Lawrence Berkeley National Laboratory LBL Publications

Title
A QUASI-RELATIVISTIC SCF X-a STUDY OF OCTAHEDRAL 5 F1 COMPLEXES
Permalink
https://escholarship.org/uc/item/7rf7v0j8

Author

Thornton, G.
Publication Date
1979-09-01

$1 B$ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Materials \& Molecular Research Division

Submitted to the Journal of the American Chemical Society

A QUASI-RELATIVISTIC SCF $X-\alpha$ STUDY OF OCTAHEDRAL $5 f^{1}$
COMPLEXES

Geoffrey Thornton, Notker Rösch, and Norman Edelstein $\mathbb{R E E V} \mathbb{V}$ Lawrence
BeRKELEY LABORATORY.
NUV 161979
September 1979
LIBRERY AND

TWO-WEEK LOAN COPY

This is a Library Círculating Copy

 which may be borrowed for two weeks. For a personal retention copy, call

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

A Quasi-Relativistic SCF $X-\alpha$ Study of Octahedral $5 f^{l}$ Complexes a Geoffrey Thornton, ${ }^{\mathrm{b}}$ Notker RBsch, ${ }^{\mathrm{C}}$ and Norman Edelstein

Materials and Molecular Research Division
Lawrence Berkeley Laboratory University of California Berkeley, California 94720

September 1979

Abstract

Quasi-relativistic SCF $X-\alpha$ calculations have been carried out for the octahedral $5 f^{1}$ complexes $\mathrm{Pa}^{I V_{X}} \mathrm{X}_{6}^{2-}$, $\mathrm{U}^{\mathrm{V}} \mathrm{X}_{6}^{-}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and $\mathrm{Np}^{\mathrm{VI}} \mathrm{F}_{6}$. The $5 \mathrm{f} \rightarrow 5 \mathrm{f}$ excitation energies calculated using the transition-state method agree well with the available absorption spectra. Ionic effects appear to dominate the trends observed in the f-orbital ligand field splitting.

[^0]
INTRODUCTION

Although ab-initio calculations of ML_{N} complexes have been carried out extensively for the situation in which M is a transition metal or main group element, ${ }^{l}$ lanthanide and actinide complexes have been somewhat neglected. Such calculations are computationally difficult for traditional LCAO schemes, although the multiple scattering $X-\alpha$ (MSX α) method is capable of solving such a problem without undue cost, even when relativistic effects are included. The $X-\alpha$ method has been applied to the neutral species $\mathrm{UF}_{5},{ }^{2} \mathrm{UF}_{6},{ }^{2-6} \mathrm{UCl}_{6},{ }^{7}$ $\mathrm{NpF}_{6}, 4,5$ and $\mathrm{PuF}_{6}{ }^{4,5}$ Considerable success was obtained in their agreement with photoelectron and absorption spectra.

In the present study, quasi-relativistic SCF $X-\alpha$ calculations were carried out on a series of $5 f^{1}$ complexes: Pax_{6}^{2-}, $\mathrm{UX}_{6}^{-}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and $\mathrm{NpF}_{6} \cdot$ The study of such series has aided the interpretation of the electronic structure in terms of parameters commonly used in inorganic chemistry. In this case, the main object of study was the nature of the $5 f$ ligand field splitting relative to the oxidation state of the metal ion and to the halide ion. Previously, only the relative extent of σ and π type ligand-f-orbital interactions has been discussed, in terms of the semi-empirical angular-overlap model. ${ }^{8}$

As a test of the SCF $X-\alpha$ calculations, $5 f \rightarrow 5 f$ excitation energies were determined to compare with available experimental results. ${ }^{9-11}$

COMPUTATIONAL DETAILS

The calculations were performed using a version of the MS $X-\alpha$ routine described by Slater, ${ }^{12}$ modified, in the DiracSlater framework, to include relativistic effects. The DiracSlater MO model has previously been solved for a number of polyatomic systems, using the discrete variational method. 4 The computational effort necessary, however, is substantial but may be reduced considerably by constraining the potential to muffin-tin form. This allows the use of the efficient scattered-wave (SW) formalism either via a Green's function technique ${ }^{13}$ or by means of the elimination method. ${ }^{14}$ The resulting secular equation for the orbital energies ε_{i} is of the same form as in the nonrelativistic $S W$ formalism: ${ }^{15}$

$$
\operatorname{det}\left|G_{p q}(\varepsilon)-t t_{p}^{-1}(\varepsilon) \delta{ }_{p q}\right|=0
$$

The propagators $G_{p q}(\varepsilon)$ describe the scattering of the waves in the region of constant potential from sphere p to sphere q; they only depend on the muffin-tin geometry. The scattering factors $t_{p}(\varepsilon)$ characterize the phase shift experienced by a wave on reflection at sphere p; it is a function of the logarithmic derivative of the large component of the wave function evaluated at the sphere boundary. 14,15

In this study we use a nonperturbative self-consistent approximation to the $S W$ treatment of the relativistic $x-\alpha$
model that should be well-suited for MO calculations of very large molecules. The chemically relevant information is contained in the energies and wave functions of the valence shell molecular orbitals. Core levels do not participate directly in the formation of chemical bonds and remain welllocalized in the vicinity of a nucleus. The sw model with its underlying muffin-tin geometry takes advantage of this fact in that it confines core levels to one atomic sphere, thereby treating them essentially as in atomic problems. For atoms, of course, the solution of the Dirac-Slater model is well-established. ${ }^{16}$

In order to simplify the relativistic $S W$ problems for valence shell MO's, we briefly analyze the magnitude of various relativistic effects for such orbitals. The spinorbit splitting in molecules is usually smaller than in isolated atoms, and at most $\sim 1 \mathrm{eV}$ for MO's with bonding energies less than ca. 20 eV . This has to be compared to errors in the orbital energies due to the muffin-tin form of the potential, which may be up to about the same size. The mass-velocity correction and the Darwin shift of MO energies may be 10 times larger. They affect the wavefunction whereever the quantity

$$
q=\frac{1}{2 c^{2}}(\varepsilon-V(r))
$$

is large, i.e., inside the atomic muffin-tin spheres. In
the intersphere region where $|\varepsilon-V(r)| \leqslant 4$ a.u. these relativistic effects are completely negligible: $|q| \leqslant 10^{-4}$ ($c=137$ a.u.). The solution of the Dirac-Slater equation is therefore restricted to the interior of the atomic spheres. ${ }^{16}$ The SW problem in the intersphere region is then identical to the nonrelativistic treatment except for the use of scattering factors tt ${ }_{p}(\varepsilon)$ calculated from the large component of the wavefunction inside the atomic spheres. A similar but more formal treatment, with applications mainly to atoms, has recently been presented by wood and Boring. 17

This approximation has the chemical appeal of reducing to the nonrelativistic treatment whenever the atomic number Z is small $(Z \leqslant 56)$, or when c is made very large deliberately ($c \sim 10^{6}$ a.u.). The same irreducible representations may be used as in the nonrelativistic case, and double groups necessary in the $S W$ solution of the Dirac-Slater equation for molecules can be avoided. Spin-orbit splittings have to be estimated using perturbation theory. The resulting errors will be tolerable since they are of the same size as those from the muffin-tin model.

The protactinium, uranium, and neptunium core electron charge densities were derived from relativistic calculations. ${ }^{16}$ The interatomic distances used in the calculations (Table l) were taken from structural studies when available, ${ }^{18,19}$ or by reference to ionic radii tables. ${ }^{20}$ The muffin-tin radii (Table 1) were chosen as follows: An SCF X- α
calculation of UF_{6} was performed, and the sphere radii were adjusted to give the best overall agreement with the Discrete Variational $X-\alpha$ calculation of Koelling et al. ${ }^{4}$ To obtain this agreement the U and F spheres were overlapped. The U sphere radius was held constant at this value, while the other ligand radii were chosen to touch an imaginary sphere corresponding to a 10% reduction in the U sphere radius. "The 10% overlap of the U sphere corresponds approximately to that present in the UF_{6} calculation. The same ligand radii were: then used for calculations on NpF_{6} and Pax_{6}^{2-}. In these cases, the metal radii were chosen to give a 10% overlap. In all cases, the outer sphere was chosen to touch the ligand spheres, and for the anionic species a Watson sphere of the same radius was used. This carried a charge of +1 for U_{6}^{-}and +2 for $\operatorname{PaX}_{6}^{2-}$.

The atomic exchange scaling parameters, α, were taken from values tabulated by schwartz, 21,22 or extrapolated from them.

$$
\begin{aligned}
& \alpha_{\mathrm{Pa}, \mathrm{U}, \mathrm{~Np}}=0.69208,0.6920,0.6916 ; \\
& \alpha_{\mathrm{F}, \mathrm{CI}, \mathrm{Br}, \mathrm{I}}=0,73732,0.72325,0.70606,0.70008
\end{aligned}
$$

Extramolecular and intersphere scaling parameters were obtained by averaging the atomic parameters. Core electron densities for $P a, U$, and $N p\left([X e] 4 f^{14}\right)$ were frozen at their atomic values as were the $F([\mathrm{He}]), \mathrm{Cl}([\mathrm{Ne}]), \operatorname{Br}([\mathrm{Ar}])$, and $I([\mathrm{Kr}])$ electron densities. All other electrons were considered fully in the

SCF calculations, spin-orbit coupling being neglected. The $\mathrm{X}-\alpha$ one-electron energies found in the calculations are shown in Figure 1, and the electron charge within each muffin-tin sphere is presented in Table 1.

DISCUSSION

An appropriate test for the calculations presented here is to compare the calculated $5 f-5 f$ excitation energies with corresponding absorption spectra. Table 2 shows this comparison and it can be seen that the agreement between theory and experiment is remarkably good. The excitation energies were calculated using the transition-state procedure of Slater. ${ }^{12}$

The trend in the calculated ligand field splittings observed in Figure 1 follows that found experimentally and that expected from the spectrochemical series, i.e., $\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}$. Also, the order $\mathrm{Np}^{6+}>\mathrm{U}^{5+}>\mathrm{Pa}^{4+}$, expected on purely ionic grounds is observed. In the MS $\mathrm{X}-\alpha$ scheme a charge fraction analysis of each of the orbitals can reveal the relative σ and π contributions in each of the spheres. Following the work of RÖsch et al., ${ }^{23}$ the intersphere charge density is divided between the metal (1 part) and ligand spheres (6 parts) and the charge density in the outer sphere is given to the ligands. Table 3 shows the results of this charge fraction analysis for the antibonding ${ }^{24}$ and bonding $t_{l u}$ and $t_{2 u}$ orbitals and the nonbonding $a_{2 u}$ orbitals that
contain the f electron. Although the absolute numbers are probably not meaningful, the relative values should be qualitatively correct.

The following trends are apparent on comparing the relative ligand contribution to the antibonding orbitals, or the metal contributions to the bonding orbitals. The fluoride complexes are the most ionic in each of the various ionic groups, and the ligand contribution increases as the halide ion becomes heavier. Within a particular halide-complex series, the heavier the metal ion (and the lesser the total ionic charge) the greater the ligand contribution. In particular, NpF_{6} appears to be the most covalent complex in the entire hexahalide series.

Considering only the $t_{l u}$ antibonding orbitals, the percentage of ligand σ bonding increases from 17.4% (UF ${ }_{6}^{-}$) and $7.8 \%\left(\mathrm{PaF}_{6}^{2-}\right)$ to $26.6 \%\left(\mathrm{UI}_{6}^{-}\right)$and $12.7 \%\left(\mathrm{PaI}_{6}^{2-}\right)$. The ligand π bonding component in the $t_{l u}$ antibonding orbital increases from 2.3% and 2.6% in UF_{6}^{-}and PaF_{6}^{2-} to 5.5% and 3.9% in UI_{6}^{-} and PaI_{6}^{2-}. For the antibonding $t_{2 u}$ orbital (where only π bonding with the f orbitals can occur), the ligand π bonding increases from 8.5% and 4.8% for UF_{6}^{-}and PaF_{6}^{2-} to 11.6% and 6.2% for UI_{6}^{-}and PaI_{6}^{2-}.

The increase in both σ and π bonding as the halide becomes heavier is substantial. However, it is small when compared with the dramatic decrease in the f orbital splitting as the ligand is changed from F^{-}to I^{-}(see Table 2). These
results suggest that the f orbital splittings of these hexahalide complexes are dominated by ionic effects with a lesser contribution from covalent bonding. It appears that the decrease in ionic effects due to changes in bond length outweighs the gain in covalent bonding on descending the halogen series.

Another measure of the covalent/ionic nature of the complexes can be found in the gross atomic charge assigned to the metal and ligand, as shown in Table 4. This is equivalent to a Mulliken population analysis in the LCAO scheme. The pattern obtained here is different from that discussed previously considering only the f orbitals. Clearly, NpF 6 is the most covalent but PaF_{6}^{2-} appears more covalent than UF_{6}^{-}. However, if the bonding is mainly ionic then these results are consistent, i.e., the greater the charge on the complex as a whole the smaller the charge on the central ion. Since the F^{-}ion is the smallest and least polarizable halide ion, an overall charge on the complex will result in more charge being placed on the central metal ion. There appears to be little difference for the other halide ions.

SUMMARY

This paper has described a systematic study of the $5 f$ ligand field splitting in the $5 f^{I}$ complexes $\mathrm{Pa}^{I V_{X}} \mathrm{X}_{6}^{2-}, U^{V_{X}} X_{6}^{-}$ ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) and $\mathrm{Np}^{\mathrm{VI}} \mathrm{F}_{6}$. A quasi-relativistic MS $X-\alpha$ routine was used for this purpose. The trends observed
in the f orbital ligand field splitting appear to be principally ionic in nature.

REFERENCES

1. W.G. Richards, P.R. Scott, E.A. Calbourn, and A.S. Marchington, Bibliography of ab initio molecular wavefunctions --supplement for 1976-1977, Oxford University Press, Oxford, 1978; and earlier publications in this series.
2. D.H. Maylotte, R.L. St. Peters, and R.P. Messmer, Chem. Phys. Lett. 38, 181 (1976).
3. M. Boring and J.W. Moskowitz, Chem. Phys. Lett. 38, 185 (1976) .
4. D.D. Koelling, D.E. Ellis, and R.J. Bartlett, J. Chem. Phys. 65, 3331 (1976).
5. M. Boring and H.G. Hecht, J. Chem. Phys. 69, 112 (1978).
6. M. Boring and J.H. Wood, J. Chem. Phys. 71, 32 (1979).
7. G. Thornton, N. Edelstein, N. R४sch, R.G. Egdell, and D.R. Woodwark, J. Chem. Phys. 70, 5218 (1979).
8. K.D. Warren, Inorg. Chem. 16, 2008 (1977).
9. D. Brown, P. Lidster, B. Whittaker, and N. Edelstein, Inorg. Chem. 15, 511 (1976).
10. N. Edelstein, D. Brown, and B. Whittaker, Inorg. Chem. 13, 563 (1974)
11. W. Wagner, N. Edelstein, B. Whittaker, and D. Brown, Inorg. Chem. 16, 1021 (1977).
12. J.C. Slater, The Self-Consistent Molecular Field for Molecules and Solids (McGraw-Hill, New York, 1974).
13.. C.V. Yang and S. Rabii, Phys. Rev. Al2, 362 (1975); and C.Y. Yang, Chem. Phys. Lett. 41, 578 (1976).
13. R. Rosicky, P. Weinberger, and F. Mark, J. Phys. B9, 2971 (1976).
14. N. ROsch, in "Electrons in Finite and Infinite Systems," NATO Advanced Study Institute, ed. P. Phariseau and L. Scheire, Plenum Press, New York 1977.
15. D.A. Liberman, J.T. Waber, and D.T. Cromer, Phys. Rev. 137A, 27 (1965).
16. J.H. Wood and A.M. Boring, Phys. Rev. Bl8, 2701 (1978).
17. D. Brown, in "Comprehensive Inorganic Chemistry," Vól. 5, Pergamon Press, New York 1973.
18. A. Rosenzweig and D.T. Cromer, Acța. Cryst. 23, 865 (1967).
19. R.D. Shannon, Acta. Cryst. A32, 2446 (1972).
20. K. Schwartz, Phys. Rev. 85, 2446. (1972).
21. K. Schwarţz, Theor. Chim. Acta. 34, 225 (1974).
22. N. RÖsch, V.H. Smith, Jr., and M.H. Whangbo, Inorg. Chem. 15, 1768 (1976).
23. In the case of the antibonding orbitals, the analysis is of virtual charge.
TABLE I. Sphere radii and interatomic distances used in the MS X- α calculations (a.u.), and the charge found within each sphere for the ground state complexes.

	R_{M}	R_{L}	${ }^{\text {R OUT }}$	D_{ML}	Q_{M}	${ }^{\text {Q }} \mathrm{HAL}$	$Q_{\text {INT }}$	$Q_{\text {OUT }}$
$\operatorname{PaF}_{6}^{2-}$	3.212	1.3781	5.6767	2.274	89.582	7.843	9.148	1. 208
$\operatorname{PaCl}_{6}^{2-}$	3.212	2.2856	7.4920	2.754	89.351	16.039	8.482	0.925
$\operatorname{PaBr}_{6}^{2-}$	3.212	2.5690	8.0586	2.904	89.414	34.031	8.480	0.891
$\operatorname{PaI}_{6}^{2-}$	3.212	3.0280	8.9713	3.144	89.437	52.078	8.235	0.812
UF_{6}^{-}	2.789	1.3781	5.2666	3.888	90.879	7.803	8.927	1.197
$\mathrm{UC} 1_{6}^{-}$	2.789	2.2856	7.0816	4.796	89.879	16.018	8.147	0.859
UBr ${ }_{6}^{-}$	2.789	2.5690	7.6484	5.079	89.982	34.014	8.093	0.815
UI_{6}^{-}	2.789	3.0280	8.5670	5.539	90.022	52.070	7.781	0.729
NpF_{6}	2.763	1.2322	4.9765	3.744	91.457	7.294	10.359	1.412

TABLE II. $5 f \rightarrow 5 f$ excitation energies; theoretical and experimental ${ }^{10-12\left(\mathrm{~cm}^{-1}\right)}$

	$a_{2 u}$ calc	$t_{2 u}$ exptl	$a_{2 u} \rightarrow$ calc	$t_{\text {1u }}$ exptl
PaF $_{6}^{2-}$	2381	3074	6979	7576
PaCl_{6}^{2-}	1350	1634	4521	3507
PaBr_{6}^{2-}	1218	1707	4104	2975
PaI_{6}^{2-}	944	1546	3424	2378
UF_{6}^{-}	4148	4479	17130	11361
UCl_{6}^{-}	2294	2936	8658	6307
UBr_{6}^{-}	2008	2935	7725	5310
UI_{6}^{-}	1525	-7	6277	-7
NpF_{6}	5662	5619	18676	23117

TABLE III. The energies and composition of the $a_{2 u}, t_{l u}$ " and $t_{2 u}$ " $5 f$ " orbitals

Molecule	Orbital	$\begin{aligned} & \text { Energy } \\ & (\text { Ryd }) \end{aligned}$	$\begin{gathered} \% \text { metal } \\ (\mathrm{f}) \end{gathered}$	$\begin{gathered} \% \text { metal } \\ (p) \end{gathered}$	\% ligand (σ)	\% ligand (π)
$\operatorname{PaF}_{6}^{2-}$	$\mathrm{a}_{2 \mathrm{u}}$	-. 3117	96.56			
	t_{11}	-. 2483 *	88.39	1.27	7.76	2.58
	1 u	-. 6592	5.71	8.28	63.56	22.46
		-. 7170	10.78	0.11	21.54	67.56
	$t_{2 u}$	-. 2900*	95.19			4.81
		-. 7045	7.22			92.78
$\operatorname{PaCl}_{6}^{2-}$	$\mathrm{a}_{2 \mathrm{u}}$	-. 3691	97.29			
	$t_{1 u}$	-. 3285 *	86.13	0.74	10.11	3.01
	1u	-. 5754	10.72	4.64	81.94	2.71
		-. 5941	7.19	0.30	2.31	90.19
	$t_{2 u}$	-. 3568 *	94.68			5.33
	2u	-. 5861	6.96			93.04
PaBr_{6}^{2-}	$\mathrm{a}_{2 \mathrm{u}}$	-. 3570	97.16			
	$t_{1 u}$	-. 3202*	84.69	. 67	11.26	3.38
	1u	-. 5311	14.38	3.39	81.69	. 54
		-. 5493	3.94	1.96	1.05	93.05
	$t_{2 u}$	-. 3459 *	94.22			5.79
		-. 5393	7.26			92.74

* Antibonding orbital
+ Intersphere charge $1 / 7$ given to metal sphere, $6 / 7$ to ligands; within a ligand
or metal orbital the intersphere charge is divided proportionately among the various components according to the percentage of charge density for each partial wave. The outer sphere charge density is distributed only on the ligands in the same fashion.

TABLE IV. Gross atomic charges

	M	L
PaF_{6}^{2-}	0.11	-0.35
PaCl_{6}^{2-}	0.44	-0.41
PaBr_{6}^{2-}	0.38	-0.39
PaI_{6}^{2-}	0.39	-0.39
UF_{6}^{-}	0.68	-0.28
UCI_{6}^{-}	0.96	-0.33
UBr_{6}^{-}	0.86	-0.31
UI_{6}^{-}	0.87	-0.30
NpF_{6}	0.06	-0.01

Figure Caption

Figure 1. Calculated one-electron energies for the $5 f^{1}$ hexahalide complexes.

XBL797-2171
Pigure 1

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

[^0]: $\mathrm{a}_{\text {This }}$ work was supported by the Division of Nuclear Sciences, Office of Basic Energy Sciences, U.S. Department of Energy.
 ${ }^{\mathrm{b}}$ Present address: Department of Chemistry, University of Manchester, Manchester M13 9PL, England.

 CPresent address: Lehrstuhl fur Theoretische Chemie, Technische Universitat Munchen, 8046 Garching, W. Germany.

