, and cal-

culations of the three statistics for comparing observed and simulated dis-

tributions were all implemented in C. A function was also added to trans-

late the DKS into a probability level using an approximation to the Kol-

mogorov distribution23,27. Using this code, a typical evaluation involving

Nobs = Nsim = 2000 to calculate DKS took 8.9 ms (Linux 5.15; gcc 11.1.0;
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Intel Core i7-8559U at 4 GHz).

Approximate Bayesian Computation

As the kinetic parameters were obtained from the separately fitted longitudi-

nal model, there remain three parameters to be estimated: the infection (se-

roconversion) rate λ and the two parameters (µ, σ) defining the lognormal

B–noise distribution.

It is desirable to assess the uncertainty in the parameter estimates jointly.

Initial tests showed that any of the statistics used above for evaluating the

similarity between observed and simulated samples can be used (see Results

below). Of the three metrics, the KS statistic DKS is simplest, both conceptu-

ally and computationally. As neither the Anderson–Darling statistic nor the

Kullback–Leibler divergence provided clearly superior results only DKS and

its associated probability were used.

In the absence of a likelihood function, Approximate Bayesian Compu-

tation (ABC) can be used to obtain posterior estimates. Instead of a sim-

ple rejection algorithm28, we have employed a Metropolis–Hastings sampler

to improve efficiency and reduce the computational burden29. DKS can be

directly translated into a probability pKS, which may be plugged into the

Metropolis sampler.

By defining a parameter vector θ = (log(λ), µ, log(σ)), the product of

the prior density ϕ(θ) and the Kolmogorov probability

ϕ(θ)pKS(Y obs,Y sim(θ))

determines the ratio of “posteriors” between successive iterations30. Here

Y obs is the observed antibody sample and Y sim(θ) is a simulated sample of

antibody concentrations.

Typically, simulations used a burn-in of 1,000 iterations, followed by

2,000 iterations for obtaining a posterior sample. It was easily checked that in

a converged Markov chain iterated samples return a high Kolmogorov proba-
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bility (≥ 0.05 for instance), ensuring that the simulated EDF always matches

the observed EDF.

Results

All results shown are based on longitudinal data of serum IgG against per-

tussis toxin (IgG-PT) also used in earlier studies of seroincidence31. Minor

adaptations in the longitudinal model16 to improve parameter estimation are

documented in the Appendix section A.1.

Simulated data: exploring metrics

Figure 2a,c show the densities of simulated cross-sectional antibody levels

for 2000 subjects sampled at 0–80 years of age (uniformly distributed), us-

ing an infection rate λsim = 0.001 (1/yr) and 0.05 (1/yr) respectively. These

are treated as the observed data, and compared with simulated data (2000

subjects, same ages) for a range of incidences λ. The fitted densities cor-

responding to the minimum DKS and DKL are shown in Figures 2a,c. AD

deviates are close to the KL divergence estimates. Figure 2b,d shows the KS

and AD deviates and the KL divergence as a function of λ: the minima all

coincide. In order to show the three metrics on a scale from 0 to 1 they are

scaled: for DKS

KS Dev =
DKS(λ)−min(DKS)

max(DKS)−min(DKS)
, (12)

and the same for the AD deviance A2 and KL divergence DKL. The proba-

bility pKS associated with DKS is also shown as the red line in Figures 2b,d.

At lower infection frequency the noise dominates the antibody distribution

and estimation of λ shows greater uncertainty (Figure 2a,b) than with higher

λsim (Figures 2c,d).

Figures 2 and 3 here.
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Figure 3 shows statistics as a function of the B–noise parameters, at a

given λsim. Figures 3a and 3c for the lognormal (log) mean µ, keeping the

log sd at its optimum σ = 0.6. In the Figures 3b and 3d for the lognormal

(log) sd σ, keeping the log mean at its optimum µ = 0.1. When λsim =

0.001 (1/yr) there are few infections and most antibody levels in the cross–

sectional sample originate from the B–noise distribution. At λsim = 0.05

(1/yr) B–noise constitutes a smaller fraction of the cross–sectional antibody

levels and estimation is more uncertain (compare Figures 2b and 2d).

Simulated data: uncertainty in joint parameter estimates

Figure 4a shows estimated λest for simulated cross–sectional data (Nobs =

1000) at a range of incidences λsim, accounting for elevated baseline y0 =

y(tinf) due to previous infections. Estimation here involved ABC using uni-

variate wide priors (N(log(0.1), 5.0)) for log(λ) and N(0.1, 0.5) for µ and

N(log(0.6), 0.5) for log(σ)) to obtain posterior estimates of θ = (λ, µ, σ).

The graphs in Figures 4b and 4c show estimates of the corresponding B–

noise parameters (µ, σ). All graphs in Figure 4 show posterior predictive

means and 95% quantile ranges. Figure 4a also shows estimates of λ obtained

by using the published seroincidence method14(ML) on the same simulated

cross–sectional data. Because the new method based on adjusting simulated

distributions uses the shape of the whole EDF of the simulated sample, in-

cluding the B–noise component, estimates of the parameters of the noise

distribution can be used to adjust the B–noise parameter in the seroincidence

likelihood14.

When λsim is small (< 0.01 1/yr) there are few infections, and the uncer-

tainty in λest increases, particularly in the KS estimates, compared to the like-

lihood method. At low incidences the B–noise dominates the cross–sectional

data and as λest becomes more uncertain, estimates of noise parameters be-

come more precise. Conversely, at higher incidences antibody noise repre-

sents a minor contribution to the cross-sectional antibody data and estimation
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of noise parameters is more uncertain.

Figure 4 here.

At high incidences an increasing number of infections occur before an-

tibody concentrations have returned to low baseline levels. The resulting

“small jump” seroconversion tends to decrease cross–sectional antibody con-

centrations and the likelihood method underestimates λ (Figure 4a).

Figure 5 here.

The likelihood method for estimating seroincidence ignored remaining

y(tinf) at time of infection. When using the EDF method with a seroresponse

model that ignores baseline levels from previous episodes (y(tinf) = y0) to

fit a cross-sectional sample generated with the same model including base-

line y(tinf) from past infections, both methods exhibit similar bias (Figure

5a). Conversely, when the simulated cross–sectional sample is generated

with a model with fixed baseline y0 the EDF method based on minimizing

pKS shows positive bias, while the likelihood method produces unbiased es-

timates, even at very high infection frequencies λsim (Figure 5b).

At low incidences (λ < 0.01 1/yr) the likelihood estimator seems to show

positive bias. Such bias may be due to imperfect characterization of (B–)

noise. At these low incidences there are few observations resulting from past

seroconversion and estimation is sensitive to mis-attribution.

Simulated data: infection history

A homogenous Poisson process assumes the seroincidence λ is fixed. Vari-

ation in λ among subpopulations, including spatial location, has been stud-

ied21,32,13. It is likely that during the lifetime of a subject the infection pres-

sure changes, either periodically due to seasonal factors12 or transiently, for

instance during an outbreak. For vaccine preventable diseases many individ-

uals in an exposed population may be vaccinated at some time, also causing

seroconversion.
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Seroconversion events may be linked to age, as in vaccination schedules,

or they may occur at a given calendar date.

To study the influence of seroconversion at a given age on estimates of λ,

a vaccine induced seroconversion was simulated, identical to a natural infec-

tion, at a fixed age. In addition to their natural infections occurring with rate

λ all simulated subjects were assumed to have a vaccine induced seroconver-

sion at age 2 (years), assuming universal compliance (100% uptake).

Figure 6a–c shows estimates λest and the noise parameters (µest, σest) for

a vaccinated population, for a range of simulated infection rates λsim like

in Figure 4. Figure 6d–f shows the same estimates when the fitted model

ignores vaccination. Obviously, at low infection rates the vaccination event

causes substantial overestimation of λ, similar to that for the likelihood based

estimate. When λsim ⪆ 0.5 (1/yr) the vaccine induced elevation of baseline

y0 is drowned out by later seroconversions and the bias in λest decreases.

During an outbreak infection rates may rapidly increase, reach a peak

level and than decline again, reflecting the epidemic curve17. Infection in-

tervals corresponding to a transient peak in λ may be simulated as a sample

from a non–homogeneous Poisson process33,34, see Appendix Figure B7. A

recent outbreak causes estimates of λ to be considerably higher, during a pe-

riod determined by antibody decay (Appendix Figure B8). This increase also

depends on the ages of subjects. Obviously, when an individual was born af-

ter the outbreak occurred, their antibodies remain at post–outbreak baseline

levels, compare Figures B8a and e. The mismatch between simulated and fit-

ted models (that assume a homogeneous Poisson process) can be detected by

pKS, indicating failure to achieve a close fit to the “outbreak” data (Figures

B8d and h). Such goodness of fit indicators, combined with possible epi-

demiological information, provides ample opportunity to indicate possible

bias caused by past outbreaks.

When the infection pressure is changed due to human intervention, as for

instance quarantine or hygiene measures, the decrease in λ may be estimated

in a cohort study setting. Suppose there are two study populations, both
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exposed to baseline infection pressure resulting in infection rate λpre. At

some time, say T years before sampling, one of the study groups then is

treated by an intervention causing a drop in infection rate to λpost. Then

both groups are sampled and their serum antibodies measured. Both the λpre

and λpost may now be estimated. Two scenarios were compared: a high risk

setting with λpre = 1.0 (1/yr) decreased to λpost = 0.4 (1/yr) and a lower

risk setting with λpre = 0.1 (1/yr) decreased to λpost = 0.01 (1/yr). Table

1 shows how age is important in this design: for subjects aged 0 – 10 years

both λpre and λpost can be estimated reasonably well (judged by 95% posterior

intervals). In adults (aged 20 – 80 years) only λpre can be estimated while the

post–intervention infection rate λpost is highly uncertain.

Observed data: ESEN

Data from a population study on pertussis in EU countries using standard-

ized units for IgG–PT concentrations in serum35,36 can be used to examine

the performance of the simulation–based estimation method in a practical

context. Serum antibody population data for the Germany, Finland, France,

Italy, the Netherlands and the United Kingdom were collected between 1994

and 1998, study details are available35.

To illustrate the fitted distribution samples, Figure 7 shows densities and

the test statistics for the Dutch sample, ages 35–40 yr (Nobs = 502). The

simulated cross–sectional antibody levels match closely with the observed

distributions at all ages (327 ≤ Nobs ≤ 923; see Figures 7b,B3 and B6a).

Figure 7 here.

Using the EDF method and parameter estimation with ABC, λ and the

B–noise parameters may be estimated, as shown in Figures 8 and 9. Al-

though the estimated seroconversion rate by EDF (Figures 8a and 9a) is

slightly higher than the estimate from the likelihood method, both are some-

what lower than earlier estimates36, where the contribution of B–noise was

ignored. Due to the low infection rate, λest ≈ 0.01 (1/yr), there are few se-
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roconversions in the youngest age category (0–5 yrs) and estimates of λ are

uncertain, as is apparent in Figures 8a and 9a.

Figures 8 and 9 here.

In Figures 8a and 9a estimates of λ by means of the EDF based ABC

method are shown together with maximum likelihood estimates using the

method described in14 with noise parameter ν = 3.0 (IU/ml) which cor-

responds to the 0.95 quantile of a lognormal distribution with parameters

(0.1, 0.6). When the noise parameters are adjusted to the estimates obtained

with the EDF method for each age category, the likelihood estimates of λest

are (slightly) shifted towards those obtained with the EDF method.

The age patterns in seroconversion rates estimated by ABC (Figures 8a

and 9a) do not differ much from the likelihood estimates. Antibody (B) noise

shows some variation, within countries by age, but also between countries.

To check how vaccination might have interfered with these estimates

these observed data were also fitted by the model that included universal

vaccination at age 2 (years). Results are shown in the Appendix, Figures

B4 – B5. As expected, the estimated infection rates are lower, in particular

in younger subjects. It should be noted, however, that for these vaccination

model simulations the posterior Kolmogorov probabilities were very low, ex-

cept in subjects older than 50 years. Simulations ignoring vaccination appear

to better fit these cross–sectional population data , see Figure B6a,b for an

example. Such a mismatch indicates that this vaccination model is a poor fit

to the observed data, possibly because of a lack of vaccine induced IgG–PT

seroresponses37.

Discussion

The present paper enhances and refines methods for estimating seroconver-

sion rates in a population exposed to an infectious pathogen. Accounting

for residual antibody levels from previous infections allows for adaptation at
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high infection rates, potentially removing bias. Fitting by means of compar-

ing empirical distribution functions provides goodness–of–fit information,

valuable in model selection. And finally, the simulation approach allows for

arbitrary infection patterns, providing a basis for comparing different infec-

tion histories using population serology data.

Employing a longitudinal model to forecast expected antibody levels in

cross–sectional population studies requires making substantial assumptions

about the seroresponses that generate the observed antibody levels within the

study population10. So far, these two–stage methods for seroincidence esti-

mation have not dealt with the question how well the distribution of antibody

levels in cross–sectional population samples is approximated by the predic-

tions based on the kinetic seroresponse model5,14. Here it is demonstrated

that the empirical distribution functions of simulated samples of cross–sectional

antibody concentrations can be made to closely match observed distributions,

by adjusting only the infection (Poisson) rate parameter λ and the parameters

of the B–noise distribution. Remarkably, in posterior MC samples the Kol-

mogorov p̂KS usually is higher than 0.5, indicating close agreement between

observed and simulated antibody distributions (See Appendix Figure B6a).

Thus, the longitudinal model accurately predicts the marginal distribution of

antibody levels in a cross–sectional population sample.

A previous study underscored the significant influence of B–noise on re-

sults, a finding that aligns with the understanding that fitting involves com-

paring the full spectrum of serum antibody levels, including low levels typi-

cally classified as sero–negative1. For pragmatic reasons the characterization

of B–noise in the likelihood method assumed a uniform distribution14. The

current approach demonstrates how, at low incidences, estimates of λ are

somewhat sensitive to adjustment of the B–noise parameters. M–noise was

ignored here but it would not be difficult to include it into the simulations.

Even though estimating its magnitude, or even the shape of its distribution,

can be expected to be difficult, repeated measurements of control sera in the

laboratory should allow quantitative specification of the M–noise associated
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with the used assay.

The simulation approach allows greater freedom in assumptions about

the infection history of individual subjects in the population sample. For per-

tussis, including the infection history of a subject to determine the antibody

level at the start of the sampled infection episode appears to not strongly in-

fluence the estimated seroconversion rates, as was noted earlier14, because

of the (relatively) low infection pressure of pertussis in the population. How-

ever, Figure 2 shows that at higher infection pressures elevated baseline con-

centrations can cause considerable bias leading to underestimation of the

sero–incidence. Such high infection pressures may occur in other pathogens,

e.g., Campylobacter21 or typhoid Salmonella19, or transiently during out-

breaks38,39.

It should be noted that mortality may also lead to bias in estimates of λ:

individuals who die will not be captured in cross–sectional samples leading

to underestimation. When mortality is low this effect may be ignored.

A basic assumption for the likelihood approach to seroincidence was a

population in endemic equilibrium: in the exposed population infections

were assumed to occur as a stationary Poisson process5,14. Seasonality, if

present in infection pressure, has previously been accounted for12. The ob-

served variation by age in seroconversion rates can be explained by varia-

tion in contact patterns that drive transmission36. Here we also find varia-

tion in baseline noise, possibly due to differences in infection history among

the study populations. When cross–sectional data include multiple antibod-

ies for each blood sample it is often possible to estimate λ in very small

sample sizes13. In population samples for Campylobacter and nontyphoid

Salmonella the variation in λ among individual subjects appeared small, not

inconsistent with Poisson incidence. Nevertheless, there are many settings

with strong variation in infection pressure, not in the least during outbreaks

of infectious disease39. Seroconversions leading to elevated serum antibody

levels at the time of infection may also result from vaccination37, interfering

with the estimates of λ in young children.
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Earlier likelihood based analyses included only the most recent infection

episode, therefore any variations in λ before the most recent infection could

not be accounted for. The simulation approach does not have this limitation.

The examples included here show how earlier seroconversions may influence

estimates of λ, depending on age of sampled subjects and serum antibody

decay rates. For instance in pertussis, when infection rates are higher than

approximately 0.1 (1/yr), universal vaccination at an early age does not cause

important bias in estimates of λ. Of course, a recent outbreak would affect λ

and estimates may represent a weighted average over the time course of λ40.

However, the age distribution of the exposed population and their individu-

ally varying seroresponses interfere with estimates of λ. As outbreaks are

often detected, cases may be sampled during the event, so that the sampling

dates are known relative to the timing of the outbreak, and a backcalculation

approach may be a more informative alternative17.

It seems possible that there are many spatiotemporal patterns for λ that

lead to matching posterior marginal distributions for an observed cross–sectional

serum antibody sample. Transient peaks in λ as during outbreaks could be

driven by a transmission model, generating individual sequences of infec-

tion events accounting for person–to–person transmission. Other events that

influence λ, like for instance vaccination schedules (but also vaccine uptake

and their composition), or timing of interventions. The examples given above

show how gross changes in infection rate may influence estimation of λ. Sim-

ilar scenarios may be adjusted to specific settings. The goodness of fit check

that is implicit in the simulation procedure then becomes even more helpful,

providing criteria for accepting or rejecting models.

The function y1 = f(y0) (Figure A3a) quantifies the influence of the

baseline antibody concentration y0 at the time of infection on the peak level

of the subsequent seroconversion15. This can be interpreted as a model for

immune “memory”: repeated seroconversions start from an elevated level

but remain relatively small in magnitude while low y0 after a long interval

between infections leads to a strong response to high peak levels. Cross–
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sectional antibody samples generated by this model appear to fit observed

population samples quite well but one would like to have observational evi-

dence for the correct shape of the function f(y0). Similarly, antibody decay

may be different in secondary versus primary infections. Different decay

rates would strongly influence seroincidence estimates16. Establishing this

would require observations including repeated infections in any single sub-

ject with the same pathogen. As Figures 8 and 9 show this is not likely for

pertussis. A sensitivity analysis using age–dependent decay rates might pro-

vide insights on how such dependence might affect estimates of λ.

Aside from removing bias, accounting for the infection history in seroin-

cidence estimation allows for distinguishing “small” and “large” seroconver-

sions, possibly associated with subclinical and clinical infections. Given a

certain duration of acute symptoms, one could calculate numbers of illnesses

in a population. Thus, an attack rate (of symptomatic infections) can be

related to the frequency of seroconversion, that is: the infection frequency

including asymptomatic infections. When acute symptomatic cases in the

observed population are known, estimates of the fraction symptomatic in-

fections could be used as an indirect indication of the validity of the serore-

sponse model for repeated infections.

As subjects age, their likelihood of having had more than one infection

increases, thereby causing age–dependent seroresponses, but it is also possi-

ble that the kinetics of seroresponses vary naturally with age due to the de-

velopment of the immune system19. The kinetic parameters (µ0, µ1, c
∗, α, r)

may then vary with age of a subject, or more specifically, the infection his-

tory of a subject may change any of the kinetic parameters. A limitation

of this model is that it ignores the boosting effect of secondary exposures.

During the infection phase the rate of antibody production is expected to

be higher with secondary exposures and consequently the rate of pathogen

growth may be slower41. Similarly, the numbers of antibody production sites

may change upon repeated infections thus modifying the slope of antibody

decay16. With such age–dependent responses it would be hard to obtain a
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marginal model for distributions of antibody levels in a cross–sectional pop-

ulation sample12. The simulation approach introduced here allows for the

construction of individual trajectories of serum antibody levels during the

entire history of any individual in the chosen sample. Therefore, there is no

impediment to a model with age dependent seroresponse parameters, except

for a performance hit due to the required additional computations.
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Data and code availability

Longitudinal data on pertussis seroresponses are property of RIVM and have

been made publicly available on request and can be obtained from the first

author.

The ESEN pertussis data are property of the Public Health Institutions of

the contributing countries35.

Pending a new “serocalculator” package on CRAN all code for the sim-

ulations is publicly available on Codeberg.

The longitudinal model

https://codeberg.org/peter19/pertussis/longitudinal/

Simulation of cross–sectional samples and ABC sampling

https://codeberg.org/peter19/serocalc/

Additional scripts to run the pertussis simulations

https://codeberg.org/peter19/pertussis/serocalc/
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Tables

Table 1: Simulated intervention: 1000 subjects sampled 2 years after an intervention that decreased
the infection rate from λpre to λpost (column “set”). In addition, a control group of 1000 subjects was
sampled assuming they were only exposed to the baseline infection rate λpre. The table shows joint
estimates of baseline infection rate λpre, post–intervention infection rate λpost, and noise parameters
(µnoise, σnoise).

age estimated
range (yr) set mean 95% range

0 – 10 λpre 1.00 1.00 0.83 – 1.19 1/yr
λpost 0.40 0.27 0.10 – 0.53 1/yr
µnoise 0.10 0.06 -0.28 – 0.45
σnoise 0.60 0.61 0.40 – 1.03

0 – 10 λpre 0.10 0.11 0.09 – 0.13 1/yr
λpost 0.01 0.01 0.00 – 0.06 1/yr
µnoise 0.10 0.11 0.02 – 0.21
σnoise 0.60 0.64 0.53 – 0.78

20 – 80 λpre 1.00 1.01 0.87 – 1.15 1/yr
λpost 0.40 0.06 0.00 – 286.8 1/yr
µnoise 0.10 0.14 -0.42 – 0.66
σnoise 0.60 0.71 0.28 – 1.54

20 – 80 λpre 0.10 0.09 0.07 – 0.11 1/yr
λpost 0.01 0.20 0.00 – 8.20 1/yr
µnoise 0.10 0.37 -0.06 – 0.93
σnoise 0.60 0.75 0.47 – 1.23
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Figure 1: Simulated seroresponse of a hypothetical subject, from birth to age 80 (years), infections
occurring as a Poisson process with rate 0.2/yr. Longitudinal parameters fitted to pertussis data 16:
(µ0, µ1, c, α, r) chosen at birth and kept fixed. The baseline antibody level y0 is low at birth. After
the first infection y0 is carried over from each prior episode for any further infections. Triangles
indicate symptomatic (“large jump”: red) or asymptomatic seroconversions (“small jump”: blue).
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Figure 2: Fitting λ: output for simulated data for subjects 0 – 80 yrs of age with baseline distri-
bution parameters: (0.1, 0.6) and seroconversion rate λsim = 0.001 and 0.05 (1/yr). (a) Probability
density of (simulated) observed serum antibody distribution and best fitting (minimum DKS or DKL)
simulated distributions. (b) Scaled deviates as a function λest of the simulated sample of antibody
concentrations. (c) and (d): corresponding KS dev (Kolmogorov–Smirnov deviate DKS); KL div
(Kullback–Leibler divergence DKL); AD dev (Anderson–Darling deviate A2); KS prob (Kolmogorov
probability pKS) as a function of λ.
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Figure 3: Fitting B–noise distribution parameters: output for simulated data for subjects 0 – 80 yrs
of age with baseline distribution parameters: (0.1, 0.6) and seroconversion rate λsim = 0.001 and
0.05 (1/yr). (a) Scaled deviates as a function of the B–noise log mean µest at λsim = 0.001 (1/yr).
(b) Scaled deviates as a function of the B–noise log sd σest at λsim = 0.001 (1/yr). (c) and (d)
Same at λsim = 0.05 (1/yr). KS dev: Kolmogorov–Smirnov deviate DKS; KL div: Kullback–Leibler
divergence DKL; AD dev: Anderson–Darling deviate A2; KS prob: Kolmogorov probability pKS.
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Figure 4: Estimated λest and B–noise parameters (µest, σest) for a range of simulated λsim rang-
ing from 0.001 to 10 (1/yr) in subjects 0 – 80 yrs of age and B–noise distribution parameters:
(µsim, σsim) = (0.1, 0.6). Baseline y0 = y(tinf) from previous infections, generating seroresponses
as in Figure 1. (a) Two methods for estimation of λ are compared: ML: maximum likelihood using
the published seroincidence method 14 with fixed B–noise parameter adjusted to the 95th percentile
of simulated noise (ν = 2.97 IU/ml), and KS: EDF based method using pKS to jointly estimate
(λ, µ, σ). (b) B–noise log mean µest and (c) log sd σest, estimated jointly with λest using ABC.
Dashed lines indicate simulated values: λest = λsim, µest = µsim = 0.1, σest = σsim = 0.6.
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with y0 = y(tinf); λest calculated by ML and EDF fitting (KS) with fixed baseline (y0 = y(0)) and
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with infection history (y0 = y(tinf)) and seroconversion (t1 > 0).

31



0
1

2
3

4

10−3 10−2 10−1 100 101

ML
KS

λsim

λest

λsim

(a) λest (1/yr)

−
1.

0
0.

5

10−3 10−2 10−1 100

λsim

µest

(b) B–noise µest

0.
5

1.
5

10−3 10−2 10−1 100

λsim

σest

(c) B–noise σest

0
1

2
3

4

10−3 10−2 10−1 100 101

ML
KS

λsim

λest

λsim

(d) λest (1/yr)

−
1.

0
0.

5
2.

0

10−3 10−2 10−1 100

λsim

µest

(e) B–noise µest

0.
5

1.
5

10−3 10−2 10−1 100

λsim

σest

(f) B–noise σest
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Figure 8: ESEN data, (a) Estimated seroconversion rates λest by (5 yr) age categories. Two fitting
methods are shown. ML: maximum likelihood seroincidence 14 with B–noise fixed ν = 3.0 IU/ml.
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distribution estimated by EDF. KS: EDF method using pKS, fitted by ABC jointly estimating λ and
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Figure 9: ESEN data, (a) Estimated seroconversion rates λest by (5 yr) age categories. Two fitting
methods are shown. ML: maximum likelihood seroincidence 14 with B–noise fixed ν = 3.0 IU/ml.
ML adj: maximum likelihood seroincidence with B–noise adjusted to the 95th percentile of the
distribution estimated by EDF. KS: EDF method using pKS, fitted by ABC jointly estimating λ and
the two noise parameters. (b) Estimated log mean µ of B–noise. (c) Estimated log sd σ of B–noise.
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Appendices

A Seroresponse to infection

A.1 Within–host model for the seroresponse

The within host model16 relates pathogen growth and antibody mediated

pathogen inactivation/removal

Baseline Infection Decay

pathogens: b(0) = b0 b′(τ) = µ0b(τ)− cy(τ) b(τ) = 0

antibodies: y(0) = y0 y′(τ) = µ1y(τ) y′(τ) = −αy(τ)r.

(A.1)

The baseline antibody concentration is y0 and the initial (inoculated?) pathogen

concentration at time τ = 0 is b0. Antibody concentrations y(τ) increase un-

til all pathogens have been removed, at time τ = t1:

t1 =
1

µ1 − µ0
log

(
1 +

(µ1 − µ0)b0
cy0

)
. (A.2)

From t1 antibody decay begins, so that the peak antibody concentration y1 is

reached at τ = t1:

y1 = y0eµ1t1 = y0

(
1 +

(µ1 − µ0)b0
cy0

) µ1
µ1−µ0

. (A.3)

As the two parameters b0 and c only appear as the ratio b0/c a reduced pa-

rameter c∗ = c/b0 may be defined15 and

t1 = 1
µ1−µ0

log
(
1 + µ1−µ0

c∗y0

)
y1 = y0

(
1 + µ1−µ0

c∗y0

) µ1
µ1−µ0

. (A.4)

When the model is applied to analyze seroresponse data, the growth rate of

virus µ0 and the antibody efficiency parameter c cannot be observed because

the time course of pathogens is not known. The time course of antibody
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concentrations can be expressed in antibody parameters

y(τ) =

 y0eµ1τ 0 ≤ τ ≤ t1

y1
(
1 + (r − 1)αyr−1

1 (τ − t1)
)− 1

r−1 t1 ≤ τ
. (A.5)

Thus, during infection, antibody concentrations increase exponentially from

baseline to some peak concentration y1, at t1 days post infection. At peak

antibody level the pathogens have been removed and decay starts, with a

power function. The shape of the decay curve may provide information about

the within–host heterogeneity in antibody production16.

In any individual subject the seroresponse is determined by five parame-

ters that can be estimated based on the observed time course of serum anti-

body concentrations: the baseline antibody level y0, the time (from symptom

onset) to peak antibody level t1, the peak antibody level y1, the decay rate ν,

and the shape factor for the decay phase r.

A.2 Reinfection: the role of y0

Suppose the rate parameters µ0 (net growth rate of pathogens), µ1 (rate of

increase of serum antibodies), and c (“efficacy” of antibodies in removing

pathogens) are known, and valid for any infection (primary or subsequent)

of the same host. Then the baseline antibody level at time of infection deter-

mines the next peak antibody level15

y1 = f(y0) = y0

(
1 +

(µ1 − µ0)b0
cy0

) µ1
µ1−µ0

. (A.6)

When the antibody concentration at the time of infection

y0 > ymin =
µ0b0
c

, (A.7)

the pathogen concentration

b(τ) = b0eµ0τ − cy0
µ1 − µ0

(eµ1τ − eµ0τ ) , (A.8)
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decreases monotonically and the antibody concentration makes a “small jump”

(Fig. 3 in15) corresponding to a mild (asymptomatic?) infection.

When a subject is infected for the first time, the antibody level at the time

of infection is presumed low14. This baseline antibody level y0 together with

the infection parameters µ0, µ1, c determines the peak level y1 that is reached

following the first infection. The subsequent time course of decay in antibody

levels is determined by the decay parameters ν and r. Anytime a person is

infected again the antibody concentration at the time of reinfection, the base-

line antibody concentration, determines whether this re–infection will lead

to a “small” or a “large” jump to the next peak level15. As a “small” jump

corresponds to more recent prior seroconversion, these two categories of se-

roconversions have been assumed to represent mild (asymptomatic) or seri-

ous (symptomatic) infections. In a population exposed to a given infection

pressure (from a specific infectious pathogen), this causes a fraction of that

population to be protected from acute illness, due to immunity associated

with recent prior infection20.

A.3 Parameter estimation

The infection phase of the seroresponse is determined by the rate parameters

µ0 and µ1 and the efficacy parameter c, and the initial conditions y0 and

b0. The parameters µ0 and c cannot be directly observed. The (net) rate of

antibody increase depends on observables y0, y1 and t1

µ1 =
log(y1)− log(y0)

t1
. (A.9)

As noted earlier15 the inital pathogen level b0 only appears in the ratio c/b0

and therefore we can use the compound parameter

c∗ =
c

b0
(A.10)
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instead. Observed seroresponses are from infections that are ultimately cleared.

It is therefore reasonable to assume that antibodies outcompete pathogens,

and µ1 > µ0. For parameter fitting, we assume

µ0 =

(
eu

1 + eu

)
µ1. (A.11)

In longitudinal data the start of infection is usually identified as symptom on-

set, so that normally all seroresponses should correspond to “large jumps”15.

This means that for such observed (observable) seroresponses

y0 < ymin =
µ0b0
c

=
µ0

c∗
, (A.12)

imposing an additional condition on the parameters to be estimated. Thus,

for parameter estimation we assume

c∗ =

(
ev

1 + ev

)
µ0

y0
. (A.13)

This leaves 6 variables to be estimated (y0, µ1, u, v, α, r).

A.4 Implementation

The model was specified and run in JAGS42.

A multivariate normal prior was used for the parameter vector

(log(y0), log(mu1), u, v, log(α), log(r − 1)),

with wishart prior (Ω) for the precision matrix, as specified below.

# log(y0), log(mu1), v, u, log(alpha), log(shape)-1)

mu.hyp[1,] <- c( 0.0, 0.0, 0.0, 0.0, -2.0, -3.0); # IgG

prec.hyp[1,,] <- diag(c( 0.05, 0.05, 2.0, 0.05, 0.001, 4.0)); # IgG

omega[1,,] <- diag(c(10.0, 10.0, 1.0, 10.0, 10.0, 0.2)); # IgG

wishdf[1] <- 20;

As in15 a normal prior with parameters

prec.logconc.hyp <- c(4.0,1);
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was used for the measurement error in serum antibody concentrations. An-

tibody concentrations below 5 IU/ml were treated as censored (assuming no

accurate readout was possible below that concentration).
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JAGS source code is given below:

model{

for(subj in 1:nsubj){

for(test in 1:ntest){

logy1[subj,test] <- log(y0[subj,test])+

log(1+(mu1[subj,test]-mu0[subj,test])/(c1[subj,test]*y0[subj,test]))*

mu1[subj,test]/(mu1[subj,test]-mu0[subj,test])

t1[subj,test] <- (logy1[subj,test]-log(y0[subj,test]))/mu1[subj,test]

for(rec in 1:nrec[subj,test]){

mu.logy[subj,test,rec] <- ifelse(step(t1[subj,test]-trec[subj,test,rec]),

log(y0[subj,test])+(mu1[subj,test]*trec[subj,test,rec]),

1/(1-shape[subj,test])*log(exp(logy1[subj,test])ˆ(1-shape[subj,test])-

(1-shape[subj,test])*alpha[subj,test]*

(trec[subj,test,rec]-t1[subj,test])))

logy.cens[subj,test,rec] ˜ dinterval(logy[subj,test,rec],cens.lev.log)

logy[subj,test,rec] ˜ dnorm(mu.logy[subj,test,rec],prec.logy[test])

}

y0[subj,test] <- exp(par[subj,test,1])

mu1[subj,test] <- exp(par[subj,test,2])

mu0[subj,test] <- mu1[subj,test]*

exp(par[subj,test,3])/(1+exp(par[subj,test,3]))

c1[subj,test] <- mu0[subj,test]/y0[subj,test]*

exp(par[subj,test,4])/(1+exp(par[subj,test,4]))

alpha[subj,test] <- exp(par[subj,test,5])

shape[subj,test] <- exp(par[subj,test,6])+1

par[subj,test,1:ndim] ˜ dmnorm(mu.par[test,],prec.par[test,,])

}

}

for(test in 1:ntest){

mu.par[test,1:ndim] ˜ dmnorm(mu.hyp[test,],prec.hyp[test,,])

prec.par[test,1:ndim,1:ndim] ˜ dwish(omega[test,,],wishdf[test])

prec.logy[test] ˜ dgamma(prec.logy.hyp[test,1],prec.logy.hyp[test,2])

}

}

After adapatation for 2×105 iterations, The model was run for 106 iterations,

with thinning 103. Four chains were run, producing a final sample of size

4× 103.
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A.5 Longitudinal model results

Note that the longitudinal model used here differs from15 in two respects:

(1) the restrictions on µ0 and c∗ as described above (sec A.3) and (2) power

function decay as in16.

Although the predicted seroresponses in Figure A1 look similar to those

reported earlier16 parameter estimates are slightly different due to the limits

on µ0 and c∗. The predictive parameter samples may be used to calculate

predictions for y1 and t1 (Figure A2), which match closely those obtained

earlier.
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Fig. A1: Predicted seroresponse for the longitudinal model fitted to pertussis antibody data.
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Fig. A2: Posterior predictive density estimates of the peak antibody level and the time to peak,
calculated from the estimated parameters (µ0, µ1, c

∗) and y0.

Relevant for the present study is the relation between current baseline y0

and upcoming peak level y1 (termed f(y0) in15). This relation is shown in

Figure A3 together with predicted levels of y0,min, the threshold above which

the next seroconversion is a “small jump’.
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Fig. A3: (a) Relation between serum antibody baseline y0 and subsequent peak level y1 = f(y0).
(b) Distribution of baseline threshold for a subsequent “small jump” in seroresponse.

The estimates obtained with this model ensure a first infection that always
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is a “large jump”; subsequent infections may cause large or small serocon-

versions depending on y0 at the time of infection. Examples are shown in

Figure A4. For reference, the alternative model using a new sample from

the posterior predictive parameters for each infection episode is also shown,

using an identical infection history.
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Fig. A4: Simulated seroresponse of a hypothetical subject, from birth to age 80 (years), infections
occurring as a Poisson process with rate 0.2/yr (a,b) and 1/yr (c,d). Longitudinal parameters fitted
to pertussis data 16 (a,c): parameters and baseline chosen at random at each new infection. This
corresponds with published analyses. (b,d): parameters (µ0, µ1, c, α, r) and baseline y0 chosen at
birth and kept fixed. Baseline antibody level y0 for subsequent infections carried over from the
prior episode. Triangles indicate symptomatic (“large jump”: red) or asymptomatic seroconversions
(“small jump”: blue).
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Fig. B1: Prior (gray) and posterior (black) densities for simulated cross–sectional data. Estimated
seroconversion rate λ, and the two noise parameters (µ, σ). (a), (b), (c): λsim = 0.03 (1/yr); (d), (e),
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Fig. B3: Densities for population samples of data of the Netherlands from the ESEN study, and
densities from samples fitted by matching EDFs.
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Fig. B4: ESEN data, (a) Estimated seroconversion rates λest by (5 yr) age categories. Two fitting
methods are shown. ML: maximum likelihood seroincidence 14 with B–noise fixed ν = 3.0 IU/ml.
ML adj: maximum likelihood seroincidence with B–noise adjusted to the 95th percentile of the
distribution estimated by EDF. KS: EDF method simulating vaccination at age 2, using pKS, fitted by
ABC jointly estimating λ and the two noise parameters. (b) Estimated log mean µ of B–noise. (c)
Estimated log sd σ of B–noise.
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Fig. B5: ESEN data, (a) Estimated seroconversion rates λest by (5 yr) age categories. Two fitting
methods are shown. ML: maximum likelihood seroincidence 14 with B–noise fixed ν = 3.0 IU/ml.
ML adj: maximum likelihood seroincidence with B–noise adjusted to the 95th percentile of the
distribution estimated by EDF. KS: EDF method simulating vaccination at age 2, using pKS, fitted by
ABC jointly estimating λ and the two noise parameters. (b) Estimated log mean µ of B–noise. (c)
Estimated log sd σ of B–noise.
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Fig. B8: Estimated λest and B–noise parameters (µest, σest) for an outbreak 2, 5, 10, 20 and 50 years
ago (∆) at time of sampling, for subjects aged 0 – 80 years (a–d) or 0 – 10 years (e–h) (uniform
age distributions). Baseline infection rate λ0 = 0.05 (1/yr), during the outbreak a peak rate of
λ1 = 10 (1/yr) is reached. Simulated B–noise distribution parameters: (µsim, σsim) = (0.1, 0.6).
ML: maximum likelihood estimation; KS: EDF based method. Note how recent changes in λ cause
decreased pKS (d, h).
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