
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
n-task Learning: Solving Multiple or Unknown Numbers of Reinforcement Learning
Problems

Permalink
https://escholarship.org/uc/item/7rg1b91f

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors
Jovanovich, Mike
Phillips, Joshua L

Publication Date
2018

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rg1b91f
https://escholarship.org
http://www.cdlib.org/

n-task Learning: Solving Multiple or Unknown Numbers of Reinforcement

Learning Problems

Mike Jovanovich and Joshua L. Phillips
(mpjovanovich@gmail.com), (Joshua.Phillips@mtsu.edu)

Department of Computer Science

Middle Tennessee State University

Murfreesboro, TN 37132 USA

Abstract

Temporal difference (TD) learning models can perform poorly
when optimal policy cannot be determined solely by sensory
input. Converging evidence from studies of working memory
suggest that humans form abstract mental representations that
align with significant features of a task, allowing such condi-
tions to be overcome. The n-task learning algorithm (nTL) ex-
tends TD models by utilizing abstract representations to form
multiple policies based around a common set of external in-
puts. These external inputs are combined conjunctively with
an abstract input that comes to represent attention to a task.
nTL is used to solve a dynamic categorization problem that is
marked by frequently alternating tasks. The correct number of
tasks is learned, as well as when to switch from one task repre-
sentation to another, even when inputs are identical across all
tasks. Task performance is shown to be optimal only when an
appropriate number of abstract representations is used.

Keywords: reinforcement learning; temporal-difference
learning; task switching; input abstraction

Introduction

Temporal difference (TD) learning algorithms have been

shown to perform well in both stationary and dynamic envi-

ronments, and functionality that is typically associated with

human and animal working memory has been emulated suc-

cessfully in computational models that make use of these al-

gorithms (O’Reilly, Noelle, Braver, & Cohen, 2002; O’Reilly

& Frank, 2006; O’Reilly, 2006; Frank, Loughry, & O’Reilly,

2001; Kriete & Noelle, 2011; Kriete, Noelle, Cohen, &

O’Reilly, 2013; Niv et al., 2015; Rougier, Noelle, Braver,

Cohen, & O’Reilly, 2005; J. L. Phillips & Noelle, 2005;

J. Phillips & Noelle, 2006). Their success, however, is con-

tingent upon the ability of the state signal to contain all rele-

vant information for assessing the value of future states (the

Markov property) (Sutton & Barto, 1998). Policy changes

that are driven by hidden information can confound learning

(Sutton, Precup, & Singh, 1999), and these models often fail

to perform well when an agent must learn several tasks si-

multaneously. This can severely limit the capabilities of AI

systems and machine learning models.

In this paper we describe the n-task learning algorithm

(nTL), which serves as an extension to any member of the TD

family of learning algorithms. nTL allows the base algorithm

to better handle scenarios in which the agent is required to

switch between several tasks with different optimal policies.

We show how the model uses abstract task representations

(ATRs) to identify and separate the tasks, increasing the ef-

ficacy of the base TD learning model. We also demonstrate

how the algorithm is able to learn the number of tasks using

only the feedback from the critic.

In this work we attempt to demonstrate a technique that al-

lows machine learning models to become more robust, and

better able to accommodate scenarios in which directing at-

tention to subsets of features within a common state space

is required for optimal performance. By presenting a model

that can easily encode inputs, and that overcomes certain lim-

itations of existing temporal difference learning algorithms,

we offer a generalized and extensible framework that may be

used for rapid model development.

We first offer a brief review of relevant biological analogs

that inspired nTL, as well as comparison with related mod-

els. Holographic reduced representations (HRRs), which are

central to our architecture, are also described here. The next

section defines the model itself. Following this is an overview

of test procedures, and the paper concludes with an interpre-

tation of results and discussion of key findings.

Background

Biological Analogs

We draw much of the inspiration for our model from work

that explores the trade-offs and affordances of both activation

and weight based memories. Having multiple mechanisms

for storage affords great flexibility in meeting memory de-

mands, and we believe that many of the current computational

learning models could benefit from these dual roles.

The nTL algorithm utilizes ATRs to inform policies. These

ATRs can be thought of as a kind of filter through which the

agent currently perceives the environment. Throughout this

section we provide evidence for a biological analog to these

ATRs, along with other details relevant to the model, specifi-

cally top-down support and dynamic gating in working mem-

ory.

O’Reilly et al. (2002) give support for the argument that

working memory is responsible for flexibly updating goals.

The authors argue that perceptual processing and action selec-

tion are influenced by representations that are held in work-

ing memory, providing what they describe as “top-down sup-

port” or “biasing”. The inability to rapidly switch actively

maintained representations results in perseveration on previ-

ous learning, as learning must then be accomplished through

slower weight based updates. In the same study the authors

attempt to show that actively maintained representations in

the prefrontal cortex (PFC) are organized by level of abstrac-

584

square

x
red blue cross

x
square

x
green red green

Figure 1: Shown here is an example round of the test with

l set to three. Stimuli are composed of three features drawn

from three dimensions: color, shape, and fill. The round con-

sists of eight trials. The stimuli are shown in the top row, and

the selected action is shown in the middle row. The bottom

row designates a correct trial with a check mark, and an in-

correct trial with an “x”. The rule for this round was set to

“color”.

tion. They cite as evidence behavior exhibited by human

patients with frontal damage and experiments performed on

monkeys with lesions in this region in the brain.

A later work by Rougier et al. expands on this idea by

attempting to provide a model based on PFC-midbrain inter-

action that develops “abstract rule-like PFC representations”

(Rougier et al., 2005). This model was trained on multiple

tasks where stimuli comprised of features from several di-

mensions were presented, and reward for each task was de-

termined by a single dimension. The model was contrasted

with others lacking various anatomical structures and mech-

anisms. The authors showed that units in the “full PFC” net-

work came to represent all of the features that made up a par-

ticular dimension, while other networks tended to form a rep-

resentation for each stimulus.

We have previously discussed the benefits of being able to

actively maintain memories; just as critical is the ability to

update concepts that are currently held in memory. It is the-

orized that this is accomplished in the brain via a system in

which the PFC exhibits active maintenance of memory repre-

sentations and the basal ganglia act as a gate, allowing rep-

resentations in the PFC to be updated (Frank et al., 2001;

Chatham & Badre, 2015; Chatham, Frank, & Badre, 2014;

Rougier et al., 2005; Kriete et al., 2013; Kriete & Noelle,

2011). It has been shown that working memory is updated

when levels of the neurotransmitter dopamine are phasically

elevated (Frank et al., 2001; Chatham & Badre, 2015; Kri-

ete & Noelle, 2011; Rougier et al., 2005; Niv et al., 2015).

When a reward is expected but not delivered, the resulting

negative error signal prompts an update to working memory

contents. In addition to flushing retained memory represen-

tations and allowing working memory to store new external

stimuli, learning is believed to be limited in the presence

of a large negative error signal (Chatham & Badre, 2015;

O’Reilly, 2006), as can be modeled by the gain parameter

to a sigmoidal neural activation function (Frank et al., 2001;

O’Reilly & Frank, 2006).

Relation to Machine Learning Models

Although the model in this work has some aspects in com-

mon with models from other machine learning domains, nTL

has a unique property that sets apart from these - the ability

to self-monitor and react appropriately based only on reward

feedback. The problem that nTL intends to address is one in

which contextual cues offer no information that can be used

to determine an appropriate action selection policy, such as

the Wisconsin Card Sorting Test (WCST). While we see this

type of experiment explored frequently in psychological liter-

ature, we have seen little research into guiding principles for

the creation of broadly scoped machine learning models that

can solve these types of problems. In this section we contrast

our algorithm with related machine learning works.

Hierarchical reinforcement learning (HRL) bares some

similarity to nTL. As an example we use Sutton et al. (1999),

in which “options” are used as a form of temporal abstraction

(Sutton et al., 1999). In this case an option is selected and

influences action choices until a goal state is reached or the

option expires after a predefined number of time steps. An

ATR is also an outer abstraction that affects the policy over

actions. However, in nTL there is no explicit definition of this

abstraction within the algorithm; ATRs are swapped into and

out of memory based on task performance rather than prede-

fined conditions. The ability to persist learning about multiple

tasks without the use of predefined goals is the main contri-

bution of this work. Option-based HRL models are typically

used to improve performance on temporally extended tasks

with sparse rewards by dividing them into sub-tasks, but are

not suited for scenarios in which state representations offer no

cues for choosing among options, i.e. when the function for

selecting an option is independent of state input. nTL, in con-

trast, is appropriate when multiple episodic tasks are present,

and nothing in the environment is indicative of the task type

or duration.

Long short-term memory (Hochreiter & Schmidhuber,

1997), or LSTM, has demonstrated success in capturing

long-term dependencies and has recently grown in popularity

across domains. It is for these reasons that we have chosen it

as a state-of-the-art competitor for nTL. Because the response

that satisfies the categorization rule is never revealed in the

WCST, we have trained the LSTM model with an altered ver-

sion that minimizes error against the correct response at each

trial rather than learning with a reward signal. Although this

is not true to WCST form, it allows for comparison against

supervised learning algorithms.

Holographic Reduced Representations

Unitary HRRs (Plate, 1995) are used in our tests to encode

state and action inputs. With HRRs, features are distributed

over the width of an entire vector of n elements rather than

tied to a particular position or index in a vector. Conjunction

and disjunction of input features is accomplished mathemat-

ically by circular convolution and addition of vectors respec-

tively. As a result, relationships between concepts are repre-

sented without increase in dimensionality.

Although we use an HRR framework for encoding in this

work we do not believe the results are dependent upon this

choice, and we see no reason why alternate encodings such

585

as vectors (Mitchell & Lapata, 2010), tensors (Papalexakis,

Faloutsos, & Sidiropoulos, 2016), or spatio-temporal encod-

ings (Hummel & Holyoak, 1997) could not produce similar

results.

Model Description

Base Algorithm

In order to see the consequences of the ATR mechanism, we

will first describe the model as it functions without ATRs.

The state (the feature set that comprises the current trial) is

in the form of a single HRR, which is the result of disjunc-

tively combining the components of the stimuli. In our tests

the action choices correspond directly to the features in the

environment. To differentiate between a particular feature in

the state role (e.g. “seeing red”) and the same feature in the

action role (“selecting red”), these corresponding states / ac-

tions are comprised of different HRRs.

At each trial the model updates the predicted value of a

state/action pair through use of the SARSA algorithm. The

Q function for SARSA is approximated using a single-layer

perceptron neural network with a linear activation function.

Because of this architecture, the output for the network is

simply the dot product of the input HRR and a weight vec-

tor plus a scalar bias term, b, as shown in Equation 1. This

weight vector is initialized in the same way as HRRs, and the

bias term is set to the reward level that will be received upon

reaching the goal state. Setting the bias in this way has the

effect of encouraging exploration via optimistic initial values

(“optimistic critic”). To counter the eventual decrease in ex-

ploration that comes from overcoming the initial optimism

we also implement an ε-soft policy that makes non-greedy

decisions a small fraction (ε) of the time.

An action is selected by forming the conjunct representa-

tion of state with each candidate action for the trial, and using

the resultant representations as inputs into the Q network. The

action that yields the greatest value, m, is then chosen. This

can be formulated as:

m = argmax
c∈C

((s∧ c) ·wq +b) (1)

where s is the current state representation, C is the set of all

candidate action choices for the current trial, and wq is the

weight vector for the Q function neural network. At each trial

the reward is used to update weights for the Q function. In

order to make learning more stable a log-modulus transfor-

mation (John & Draper, 1980) is applied to the error during

updates to the Q function, A function (introduced in the next

section), and t threshold (introduced in next section). This

transformation mitigates learning instability due to relatively

large errors (data not shown):

∆wi = αq[sgn(δ)∗ log(|δ|+1)∗ (s∧m)i] (2)

In the above equation, wi indicates the value of the weight

vector at index i, αq is the learning rate, δ is the error, and

(s∧m)i is the value of the HRR input vector (the eligibility

Table 1: Parameter Descriptions and Values

Name Value Description
n 1024 Size of HRR vectors
ε 0.005 Probability for non-greedy action choice
αq 0.05 Learning rate for the Q function update
αa 0.0075 Learning rate for the A function update
αt 0.002 Learning rate for the t threshold update

trace) at index i. Although we are using SARSA to learn a

policy for action selection, the test does not model a tempo-

rally extended task. Since all feedback is relevant to only a

single trial, we have set the λ and γ TD parameters to zero,

and all updates are treated as goal state updates.

n-task Learning Algorithm

As mentioned earlier, nTL can be viewed as an extension to

a TD learning algorithm, which we call the base algorithm.

We have used SARSA as the base algorithm for our tests,

but other TD learning algorithms could be substituted. At

the heart of this approach is the idea that any input can be

bound to a task by forming the conjunct of the original input

and another input that uniquely identifies an ATR. The ATR

inputs are created arbitrarily, and encoded in the same way as

the input features. The algorithm requires a function, A, to

keep keep track of the value of each ATR. For this we simply

maintain and update a vector of values that are mapped to

the ATRs. If desired, a neural network could also be used to

model the ATR values.

Before any input is fed into the base algorithm the input is

conjunctively joined with the ATR representation that is cur-

rently in memory, atr. In this way a single input can take on

multiple values by being bound to different ATRs and pre-

sented to the base algorithm. No alterations to the base al-

gorithm are required in order for this approach to work. Our

action selection equation now becomes:

m = argmax
c∈C

((s∧ c∧atr) ·wq +b) (3)

The weight update is modified in a similar manner; where

before in Equation 2 we had only s∧m to represent the input

to SARSA, now we must include the selected ATR. The new

input is s∧m∧atr. In short, Q(s,m) becomes Q(s,m,atr).
Reward feedback from each trial is used to update the value

of the current ATR. The error used for this update is simply

the TD error for the ATR value function. In the below equa-

tion, A is the function determining the ATR values, αa is the

learning rate for ATRs, and δ is r−A(atr). Note that in our

tests, the A function also uses optimistic initial values, so all

ATRs start with a value equal to the goal state reward:

A(atr)← A(atr)+αa[sgn(δ)∗ log(|δ|+1)] (4)

Trials that result in a task switch do not incur an update to

the A or Q functions. In this way the current ATR is not penal-

ized for a task change that is external to the agent. Although

we do not give data here, this adaptation leads to A values

586

a b
Feature

D
im

e
n
s
io
n

Figure 2: Shown here are feature selection values for all fea-

tures in the state set. a shows results from a trial taken near

the beginning of a round after 100 rounds of training using

traditional SARSA (the single ATR case) to learn three tasks.

Although the categorization rule for this trial is dimension

one, we see that action values along dimension three, the rule

from the previous round, are highest. By contrast, when three

ATRs are used, as in b, we see the formation of clear dimen-

sional representations after 100 rounds of training.

that are more stable (show less fluctuation) and that converge

to the average reward values for trials within the tasks.

The model determines when to switch to a new ATR via a

threshold, t. When the TD error (δ = r−Q(s,m,atr)) is less

then t, this signals to the model that the current ATR is not

well suited to handle current input, and the next sequential

ATR is subbed in for the current one. This t value is first

initialized to negative one times the reward for the goal state,

and is updated at each trial using the TD error from the Q

function, where αt is the learning rate for t:

t← t−αt [sgn(δ)∗ log(|δ|+1)] (5)

In the case that the number of tasks is known ahead of time,

the number of ATRs can be set explicitly. We refer to this as

static nTL. In many cases the number of tasks is unknown, or

changes with time. In dynamic nTL the number of ATRs is set

automatically based on task performance. To accomplish this

an additional task add threshold, a, is needed to determine the

number of ATRs to maintain. Whenever a task switch occurs

A values for all ATRs are averaged. If this mean value falls

below a then a new ATR is added, and both A and t are reini-

tialized. Unlike t, the a threshold is constant. Although any

biological analog for this threshold would likely be dynamic,

we have not yet found a way to model this behavior. The

model starts with a single ATR in dynamic nTL, and grows

toward the optimal number of representations.

Test Protocol and Methods

Our task is similar to the dimension selection task described

in (Rougier et al., 2005). The agent is presented with a stim-

ulus consisting of f features, selected at random from d di-

mensions, and is prompted to select one of the features (f =5,

d=5). A reward is given after each action based on whether

or not the selected feature matches a categorization rule. The

rule corresponds to one of the five dimensions from which the

features are drawn, and no cues are given to indicate what this

rule is. Correct answers are rewarded by a constant amount,

rg = 1. Incorrect answers incur no penalty, rd = 0 . After a

predetermined number of consecutive correct responses, l=8,

the round is considered learned, and the rule changes (in the

style of a WCST). The rule is selected at random, and always

differs between two consecutive rounds. Categorization rules

represent the set of action choices that lead to reward, and

may be chosen arbitrarily. Figure 1 shows an example round.

In order to remove any ambiguity concerning the testing

protocol, we will define some key terms. Some dimensions

in the state space may never be used for the categorization

rule, and serve only as distractors. We refer to the number

of distinct rules that are used throughout the test set as the

number of tasks. A trial consists of one presentation of a

stimulus to the agent, the choosing of an action by the agent,

and a reward value given to the agent by the critic. This is

equivalent to a single time step in the reinforcement learning

framework. A round consists of all of the trials completed

by the subject during one completion of a task, from the time

a new categorization rule is put into effect to the time the

subject has completed l consecutive correct trials. When the

model substitutes an ATR that is in memory with one that is

not in memory we call this a task switch.

A list of parameter values is provided in Table 1.

Parameters for all models were chosen by minimizing

the mean number of incorrect trials over 100 tasks for

100 random runs of the test. All listed nTL results

were obtained using R version 3.4.0. The source code

used for these tests can be downloaded freely from:

https://github.com/mpjovanovich/ntask learning

The LSTM model was built using TensorFlow version

1.3.1. This model performed best with a learning rate of 7.0,

and a state size of one. Results remained the same for all state

sizes in the tuning range. The model was trained after each

trial using the most recent ten trials. Tuning ranges were as

follows, with a step size of 0.05: learning rate (0,10], state

size [1,20], trials used for training [1,40].

Results and Discussion

Two sets of tests were conducted using the previously de-

scribed protocol. In the first set the appropriate number of

ATRs is known a priori, so we use static nTL. In the second,

the number of ATRs is learned using dynamic nTL.

Figure 3 shows how task performance changes as a func-

tion of the number of ATRs being used for static nTL. Three

tasks were present in this test set. Although a statistically

significant difference is shown between all results, we see

that having too few ATRs is much more detrimental to per-

formance than having too many.

By setting the number of ATRs to one, we simulate the be-

havior of an agent that is not capable of learning dimensional

representations. This is equivalent to standard TD learning, in

this case SARSA. We would expect such an agent to perse-

verate on previously learned features when a task switch oc-

curs, and the results confirm that perseveration occurs. When

587

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

In
c

o
rr

e
c

t
Tr

ia
ls

Round

−
−
−
−
−
−

1 ATR

(SARSA)

2 ATRs

3 ATRs

4 ATRs

5 ATRs

LSTM

0

0
2

0
4

0
6

0
8

0
1

0
0

In
c

o
rr

e
c

t
Tr

ia
ls

Figure 3: Static nTL - Shown here are the average number of

incorrect trials for each round. Mean values for 1000 runs are

shown by the solid lines, with shading to show a 95% confi-

dence interval. The number of tasks, n, is three. Performance

will converge to a theoretically optimal n/2 incorrect trials

per round on average when n ATRs are used.

0
.2

0
.6

1

V
a
lu

e

0 2000 4000 6000 8000 10000 12000

−
1

−
0

.6
−

0
.2

Trial

Task Switch Threshold (t) Task Add Threshold (a)

ATR 1 ATR 2 ATR 3 ATR 4 ATR 5

Figure 4: Dynamic nTL - ATR values for a scenario in which

the number of task representations adapts to achieve optimal

performance. The number of categorization rules in this test

set was five.

only one ATR is available, many incorrect trials are taken in

each round (see Figure 3). When a rule change occurs, action

choices that were valuable in the previous round are tried first

(see Figure 2a). Only after a period of unlearning the previous

external task does the model begin to select new actions.

We see from Figure 2b that when the number of ATRs is

equal to the number of external tasks, each ATR comes to

represent the dimension for one external task. This is because

after the initial learning and exploration period each ATR is

used only for the subset of trials that correspond to an external

task. If an ATR is used on a trial that results in a task switch,

no weight updates take place.

In Figure 4 we illustrate dynamic nTL with a five task ex-

ample. Trials where t drops to the starting value indicate that

the mean ATR value exceeded a, and an ATR was added.

When five ATRs were present, the mean ATR value remained

above a during initial exploration, and eventually converged

to the value of the goal state reward. Because the first test set

provided the data needed to compare against models lacking a

mechanism for the formation of ATRs, no additional models

were used for comparison in this set.

When the number of ATRs matches the number of tasks,

the mean of the agent’s estimated values for the ATRs (the

A function) converges to the goal reward value of the tasks.

When too few ATRs are present this mean declines to a value

that is below the goal reward. Using these two observations,

we can set a threshold (a) that acts as a cutoff point for over-

all ATR performance. When the mean value falls below this

threshold the agent increases the complexity of its thinking

by adding another ATR, until the number of ATRs is equal to

the number of tasks.

It is important to note that the distinguishing feature of the

problem we attempt to solve is that it is composed of sev-

eral tasks which each must be learned and remembered while

completing the other tasks, without the use of environmental

cues to identify a task. If something in the environment is

present to help the agent determine which rule is currently in

effect then the problem becomes a contextual bandit problem.

If the tasks are not repeated then the problem becomes a non-

stationary bandit problem. Without a way to associate learn-

ing with a task representation the agent effectively treats the

WCST as a non-stationary bandit problem, and performance

suffers due to perseveration after rule changes.

Discussing the nTL model in terms of a human actor allows

us to more easily connect to previously discussed biological

models. When the agent expects to receive a reward and none

is given, the resulting negative error signal cues the agent to

try a new strategy (switch to a new ATR), and no learning

takes place. There is initially a period of rapid task switch-

ing as the agent gives many incorrect responses due to explo-

ration and lack of learning. After a time the estimated feature

selection values that are associated with each ATR stabilize,

and internal task switching (swapping a new ATR into mem-

ory) occurs only in response to a true external task switch.

The ATRs influence the agent’s thinking about the current

trial through a mechanism of top-down support (O’Reilly et

al., 2002). If we take a single trial representation and asso-

ciate it with two different ATRs, the agent will have a dif-

ferent assessment of value for each. Let us suppose that the

agent is presented with a small red circle as stimulus, and the

action candidate “select red”. When the first ATR is present

in memory this action may have a high value, but when the

second ATR is in memory the value is low. We can then con-

clude that the first ATR has come to represent a task in which

selecting red when seeing these stimuli leads to reward, and

the second to represent a task in which seeing red does not

lead to reward (this second ATR may have been used for a

shape or size categorization task). In this way the switching

of ATRs effectively becomes a filter for possible actions. The

agent attends to a different subset of actions with each succes-

sive trial, iterating through hypotheses that have lead to prior

success as it attempts to find one that fits the task.

We have shown that an agent with only a single ATR will

perseverate when a rule change switch occurs. In this case

there is a period during which the previously learned task

is unlearned, followed by a period in which the new task is

learned. This scenario simulates learning without activation

based memories, where all learning must be accomplished

588

through weight updates (O’Reilly et al., 2002).

One notable deviation from human-like thinking in the dy-

namic nTL model is that previous learning is discarded when

an ATR is added. The reason for “resetting” when we reach

this point is to keep the task switch threshold, t, in a range that

will cause ATRs to be switched appropriately. If previous Q

learning is retained (by leaving intact the Q neural network)

and t is reset, then t will remain too low, resulting in too few

task switches for ATRs to effectively represent the tasks. If

previous Q learning is retained and t is not reset, then t will

climb too high, resulting in a task switch for every trial. It is

for this reason that we both reinitialize the Q weight vector

and reset the task switch threshold when tasks are added.

While we believe nTL can be used to great benefit for dy-

namic tasks such as the one used in our tests, we recognize

that it is not appropriate for all reinforcement learning scenar-

ios. Specifically, we have only tested the algorithm in the case

where reward is constant and able to be achieved at each time

step, the task distribution is uniformly stochastic, the number

of tasks does not change, and all features are used for a single

categorization rule at most. A model that is able to accom-

modate variable/probabilistic rewards, temporally extended

tasks, adversarial task distributions, and the introduction and

removal of tasks could be extremely useful. We would be in-

terested to see more research on the means by which humans

come to learn the number of tasks present in a given scenario,

both to provide biological inspiration for further work and to

assess plausibility of the current model.

References

Chatham, C. H., & Badre, D. (2015). Multiple gates on work-

ing memory. Current Opinion in Behavioral Sciences, 1,

23–31.

Chatham, C. H., Frank, M., & Badre, D. (2014). Corticostri-

atal output gating during selection from working memory.

Neuron, 81(4), 930–942.

Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interac-

tions between frontal cortex and basal ganglia in working

memory: A computational model. Cognitive, Affective, &

Behavioral Neuroscience, 1(2), 137–160.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

memory. Neural Computation, 9(8), 1735.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed repre-

sentations of structure: A theory of analogical access and

mapping. Psychological Review, 104(3), 427.

John, J. A., & Draper, N. R. (1980). An alternative family

of transformations. Journal of the Royal Statistical Society.

Series C (Applied Statistics), 29(2), 190–197.

Kriete, T., & Noelle, D. C. (2011). Generalisation benefits of

output gating in a model of prefrontal cortex. Connection

Science, 23(2), 119–129.

Kriete, T., Noelle, D. C., Cohen, J. D., & O’Reilly, R. C.

(2013). Indirection and symbol-like processing in the pre-

frontal cortex and basal ganglia. Proceedings of the Na-

tional Academy of Sciences, 110(41), 16390–16395.

Mitchell, J., & Lapata, M. (2010). Composition in distri-

butional models of semantics. Cognitive Science, 34(8),

1388–1429.

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C.,

Radulescu, A., & Wilson, R. C. (2015). Reinforcement

learning in multidimensional environments relies on atten-

tion mechanisms. Journal of Neuroscience, 35(21), 8145–

8157.

O’Reilly, R. C. (2006). Biologically based computational

models of high-level cognition. Science, 314(5796), 91–

94.

O’Reilly, R. C., & Frank, M. J. (2006). Making working

memory work: A computational model of learning in the

prefrontal cortex and basal ganglia. Neural Computation,

18(2), 283–328.

O’Reilly, R. C., Noelle, D. C., Braver, T. S., & Cohen, J. D.

(2002). Prefrontal cortex and dynamic categorization tasks:

Representational organization and neuromodulatory con-

trol. Cerebral Cortex, 12(3), 246–257.

Papalexakis, E. E., Faloutsos, C., & Sidiropoulos, N. D.

(2016). Tensors for data mining and data fusion: Models,

applications, and scalable algorithms. ACM Trans. Intell.

Syst. Technol., 8(2), 16:1–16:44.

Phillips, J., & Noelle, D. (2006). Working memory for robots:

Inspirations from computational neuroscience. In Proc.

from 5th intl conf on development and learning.

Phillips, J. L., & Noelle, D. C. (2005). A biologically in-

spired working memory framework for robots. In Robot

and human interactive communication, 2005. roman 2005.

ieee international workshop on (pp. 599–604). IEEE.

Plate, T. A. (1995). Holographic reduced representations.

IEEE Transactions on Neural Networks, 6(3), 623–641.

Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D.,

& O’Reilly, R. C. (2005). Prefrontal cortex and flexible

cognitive control: Rules without symbols. Proceedings of

the National Academy of Sciences of the United States of

America, 102(20), 7338–7343.

Shepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961).

Learning and memorization of classifications. Psychologi-

cal Monographs: General and Applied, 75(13), 1.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:

An introduction (Vol. 1). MIT press Cambridge.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between mdps

and semi-mdps: A framework for temporal abstraction in

reinforcement learning. Artificial intelligence, 112(1-2),

181–211.

589

