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August 12, 2013

Abstract

A defining feature of holographic dualities is that, along with the bulk equations
of motion, boundary correlators at any given time t determine those of observables
deep in the bulk. We argue that this property emerges from the bulk gravitational
Gauss law together with bulk quantum entanglement as embodied in the Reeh-Schlieder
theorem. Stringy bulk degrees of freedom are not required and play little role even
when they exist. As an example we study a toy model whose matter sector is a free
scalar field. The energy density ρ sources what we call a pseudo-Newtonian potential Φ
through Poisson’s equation on each constant time surface, but there is no back-reaction
of Φ on the matter. We show the Hamiltonian to be essentially self-adjoint on the
domain generated from the vacuum by acting with boundary observables localized in
an arbitrarily small neighborhood of the chosen time t. Since the Gauss law represents
the Hamiltonian as a boundary term, the model is holographic in the sense stated
above.
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1 Introduction

Holographic dualities [1, 2] are settings where one theory (the bulk) is dual to a second theory
(the dual field theory, or DFT) living on a lower dimensional spacetime. In simple cases the
DFT spacetime can be identified with the boundary of the bulk, and local DFT operators
can be identified [3] with boundary limits of bulk operators. For this to be a true duality
any bulk operator must, at least in principle, be expressible in terms of DFT operators. This
suggests that all bulk operators are in fact determined by their boundary values.

While this property may sound striking at first, in a free bulk quantum field theory
it is actually straightforward to show that all bulk operators can be written in terms of
their boundary values. The point is that signals in the bulk eventually travel outward
and reach the boundary.1 The free result may then be corrected perturbatively for bulk
interactions which, in familiar examples, corresponds to performing a 1/N expansion in the
DFT [11, 12, 13, 14, 15, 16, 17].

The interesting point about holographic theories is that they take this observation one
step further. Since the DFT is a self-contained theory which evolves deterministically under
its own Hamiltonian HDFT , for any DFT operator ODFT at any time t1 we may write

ODFT (t1) = eiHDFT (t1−t)ODFT (t)
−iHDFT (t1−t), (1.1)

expressing ODFT (t1) in terms of DFT operators at time t. Combining this with the above
reasoning suggests that any bulk observable (defined, say, at some time t) can in fact be
written in terms of boundary limits of bulk operators at the same time t. We call this
strengthened conjecture holography of information and note that it is closely related to
discussions of so-called precursors in [18, 19]. We also use the term boundary observable
for the relevant boundary limits of bulk operators; i.e., for what were called extrapolated
observables in [20]. In contrast, observables in the dual field theory will be called DFT
observables.

Holography of information would be manifestly false in any local non-gravitational quan-
tum field theory. Since all equal time commutators between bulk and boundary must vanish
due to the spacelike separation of the operators involved, no non-trivial bulk commutator

1At least for signals outside black holes. See [4, 5, 6, 7, 8] for comments on possible limitations of the
duality related to eternal black holes. Inside a black hole that forms from collapse, one may evolve signals
backward in time until they reach the boundary, though the resulting perturbation theory becomes difficult
to control at times long after the collapse [9, 10].
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could be reproduced by boundary observables. And even classical gravity allows locally
specified initial data, so that the full classical solution is certainly not determined by its
boundary values at the single time t.

Yet there is a sense in which holography of information becomes natural for gravitational
systems at the quantum level [21]. It is well-known that the on-shell Hamiltonian H of
classical gravity is a pure boundary term [22, 23, 24, 25, 26], a fact that is deeply related to
having a non-trivial notion of diffeomorphism invariance (see e.g. [27]). This is essentially
the relativistic version of the gravitational Gauss law. If H remains a boundary term in the
quantum theory, then the final step in the above argument can be made directly in the bulk:
since H itself is a boundary observable, writing O(t1) = eiH(t1−t)O(t)−iH(t1−t) immediately
expresses the boundary observable O at any time t1 in terms of boundary observables at time
t – a property called boundary unitarity in [21]2. For simplicity we have used notation ap-
propriate to time-independent Hamiltonians, though making the exponentials path-ordered
generalizes the argument to the time-dependent case as well.

It is notable that this argument makes no mention of any stringy degrees of freedom3.
This stands in contrast both to the central role of strings in implementing details of the
known gauge/gravity correspondences and to past suggestions of their relevance to this issue
[18, 32, 33]. On the other hand, our argument for information holography may appear
rather formal, and the fact that exponentiating the Hamiltonian is equivalent to solving
the equations of motion may suggest that further subtleties remain to be considered. For
example, although the on-shell Hamiltonian H can be written as an integral over boundary
limits of the gravitational field at any time t and is thus clearly a boundary observable at
this time, it is natural to ask whether the exponentiated operator eiHt also qualifies as a
boundary observable at the single time t. The goal of our work below is to carefully argue
that it does, and that stringy degrees of freedom continue to play no significant role.

This conclusion may come as a surprise to some readers. A counter-argument that
strings should be instead critical may be given as follows. When the DFT is a gauge theory,
completeness of Wilson loops in the DFT observable algebra suggests that bulk observables
can in fact be written in the DFT as a sum over (perhaps suitably decorated) spacelike
Wilson loops at any given time t. Transcribing this result to the bulk would then involve
strings [34]. But the problem with this supposed example is two-fold. First, the sum over
Wilson loops is also rather formal, involving Wilson loops with large amounts of structure
on arbitrarily small scales (see comments in section 4.4.3 of [16]). Second, it is unclear what
special role such strings could play in the bulk. Indeed, in the limit of weak string coupling
one would expect to be able to use some form of string field theory to treat strings in much
the same way as very heavy particles. But, as noted above, in standard quantum field theory

2In perturbation theory, one thinks of the gravitational Gauss law as simply dressing each particle state
with an appropriate gravitational Coulomb field. One may ask how this leads to boundary unitarity. The
point seems to be that the Coulomb tails are rich enough to allow states that can be distinguished by
boundary observables at any time t1 to also be distinguished by boundary observables at time t. The total
energy plays a role in this process, as do boundary observables whose commutators with H are non-zero.
The basic mechanism for this was discussed in [28].

3We use this term to also refer to the towers of fields in higher spin gravity [29, 30, 31].

3



information is non-holographic no matter how heavy the particles may happen to be. So
while local boundary operators certainly mix with more stringy operators when the DFT is
a gauge theory, the fundamental significance of this effect remains unclear.

Let us therefore return to the bulk Hamiltonian and ask to what extent eiHt might
contain information beyond that in H itself. This rather technical sounding question clearly
demands a technical answer. We thus adopt the mathematical physics point of view and
note that, since H is unbounded, it can be defined only on some dense domain D smaller
than the full Hilbert space H of the quantum theory. In contrast, eiHt is bounded and thus
continuous, and defined on all of H. So long as H is truly self-adjoint (see e.g. [35]), this
difference is usually considered to be trivial. The operator H then has a complete set of
orthogonal eigenstates on which eiHt is both defined and bounded, so the linear extension of
D toH is unique. Similarly, in constructing Hamiltonians one often first defines H on a dense
domain D that, while it might not in itself make H self-adjoint, may still be large enough
to guarantee that H has a unique self-adjoint extension. H is then said to be essentially
self-adjoint on D and the operator eiHt is again uniquely determined.

We ask below whether, given some reasonable choice of bulk quantum state |ψ〉, the
domain D defined by acting on |ψ〉 with products of local boundary observables4 at some
given time t is one that makes H essentially self-adjoint. We study the case where |ψ〉 is the
ground state |0〉 of the bulk theory. Indeed, one might expect that the DFT Hamiltonian is
essentially self-adjoint on the domain defined by applying all local DFT operators (perhaps
supplemented in a gauge theory by spacelike Wilson loops) at time t to the DFT vacuum,
so we ask whether a bulk dual of this property can be identified5.

We show below that this is so. Our argument uses properties related to the Reeh-Schlieder
theorem which states (see e.g. [36]) that by acting on |0〉, or in fact any state of bounded
energy, with operators localized in any arbitrarily small region of spacetime one may ap-
proximate any state in a quantum field theory Hilbert space to arbitrary precision. This
highly quantum property has no classical counterpart and stems from the strong entangle-
ments required to keep the energy small. Section 2 studies the simple toy model of a free
scalar field χ in Anti-de Sitter (AdS) space, supplemented by an extra fully constrained field,
the pseudo-Newtonian potential Φ, which allows us to treat the Hamiltonian as a bound-
ary observable [27]. The introduction of this Φ models the gravitational Gauss law of true
holographic systems but plays no further role in our analysis. We show that H is essentially
self-adjoint on the domain defined by acting in any neighborhood of t = 0 with boundary
limits of χ on the vacuum |0〉. We then interpret this result and discuss generalizations in
section 3.

4Perhaps in stringy examples supplemented by less-local boundary observables associated with large
strings dual to Wilson loops in the DFT.

5This interesting question was brought to our attention by Bob Wald.
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2 Holography in pseudo-Newtonian gravity

As mentioned above, we build our model from a free scalar field χ of mass m on the (d+1)-
dimensional (global) Anti-de Sitter (AdS) space AdSd+1 with metric

ds2 = −(1 + r2/ℓ2)dt2 +
dr2

1 + r2/ℓ2
+ r2dΩ2. (2.1)

We use Ω to denote a point on Sd−1 with dΩ2 the associated unit-radius round metric. Due
to the timelike conformal boundary of AdS, we must impose boundary conditions to make
the dynamics well-defined. We will use AdS-invariant boundary conditions associated with

choosing a so-called6 conformal dimension ∆ satisfying [37, 38, 39] ∆ = −d
2
±
√

(

d
2

)2
+m2.

We require our theory to be ghost-free, which imposes ∆ > d−2
2

and makes the choice of

boundary conditions unique form2 ≥ −d2

4
+1 (see [40] which builds on [37, 38, 41, 42, 43, 44]).

The quantum field χ may be written

χ(x, t) =
∑

n,~ℓ

(

a†
n,~ℓ
u∗
n,~ℓ

+ an,~ℓun,~ℓ

)

for un,~ℓ(t,Ω, r) =
e−iωt

√
ω
Y~ℓ(Ω)Rn,~ℓ(r), (2.2)

where a†
n,~ℓ
, an,~ℓ are the usual creation/annihilation operators, n ≥ 0 is an integer, ~ℓ labels

spherical harmonics Y~ℓ(Ω) on S
d−1 with principle quantum number |~ℓ|, ω = (2∆+ |~ℓ|+ 2n),

and the un,~ℓ are a complete set of Klein-Gordon-normalized positive-frequency wavefunctions.
We use x, y to denote the d spatial coordinates and will always separately indicate dependence
on the time t. The radial profiles Rn,~ℓ are hypergeometric [37, 38, 41], though the only prop-

erties we require are that Rn,~ℓ = O(r−∆) at large r and that βn,~ℓ := limr→∞ r∆Rn,~ℓ scales like

n∆ at large n for fixed ~ℓ. Thus the natural boundary operator X(Ω, t) := limr→∞ r∆χ(r,Ω, t)
takes the form

X(Ω, t) =
∑

n,~ℓ

(

a†n,ℓU
∗

n,~ℓ
+ an,ℓUn,~ℓ

)

, for Un,~ℓ(Ω, t) =
βn,~ℓ√
ω
e−iωtY~ℓ(Ω), (2.3)

where the coefficient of Y~ℓ scales like n
∆−1/2 at large n.

To complete our model, we also introduce the non-local functional

Φ(x, t) =

∫

ddx G(x, y)ρ(y, t) (2.4)

of χ, where ρ = 1
2(1+r2/ℓ2)

χ̇2+ 1
2
gij∂iχ∂

iχ+ m2

2
χ2 is the (scalar) energy density of our system

and G(x, y) is the Dirichlet Green’s function for Poisson’s equation

DiD
iΦ = −ρ. (2.5)

6This terminology is useful and familiar to practitioners of AdS/CFT, though we emphasize that we
study only the bulk. At no point do we assume the existence of any dual CFT.
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Here D is the covariant derivative on each constant t surface which we label by coordinates
xi for i = 1 . . . d. The boundary conditions on χ ensure that ρ decays fast enough for (2.4)
to converge. Thus (2.4) is equivalent to requiring Φ to satisfy (2.5) on each constant t
surface with boundary condition Φ = 0 at r = ∞. Although the definition (2.4) may look
rather contrived in our model, equation (2.5) models the gravitational Gauss law of known
holographic theories.

Due to the formal similarity of (2.5) to Newtonian gravity, we call Φ the pseudo-
Newtonian potential. Differences from actual Newtonian gravity include that we take Φ
to have no effect on the matter fields, that our matter theory is relativistic, and that the
background geometry is AdS. Of more importance however is the fact that our ρ is the
full energy density of the matter theory, and not just some non-relativistic notion of mass-
density. As noted in [27], Gauss’ law then implies that the Hamiltonian may be written as
a boundary term:

H = − lim
R→∞

∫

r=R,t=const

r̂i∂iΦ Rd−1dΩ, (2.6)

where r̂i is the outward-pointing unit normal at the boundary and dΩ is the volume element
on the unit (d−1)-sphere. While this statement is not particularly deep for our toy system, it
models a central property of metric theories of gravity which distinguish them from systems
with more trivial notions of diffeomorphism invariance [27]. Note that (2.6) generates time-
translations of both χ and Φ.

For any time interval [−ǫ, ǫ] no matter how small, we wish to show essential self-adjointness
of the operator HD given by restricting the true self-adjoint Hamiltonian H to the domain D
constructed by acting on the vacuum |0〉 with boundary observables X(Ω, t) smeared with
test functions supported in [−ǫ,+ǫ]. There is also a corresponding boundary observable
defined by Φ, though the X(Ω, t) turn out to be sufficient for our argument. The term
essentially self-adjoint means that H is in fact the unique self-adjoint operator on the full
Hilbert space H whose restriction to D gives HD. Our test functions will be sufficiently
differentiable that states in D do indeed lie in the domain of H , and also in the domain of
Hn for any finite n.

Since the spectrum of H is discrete, it has a complete set of normalized eigenstates |E〉
with eigenvalues E. Let us suppose that (as we will shortly establish) for every |E〉 there is
a sequence of approximations |ψN(E)〉 ∈ D such that as N → ∞ we have

i) |ψN (E)〉 → |E〉 in the Hilbert space norm and

ii) 〈ψN (E)|(H − E)2|ψN(E)〉 → 0.

Since |ψN (E)〉 ∈ D, requirement (ii) implies that the same limit vanishes when H is replaced
by HD, and thus by any extension H̃ of HD. But if H̃ is self-adjoint, it also has a complete set
of eigenvectors |Ẽ〉 with eigenvalues Ẽ. For simplicity of notation we assume that H̃ has again
a purely discrete spectrum, though any continuous components are readily included through
the usual replacements of sums by integrals. We may then expand our approximations
|ψN(E)〉 in terms of the |Ẽ〉 as |ψN(E)〉 =

∑

Ẽ ψN(E, Ẽ)|Ẽ〉. Replacing H by H̃ in (ii)

6



shows that
∑

Ẽ

(Ẽ − E)2|ψN (Ẽ, E)|2 → 0 as N → ∞. (2.7)

Since the terms in this sum are all positive, each one must in fact vanish separately. On
the other hand, requirement (i) and normalizeability of |Ẽ〉 imply that ψN (E, Ẽ) → 〈Ẽ|E〉.
It follows that (Ẽ − E)2|〈Ẽ|E〉|2 = 0 for all Ẽ, E. We conclude that each E is one of the
eigenvalues Ẽ with |E〉 = |Ẽ〉 and that H = H̃.

Thus we need only show properties (i) and (ii) above. As a first step, consider the
frequency-space function f̃0(ω) =

2
ω
sin(ωǫ). With appropriate conventions this is the Fourier

transform of f0(t) = [θ(t+ǫ)−θ(t−ǫ)], the characteristic function of our interval. For positive

integers N we may recursively define the related frequency-space functions f̃N := f̃N−1

1+ ωǫ

πN

. That

these are the Fourier transforms of CN−1 functions fN supported on [−ǫ, ǫ] follows either
from the CN−1 version of the Paley-Wiener theorem or by noting that, up to an overall
factor of ǫ

πN
, the function fN is generated from fN−1 by the following three-step procedure:

First multiply by ei
πN

ǫ
t, which enacts a translation in Fourier space, then integrate the result

from −∞ to t (equivalent to dividing by ω in Fourier space), and finally multiply by e−iπN

ǫ
t.

Because f̃N−1 vanishes at ω = −πN/ǫ, the integral in the second step vanishes in the limit
t → ∞. Since fN−1 is supported on [−ǫ, ǫ], the integral in fact vanishes for |t| > |ǫ| so that
fN is supported on the same interval.

Note that f̃N is 1 at ω = 0 for all N ≥ 0. In contrast, for any ω > 0 the value f̃N(ω) is
a strictly decreasing function of N which vanishes in the limit N → ∞. This vanishing may
be seen from the fact that ln

∏

i=1N (1 +
ωǫ
πN

) ∼
∫

dk ln(1 + ωǫ
πk
) ∼

∫

dk ωǫ
πk

∼ ln k, where ∼
indicates similar behavior at large N, k.

We are now ready to demonstrate (i) and (ii) for the 1-particle state |0, ~ℓ〉 of our theory
which minimizes the 1-particle energy for fixed angular momentum ~ℓ. We take this state to
have frequency ω̄ and note that, because ω̄ is the lowest relevant frequency, gN(t) = eiω̄tfN (t)
gives a sequence of smooth CN−1 functions supported on [−ǫ, ǫ] which approximate the
Kronecker delta function δω,ω̄ when evaluated on 1-particle states with angular momentum
~ℓ. In particular, the states

|ψN〉 :=
∫

dtdΩ g∗N(t)Y
∗
~ℓ
(Ω)X(t,Ω)|0〉 (2.8)

satisfy properties (i) and (ii) for |E〉 = |0, ~ℓ〉. The scaling mentioned below (2.3) implies that
the action of H on such states is well-defined for all N > 2∆+ 1, and that higher powers of
H become well-defined at correspondingly higher N . If desired, one could deform the gN(t)
into smooth functions supported on [−ǫ, ǫ] which again satisfy (i) and (ii) but for which Hn

is well-defined on |ψN 〉 for all n,N .

The kth 1-particle state with angular momentum ~ℓ may now be iteratively approximated
by a similar method. We need only define functions gk,N in analogy to gN(t) by setting ω̄
equal to the kth frequency and taking care to subtract off (to good approximation) compo-
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nents proportional to lower one-particle states studied previously7. Since arbitrarily good
approximations (in norm) to the lower states have already been constructed, the effect of
this subtraction on the higher states can be made negligible. States with n-particles can
be constructed by applying the operator in (2.8) n-times, again taking care to subtract off
appropriate approximations to any m-particles states with m < n produced in this way.
Putting our results together, we conclude that H is the unique self-adjoint extension of HD

to the full Hilbert space.

3 Discussion

We argued above that, for linear scalar fields on AdSd+1, boundary operators in any neigh-
borhood of t = 0 act on the vacuum |0〉 to define a domain D on which the Hamiltonian H is
essentially self-adjoint. The particular argument involved constructing good approximations
to bulk energy eigenstates. This construction may also be relevant to the particular issues
discussed in [45, 46, 47, 48].

We supplemented this model with a pseudo-Newtonian potential Φ whose Gauss law
promotes the Hamiltonian H to an additional boundary observable. This gives a class
of examples where the action of the exponentiated operators eiHt are uniquely defined by
correlators of boundary observables arbitrarily close to t = 0, and thus where such correlators
determine all bulk correlation functions – even when the arguments are localized far from
the AdS boundary. Information in our models is then holographic in the sense used here.

In addition to the manifest use of the gravitational Gauss law, the key feature in our
argument was the strong vacuum entanglement required by quantum field theory. This is
what makes H essentially self-adjoint on D. As in the Reeh-Schlieder theorem, the same
result would follow using any state of bounded energy.8

It is worth emphasizing that the required entanglement is a highly quantum phenomenon,
with no analogue in classical physics. In particular, given any density function on a classical
field theory phase space, the space of densities generated by multiplying by functions of the
boundary data is far from complete9.

7An alternate approach is to define g̃k,N (ω) = Fk(ω)e
−iω̄ f̃N(ω) where Fk is a fixed polynomial in ω that

takes the value 1 at the k frequency ω̄ and vanishes at each lower 1-particle frequency.
8However, again as for Reeh-Schlieder, one can also find less-entangled states where acting with X (or

even Wick powers thereof) is no longer sufficient to generate a domain of the desired form. For example,
if f(x, t) is a smooth test function whose support is spacelike separated from the relevant region of the
boundary, such a state is given by projecting |0〉 onto some range of eigenvalues of O =

∫

φ(x, t)f(x, t)ddxdt.
Since O commutes with the relevant smeared operators X , they cannot change the eigenvalues of O and the
domain generated is not even dense in H. On the other hand, a larger domain can clearly be formed by
also acting with H , or more generally with Φ(Ω, t), which provide additional boundary observables whose
commutator with O is non-zero. This observation suffices to remove direct tension with completeness of
the local DFT observables, though whether the resulting domain actually makes H essentially self-adjoint
remains an interesting question for future study.

9At the mathematical level, a closer analogy would be to ask about the space of densities generated by
taking Poisson brackets with boundary observables as well as a acting by multiplication. To get some insight
into this question, we may consider the Harmonic oscillator. Since the key to our argument above was the

8



Our discussion also highlights the difference between acting with general operators and
coupling to boundary sources. Since the latter enact unitary transformations, the set of
states generated from the vacuum by adding sources for our boundary field X (or any of its
Wick powers) in a small time interval (t1, t2) is not dense. In particular, given the operator
O just defined and localized at spacelike separations from the relevant piece of the boundary,
this action cannot change the expectation value of e.g. B = exp(iλO) (or any other bounded
function of O). Thus one cannot approximate eigenstates of B whose eigenvalues differ from
〈0|B|0〉.

Further study of similar pseudo-Newtonian models may shed additional light on infor-
mation holography. We focused here on global AdS backgrounds both for concreteness and
to provide a closer connection to gauge/gravity duality. But the argument applies much
more generally. Indeed, the only features we used were discreteness of the spectrum of fre-
quencies ω (though the continuous spectrum case is similar) and, more importantly, that
the coefficients in the expansion (2.3) of the natural boundary operators X in terms of cre-
ation/annihilation operators grew no faster than some fixed power law at large ω. Both
properties hold for linear quantum fields in bounded regions of Minkowski space, or in fact
in any other example (whether lattice or continuum) with a finite-distance boundary at fi-
nite redshift. It would be interesting to extend our results to interacting theories, perhaps
treated perturbatively.

While potentially valuable as toy models of information holography, we remind the reader
that pseudo-Newtonian systems are also very different from standard gauge/gravity du-
alities. Perhaps most importantly, the analogue of the DFT is not only non-relativistic
but in fact highly non-local. The point here is that the DFT energy density operator is
εDFT = − limr→∞ rd−1r̂i∂iΦ, and since Φ(x, t) =

∫

G(x, y)ρ(y, t) is an integral over all space
commutators [ε(Ω, t), ε(Ω′, t)] will not vanish even at equal times. Indeed, it was precisely
to make this point that such models were mentioned in [27].

We have stressed that our model contains no stringy degrees of freedom. We conclude
that stringy dynamics is not required for information holography and suggest that, even
when they are present in holographic theories, such degrees of freedom may play little direct
role. It was of course already known that other critical properties of the DFT are not directly
connected to strings. These include the vanishing of commutators at spacelike separation
(i.e., locality, which follows from a quantum version of [49]) and the existence in appropriate
cases of a DFT stress tensor [3]. Thus our work here strengthens the argument that any UV
complete theory of gravity will be holographic, even if it contains no strings.10

On the other hand, the existence of bulk strings is intimately related to the gauge the-
oretic nature of the DFTs that arise in known examples [34]. And since the notion of

ability to discard negative energy parts of operators, the fact that no real phase space function can have
vanishing Poisson bracket with a = x

√

mω
− iωp suggests that there is again no classical analogue of our

property. In any case, the mathematical question raised in this footnote is physically quite different than
that studied in Reeh-Schlieder as taking Poisson brackets does not generally preserve positivity of the phase
space density.

10This idea has certainly been mentioned many times. The author would welcome suggestions as to
appropriate references.
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information holography studied here is rather abstract, it may be that such gauge theoretic
DFTs somehow yield a simpler connection in which strings play a role. If so, it would be use-
ful to understand this in detail. It is similarly plausible that stringy bulk physics is required
for the DFT to admit a Lagrangian formulation, or perhaps for the theory to be ‘simple’ in
some more general sense that would include examples like the d = 6 (2,0) superconformal
theory of [50].

We have focussed on the property we call information holography. But we remind the
reader that another even more striking property of familiar gauge/gravity dualities [1, 2]
is their finite density of states dual to bulk black holes. This feature remains a complete
mystery from the bulk point of view. As has been noted by many authors, the fundamental
appearance of the Planck scale in the Bekenstein-Hawking entropy again suggests a gravi-
tational mechanism having little to do with strings. Identifying this mechanism is a worthy
goal that may require models quite different from those considered here.
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