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Abstract

Element Diffusion and Other Mixing in White Dwarf Stars

by

Evan B. Bauer

White dwarf stars reveal signatures of material accreted from their surroundings.

Making quantitative inferences about the processes that supply this material requires

theoretical models of white dwarf surface structure. In this dissertation, I examine meth-

ods for building evolutionary white dwarf models that include element diffusion, convec-

tion, and thermohaline instability. Each of these mixing processes that occur at white

dwarf surfaces has important implications for observable signatures of accreted material.

Models that account for all types of surface mixing allow for inferences about accretion

rates and composition of bodies that supply the material. The picture that emerges

from models presented in this work is one of planetary systems supplying rocky debris

at higher rates and from larger mass reservoirs than previously thought.

viii



Contents

1 Introduction 1
1.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Permissions and Attributions . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Element Diffusion Methods for Stellar Evolution Models 6
2.1 Methods in MESAstar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Burgers Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 MESA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Modified Coefficients and Radiative Levitation . . . . . . . . . . . 13

2.2 Analytic Expression for the Electric Field . . . . . . . . . . . . . . . . . . 15
2.3 Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Gravitational Fields . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Radiative Levitation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 White Dwarf Sedimentation . . . . . . . . . . . . . . . . . . . . . 22

2.4 Expanding the Domain of Validity . . . . . . . . . . . . . . . . . . . . . . 23

3 Enhancing the Diffusion Framework for White Dwarfs 28
3.1 Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 New Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Recasting the Burgers Equations . . . . . . . . . . . . . . . . . . 33
3.2.2 Resolving the Degeneracy Problem . . . . . . . . . . . . . . . . . 34
3.2.3 Diffusive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Radiative Levitation . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Updated Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Diffusion-Induced Flashes on He WDs . . . . . . . . . . . . . . . . . . . 43
3.5 Heating from 22Ne Settling . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Increases to Inferred Rates of Planetesimal Accretion due to Thermo-
haline Mixing in Metal-accreting White Dwarfs 47
4.1 Gravitational Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Thermohaline Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Onset of the Instability Beneath the Convection Zone . . . . . . . 53

ix



4.2.2 Outcomes when Thermohaline Mixing is Included . . . . . . . . . 56
4.3 Accretion Rates and Compositions . . . . . . . . . . . . . . . . . . . . . 59
4.4 Conclusions and Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Polluted White Dwarfs: Mixing Regions and Diffusion Timescales 65
5.1 Surface Convection Zones in Pure Hydrogen . . . . . . . . . . . . . . . . 67
5.2 Diffusion Timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 MESA Diffusion Results . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Approaching Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Ionization States for Trace Metals . . . . . . . . . . . . . . . . . . 77

5.3 Other Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Thermohaline Mixing . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Electron Captures on 14N as a Trigger for Helium Shell Detonations 103
6.1 The NCO Reaction Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.1 Weak Reactions for 14N and 14C . . . . . . . . . . . . . . . . . . . 106
6.1.2 The 14C(α, γ)18O Rate . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1.3 Example of He Accretion onto a He WD . . . . . . . . . . . . . . 111

6.2 NCO Reactions and Helium Accretion . . . . . . . . . . . . . . . . . . . 111
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Chapter 1

Introduction

White dwarf stars (WDs) are the final evolutionary stage for the vast majority of initial

stellar masses (Liebert, 1980; Fontaine et al., 2001; Hansen, 2004). Due to the strong

gravity at their surfaces, isolated WDs develop stratified atmospheres with pure surface

compositions and well-understood spectral features (Schatzman, 1945, 1948). When the

surrounding environment of a WD contaminates its surface with heavy-element pollu-

tion, this makes the WD atmosphere an ideal spectroscopic laboratory for studying the

composition of whatever supplies this polluting material (Vauclair et al., 1979). Though

polluted white dwarf compositions were originally thought to originate from interstellar

accretion, later observations ruled this out and instead indicated a connection to dusty

debris disks (Graham et al., 1990; Koester et al., 1997; Zuckerman et al., 2003; Jura,

2003). Through decades of work on observed polluted WD systems, the emerging frame-

work for explaining polluted WDs and their compositions points to debris from complex
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dynamics in planetary systems surrounding WDs (Jura & Young, 2014; Veras, 2016; Far-

ihi, 2016). Understanding the structure of polluted WDs therefore provides a unique tool

to study planetary systems that survive to the final stages of their host stars’ evolution.

Interpretation of observed pollution in WDs requires detailed theoretical description

of the structure and evolutionary properties of WDs. Static atmosphere models for WDs

have provided much of the foundation for interpreting observations up to this point

(Koester, 2009, 2010; Koester et al., 2014). In particular, detailed surface convection and

element diffusion calculations have proven crucial to understanding the accretion rates

for these systems. While these models have enabled a great deal of progress in identifying

important trends, their usefulness can be limited by the fact that they require assuming

a steady-state structure to connect observations to models. Static models struggle to

account for time-dependent processes that may never reach a steady-state equilibrium,

or processes that are dynamically coupled to the aspects of stellar structure that they

can in turn depend upon. Thermohaline mixing is one such process, and consequently its

importance had been overlooked in the context of WD pollution until recently. However,

Deal et al. (2013) demonstrated that it can alter the understanding of mixing relevant

for polluting metals in WD atmospheres, which in turn substantially modifies inferences

about accretion rates and perhaps even the architecture of planetary systems needed to

supply WD pollution.

The contents of this dissertation are aimed at expanding the set of theoretical tools

and time-dependent evolutionary models available to enable further advancements in
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interpreting WD observations. These calculations must account for element diffusion

and sedimentation along with the background structure and dynamical mixing processes

present in WDs. Chapter 2 describes the fundamental physics and numerical methods

that we employ for stellar evolution calculations that include element diffusion. Chap-

ter 3 describes enhancements to these diffusion methods that specifically extend their

applicability to regimes relevant for WDs. This chapter also provides a few brief diver-

sions into important applications of element diffusion for WD structure and evolution

calculations, including shell flashes and long-term sedimentation heating. Chapter 4 out-

lines an initial exploration of WD evolution models that account for element diffusion

along with thermohaline mixing to quantify the regimes where either process might be

expected to dominate. Chapter 5 then provides a more thorough investigation of models

that account for the effects of all these relevant mixing processes and discusses the broad

implications of the new inferences for accretion rates that these models require. This

chapter also provides detailed tabulations of results intended to maximize the potential

for connecting observations to the predictions of our evolutionary models. Chapter 6

explores a different topic related to WD evolution calculations: the reactions that trigger

detonations in massive helium shells on WDs that accrete from from helium subdwarf

companions.

3



1.1 Software

This work makes extensive use of the open-source software instrument MESA (Modules for

Experiments in Stellar Astrophysics). We often refer to the instrument papers describing

the MESA software capabilities using roman numerals: Paxton et al. (2011, MESA I),

Paxton et al. (2013, MESA II), Paxton et al. (2015, MESA III), Paxton et al. (2018,

MESA IV), and Paxton et al. (2019, MESA V). The MESAstar stellar evolution module

is built on a number of fundamental physics modules that we summarize briefly here.

The MESA equation of state (EOS) is a blend of the OPAL (Rogers & Nayfonov, 2002),

SCVH (Saumon et al., 1995), PTEH (Pols et al., 1995), HELM (Timmes & Swesty,

2000), and PC (Potekhin & Chabrier, 2010) EOSes. Radiative opacities are primarily

from OPAL (Iglesias & Rogers, 1993, 1996), with low-temperature data from Ferguson

et al. (2005) and the high-temperature, Compton-scattering dominated regime by Buchler

& Yueh (1976). Electron conduction opacities are from Cassisi et al. (2007). Nuclear

reaction rates are from JINA REACLIB (Cyburt et al., 2010) plus additional tabulated

weak reaction rates (Fuller et al., 1985; Oda et al., 1994; Langanke & Mart́ınez-Pinedo,

2000). Screening is included via the prescription of Chugunov et al. (2007). Thermal

neutrino loss rates are from Itoh et al. (1996). The MESAbinary module can include

multiple instances of MESAstar models with mass transfer rates in Roche lobe overflowing

binary systems determined using the prescription of Ritter (1988). Roche lobe radii are

computed using the fit of Eggleton (1983).
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1.2 Permissions and Attributions

1. The content of Chapter 2 is adapted and reproduced from Paxton et al. (2015) with

permission from The Astrophysical Journal Supplement Series.

2. The content of Chapter 3 and Appendices A and B is adapted and reproduced from

Paxton et al. (2018) with permission from The Astrophysical Journal Supplement

Series and Josiah Schwab, who made substantial contributions to the content in

Appendix B.

3. The content of Chapter 4 is adapted and reproduced from Bauer & Bildsten (2018)

with permission from The Astrophysical Journal Letters.

4. The content of Chapter 5 and Appendix C is adapted and reproduced from Bauer

& Bildsten (2019) with permission from The Astrophysical Journal.

5. The content of Chapter 6 is adapted and reproduced from Bauer et al. (2017) with

permission from The Astrophysical Journal and Josiah Schwab, who contributed

most of the content found in Section 6.1.1.

My graduate work has also afforded me opportunities to participate in exciting re-

search efforts led by others (Soraisam et al., 2018; Timmes et al., 2018), but that work

does not appear in this dissertation.
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Chapter 2

Element Diffusion Methods for

Stellar Evolution Models

MESA’s early implementation of microscopic element diffusion incorporated the approach

used by Thoul et al. (1994) in their seminal work on understanding the sedimentation of

helium in the solar interior. The fundamental starting point for this treatment of diffusion

is the Boltzmann equation with the assumption of binary collisions where the particle’s

mean free path is much larger than the average particle spacing. This formalism, encoded

in the Burgers equations (Burgers, 1969), assumes that ions interact with an effective

potential that governs isolated interactions between only two particles at a time. For more

strongly coupled plasmas, as Γ ≈ e2/(λionkBT ) exceeds unity (where λion = (3/4πnion)1/3

is the mean inter-ion spacing, and nion is the total ion number density), it is no longer

clear that this assumption remains valid. Later updates to MESA incorporated the work
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of Hu et al. (2011) on radiative levitation and incorporated the resistance coefficients

calculated by Paquette et al. (1986a) for approaches to the denser plasma regime as

Γ→ 1.

Here we describe MESA’s implementation of element diffusion and then discuss the

path forward for diffusion implementations in the Γ > 1 regime, needed for accurate

studies of diffusion in the interiors of white dwarfs or surfaces of neutron stars.

2.1 Methods in MESAstar

We now describe the formalism and assumptions underlying the approach to diffusion

employed by MESA. This is followed by a discussion of the framework for numerical im-

plementation of this formalism provided by Thoul et al. (1994) and key modifications

present in the MESA diffusion routine.

2.1.1 Burgers Equations

The Burgers equations for diffusion in an ionized plasma are derived using the Boltzmann

equation for the distribution function Fs(x, ξ, t) for particles of type s

∂Fs
∂t

+
∑

i

ξi
∂Fs
∂xi

+
∑

i

fsi
ms

∂Fs
∂ξi

=

(
dFs
dt

)

collision

, (2.1)

where xi are the components of the position vector, ξi are the components of the velocity

vector, fsi are components of the forces on particles of type s, and ms is the mass for

those particles. Throughout this section, the indices s and t refer to particle species,
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while i and j are used to index other quantities such as spatial components of vectors.

Burgers adopts the 13-moment approximation due to Grad (1949) as a closure scheme

for taking moments of the Boltzmann equation. Burgers also assumes an approximately

Maxwellian distribution function

Fs =
ns

π3/2a3
s

exp

(−c2
s

a2
s

)
(1 + φs), (2.2)

where as = (2kBT/ms)
1/2, csi = ξi − usi represents the components of the deviation of

the velocity from the mean flow velocity us of the species, and

φs =
∑

i,j

Bsijcsicsj +
∑

i

Csi

(
c2
s −

5

2
a2
s

)
csi (2.3)

is the small deviation (φs � 1) from the Maxwellian distribution. The coefficients Bsij

and Csi are defined such that the distribution function has a total of 13 free parameters

corresponding to the 13 moments of the closure scheme (see Burgers, 1969).

Burgers derives the collision integrals (S
(l)
st ) and cross-sections (Σ

(lj)
st ) that result from

taking moments of the right hand side of the Boltzmann equation

S
(l)
st = 2π

∫ ∞

0

(1− cosl χst)b db, (2.4)

Σ
(lj)
st =

4π

π3/2

∫ ∞

0

dv exp

(−v2

α2
st

)
v2j+3

α2j+4
st

S
(l)
st , (2.5)

where α2
st = 2kBT/µst, µst = msmt/(ms + mt), v represents the relative velocity of

colliding particles, and the angle of deviation χst is a function of both v and the impact

parameter b that depends on the physics of the two-particle interaction between colliding

particles in the gas. Burgers then defines the dimensionless coefficients zst, z
′
st, z

′′
st, and
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z′′′st, along with resistance coefficients (Kst) in terms of the collision integrals:

Kst = Kts =
2

3
nsntµstαstΣ

(11)
st ,

Σ
(12)
st /Σ

(11)
st =

5

2
(1− zst),

Σ
(13)
st /Σ

(11)
st =

25

4
− 25

2
zst +

5

2
z′st,

Σ
(22)
st /Σ

(11)
st = z′′st,

Σ
(23)
st /Σ

(11)
st = z′′′st.

(2.6)

In the “single-fluid picture” the diffusion velocities are defined with reference to the

mean velocity of the gas as a whole (u), rather than with respect to the mean species

velocity (us):

usi =
1

ns

∫
dξ ξiFs, u =

1

ρ

∑

s

ρsus, ws = us − u. (2.7)

Burgers defines residual heat flow vectors

rsi =

(
ms

2nskBT

∫
d3ξ (ξi − ui)|ξ − u|2Fs

)
− 5

2
wsi. (2.8)

As shown in section 18 of Burgers (1969) if we assume |ws| � as and the absence of

magnetic fields, the basic equations of diffusion are

∇ps − ρsg − ρesE =
∑

t6=s
Kst(wt −ws) +

∑

t6=s
Kstzst

mtrs −msrt
ms +mt

, (2.9)
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5

2
nskB∇T = −2

5
Kssz

′′
ssrs −

5

2

∑

t6=s
Kstzst

mt

ms +mt

(wt −ws)

−
∑

t6=s
Kst

[
3m2

s +m2
t z
′
st

(ms +mt)2
+

4

5

msmt

(ms +mt)2
z′′st

]
rs

+
∑

t6=s
Kst

msmt

(ms +mt)2

(
3 + z′st −

4

5
z′′st

)
rt,

(2.10)

where E is the quasi-static electric field and ρes is the average charge density of species

s. These equations are still general, with the form of the resistance coefficients not yet

fully specified. The physics of the particular types of interactions within ideal gases is

fully contained in the coefficients Kst, zst, z
′
st, z

′′
st, and z′′′st.

For ionized gases, the resistance coefficients require evaluation of collision integrals

that diverge for a pure Coulomb potential. However, since the two-particle interaction

potential is only truly applicable on short length scales, an integration cutoff or screened

potential is commonly adopted. Burgers chooses to calculate resistance coefficients using

a pure Coulomb potential truncated at the Debye radius

RD =

(
4π
∑

s

nsZ
2
s e

2

kBT

)−1/2

, (2.11)

which is assumed to be much larger than the inter-ion spacing. Indeed, for a plasma

of one species, RD/λion = (3Γ)−1/2. Applying this form of interaction to the collision

integrals, the l = 1 integrals defined in Equation (2.4) can be evaluated (Baalrud &
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Daligault, 2014)

S
(1)
st =

2πR2
Dα

4
st

Λ2
stv

4
ln

[
1 + Λ2

st

(
v

αst

)4
]
, (2.12)

where Λst = µstα
2
stRD/(ZsZte

2). In order to perform the integral in Equation (2.5),

Burgers notes that the dependence of S
(l)
st on v inside the logarithmic term is weak, so

that we can replace v2 there with its average value 〈v2〉 = 3kBT/µst. Assuming a very

dilute plasma, so that Λ2
st〈v2〉2/α4

st � 1, Burgers then writes

S
(1)
st ≈

4πR2
Dα

4
st

Λ2
stv

4
ln

(
3kBTRD

ZsZte2

)
, (2.13)

and the final result for the resistance coefficients follows as

Kst ≈
16
√
π

3

nsntZ
2
sZ

2
t e

4

µstα3
st

ln

(
3kBTRD

ZsZte2

)
, (2.14)

zst =
3

5
, z′st =

13

10
, z′′st = 2, z′′′st = 4. (2.15)

With these coefficients now fully specified, Burgers diffusion equations along with con-

straints such as charge neutrality and current neutrality form a closed set of equations,

which can be solved for ws, rs, E, and g from the input of a stellar profile.

2.1.2 MESA Implementation

The diffusion routine originally implemented in MESA was based on the work of Thoul

et al. (1994). They start with the Burgers equations, written in a compact notation

following Noerdlinger (1977, 1978) that is equivalent to Equations (2.9) and (2.10) in one

dimension. However, the approach of Thoul et al. (1994) differs from Burgers’ original

11



treatment in one important respect: the resistance coefficients are based on a modified re-

sult for the collision integrals. They follow Equation (2.15) for the various zst coefficients,

which uses a pure Coulomb potential with a cutoff at the Debye length, but the Kst co-

efficients were derived from an alternative fitting of the Coulomb logarithms introduced

by Iben & MacDonald (1985). For these coefficients, they define λ = max(RD, λion), and

use

Kst =
16
√
π

3

nsntZ
2
sZ

2
t e

4

µstα3
st

1.6249

2
ln

[
1 + 0.18769

(
4kBTλ

ZsZte2

)1.2
]
. (2.16)

This expression is a fit to the numerical results of Fontaine & Michaud (1979), moti-

vated by white dwarf conditions where Burgers’ approximations for dealing with Equa-

tion (2.12) are not valid (Γ > 1). Since this fit focuses on the strong coupling regime, and

differs from Equation (2.14), these results can be incorrect in the limit of a dilute plasma

as we discuss later. Nevertheless, Thoul et al. (1994) elected to use Equation (2.16) under

all conditions, since it provides an approximately correct solution in a convenient closed

form.

Using Equations (2.9) and (2.10) along with the constraints of current neutrality

(
∑

s ρesws = 0) and local mass conservation (
∑

s ρsws = 0), Thoul et al. (1994) express

an entire closed system of equations in a dimensionless matrix form suitable for numerical

evaluation:

p

K0

(
αi
d ln p

dr
+ νi

d lnT

dr
+

S∑

j=1
j 6=e

γij
d lnCj
dr

)
=

2S+2∑

j=1

∆ijWj, (2.17)

12



where S is the total number of species in the gas (including electrons) and Cj = nj/ne

is the concentration of the jth species. Consult Thoul et al. (1994) for definitions of K0,

αi, νi, γij, and ∆ij. The definition of Wj is

Wj =





wj for j = 1 . . . S,

rj for j = S + 1 . . . 2S,

K−1
0 neeE for j = 2S + 1,

K−1
0 nempg for j = 2S + 2.

(2.18)

This is the vector containing the unknown quantities solved for after specifying K0, αi,

νi, γij, and ∆ij. The routine provided by Thoul et al. (1994) inverts Equation (2.17)

for one term in the left hand side at a time so as to find the “generalized diffusion

coefficients,” which can be used to construct diffusion velocities or contributions from

pressure, temperature, or concentrations individually.

2.1.3 Modified Coefficients and Radiative Levitation

Hu et al. (2011) extend the methods of Thoul et al. (1994) by introducing some key

modifications. First, they include an extra force term due to radiative levitation, so that

Equation (2.9) becomes

dps
dr

+ ρs(g − grad,s)− nsZ̄seE =
∑

t6=s
Kst(wt − ws) +

∑

t6=s
Kstzst

mtrs −msrt
ms +mt

, (2.19)

where grad,s refers to the radiative acceleration on species s. Z̄s is the average charge of

species s, allowing an account of partial ionization so that nsZ̄se = ρes. They do not

modify Equation (2.10).1

1As written in equation (3) of Hu et al. (2011), their expression has two errors in the first term on

13



In contrast to Thoul’s original routine, Hu et al. (2011) use the resistance coefficients

from Paquette et al. (1986a), which were generated based on substantial improvements to

Fontaine & Michaud (1979). In evaluating the collision integrals, Paquette et al. (1986a)

use a screened Coulomb potential of the form

Vst(r) = Z̄sZ̄te
2 exp(−r/λ)

r
, (2.20)

where, once again, λ = max(RD, λion). As we note below, this choice of λ makes

a substantial difference in strongly coupled plasmas, where the Debye radius no longer

corresponds to a distance at which other nearby charged particles can significantly screen

the Coulomb field. After setting up the algebra for a matrix solution very similar to that

of Thoul et al. (1994), Hu et al. (2011) solve for the vector Wj (as defined in Equation

2.18) appearing in the equation

p

K0

(
− αimigrad,i

kBT
+ αi

d ln p

dr
+ νi

d lnT

dr
+

S∑

j=1
j 6=e

γij
d lnCj
dr

)
=

2S+2∑

j=1

∆ijWj. (2.21)

Many of the quantities appearing in this equation are defined differently than in Thoul

et al. (1994); see Hu et al. (2011) for details. We can also solve this equation directly for

the vector Wj to obtain

W2S+1

W2S+2

=
K−1

0 neeE

K−1
0 nempg

=
eE

mpg
, (2.22)

the strength of the electric field relative to gravity.

the right hand side of the first line: the sign is wrong, and it is missing resistance coefficients Kij . Since
neither of these errors propagates into later sections of the paper, it appears that both are simply typos,
and otherwise their expression matches Equation (2.10) exactly.
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2.2 Analytic Expression for the Electric Field

In some simple cases, Burgers equations can be solved to yield an analytic expression

for the electric field, providing a useful test for MESA. Starting directly with his diffu-

sion equations, Burgers (1969) arrives at the following expressions for a pure plasma of

electrons along with one species of ions (charge Ze):

∇pe + neeE

ZK0

= w +
3

5
re, (2.23)

5

2

nekB∇T
ZK0

= −3

2
w −

(
2

5

Keez
′′
ee

Kie

+ z′ie

)
re, (2.24)

where w = wi−we. For a plasma with only one ion species in diffusion equilibrium, the

constraints of current neutrality and local mass conservation give w = 0. In the case of

a pure hydrogen plasma, p = 2pe, and in hydrostatic equilibrium ∇pe = ∇p/2 = ρg/2.

Hence, we can solve the above set of equations to find

eE = −1

2
mpg −

3

2

(
2

5

Keez
′′
ee

Kie

+ z′ie

)−1

kB∇T. (2.25)

The coefficient for the temperature gradient term depends directly on the nature of the

resistance coefficients in the Burgers formalism, so different models of Coulomb collisions

in ionized plasma will lead to different results for the electric field.

As a slight generalization of Equation (2.25) in one dimension, we write

eE

mpg
=

1

2
− αe

kB

mpg

dT

dr
. (2.26)

If we calculate the coefficient αe using the Burgers’ formalism with Equations (2.15) and

15



(2.16), we find

αe =
3

2

(
2

5

Keez
′′
ee

Kie

+ z′ie

)−1

= 0.804 (2.27)

A comparable analytic expression for the electric field is provided by Roussel-Dupré

(1981), who applies a Boltzmann-Fokker-Planck approach to finding diffusion coefficients

for trace elements in hydrogen plasma. His treatment of diffusion is more precise than the

Burgers’ formalism, but has the limitation of only being applicable in the case of nearly

pure hydrogen with a diffusing trace element. His result for the electric field matches

the form of Equation (2.26) with the coefficient αe = 0.703. This provides another useful

point of comparison in the specific case of nearly pure hydrogen plasmas. Below we use

this analytic expression as a test of the updated resistance coefficients employed by Hu

et al. (2011).

2.3 Results and Comparisons

We have constructed several simple MESA test cases in order to illustrate the effects of

radiative levitation and different resistance coefficients. Where possible, we compare

MESA output to corresponding analytic expressions.

2.3.1 Electric Fields

By default, MESA uses the resistance coefficients provided by Paquette et al. (1986a), but

it can also use the resistance coefficients defined by Iben & MacDonald (1985), given

16



here in Equation (2.16). In the case of a pure hydrogen star, the coefficients given in

Equation (2.16) lead directly to Equation (2.27), so these coefficients are especially useful

in performing simple comparisons of MESA output to a corresponding analytic expression.

Due to the complicated numerical methods used to obtain the resistance coefficients of

Paquette et al. (1986a), it is not possible to write down a directly corresponding closed

form analytic expression for the electric field, but results based on these more precise

calculations compare favorably to those of Roussel-Dupré (1981) in the case of a pure

hydrogen plasma. Starting with the MESA test suite, we constructed a solar mass pure

hydrogen star, and we ran just long enough to turn on the diffusion routine and gather

output for electric and gravitational fields. For such a star, we can compare MESA results

for the electric field directly to the analytic expression given in Equation (2.26), with

αe = 0.804 in the solution of Burgers (1969) and αe = 0.703 for Roussel-Dupré (1981).

Figure 2.1 plots the result of Equation (2.26) for both values of αe, along with the

results from the diffusion routine (Equation 2.22) for each type of resistance coefficients

available in MESA. As expected, the curve calculated from the MESA diffusion routine

output using the resistance coefficients of Iben & MacDonald (1985) closely matches the

analytic expression with αe = 0.804 as calculated by Burgers (1969) using his similar

coefficients. When using the more detailed numerical calculations for the resistance

coefficients provided by Paquette et al. (1986a), the diffusion routine output closely

resembles the more precise analytic calculation given by Roussel-Dupré (1981).

The Sun provides another interesting test case for comparing the effects of using
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Figure 2.1: Comparison of electric field strengths relative to gravity in a pure hydrogen
star (M = 1.0 M�, Teff = 5.74× 103 K, L = 0.576 L�) with nuclear burning artificially
suppressed in the MESA routine to avoid any helium contamination. Solid lines represent
the analytic expression given by Equation (2.26) for two different values of the coeffi-
cient αe. Dashed lines represent output from the MESA diffusion routine as described in
Equation (2.22), with the only difference being the resistance coefficients used to solve
the Burgers equations.
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different resistance coefficients. An example solar model from the MESA test suite was

run with different choices of the resistance coefficients. Figure 2.2 shows a slight difference

between the electric field strengths relative to gravity given by the Paquette et al. (1986a)

coefficients and those by Iben & MacDonald (1985).

0.0 0.2 0.4 0.6 0.8
m [M�]

0.7
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1.0
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1.3

eE
/
m

pg

Age = 4.57×109 years

Iben & MacDonald coefficients
Paquette et al. coefficients

Figure 2.2: Comparison of electric field strengths relative to gravity using different resis-
tance coefficients in a solar model.

2.3.2 Gravitational Fields

The MESA diffusion routine treats both the electric field and local gravitational accelera-

tion as unknown quantities. MESA records the quantity W2S+2 (Equation 2.18), used to

calculate the gravitational acceleration from the diffusion routine:

gdiff =
K0W2S+2

nemp

. (2.28)
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This expression for gdiff is independent of the simpler expression for local gravitational

acceleration ggauss = Gm/r2. Figure 2.3 compares ggauss and gdiff for a typical profile found

using the example solar model from the MESA test suite. In Figure 2.3 a profile from a

star of larger mass (M = 1.5 M�) shows disagreement between the gravity outputs in the

convective core because the diffusion solver is designed to ignore diffusion in convective

regions. The diffusion output variables can therefore be wrong in such regions, but they

have no impact on the stellar structure. The effects of diffusion in convective regions are

completely overwhelmed by convective mixing and are therefore inconsequential.
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Figure 2.3: Comparison of gravitational fields obtained from gdiff and ggauss in two MESA

test suite cases. The two lines representing the Sun (age = 4.57 Gyr) show good agree-
ment, while the two lines representing a 1.5 M� star disagree in regions with large con-
vective flux where diffusion is inconsequential.
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2.3.3 Radiative Levitation

MESA’s implementation of radiative levitation is based on Hu et al. (2011). Figure 2.4

shows an abundance profile of a subdwarf B star model produced by MESA, where radiative

levitation is responsible for the presence of 56Fe, 58Ni, and other metals near the surface

(as also seen in figure 3 of Hu et al., 2011).

−14−12−10−8−6−4−2

log
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20Ne

16O
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14N

12C

Figure 2.4: Abundance profile of a subdwarf B star model (M = 0.462 M�,
Teff = 2.67× 104 K, L = 1.12 L�, age = 5 Myr) showing the effects of radiative levita-
tion with a layer of 56Fe/58Ni at the surface.
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2.3.4 White Dwarf Sedimentation

In a cooling WD, diffusion governs sedimentation over long timescales. The assumptions

behind the formalism of the Burgers equations do not hold under white dwarf conditions:

• The Burgers equations assume all particle species satisfy an ideal gas equation of

state. In the context of a degenerate WD both electrons and ions violate this

assumption.

• The very dense, strongly coupled (Γ > 1) conditions of a WD call into question the

validity of the two-particle scattering picture used to calculate the ion resistance

coefficients.

Nevertheless, for lack of a better option, previous studies have relied on the Burgers

equations with the coefficients of Paquette et al. (1986a). For example, see Córsico et al.

(2002).

Figure 2.5 shows an abundance profile produced by MESA for a CO WD after 4 Gyr of

evolution, where diffusion governs sedimentation in the outer layers. The vertical lines

in Figure 2.5 mark the outer boundaries of regions where the two concerns listed above

become significant. Nearly all of the WD resides inside at least one of these regimes, and

much of the interesting diffusion sedimentation occurs inside regions that are both signif-

icantly coupled and highly degenerate. Thus, improvements to the treatment of diffusion

are clearly necessary before we are able to describe diffusion in WDs adequately. This

MESA run turns off diffusion for Γ ≥ 50, where we expect strong coupling to substantially

modify the underlying equations.
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Figure 2.5: Abundance profile of a CO WD (M = 0.611 M�, Teff = 5.16 × 103 K,
L = 9.29 × 10−5 L�) after 4 Gyr of WD evolution. The region left of the blue, dashed
line is the interior of the WD, where Γ ≥ 1. Left of the red, dashed line Γ ≥ 50, and
diffusion has been turned off for this region. The electrons are an ideal gas to the right
of the black dot-dash line.

2.4 Expanding the Domain of Validity

The validity of the Boltzmann approach becomes questionable as Γ > 1 and the ions

become a liquid. Bildsten & Hall (2001) estimated the diffusion coefficient in this liquid

regime by using the Stokes-Einstein relation. However, for a broad-based code such as

MESA, we need to implement diffusion into the Γ > 1 regime in a manner that allows for

a smooth transition between coupling regimes.
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Paquette et al. (1986a) successfully described diffusion in a regime of intermediate

coupling through the use of screened potentials, which are a way to account for the

collective nature of interactions in a dense plasma. Though there is no rigorous reason to

expect that a formalism based on the two-particle scattering picture should work well as

Γ→ 1, their comparison to simulations verified that this description of diffusion is very

accurate for Γ . 1.

Can these approximations be extrapolated to the strongly coupled regime of Γ >

1? Baalrud & Daligault (2013) provide a method for numerically calculating resistance

coefficients using a hypernetted chain (HNC) approximation from effective potentials.

Figure 2.6 compares their HNC results (diamonds) to their Molecular Dynamics (MD)

simulations of a one-component plasma (OCP, circles) for the self-diffusion coefficient

D∗, defined by

D∗ =
D

λ2
ionωp

, (2.29)

where ωp is the plasma frequency and D = 2D
(2)
ss (the factor of 2 in this definition ensures

that if we redefine species s in terms of two subspecies s1 and s2, then D = D
(2)
s1s2). The

general expression for the interdiffusion coefficient is

D
(2)
st =

nsnt
ns + nt

kBT

Kst(1−∆)
, (2.30)

where the 1 − ∆ term in the denominator accounts for a second order correction that

can be defined using

∆ =
(2Σ

(12)
st − 5Σ

(11)
st )2/Σ

(11)
st

55Σ
(11)
st − 20Σ

(12)
st + 4Σ

(13)
st + 8Σ

(22)
st

. (2.31)
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For reference, we also include a direct fit of Daligault & Murillo (2005) to the MD data

of Ranganathan et al. (2003), given by

D∗ = 0.0028 + 0.00525

(
173

Γ
− 1

)1.154

. (2.32)

The agreement between the HNC and MD simulations shows that the HNC does a

better job of accounting for correlation physics in strongly coupled plasmas than a simple

screened Coulomb potential and allows for a surprising (and still physically unexplained)

extension of the Burgers formalism into the strongly coupled regime. This recent work

allows us to go into the large Γ limit with the Burgers formalism, but the question remains

as to how we obtain diffusion coefficients in a reliable manner.

The self-diffusion coefficients from the two options in MESA are shown in Figure 2.6

and correlate with the MD data better than expected for the high Γ regime. In particular,

the agreement is much better than that shown in figure 2 of Baalrud & Daligault (2013)

for either “cutoff” or “screened” Coulomb methods. The reason for this agreement is that

both MESA implementations use the inter-ion spacing rather than the Debye length once

Γ > 1/3, which yields favorable scalings in the high Γ limit. Iben & MacDonald (1985)

constructed their fitting formula based on a few numerical results for Γ >1. Paquette

et al. (1986a) also showed that their formalism can be extended to Γ > 1 as long as the

inter-ion spacing is used rather than the Debye radius for the screening length.

Though MESA does not yet provide the capability of implementing resistance coeffi-

cients based on the HNC method, we may attempt this in the future by means of a table

similar to that provided for the coefficients of Paquette et al. (1986a). For a more thor-
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Figure 2.6: Compilation of the self-diffusion coefficients obtained from different methods.
“MD Data” and “HNC” points are taken from Baalrud & Daligault (2013). The solid
black line is the result of the MESA calculation using the coefficients of Paquette et al.
(1986a). The dashed green line is the result of the calculation using the resistance
coefficients from the original routine of Thoul et al. (1994) based on the fit to the Coulomb
logarithm found in Iben & MacDonald (1985), given here in Equation (2.16). The dashed
purple line represents the fit to MD data given here in Equation (2.32).
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ough discussion of these methods and the likely path of application to mixtures, consult

Beznogov & Yakovlev (2014). We will also need to correctly account for the electron

degeneracy and the non-ideal equation of state for the ions, both of which modify the

electrostatic field needed to correctly determine the forces that drive diffusion. This is

the topic of the next chapter.
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Chapter 3

Enhancing the Diffusion Framework

for White Dwarfs

Chapter 2 describes in detail the original implementation of element diffusion in MESA.

There are limitations to those methods, namely: (1) electron degeneracy was not properly

accounted for in the diffusion equations, and (2) strong Coulomb interaction introduced

theoretical uncertainties for the diffusion coefficients. These two issues are especially

important when modeling diffusion in WDs. Here we describe the impact of degeneracy

and present new methods to incorporate its effects. We also discuss recent updates to

diffusion coefficients and potential approaches for further improvements.
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3.1 Degeneracy

The approach to diffusion presented in Chapter 2 assumes all particles obey the ideal

gas law. Electron degeneracy pressure can significantly modify the EOS and violate this

assumption.

For a plasma species s (i.e., electrons and ions) with partial pressure Ps, mass den-

sity ρs, charge density ρes, number density ns, and temperature T , the Burgers (1969)

equations for diffusion are

dPs
dr

+ ρsg − ρesE =
∑

t6=s
Kst(wt − ws) +

∑

t6=s
Kstzst

mtrs −msrt
ms +mt

, (3.1)

5

2
nskB

dT

dr
=− 2

5
Kssz

′′
ssrs −

5

2

∑

t6=s
Kstzst

mt

ms +mt

(wt − ws)

−
∑

t 6=s
Kst

[
3m2

s +m2
t z
′
st

(ms +mt)2
+

4

5

msmt

(ms +mt)2
z′′st

]
rs

+
∑

t6=s
Kst

msmt

(ms +mt)2

(
3 + z′st −

4

5
z′′st

)
rt.

(3.2)

The resistance coefficients Kst, zst, z
′
st, and z′′st are defined in Equation (2.6). With S

representing the total number of plasma species, we must solve for 2S + 2 unknowns:

S diffusion velocities (ws), S heat flow vectors (rs), the electric field (E), and the grav-

itational acceleration (g). The Burgers equations above for each species provide 2S

equations, so we can close the system with two additional constraints, which are no net
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flow of mass or electric current due to diffusion,

∑

s

ρsws = 0 , (3.3)

∑

s

ρesws = 0 . (3.4)

This gives a total of 2S + 2 equations.

When electrons are degenerate, Equation (3.1) is difficult to apply since dPe/dr no

longer takes a simple analytic form. Moreover, the temperature term appearing on the

left hand side of Equation (3.2) clandestinely assumes an ideal gas law. Burgers (1969)

defines the temperature for each species as Ts ≡ Ps/nskB and assumes thermal equilib-

rium between all species so that T ≡ Ts. The quantities Ps and ns are defined in terms of

moments of a Maxwellian distribution function, but the Fermi-Dirac distribution func-

tion for electrons no longer reduces to a Maxwellian form when they are degenerate,

and hence Te 6= Pe/nekB. If the electrons remain in thermal equilibrium with their sur-

roundings while failing to satisfy an ideal-gas relation for their temperature, the Burgers

treatment assigns an incorrect temperature to degenerate electrons for the dT/dr term

in Equation (3.2).

Furthermore, the approach to diffusion described in Chapter 2 follows Thoul et al.

(1994) in rearranging and rescaling all equations into one matrix system with units con-

venient for solving numerically,

P

K0

(
αi

d lnP

dr
+ νi

d lnT

dr
+

S∑

j=1
j 6=e

γij
d lnCj

dr

)
=

2S+2∑

j=1

∆ijWj . (3.5)
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The sum on the left hand side skips the electron index because Ce ≡ 1 by construction,

and so we save resources by not evaluating its gradient unnecessarily. Here, indices

i = 1, 2, . . . S encode the S equations given by Equation (3.1), indices i = S + 1, S +

2, . . . , 2S encode the S equations given by Equation (3.2), and indices i = 2S + 1, 2S +

2 encode the 2 constraints of no current or mass flux. For definitions of the various

coefficients and matrices in Equation (3.5), consult Chapter 2 and Thoul et al. (1994).

We repeat a few particularly relevant definitions here. First, let Cs = ns/ne denote the

species concentration, where ne is the electron number density. Second, define the total

concentration as C =
∑

sCs. Then the quantity αi appearing in Equation (3.5) above is

defined as

αi =

{
Ci/C i = 1, 2, . . . S,

0 i = S + 1, . . . 2S + 2.
(3.6)

The term αi d lnP/dr in Equation (3.5) is meant to capture contributions of the driving

terms dPs/dr in Equation (3.1). But this correspondence only holds if the ratio of the

partial pressure Ps for species s to the total pressure P is given by

Ps
P

=
Cs
C

=
ns/ne∑
t nt/ne

=
ns
n
, (3.7)

where n is the total number density. This holds as long as all pressures are ideal-

gas. However, once electron degeneracy modifies the equation of state, P does not scale

linearly with n, and so Equation (3.7) fails for all species in the plasma. This means the

αi term no longer accurately represents the information in the Burgers equations for the

diffusion velocity of any species.

Moreover, the prefactor P/K0 in Equation (3.5) also assumes ideal gas for each species.
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Figure 3.1: The gravitational acceleration reported by the diffusion routine described
in Chapter 2 compared with gGauss = Gm/r2 for a 0.6 M� MESA WD model.

The quantity K0 = 1.144× 10−40(T/107 K)−3/2n2
e simply scales out some of the informa-

tion common to all diffusion coefficients in the units used for Equation (3.5). Thoul et al.

(1994) assume an ideal gas to simplify the prefactor in Equation (3.5) to

P

K0

= 2.00
(T/107 K)5/2

(ρ/100 g cm−3)

(∑

s

Cs

)(∑

s

AsCs

)
, (3.8)

where As is the mass of species s in atomic mass units. This scaling was propagated

into the MESA diffusion routine described in Chapter 2. Since ideal gas pressure can be

significantly smaller than total pressure when electrons are degenerate, this prefactor for

Equation (3.5) is systematically too small for degenerate plasmas. This can result in

diffusion velocities that are many orders of magnitude smaller than obtained by a proper

solution.
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We can verify that there are problems in the degenerate regime by looking at the

local gravitational acceleration gdiff , which is solved for simultaneously with the diffusion

velocities in the diffusion routine described by Chapter 2. MESA also reports the gravita-

tional acceleration independent of the diffusion routine, gGauss = Gm/r2. For a MESA WD

model, layers below the surface quickly become degenerate, and the difference between

gdiff and gGauss is significant (Figure 3.1). This reflects the fact that the solutions given

by the diffusion routine scale with a pressure that is far too small in the interior.

3.2 New Methods

We now describe new methods that have been introduced to avoid the limitations dis-

cussed in Section 3.1.

3.2.1 Recasting the Burgers Equations

The problems with Equation (3.5) demonstrated in Figure 3.1 can be circumvented by

solving the Burgers equations directly as presented in Equations (3.1) and (3.2). When

avoiding the rescaling of the Burgers equations that was originally adopted from Thoul

et al. (1994), no limitations on the form of total pressure are present.

To that end, we recast the diffusion solver into the form given in Appendix A. This

form closely follows the general approach presented by Thoul et al. (1994) for arranging

the full set of equations into a single matrix equation, but enters the Burgers equations

into that matrix structure without rescaling any quantities. We therefore avoid mak-

33



ing any additional ideal-gas assumptions beyond those already present in the Burgers

equations.

3.2.2 Resolving the Degeneracy Problem

Electron degeneracy makes it difficult to evaluate the term dPs/dr in Equation (3.1) in the

case of electrons, but it is possible to form a closed set of diffusion equations that makes no

explicit reference to this equation for the electrons. Even in many applications involving

WDs, each ion species can be treated as approximately ideal, and hence Equation (3.1)

remains useful for ions. We are then left with just two problematic equations out of the

system of 2S + 2 equations: Equations (3.1) and (3.2) for the electrons.

For the S− 1 species of ions in the system, we can write S− 1 Equations (3.1) in the

form

nskBT
d lnT

dr
+ nskBT

d lnns
dr

+ nsAsmpg − nsZ̄seE

=
∑

t6=s
Kst(wt − ws) +

∑

t6=s
Kstzst

Atrs − Asrt
As + At

,
(3.9)

where Z̄s is the average charge of species s obtained using Paquette et al. (1986b). Taking

this together with S Equations (3.2) and the two constraints on current and mass flux,

we have a total of 2S + 1 equations. If we drop g as an unknown and treat it as a

fixed input to the diffusion routine in MESA using g = Gm/r2, we are left with 2S + 1

unknowns. This gives a closed system of diffusion equations with no explicit reference

to the problematic Equation (3.1) for electrons. This is the form of diffusion equations
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described in Appendix A.

The thermal diffusion terms (those including dT/dr in Equation 3.2) still contain

ideal-gas assumptions as described in Section 3.1. Fortunately, in WD cores where strong

electron degeneracy occurs, electron conduction leads to efficient thermal transport, re-

sulting in small temperature gradients. With dT/dr � T/H, where H = P/ρg is the

local scale height, the heat flow vectors (representing kinetic energy carried along a tem-

perature gradient by diffusing particles) become negligible: rs � wt for all wt. Thus

for WD interiors the system of diffusion equations can be simplified by dropping the S

heat flow terms, removing the need for the S Equations (3.2). Indeed, according to Iben

& MacDonald (1985) and Paquette et al. (1986b), thermal diffusion leads only to small

corrections to the diffusion velocities for degenerate WD interiors.

Therefore, following Iben & MacDonald (1985), we provide options for neglecting ther-

mal diffusion in electron degenerate regions, setting rs = 0 and dropping Equation (3.2)

for each species. Equation (3.9) then simplifies to the following S − 1 equations that no

longer depend on rs for the ions:

1

ns

∑

t

Kst(wt − ws) + Z̄seE = Asmpg + kBT
d lnT

dr
+ kBT

d lnns
dr

, (3.10)

which matches Equation (10) from Iben & MacDonald (1985). Together with the 2

constraints, this leaves a simplified set of S+1 equations for S+1 unknowns: S diffusion

velocities ws and the electric field E.

Thermal diffusion terms tend to enhance gravitational settling velocities (Iben et al.,
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1992). This can be seen in Figure 3.2 for a 1.25 M� star on the MS, where the solvers

that include thermal diffusion speed the sedimentation of 16O away from the surface

relative to the solver that neglects thermal diffusion. MESA also provides options for

smoothly transitioning between diffusion velocities obtained with and without thermal

diffusion (averaging between the two solutions in a blending region as a function of elec-

tron degeneracy parameter). By default, this transition region occurs when the electron

chemical potential is near µe ∼ kBT , but it is left to the user to decide on an appropriate

range of electron degeneracy over which thermal diffusion should be shut off, if at all.

The effect of blending between solvers with and without thermal diffusion is to suppress

the thermal enhancements to diffusion velocities, smoothly pushing the enhancements to

zero as electrons reach a degeneracy threshold. The implementation for the simplified

set of diffusion Equations (3.10) and the smooth turn-off of thermal diffusion terms as a

function of degeneracy are described in Appendix A.

In order to confirm that we recover the correct behavior on the MS, we compare

results obtained with different diffusion routines for a 1.25 M� star in Figure 3.2. Here

the results based on Thoul et al. (1994) are valid, since no significant departures from

ideal-gas behavior are present near the surface. The results obtained with the new scheme

are in agreement.
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Figure 3.2: Surface 16O mass fraction of a 1.25 M� star over its MS lifetime. It first
decreases as diffusion causes sedimentation. Then it increases after the small surface
convection zone begins to grow, catching the receding 16O and mixing it back toward the
surface.
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3.2.3 Diffusive Equilibrium

MESA II and Chapter 2 show abundance profiles for WDs that have reached diffusive

equilibrium in their outer layers. Figure 23 of MESA II compares the diffusive tails of H

and He to an analytic expression from Althaus et al. (2003) and finds good agreement.

However, Althaus et al. (2003) note that their analytic expression for diffusive equilib-

rium follows Arcoragi & Fontaine (1980) in assuming an ideal gas, and the equilibrium

abundance profiles from their evolutionary models deviate from the analytic expression

due to the inclusion of electron degeneracy. Similarly, the He layer of the WD model

shown in Figure 2.5 is partially degenerate, and hence the driving forces for diffusion

should be modified in this region.

For a fully-ionized isothermal ideal gas the electric field that serves as one of the

driving forces for diffusion in Equation (3.9) takes the form eE = [A/(Z + 1)]mpg. In

contrast, in the limit of strong electron degeneracy, the electric field approaches eE =

(A/Z)mpg. When He is the background material, the electric-to-gravitational force ratio

eE/mpg increases from 4/3 to 2. In this limit, any trace isotopes with A/Z = 2 see no net

sedimentation force (ZeE−Ampg = 0), while H with A/Z = 1 sees a significant upward

sedimentation force (ZeE−Ampg > 0). This extra buoyant force on H in a degenerate He

background pushes the diffusive tail further toward the surface relative to the ideal-gas

case, as shown in Figure 3.3. With the proper handling of electron degeneracy described

in Section 3.2, our MESA models now agree with the time-dependent diffusion models

shown in Figure 18 of Althaus et al. (2003).
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3.2.4 Radiative Levitation

Radiative levitation is included as an optional extra term. The Burgers equations are

modified with a extra forcing term by taking ρsg → ρs(g − grad,s), as shown in Equa-

tion (2.19). Our implementation continues to follow Hu et al. (2011) but no longer

employs their matrix structure for the Burgers equations; details of how the grad,s terms

are handled with the updated diffusion schemes can be found in Appendix A.

3.3 Updated Diffusion Coefficients

The Paquette et al. (1986a) diffusion coefficients have served as the standard for stellar

diffusion problems. The scattering cross-sections for these coefficients are calculated

using a screened Coulomb potential

V12(r) =
Z̄1Z̄2e

2

r
exp(−λ/r) , (3.11)

with the screening length chosen as λ = max(λD, āi), where λD is the Debye length,

āi = (3/4πni)
1/3 is the average interionic distance, and ni is the ion density. This choice

is a crude but effective way to handle the strongly coupled regime; as shown in Chapter 2,

this yields reasonable agreement with diffusion coefficients calculated from molecular

dynamics.

Stanton & Murillo (2016) provide updated collision integrals for screened Coulomb

interactions and suggest improvements to the treatment of screening length. They provide

fitting functions and tables that can be used with any choice of screening length. In MESA
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we follow their suggested screening prescription. The electron screening length is given

by a Thomas-Fermi approximation that accounts for non-relativistic degeneracy:

λe =


 4πe2ne√

(kBT )2 +
(

2
3
EF

)2



−1/2

, (3.12)

where EF = ~2(3π2ne)
2/3/2me is the electron Fermi energy. The direct inclusion of

degeneracy increases λe. The ion screening lengths are the Debye lengths for each species,

λi =

(
4πZ̄2

i e
2ni

kBT

)−1/2

. (3.13)

To prevent ions from screening below the inter-ionic spacing, Stanton & Murillo (2016)

introduce an approximate ion-sphere for each species ai ≡ (3Z̄i/4πne)
1/3, and define an

ion-sphere coupling parameter

Γi ≡
(Z̄ie)

2

aikBT
. (3.14)

Their net effective screening length is then

λeff ≡
[

1

λ2
e

+
∑

i

1

λ2
i

(
1

1 + 3Γi

)]−1/2

. (3.15)

This construction enforces a minimum on the screening length at approximately the

ion-sphere radius ai for each species, similar to the strict minimum at āi set by Pa-

quette et al. (1986a). Stanton & Murillo (2016) point out that this adjustment to the

ion screening length is physically motivated by the ion pair distribution functions in a

strongly coupled plasma, where the occupation probability within the ion-sphere radius

is negligible, and hence no ions are present to provide screening beneath that cutoff.
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The proper handling of degeneracy in the electron screening length makes it unnecessary

to impose any particular minimum there, so there is no longer any ad hoc appeal to a

universal minimum screening length.

For repulsive Coulomb potentials of the form in Equation (3.11), Stanton & Murillo

(2016) provide fits and tables of collision integrals and coefficients that we now use to

calculate the resistance coefficients Kst for inclusion in the Burgers equations in MESA.

They do not provide fits for attractive potentials, and Paquette et al. (1986a) note that

interactions with these potentials behave significantly differently from those with repul-

sive potentials when screened. Hence, MESA continues to use the Paquette et al. (1986a)

coefficients for electron-ion terms, and adopts Stanton & Murillo (2016) for all ion-ion

coefficients. In any case, it is evident from Equation (2.14) that the resistance coefficients

approximately follow Kst ∝ µ
1/2
st , where µst is the reduced mass of particles s and t; so,

electron-ion resistance coefficients are generally negligible compared to the ion-ion terms.

The calculations of Paquette et al. (1986a) overestimate the electron-ion resistance

coefficients in the case where electrons are degenerate. This is because diffusion and

resistance coefficients are generally calculated assuming that the velocity distributions of

all particles are Maxwellian, and the coefficients roughly scale as Kst ∝ v−2
s v−2

t . When the

electrons become degenerate, their characteristic kinetic energies are of order EF � kBT ,

and so their velocity distribution skews toward larger velocities. This results in smaller

resistance coefficients Kst, overestimating the impact of electron-ion drag. However, the

overestimate results in coefficients that remain negligible compared to ion-ion terms, and
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no attempt is made to correct it in MESA.

For repulsive potentials, the coefficients from Stanton & Murillo (2016) generally

agree with those of Paquette et al. (1986a) to within a few percent. In strongly coupled

WD interiors the Stanton & Murillo (2016) coefficients lead to ∼ 10% shorter diffusion

timescales due to a screening length that is allowed to be somewhat smaller than the

minimum value imposed by Paquette et al. (1986a): λeff < āi. Future prospects for

further improvements to diffusion coefficients include the recent progress on effective

potential methods from Daligault et al. (2016) and Shaffer et al. (2017).

3.4 Diffusion-Induced Flashes on He WDs

Diffusion-induced H shell flashes on low-mass (M . 0.4 M�) He WDs are known to

alter their cooling times (Althaus & Benvenuto, 2000; Althaus et al., 2001) and seismic

properties (Althaus et al., 2013). Istrate et al. (2016a,b) use MESA to model this process,

generating tables of cooling timescales and comparing MESA models with those of Althaus

et al. (2013).

Figure 3.4 shows an exploration of the H shell flash domain for a large grid of Z = 0.02

MESA models over a range of He-core and H-envelope masses. Here the envelope mass is

defined as the total mass of H-rich material (X > 0.01) at the surface at the beginning

of the WD cooling track. Lines show the minimum envelope masses for which H shell

flashes occur given various diffusion prescriptions.

For a given core mass, there is a range of envelope masses that exhibit shell flashes only
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Figure 3.4: Minimum envelope mass Menv for which a H shell flash occurs on a He WD
core mass Mcore for Z = 0.02 MESA models with and without diffusion. The regime for
the phenomenon of diffusion-induced flashes lies between the boundaries for models with
and without diffusion.

if diffusion is included, but this range depends on the diffusion prescription. The two lower

lines for models including diffusion in Figure 3.4 differ only in the handling of electron

degeneracy in the diffusion scheme. This illustrates the importance of properly handling

degeneracy as described in Section 3.2, since the diffusion-induced flashes are typically

ignited by CNO burning in the diffusive tail of H that reaches into the partially degenerate

He layers. WDs in this mass range often experience cycles of many H flashes, depleting

H incrementally until insufficient H remains to ignite another flash. The disagreement

between diffusion prescriptions on the minimum envelope mass for flashes is therefore

significant, as this will determine the total number of flashes and final H mass that sets

the ultimate cooling timescale for an object.
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To explore the full range of parameters presented in Figure 3.4, our WD models were

built by artificially stripping the H envelope down to a specific mass coordinate above the

He core of a 1.0 M� model ascending the RGB. For a discussion of MESA models including

proto-WD formation and the resulting H envelope masses, see Istrate et al. (2016b).

3.5 Heating from 22Ne Settling

In the strongly degenerate limit, eE/mpg ≈ 2 for C/O WD cores. For an isotope where

A/Z 6= 2, the electric and gravitational fields result in a net force that drives diffusion. For

22Ne in cooling WD interiors, this force is F = ZeE − Ampg ≈ −2mpg, causing 22Ne to

sediment toward the center and deposit energy as it moves deeper into the gravitational

potential (Bildsten & Hall, 2001; Deloye & Bildsten, 2002; Garćıa-Berro et al., 2008,

2010). This heating can prolong the WD cooling timescale, especially at late times when

the WD is very dim and radiates away the energy slowly. This effect may be especially

important for explaining WD luminosity functions in old and metal-rich open clusters

such as NGC 6791, where abundant 22Ne is available in WD interiors to provide heating.

MESA now offers an option to include this heating term in the energy equation (see

Appendix B.6) when diffusion is enabled. The specific rate at which energy is deposited

is

ε22 =
|F |v22

(Amp)/X22

= (22mpg − 10eE)
X22v22

22mp

. (3.16)

The 22Ne diffusion velocity (v22) and electric field are calculated in the diffusion routine

and then used to evaluate the above heating term. Note that the updates to diffusion
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Figure 3.5: Extra cooling time required to reach a given luminosity for 0.6 M� WD
models including heating from 22Ne settling, relative to models neglecting this heating.
For comparison, we also show a result from Garćıa-Berro et al. (2008) for a 0.6 M�
WD with an Oxygen-dominated core composition. Figure B.6 shows the same quantity
including other physical processes such as crystallization for the same Z = 0.02 WD
model shown here.

described in Section 3.2 are essential for correctly calculating both the diffusion velocity

and magnitude of the driving force in the degenerate interior of the WD.

Figure 3.5 shows the delay in WD cooling from introducing ε22 into 0.6 M� models.

These models turn off diffusion for Γ > 175, so ε22 is only active in material for which

crystallization has not yet occurred. The time-delays shown in Figure 3.5 are in good

agreement with those shown by Deloye & Bildsten (2002) and Garćıa-Berro et al. (2008)

for comparable cases.
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Chapter 4

Increases to Inferred Rates of

Planetesimal Accretion due to

Thermohaline Mixing in

Metal-accreting White Dwarfs

Despite the short sedimentation timescales for metals that should lead to pure hydrogen

atmospheres, a large fraction (25 − 50%) of DA white dwarfs (WDs) show signatures

of atmospheric metal pollution (Zuckerman et al., 2003). Though radiative levitation

can prevent some element settling in WDs with Teff & 20, 000 K (Chayer et al., 1995a,b;

Chayer, 2014), more than 25% of WDs can only be explained with ongoing accretion

providing a continued supply of metals to the surface (Koester et al., 2014). Many of

47



these WDs are thought to be actively accreting debris from disrupted planetesimals that

are perturbed within the WD tidal radius, and some show anomalous infrared emission

indicative of an accreting disk (Jura, 2003; Farihi et al., 2009; Girven et al., 2012; Van-

derburg et al., 2015; Farihi, 2016). Detailed atmosphere models for mixing and metal

sedimentation allow for inferences of accretion rates and compositions (Vauclair et al.,

1979; Dupuis et al., 1992, 1993; Koester & Wilken, 2006; Koester, 2009), and thus these

objects serve as unique laboratories for observing the interior bulk composition of plan-

etesimals around WDs (Zuckerman et al., 2007; Gänsicke et al., 2012; Dufour et al., 2012;

Koester et al., 2014; Jura & Young, 2014).

Much recent work in this field has relied on the assumption of equilibrium between

accretion and diffusive sedimentation. The large mean molecular weight of accreted ma-

terial compared to the hydrogen atmosphere can lead to additional mixing due to the

thermohaline instability (Deal et al., 2013; Wachlin et al., 2017), though see Koester

(2015) for a critique of its efficacy. In this chapter, we perform time-dependent stellar

evolution calculations using MESA. Our models that account for diffusion and thermoha-

line mixing indicate that both mechanisms are essential for understanding the range of

observed parameters for polluted WDs. Our work spans a large range of effective tem-

peratures and accretion rates, allowing new accretion inferences for hydrogen atmosphere

WDs with Teff . 20, 000 K.

In Section 4.1, we discuss standard diffusion calculations and their relation to sedimen-

tation in MESA models. In Section 4.2, we examine conditions for thermohaline instability
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in layers containing accreted metals and explore the impact of thermohaline mixing in our

MESA models. In Section 4.3, we present the resulting implications for observed polluted

WDs with hydrogen atmospheres. We find that WDs with Teff & 10, 000 K require accre-

tion rates several orders of magnitude larger than previously inferred, with the largest as

high as Ṁacc ≈ 1013 g s−1 when accounting for thermohaline mixing. In Section 4.4, we

discuss avenues for extending and refining the grid of models.

4.1 Gravitational Sedimentation

In accretion-diffusion equilibrium, the observed metal abundances in the outer convective

zone of a polluted WD are simply related to those in the accreted material. The timescale

for convective mixing is rapid, so accreted material is quickly distributed throughout the

convection zone. The observable mass fraction of an accreted pollutant Xcvz,i is then

related to the accretion rate Ṁi for that pollutant by (cf. Vauclair et al. 1979; Dupuis

et al. 1993; Koester 2009)

Mcvz
dXcvz,i

dt
= Ṁi −

Xcvz,iMcvz

τdiff,i

, (4.1)

where the sedimentation time for element i is

τdiff,i ≡
Mcvz

4πr2ρvdiff,i

, (4.2)

and vdiff,i is the downward sedimentation velocity of the accreted pollutant at the base

of the surface convection zone, at density ρ and radius r, where it sinks away from the

fully mixed surface region.
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Assuming τdiff,i, Ṁi, and Mcvz are time independent, Equation (4.1) gives

Xcvz,i(t) = Xcvz,i(0) e−t/τdiff,i +
Ṁi

Mcvz

τdiff,i

(
1− e−t/τdiff,i

)
, (4.3)

and for t� τdiff,i the mass fraction approaches the equilibrium value

Xeq,i =
Ṁi

Mcvz

τdiff,i . (4.4)

Since sedimentation timescales in hydrogen WD atmospheres are short (τdiff ∼ days −

104 years, Koester 2009), Equation (4.4) is typically used to infer elemental accretion rates

from observed abundances assuming Xobs,i = Xeq,i. A total accretion rate can be found

simply by adding the individual contributions of each observed pollutant (Ṁacc ≡
∑

i Ṁi),

or by scaling to a fiducial composition when other elements are not directly observed but

are expected to be present (e.g. Ṁacc = ṀCa/Xacc,Ca).

The theoretical ingredients for the preceding calculation are diffusion timescales and

surface convection zone masses (Koester & Wilken, 2006; Koester, 2009). We calculate

these as part of time-dependent WD evolutionary models with hydrogen atmospheres

using MESA version 10398. In particular, our treatment of diffusion is based on a complete

time-dependent solution of the Burgers equations for diffusion (Burgers, 1969), adapted

to be appropriate for any degree of electron degeneracy in WDs as described in detail

in Chapter 3. This treatment yields diffusion velocities for each species in the plasma

everywhere in the stellar model. Our results for diffusion timescales and convection zone

masses in WDs with hydrogen atmospheres are comparable to those of Koester (2009).1

1Most recent tables found at http://www1.astrophysik.uni-kiel.de/~koester/astrophysics/

astrophysics.html.
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The convection prescription for our models is ML2 (Bohm & Cassinelli, 1971) with

αMLT = 0.8. Our settings for surface boundary conditions rely on either a grey iterative

procedure (Teff > 9, 000 K) described in MESA II, or the WD atmosphere tables in MESA

(Teff < 9, 000 K), which are adapted from Rohrmann et al. (2012). Diffusion coefficients

are those of Stanton & Murillo (2016) as implemented in Chapter 3, which produce

comparable results to those of Paquette et al. (1986a). More details are presented in the

next chapter. For WDs with no surface convection zone (Teff & 15, 000 K), we take the

surface region in which to evaluate Xcvz and Mcvz to be everywhere above the photosphere

in the model (optical depth τRoss = 2/3), with τdiff evaluated at the photosphere. See

Gänsicke et al. (2012) for a thorough discussion justifying this choice.

The upper panel of Figure 4.1 shows that a MESA model of an accretion episode

with constant Ṁacc = 9.2 × 108 g s−1 (accreted mass fractions XFe = 0.307, XO = 0.295,

XMg = 0.199, XSi = 0.153, XCa = 0.046) agrees with the prediction of Equation (4.3)

when thermohaline mixing is not considered. This model is tuned to match the observed

properties of G29-38 presented by Xu et al. (2014), including Teff = 11, 820 K, log g = 8.4,

and the abundances presented in their Table 3. Our MESA model has diffusion timescales

on the order of 1-2 years, roughly a factor of 5 longer than those reported by Xu et al.

(2014) due to a larger surface convection zone in the MESA model (Mcvz = 6× 10−14M�).

This difference arises because convection zone depths are very sensitive to Teff around

the temperature for G29-38, and our models show growth of the surface convection

zone slightly sooner as the WD cools compared to those of Koester (2009) in this regime.
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Figure 4.1: Upper Panel: MESA model of G29-38 matching observed abundances (Xu
et al., 2014) after accreting earth-like composition at a total rate of Ṁacc = 9.2× 108 g s−1

for 10 years to approach equilibrium surface abundances. Accretion ceases after 10 years
to illustrate the exponential decay of observable pollution governed by diffusion in the ab-
sence of accretion. No thermohaline mixing is included in this model. Lower Panel: MESA
model of G29-38 including thermohaline mixing accreting metals in the ratios observed
at the WD surface at Ṁacc = 1010 g s−1 for 5,000 years to approach observed surface
abundances.
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Hence, we infer an accretion rate that is 40% larger than the value Xu et al. (2014) report,

but we find excellent agreement with their relative diffusion timescales and composition

of the accreted material.

4.2 Thermohaline Instability

Deal et al. (2013) and Wachlin et al. (2017) have noted that thermohaline mixing may

significantly alter the accretion rates inferred from observed abundances in polluted WDs.

Koester (2015) argued against the efficacy of this instability for a few cases. Here we

show the regime in which it operates and its overall impact, which can be large.

4.2.1 Onset of the Instability Beneath the Convection Zone

Thermohaline instability can occur when fluid is stable to convection according to the

Ledoux criterion, but has an inverted mean molecular weight gradient:

∇T −∇ad <
ϕ

δ
∇µ < 0 , (4.5)

where ∇T = (∂ lnT/∂ lnP ) is the temperature gradient, ∇ad = (∂ lnT/∂ lnP )s is the

adiabatic temperature gradient, ∇µ = (∂ lnµ/∂ lnP ) is the mean molecular weight gradi-

ent, ϕ = (∂ ln ρ/∂ lnµ)P,T , and δ = −(∂ ln ρ/∂ lnT )P,µ. A fluid satisfying Equation (4.5)

alone is not guaranteed to experience thermohaline instability; the double-diffusive na-

ture of the instability requires that microscopic particle transport between fluid elements

be slow compared to thermal transport so that perturbed elements maintain their com-

position long enough for the instability to grow. This extra condition is (Baines & Gill,
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1969; Brown et al., 2013; Garaud, 2018):

(ϕ/δ)∇µ

∇T −∇ad

>
κµ
κT

, (4.6)

where κµ and κT are the particle and thermal diffusivities.

The mean molecular weight gradient is inverted in the radiative zone beneath the outer

convective layer of these polluted WDs. Heat is carried there via radiative diffusion, so

κT =
4acT 3

3κρ2CP
. (4.7)

We use the diffusion coefficients of oxygen or iron in hydrogen as representative of the

particle diffusivity relevant for the mean molecular weight of a fluid element:

κµ ≈ DH,O or DH,Fe . (4.8)

We obtain these coefficients from the same routines based on Stanton & Murillo (2016)

that we use to calculate coefficients for element diffusion (see Chapter 3).

Figure 4.2 shows the quantities relevant for evaluating the criterion for thermohaline

instability given in Equation (4.6) for the G29-38 MESA model. The metallicity (Z)

profile for the model is unstable according to Equation (4.6), and the result of enabling

thermohaline mixing will be to mix a significant amount of the metals deeper into the

star. A significantly larger accretion rate is then required to match the observed surface

pollution in G29-38, similar to the results of Wachlin et al. (2017).
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Figure 4.2: Profiles of quantities relevant to the onset of thermohaline instability in
G29-38 models. The lower panel shows the metallicity profile with (blue) and without
(orange) thermohaline mixing enabled according to Equation (4.9) with αth = 1, for the
same models as shown in Figure 4.1. The upper panel shows the quantities necessary for
evaluating the inequality given by Equation (4.6) in both cases, confirming that these
profiles are thermohaline unstable. The gray shaded region represents the convective
envelope.
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4.2.2 Outcomes when Thermohaline Mixing is Included

The default thermohaline mixing treatment in MESA (see MESA II) follows Kippenhahn

et al. (1980) in defining the mixing coefficient:

Dth = αthκT
3

2

(ϕ/δ)∇µ

∇T −∇ad

, (4.9)

where αth is a dimensionless efficiency parameter that should be near unity. MESA also

offers options for using more recent treatments of thermohaline mixing due to Traxler

et al. (2011) and Brown et al. (2013), which attempt to constrain free parameters by

calibrating effective 1D prescriptions to 3D simulations.

Figure 4.3 shows the surface Ca mass fraction in polluted 0.6M� (log g = 8.0) WD

models after accreting bulk earth material (McDonough, 2001) at Ṁacc ∈ (104, 1012) g s−1

for many diffusion timescales. These MESA models include element diffusion at all times.

The upper panel includes models with thermohaline mixing according to Equation (4.9)

(several values of αth) and also according to Brown et al. (2013). These results suggest

that Equation (4.9) reasonably captures the net effects of thermohaline mixing on pollu-

tion for efficiencies in the range 1 < αth < 10, though note that Vauclair & Théado (2012)

have argued that more mixing should occur near the limit of instability to convection

(∇µ ∼ ∇T −∇ad). We elect to employ the treatment of Equation (4.9) with αth = 1 for

the models presented in the remainder of this work. Our choice of mixing prescription

thus represents a reasonable but conservative estimate of the magnitude and total impact

of thermohaline mixing for pollution.

The lower panel of Figure 4.3 shows the Ca pollution for models at several differ-
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ent values of Teff using the thermohaline prescription of Equation (4.9) with αth = 1.

Models with thin surface convection zones (Teff = 11, 000 K; 15, 000 K) experience sig-

nificant dilution of surface metals due to thermohaline mixing, while models with larger

surface convection zones (Teff = 8, 000 K) distribute accreted metals to an extent that ∇µ

is rarely large enough to drive significant thermohaline mixing beneath the convection

zone. In this case, diffusive sedimentation governs the timescale for settling and observed

equilibrium abundances.

Unlike models with only element diffusion, those with thermohaline mixing do not

approach a true equilibrium composition on a short timescale. Instead, they approach a

quasi-steady state composition near the surface for timescales represented in Figure 4.3

(∼ 100 τdiff), but these quasi-steady abundances may vary by factors of a few if accretion

continues over very long timescales (∼Myr) as the thermohaline mixing region continues

to extend deeper into the hydrogen envelope. Thermohaline mixing ceases to extend

inward only when it encounters the diffusive tail of helium near the base of the hydrogen

envelope. The ∇µ from this helium tail counteracts that from metals mixing inward,

preventing any further thermohaline instability. For the hydrogen envelopes in our M =

0.6M� WD models (MH ≈ 10−6M�), the thermohaline mixing encounters the helium

layer only after long periods (∼Myr) of sustained high accretion rates (Ṁacc & 1010 g s−1).

Hence, this effect is not significant for the models we present in this work, but it may be

important for WDs with much thinner hydrogen envelopes (MH . 10−8M�), where it

could lead to higher observed surface pollution by preventing thermohaline mixing that
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would otherwise occur.

4.3 Accretion Rates and Compositions

In order to show the impact of our work on inferring accretion rates, we built an interpo-

lating tool to map observed Ca abundances to total metal accretion rates for MESA runs

that include thermohaline mixing and diffusion. The MESA runs used for this interpola-

tion consist of 12 different WD models (M = 0.6M�, log g = 8.0) in the temperature

range Teff ∈ (6000, 20500) K, each accreting bulk earth composition (McDonough, 2001)

for 100 diffusion timescales at 17 rates in the range Ṁacc ∈ (104, 1012) g s−1, with diffusion

enabled along with thermohaline mixing according to Equation (4.9) with αth = 1. At

fixed Teff , a given observed Ca abundance corresponds to a unique value of total Ṁacc

(as seen in the lines in the lower panel of Figure 4.3), and we interpolate between results

from MESA runs at different Teff to yield a result for Ṁacc as a function of Teff and observed

Ca abundance. Figure 4.4 shows the results of this procedure for inferring total Ṁacc for

the 38 polluted hydrogen atmosphere WDs given in Table 1 of Koester & Wilken (2006).

Figure 4.4 also compares against MESA calculations assuming only diffusion governs

the equilibrium state, where we use Equation (4.4) to infer Ṁacc, and assume bulk earth

abundances for the accreted material. For objects with Teff > 10, 000 K, the inferred

accretion rate can increase by several orders of magnitude when accounting for ther-

mohaline mixing, confirming the earlier work of Deal et al. (2013) and Wachlin et al.

(2017).
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Our models assume that the observed Ca is only a fraction of the total metals being

accreted. This is important because all accreted metals participate in determining the

∇µ that drives thermohaline mixing. This should be justified, since Ca is often the

most easily identifiable element in spectra even when other metals are present, and for

the objects in which many metals are identified, compositions appear roughly consistent

with bulk earth (Gänsicke et al., 2012; Jura & Young, 2014; Xu et al., 2014). In this

chapter, our inferences are limited by the fact that all input models have a mass of 0.6M�

(log g = 8.0), which is not always consistent with the observed WDs. More MESA runs

are necessary to build a tool that can interpolate over log g as well as Teff . However, we

do not expect the small corrections due to different log g’s to lead to qualitative changes

in the several orders of magnitude effect seen in Figure 4.4.

For objects where multiple pollutants are observed, it should be possible to estimate

relative accreted abundances, but there are two distinct regimes. For low accretion

rates or thick convective envelopes where the thermohaline instability is not excited, the

equilibrium state of each element is separately governed by Equation (4.4), so that the

inferred relative abundance is related to observations by

Xobs,1

Xobs,2

=
τdiff,1Xacc,1

τdiff,2Xacc,2

. (4.10)

However, when thermohaline mixing dominates over diffusion, the diffusion timescales

play no role. Instead the mixing coefficient Dth applies equally to all elements, resulting in

the observed relative abundances of metals matching the ratios in the accreted material.

Returning to MESA models of G29-38, when thermohaline mixing is included, we
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achieve a good match to observed pollution with an accretion rate of Ṁacc & 1010 g s−1

(depending on thermohaline efficiency), higher than the value Ṁacc ≈ 3× 109 g s−1 sug-

gested by Wachlin et al. (2017). The significant thermohaline mixing also means that the

best match to observed composition is achieved with a model that accretes metals in the

same ratios as those observed at the photosphere, with no correction for relative diffusion

timescales. Whereas the model without thermohaline mixing matches bulk earth compo-

sition remarkably well, models of G29-38 with thermohaline mixing imply a significantly

more oxygen rich composition of the accreted material.

4.4 Conclusions and Next Steps

Our MESA models indicate that inferred accretion rates in polluted WDs with hydrogen

dominated atmospheres of Teff & 10, 000 K require systematic increases due to thermo-

haline mixing, often by several orders of magnitude. These higher rates can be tested,

especially via X-ray observations (Farihi et al., 2018). Very thin hydrogen envelopes

(MH . 10−8M�) are not considered in the models presented here, but are often poorly

constrained. Such thin envelopes could impose a systematic effect on inferences by less-

ening the impact of thermohaline mixing, with smaller inferred accretion rates as the

result. We have also assumed bulk earth composition, so objects that are very rich in Ca

relative to other metals could also be revised downward.

Models that include significant corrections due to thermohaline mixing also show very

different surface abundance ratios than those that only include diffusive sedimentation.
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Diffusion leads to a correction to observed compositions due to different sedimentation

timescales for each element, while models where thermohaline mixing dominates over

diffusion show metal ratios that match the accreted material.

We do not expect the thermohaline instability to play as large of a role on WDs

with helium atmospheres due to their much thicker convective envelopes that distribute

accreted metals much deeper into the star. Preliminary MESA runs with helium atmo-

sphere WD models indicate that thermohaline mixing is unimportant for those with

Teff . 15, 000 K due to their thick (Mcvz & 10−6M�) convective envelopes. Hotter He

atmosphere WDs may require some accretion rate corrections due to thermohaline mix-

ing, but we expect the effect to remain modest. As predicted by Deal et al. (2013), our

results in Figure 4.4 appear to resolve the discrepancy between inferred accretion rates

in helium and hydrogen atmospheres that is seen in the work of Farihi et al. (2012).

The high accretion rates implied by our calculations here may pose problems for

models that deliver accreted metals to the WD surface via Poynting-Robertson drag

(Rafikov, 2011a). Models of runaway accretion events due to other disk processes have

been proposed to account for high inferred accretion rates in helium atmosphere WDs

(Rafikov, 2011b; Metzger et al., 2012), but it is unclear if these can account for the

highest rates suggested in Figure 4.4.

Further work is necessary to extend our MESA models to cover the entire range of log g

relevant to all observed polluted WDs. The next chapter will present this along with more

details from MESA models for surface convection zone masses and individual diffusion
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timescales for many elements, as well as models for WDs with helium atmospheres.

Surface mixing regions in polluted WDs may also be modified by convective overshoot

(Tremblay et al., 2015; Kupka et al., 2018), and MESA models have the potential for

including this effect as well.
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Chapter 5

Polluted White Dwarfs: Mixing

Regions and Diffusion Timescales

A large fraction (25%–50%) of isolated white dwarf (WD) atmospheres show signatures of

polluting metals (Zuckerman et al., 2003; Koester et al., 2014). Heavy element sedimen-

tation timescales are short (Schatzman, 1945, 1948), and this implies recent or ongoing

accretion of observed heavy elements (Vauclair et al., 1979; Koester et al., 2014). Pol-

luted WD spectra are often accompanied by infrared emission from a dust disk (Koester

et al., 1997; Farihi et al., 2009; Girven et al., 2012; Farihi, 2016), and the predominant

model for the origin of this dust is debris from disrupted planetesimals (Jura, 2003; Jura

& Young, 2014; Vanderburg et al., 2015). Models for WD surface mixing allow inferences

of the composition of these planetesimals and the rates at which WDs accrete this ma-

terial (Koester & Wilken, 2006; Koester, 2009; Dufour et al., 2010, 2012; Koester et al.,

65



2011; Farihi et al., 2013; Raddi et al., 2015).

While many have relied on elemental sedimentation timescales to make inferences

about polluted WD accretion, recent work has revealed that thermohaline instability

is active and substantially modifies the inferred accretion rate Ṁacc (Deal et al., 2013;

Wachlin et al., 2017). Our work in Chapter 4 greatly expanded the range of Teff explored

for polluted WD models accounting for thermohaline mixing. In Chapter 4, we found that

some DA WDs must accrete bulk earth composition at rates as large as Ṁacc = 1013 g s−1

for our models to match observed surface metal abundances.

In this chapter, we build on the results of Chapter 4 with further examination of

the surface mixing processes relevant for heavy element pollution. We construct models

that include these processes using the stellar evolution code MESA. We use MESA version

10398 unless otherwise stated. For models that include thermohaline mixing, we use

MESA version 11191 (see Section 5.3.1 for a description of the relevant changes to the

code that motivate using this version). MESA inlists and other input files necessary to

reproduce our MESA models are available online at https://doi.org/10.5281/zenodo.

2541235. In Section 5.1, we describe the hydrogen-dominated surface convection zones

that metals first encounter when they accrete onto DA WDs. In Section 5.2, we quantify

the individual element diffusion timescales for sedimentation beneath the convection

zones in our MESA models, and provide tabulated results. In Section 5.3, we examine

other forms of mixing that can be relevant in non-convective regions. These include a

greatly refined and expanded treatment of thermohaline mixing (Section 5.3.1), as well
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as convective overshoot (Section 5.3.2). Our results confirm the findings of Chapter 4

that earth composition accretion rates approaching Ṁacc = 1013 g s−1 are necessary to

match observed calcium abundances in DA WDs with Teff & 15, 000 K. We close with

discussion and conclusions in Sections 5.4 and 5.5.

5.1 Surface Convection Zones in Pure Hydrogen

Polluting metals quickly mix into the WD surface convection zone, so that the base of

this fully mixed region is where the gravitational sedimentation rate must be evaluated

(Vauclair et al., 1979; Koester, 2009). Here we quantify the total mass, Mcvz, in the

surface convective layers of our MESA WD models with pure hydrogen atmospheres and

compare to previous work.

To facilitate comparison to the work of Koester (2009, 2010), we adopt the ML2

convection prescription (Bohm & Cassinelli, 1971) with αMLT = 0.8. This value of αMLT

is similar to those calibrated against 3D convection by Tremblay et al. (2013, 2015), but

it should be noted that the calibrated values show some variation with Teff . The depth

of the surface convection zone is also sensitive to the surface boundary condition of the

model. We find that the gray iterative atmosphere procedure in MESA (see MESA II)

provides values of Mcvz in good agreement with Koester (2009) for Teff & 9, 000 K. At

lower effective temperatures, we switch to the pre-computed DA WD atmosphere tables

adapted from Rohrmann et al. (2012). When using these tables, MESA models attach

to boundary conditions given at the optical depth τRoss = 25, so the tables are not
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suitable for WDs with very shallow convection zones that do not extend to τRoss > 25.

Fortunately, the gray iterative atmosphere procedure is adequate for all cases of shallow

convection zones, and it is only necessary to switch to the tables for cooler WDs with large

convection zones. For the remainder of this work, we use models that switch from gray

atmosphere boundary conditions to the WD atmosphere tables below Teff = 9, 000 K.

Figure 5.1 shows a comparison of the mass of the surface convection zone between

MESA WD models and the DA models of Koester (2009, 2010).1 For hotter WDs where no

surface convection is present (Teff & 15, 000 K), the mass exterior to the photosphere is the

relevant parameter for pollution mixing calculations, so we show this value as well. The

tables of Koester (2009) give whichever is larger of mass in the surface convection zone

and mass exterior to the photosphere. The hydrogen ionization transition that drives

convection results in a steep change in the convection zone mass around 10, 000 K .

Teff . 13, 000 K. We see small disagreements in the exact location of this feature, and

otherwise are in excellent agreement with Koester (2009). Although the disagreement in

mass at fixed Teff can be up to an order of magnitude, the steep slope of the curve in this

region means that small variations of Teff within typical observational uncertainties can

bring these values into agreement.

1 Most recent tables found at http://www1.astrophysik.uni-kiel.de/~koester/astrophysics/

astrophysics.html.
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5.2 Diffusion Timescales

With the structure of MESA WD models and convection zone masses established, diffusion

timescales can now be calculated for all trace heavy elements. These timescales are

essential to inferring accretion rates and compositions from observations of trace elements

in the photosphere. Section 2 of Chapter 4 shows the equations relating these diffusion

timescales to accretion rates and observable surface abundances. Here we only repeat a

few key definitions for convenience. When no other mixing occurs beneath the surface

convection zone, the sedimentation timescale for trace element i is

τdiff,i ≡
Mcvz

4πr2ρvdiff,i

, (5.1)

where r is the radius, ρ is the density, and vdiff,i is the sedimentation velocity of element

i evaluated at the base of the surface convection zone where it sinks away from the fully

mixed surface region. An approximate expression for vdiff,i for a trace diffusing element is

given later in Equation (5.3), but in general our MESA models calculate diffusion velocities

from a full solution of the Burgers equations (Burgers, 1969) as described in Chapters 2

and 3. For a constant accretion rate Ṁi of species i over timescales much longer than

τdiff,i, the surface mass fraction approaches the equilibrium value

Xeq,i =
Ṁi

Mcvz

τdiff,i . (5.2)

For observational inferences, it is assumed that this equilibrium state has been reached,

so that the elemental accretion rate can be derived from the observed mass fraction as

Ṁi = Xobs,iMcvz/τdiff,i. We denote the total accretion rate as Ṁacc ≡
∑

i Ṁi.
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5.2.1 MESA Diffusion Results

The diffusion velocities necessary to calculate diffusion timescales using Equation (5.1)

are readily available from MESA models. We obtain these by simply introducing a polluting

metal (e.g. 40Ca) accreting at a rate of Ṁacc = 107 g s−1. After accretion takes place for

many diffusion timescales, so that the abundance in the surface convection zone has

reached equilibrium, we calculate the diffusion timescale using Equation (5.1) along with

the diffusion velocity reported by MESA from the solution of the Burgers equations. These

diffusion calculations include thermal diffusion and properly account for any degree of

electron degeneracy as described in Chapter 3.

Diffusion calculations according to the Burgers equations rely on coefficients calcu-

lated using a binary scattering formalism. The well-established coefficients of Paquette

et al. (1986a) are based on a screened Coulomb potential treatment for calculating binary

Coulomb collision cross sections. Recent updates to MESA (see Chapter 3) have included

options for using the coefficients of Stanton & Murillo (2016), who provide an improve-

ment upon this method with a more sophisticated treatment of screening. Table 5.1

shows some comparisons for diffusion timescales in a 0.6M� WD including calculations

using the coefficients of Paquette et al. (1986a). In general, both sets of coefficients give

similar results except for the deepest convection zones, where the increased Coulomb

screening due to electrons in the calculations of Stanton & Murillo (2016) allows for

faster diffusion.
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Table 5.1 also shows comparisons to the diffusion timescales given by Koester (2009,

see link in Footnote 1 for the most up-to-date diffusion timescale results), which employ

the coefficients of Paquette et al. (1986a). When using these same coefficients, the MESA

timescale results agree well as long as the convection zone depth is comparable. For

Teff & 11, 000 K, the convection zone depths differ by up to an order of magnitude between

MESA and Koester (2009), and the diffusion timescales disagree accordingly. Table 5.2

gives MESA diffusion timescales for ten commonly observed elements, using the coefficients

of Stanton & Murillo (2016).
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5.2.2 Approaching Equilibrium
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Figure 5.2: Mass fractions over time in a 0.6M� WD model at Teff = 8, 000 K that
accretes 10 isotopes at a rate of 107 g s−1 each for 20, 000 years, after which accretion
ends and the pollutants sediment away from the surface. The black dashed curve shows
the analytic solution for 16O with log(τdiff/yr) = 3.62.

Figure 5.2 shows surface mass fractions for several accreting elements in a MESA model,

first approaching equilibrium after accretion turns on and continues for many diffusion

timescales, then sinking away after accretion shuts off. For comparison, this figure also

shows the analytic solution described in Chapter 4 for this constant accretion rate for

16O with a diffusion timescale of log(τdiff/yr) = 3.62. This verifies that the metals ap-

proach the equilibrium surface mass fraction predicted by Equation (5.2) for the diffusion

timescales given in Table 5.2. The accretion episode shown in Figure 5.2 has all elements

accreting at equal rates (107 g s−1 for each element) to illustrate the effects of the hierar-
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Figure 5.3: Mass fractions over time in a 0.6M� WD model at Teff = 8, 000 K that
accretes at a total rate of 108 g s−1 with bulk earth composition for 20, 000 years, after
which accretion ends and the pollutants sediment away from the surface. Only the most
abundant elements appear on the scale shown here.

chy of diffusion timescales. This manifests as a clear ordering of abundances, where those

with the longest diffusion timescales appear as the most abundant over all phases. In con-

trast, Figure 5.3 shows a more realistic accretion scenario, where the elements accrete at

the total rate Ṁacc = 108 g s−1, but with the bulk earth abundance ratios of McDonough

(2001). In this case, both the relative accreted mass fraction and diffusion timescale for

each element play a role in establishing the final hierarchy of observed surface abundances.

Neither of these calculations include thermohaline mixing (see Section 5.3.1).
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5.2.3 Ionization States for Trace Metals

The partial ionization of metals in the surface layers relevant for pollution has impor-

tant effects for the diffusion timescales. If we denote the background material in which

diffusion takes place by the index 1 (hydrogen in the case of a DA WD atmosphere),

and denote the pollutant by index 2, then in the limit of a trace pollutant (n2 � n1)

its diffusion velocity can be expressed as (cf. Pelletier et al. 1986; Dupuis et al. 1992;

Koester et al. 2014)

vdiff = D12

[
−∂ ln c2

∂r
+

(
Z2

Z1

A1 − A2

)
mpg

kT
+

(
Z2

Z1

− 1

)
∂ ln pi
∂r

+ αT
∂ lnT

∂r

]
, (5.3)

where c2 ≡ n2/(n1 + n2) is the concentration of the pollutant, pi ≡ p1 + p2 is the

ion pressure, αT is the thermal diffusion coefficient, and A and Z refer to the mass

and charge of each species respectively. Note that this equation is appropriate for any

degree of electron degeneracy (Pelletier et al., 1986), and it agrees with our MESA diffusion

treatment based on the Burgers equations in the limit of trace particles diffusing in a

hydrogen background. The charge of each species influences the diffusion velocity in

two important ways: the direct influence on the forcing terms felt by each ion seen in

Equation (5.3), and the influence of the charge of each particle on the Coulomb scattering

that results in the diffusion coefficient D12. The diffusion coefficient is related to the

resistance coefficients used for MESA diffusion calculations described in Chapters 2 and 3

by Dij ∝ K−1
ij . For Coulomb collisions, the resistance coefficients described in Chapter 2

scale with the charge approximately as Kij ∝ (ZiZj)
2, and hence diffusion calculations
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can be very sensitive to the ionization treatment adopted for the partially ionized surface

regions of WD models.

Formally, each ionization state of a given element may be treated as a separate species

with its own integer charge Zi for purposes of diffusion calculations. In order to simplify

the problem, MESA calculations instead adopt an average state Z̄ for each element as

described in Chapters 2 and 3 so that each isotope corresponds to only one diffusion

species. We use the ionization treatment of Paquette et al. (1986b) to find an average

charge state for each diffusion species everywhere in the MESA model.2

Figure 5.4 displays some of the charges used as input for diffusion calculations re-

ported in MESA WD models. Since the ionization procedure based on Paquette et al.

(1986b) involves comparing ionization potentials to an effective threshold potential, it

always selects an integer value for the average charge. This results in the stair-stepped

profiles seen in Figure 5.4, which have been smoothed slightly to improve the numerical

stability of diffusion calculations. The last columns of Table 5.1 present results from dif-

fusion calculations for which the charge Z2 is taken to be one larger or smaller than the

value obtained from the Paquette et al. (1986b) routine. Comparison of these timescales

quantifies the rough uncertainty associated with the average ionization calculations here.

Our diffusion calculations assume that every species is at least singly ionized. Diffu-

sion coefficients for a neutral species require collision integrals for dipole scattering, which

2We note that the expression in Paquette et al. (1986b) for the depression of the continuum for
ionization potentials contains a typo in Equation (21), where a factor of ρ1/3 is missing from the last
line. The MESA ionization routine instead follows Equation (3) of Dupuis et al. (1992), which correctly
includes this factor. Our ionization treatment is very similar to that of Koester (2009), who also notes
correcting the missing factor of ρ1/3 for the most recent calculations hosted on his website (see link in
Footnote 1).
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Figure 5.4: Upper Panel: Profiles of average ion charges in the outer layers of a 0.6M�
WD at Teff = 8, 500 K. Lower Panel: Ion charges at the base of the convection zone
as a function of WD temperature for a 0.6M� WD. The gray dashed line indicates the
temperature of the model shown in the upper panel.
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result in significantly smaller collision cross sections and correspondingly faster diffusion

timescales (Appendix C). Options for such diffusion coefficients are not currently avail-

able in MESA. Since diffusion fluxes for neutral elements can be much faster than those

for singly ionized elements, even a small fraction of neutral particles in the relevant layer

can significantly modify overall sedimentation timescales, and it is no longer appropriate

to treat ionization with an average charge Z̄ < 1. Diffusion timescales presented in this

work are only accurate for models where surface temperatures are hot enough or surface

convection zones reach depths sufficient for at least single ionization of pollutants. Due

to a thin or absent surface convection zone, these conditions fail to be satisfied around

Teff ≈ 15, 000 K, and corresponding disagreement is evident between our results and those

of Koester (2009) in Table 5.1 for this regime.

5.3 Other Mixing

We now explore additional mixing other than element diffusion beneath the convective

layer. We focus on two fluid processes that can cause additional mixing: the thermohaline

instability and convective overshoot.

5.3.1 Thermohaline Mixing

In the context of WD pollution, Deal et al. (2013) were the first to explore the possibility

that accreted metals in WD atmospheres may lead to thermohaline instability. Subse-

quent work by Wachlin et al. (2017) confirmed the importance of the resulting mixing.
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In Chapter 4, we extended the parameter space for polluted WDs where thermohaline

instability may occur, finding that thermohaline mixing significantly modifies inferred

accretion rates in hydrogen-atmosphere WDs with Teff & 10, 000 K, with some rates

reaching Ṁacc ≈ 1013 g s−1 for Teff & 15, 000 K. Our exploration in Chapter 4 was limited

to WD models of mass M = 0.6M� (log g = 8.0). We now expand upon that work with

models of other masses to allow interpolation in log g. We also adopt a refined treatment

of thermohaline mixing based upon the work of Brown et al. (2013), which is calibrated

against 3D simulations.

Two criteria must be satisfied for the thermohaline instability to be active. First, there

must be an inverted molecular weight gradient in a region that is stable to convection:

∇T −∇ad <
ϕ

δ
∇µ < 0 , (5.4)

where ∇T = (∂ lnT/∂ lnP ) is the temperature gradient, ∇ad = (∂ lnT/∂ lnP )s is the

adiabatic temperature gradient, ∇µ = (∂ lnµ/∂ lnP ) is the mean molecular weight gra-

dient, ϕ = (∂ ln ρ/∂ lnµ)P,T , and δ = −(∂ ln ρ/∂ lnT )P,µ. The instability is then driven

by thermal exchange of perturbed fluid elements with their surroundings, whereupon

a density contrast due to ∇µ leads to further mixing. Thus, the second criterion for

thermohaline instability is that the magnitude of the molecular weight gradient ∇µ and

the thermal diffusivity κT must be large enough to excite the instability before particle

diffusivity κµ within a perturbed fluid element can adjust its composition (Baines & Gill,

1969; Garaud, 2018):

(ϕ/δ)∇µ

∇T −∇ad

>
κµ
κT

. (5.5)
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Assuming that heat transport is radiative, the thermal diffusivity is

κT =
4acT 3

3κρ2CP
, (5.6)

where κ is the opacity and CP is the heat capacity. The particle diffusivity is derived

from the diffusion coefficients of the various polluting metals that determine the molecular

weight of a fluid element.

The mixing that results from thermohaline instability can be approximated with a

coefficient that scales with thermal diffusivity and the molecular weight gradient (Kip-

penhahn et al., 1980):

Dth = αthκT
3

2

(ϕ/δ)∇µ

∇T −∇ad

, (5.7)

where αth is a dimensionless efficiency parameter. In Chapter 4, we explored inferences

for polluted WD accretion rates using the mixing treatment of Equation (5.7) with αth =

1. Note that this mixing treatment does not explicitly check the criterion for instability

given in Equation (5.5), but in Chapter 4 we verified that it is satisfied for regions of

interest in polluted WDs where thermohaline mixing may occur.

MESA also offers a thermohaline mixing treatment based on the work of Brown et al.

(2013), which is calibrated against their 3D hydrodynamic simulations. This treatment

explicitly accounts for the criterion in Equation (5.5) and produces a mixing coefficient

designed to scale smoothly to zero as conditions approach the limit defined there. Fig-

ure 5.5 shows the surface Ca mass fraction in polluted 0.6M� WD models after accret-

ing for many diffusion timescales, with thermohaline mixing according to either Equa-

tion (5.7) or Brown et al. (2013). These MESA models also include element diffusion at all
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Figure 5.5: Surface Ca mass fraction after 100 diffusion timescales as a function of total
metal accretion rate for a 0.6M� (log g = 8.0) WD model accreting metals in bulk earth
ratios. Curves labeled with values of αth use the thermohaline mixing prescription of
Equation (5.7), while the orange curve employs the Brown et al. (2013) routine in MESA

version 11191. The blue dashed line shows the expectation according to Equation (5.2)
if the diffusive sedimentation timescale governs surface abundances.

times. Figure 5.5 shows that results for polluted WD models using thermohaline mixing

based on Brown et al. (2013) are qualitatively similar to those using Equation (5.7) with

1 . αth . 10.

For small accretion rates, thermohaline mixing is not active, and the equilibrium

surface mass fractions shown in Figure 5.5 match the prediction of Equation (5.2) for the

diffusion timescales given in Table 5.2. Above a critical accretion rate Ṁcrit, the metal

concentration at the surface builds up a sufficient magnitude of∇µ to excite thermohaline

instability, and MESA models including thermohaline mixing diverge from the prediction

of Equation (5.2). For a Teff = 11, 000 K WD, Figure 5.5 shows that this critical rate is
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Table 5.3: Critical accretion rates in our 0.6M� MESA WD models above which ther-
mohaline mixing modifies the equilibrium surface mass fractions from the prediction of
Equation (5.2). This assumes accretion of material with bulk earth composition (Mc-
Donough, 2001).

Teff [K] 6,000 7,000 8,000 9,000 10,000 11,000 > 12,000

Ṁcrit [g s−1] 1012 1010 109 108 107 106 < 104

around Ṁcrit ≈ 106 g s−1. Table 5.3 gives values of this critical rate for MESA WD models

over a range of Teff . For models with Teff > 12, 000 K, the surface convection zones are

so small that thermohaline mixing is active for all accretion rates in the range that we

explored (Ṁacc > 104 g s−1).

The curve shown for the Brown et al. (2013) prescription in Figure 5.5 varies slightly

from the similar plot shown in Figure 4.3 in the previous chapter. This is due to a small

correction to the MESA implementation of this routine that affects the mixing coefficient

in the regime near the limit of thermohaline instability. This correction was introduced

after MESA release version 10398, which was used for Chapter 4, but it is present in

MESA version 11191, which we use for all models that include thermohaline mixing in

this chapter. The asymptotic analysis regimes presented in Appendix B of Brown et al.

(2013) form the basis of the 1D mixing treatment. In particular, their Appendix B.3

addresses the regime in which the fluid is near the limit imposed by Equation (5.5). The

method relies on an expansion in the parameter

ε ≡ 1− κµ/κT
(ϕ/δ)∇µ/(∇T −∇ad)

, (5.8)

which is assumed to be small. The implementation for this regime in MESA version 11191
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ensures that this parameter is sufficiently small whenever applying the method of Brown

et al. (2013) Appendix B.3, yielding more consistent results than version 10398. With

these corrections, the MESA implementation shows more mixing near the boundary of

thermohaline instability defined by Equation (5.5). Hence, models employing the Brown

et al. (2013) routine in MESA version 11191 diverge from the prediction of diffusion alone

at the lower accretion rates seen in Figure 5.5.

Using this updated thermohaline mixing treatment, we construct a large grid of ac-

creting DA WD models as in Chapter 4. Effective temperatures of the models span

the range 6, 000 K < Teff < 20, 500 K, and accretion rates for each temperature span

104 g s−1 < Ṁacc < 1012 g s−1. All models accrete bulk earth material (McDonough,

2001). We tabulate values of XCa present at the surface of each model after 100 dif-

fusion timescales as defined by Table 5.2. We then interpolate on these tables to map

observed values of XCa to total inferred accretion rates Ṁacc. We also expand upon

the results of Chapter 4 by providing these tables for models with three different WD

masses to allow interpolation in log g: MWD/M� = 0.38, 0.60, 0.90 (log g ≈ 7.5, 8.0, 8.5).

These tables are available along with simple python interpolation routines at https:

//doi.org/10.5281/zenodo.2541235 (Bauer, 2019).

Figure 5.6 shows inferred accretion rates based on these tables for the same sample of

polluted DA WDs (Koester & Wilken, 2006) that was discussed in Chapter 4. In general,

accretion rates are similar to the inferences made in Chapter 4, though the very highest

inferences are slightly lower than the previous highest values. A few WDs also show
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Figure 5.6: Accretion rates inferred with (blue crosses) and without (open circles) ther-
mohaline mixing from the observed Ca abundances for the 38 WDs given in Table 1 of
Koester & Wilken (2006). Models that include thermohaline mixing follow the prescrip-
tion of Brown et al. (2013). Accreting material is assumed to have bulk earth composition.
The orange points show the rates inferred for He-atmosphere WDs by Farihi et al. (2012)
for comparison. The top axis shows estimated WD cooling time based on a MESA model
of a 0.6M� DA WD.
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adjustments due to observed values of log g different from the value of 8.0 assumed in

Chapter 4, especially for 9, 000 K < Teff < 13, 000 K, where the surface convection zone

masses are especially sensitive to log g (see Figure 5.1). However, the overall qualitative

picture remains the same. Thermohaline mixing causes inferred accretion rates to increase

by several orders of magnitude for WDs with Teff > 10, 000 K!

Non-constant Accretion Rates

The previous section shows results when accretion occurs in a steady state for many

diffusion timescales, allowing the surface metal pollution to approach equilibrium abun-

dances. However, if the source of accretion supplied to the surface varies with time, this

can introduce complexities in the ∇µ profile that sets the conditions for thermohaline

instability according to Equations (5.4) and (5.5). In particular, heavy elements must be

continually supplied to the surface to maintain ∇µ < 0 in the mixing region relevant to

observable pollution. If the accretion rate decreases significantly, the gradient necessary

for thermohaline instability can disappear, halting thermohaline mixing.

As a simple illustration, we show in Figure 5.7 a MESA model including thermohaline

mixing that accretes at a constant rate until it approaches equilibrium, followed by a

cessation of accretion after 10 yr ≈ 100τdiff . Due to the sudden disappearance of an

inverted ∇µ in the surface region governing observable metal pollution, thermohaline

mixing is no longer relevant. Instead, the diffusion timescales of Table 5.2 dictate the

fast exponential decay of metal pollution at the photosphere. These results contrast with

the diffusion-only MESA model shown in Figure 5.3, where the same diffusion timescale
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Figure 5.7: A 0.6M�, Teff = 12, 000 K MESA DA WD model including thermohaline
mixing. This model accretes at a rate of 108 g s−1 for 10 yr ≈ 100τdiff , after which accretion
ends and metals sediment away from the photosphere. The lower panels show the interior
profile of the model one year after accretion has ceased. The gray shaded region represents
the fully mixed surface convection zone.
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governs both the approach to equilibrium and exponential decay after accretion ceases.

Figure 5.7 also demonstrates important features involving differentiation of the ac-

creted composition. When thermohaline mixing is active near the surface during the

constant accretion phase, no composition differentiation occurs because fluid elements

that dominate the mixing transport all elements together. However, once thermohaline

mixing ceases near the surface, individual particle diffusion dominates, and significant

differentiation quickly occurs within a few diffusion timescales. The middle panel of Fig-

ure 5.7 shows that the deeper layers where thermohaline mixing is still active reflect the

accreted bulk earth composition (McDonough, 2001), but separate diffusion timescales

for each element quickly rearrange the surface composition. Elements with the shortest

diffusion timescales such as 56Fe disappear from the surface much sooner, even when they

were previously among the most abundant due to the accreted composition.

Helium-dominated Atmospheres

WDs with helium-dominated atmospheres do not experience the same corrections due

to thermohaline mixing that hydrogen-dominated atmospheres do. Two effects conspire

to greatly reduce the potential for a ∇µ large enough to excite thermohaline instability.

First, the mean molecular weight of the dominant background material (He) is more than

double that in the case of a hydrogen atmosphere, so the contrast with accreting metals

is not as severe. Second, surface convection zones for helium atmospheres contain much

more mass than hydrogen at a given temperature (Koester, 2009). This dilutes accreted

metals and prevents the buildup of a significant ∇µ below the convection zone.
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For example, we constructed a 0.59M� MESA WD model with Teff = 18, 000 K and

a pure He atmosphere. We found that the surface convection zone mass of this model

was Mcvz = 8× 10−8M�, and diffusion timescales for accreted metals were on the order

of 105 years. These values agree with the tables of Koester (2009) for log g = 8.0 DB

WDs. We explored MESA runs for this WD model accreting bulk earth composition at

rates in the range 104 g s−1 < Ṁacc < 1012 g s−1. We included thermohaline mixing in

the runs using the treatment of Equation (5.7) with αth = 10 (the MESA treatment based

on Brown et al. (2013) is not applicable here because it assumes a hydrogen-dominated

background). Even for the highest accretion rates, we find adjustments of at most one

order of magnitude to inferred accretion rates compared to calculations that assume no

thermohaline mixing (Figure 5.8). Figure 5.6 shows that typical accretion rates inferred

for DB WDs in this temperature range are 108–1010 g s−1, and our MESA models show

negligible corrections due to thermohaline mixing in this regime. The surface convection

zone grows up to three orders of magnitude larger for cooler WDs (Koester, 2009), and

the largest rates inferred for DB WDs only reach 1011 g s−1, so thermohaline mixing will

be inconsequential for He-atmosphere WDs with Teff . 18, 000 K.

Below Teff ≈ 16, 000 K, the cool, dense, neutral helium at the surface of the WD falls

outside the regime covered by opacity tables currently available in MESA (see MESA I).

The code is therefore not able to set a physical outer boundary condition for the model

below this temperature. Tabulated outer boundary conditions such as those used in the

case of hydrogen-dominated atmospheres (Section 5.1) have been implemented in other
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Figure 5.8: Surface Ca mass fraction after accreting bulk earth material for 10 diffusion
timescales for a Teff = 18, 000 K MESA WD model with a helium-dominated atmosphere.

WD codes (e.g., Camisassa et al., 2017), but no such option is currently available in

MESA. In the context of polluted WDs, it is also unclear whether atmosphere conditions

tabulated for pure helium would be sufficient, since opacity may be sensitive to contam-

inating metals through effects such as He− free-free absorption. Without the ability to

set an appropriate outer boundary condition, MESA models cannot give reliable structures

for the outer layers and depths of surface convection zones. A more thorough investiga-

tion of polluted WDs with helium-dominated atmospheres in MESA awaits extensions to

atmosphere capabilities that can account for these issues.
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Rotation

Rotational mixing and its interplay with other fluid processes can be important in stars

(Sengupta & Garaud, 2018). This potential impact is quantified with the Rossby number

Ro = U/2ΩL, where Ω is the rotational frequency, and U and L are the characteristic

velocity and length scale for the relevant fluid process. Large values of the Rossby number

indicate that rotation is not expected to have a strong influence, while Ro . 1 indicates

potential for significant modifications. Sengupta & Garaud (2018) studied the effect

of rotation on thermohaline mixing in stellar interiors, where they derived the Rossby

number in an actively mixing region as

Ro ∼
√
N2

4Ω2

(ϕ/δ)∇µ

∇T −∇ad

, (5.9)

where N is the Brunt-Väisälä frequency. In a non-degenerate WD atmosphere, this

frequency is of order N2 ∼ g/H, where H = kBT/mpg is the local pressure scale height.

For our polluted WD models experiencing moderate amounts of thermohaline mixing,

we estimate (ϕ/δ)∇µ/(∇T − ∇ad) ∼ 10−4 (cf. Chapter 4). We can therefore rewrite

Equation (5.9) in terms of the critical rotation rate Ωcrit =
√
GM/R3 as

Ro ∼ 10−2

√
R

H

(
Ωcrit

Ω

)
. (5.10)

This requires Ω/Ωcrit & 10−2 for rotation to be important (Ro . 1). However, typical

isolated WD rotation periods are around one day (Hermes et al., 2017), while the critical

rotation period is on the order of a few seconds, so we do not expect rotation to influence

the thermohaline mixing in typical polluted WDs.
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Thermohaline mixing has also been discussed as a mechanism for explaining observed

surface abundances in low-mass giant stars (Charbonnel & Zahn, 2007; Denissenkov &

Pinsonneault, 2008; Cantiello & Langer, 2010), but this may require an implausibly large

mixing efficiency αth > 100 for implementations such as Equation (5.7). This mixing

efficiency appears to be inconsistent with the mixing found in our models based on

Brown et al. (2013). Sengupta & Garaud (2018) suggested that the interplay of rotation

with thermohaline instability may enhance mixing near the cores of giant stars. Since

we estimate that rotation would be irrelevant for thermohaline mixing in polluted WDs,

this may alleviate the apparent tension between thermohaline mixing efficiency inferred

in these different regimes.

5.3.2 Overshoot

Convective overshoot may cause fluid motions that can keep composition thoroughly

mixed well below the formal boundary for convective instability according to the Ledoux

criterion (Freytag et al., 1996; Koester, 2009; Tremblay et al., 2015), even in the absence

of thermohaline instability. This will lead to a larger effectively mixed region and longer

diffusion timescales for a given Teff (Brassard & Fontaine, 2015; Tremblay et al., 2017).

To estimate mixing due to overshoot beneath the convective zone, we follow the results

of Tremblay et al. (2015) and use a diffusion coefficient that decays exponentially with

pressure scale height:

Dovershoot(r) = D0 exp

(
−2|r − r0|

HP

)
, (5.11)
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Figure 5.9: Mixing coefficient profiles for two MESA models. The gray shaded region
represents the extent of surface layers that are expected to be fully mixed regardless of
accretion rate, encompassing a mass of Movr. The element diffusion coefficient shown
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Figure 5.11: Same as Figure 5.10 but with a model at Teff = 14, 000 K. Overshoot
does not cause changes because significant thermohaline mixing occurs even at very low
accretion rates.

where r0 is the radial coordinate of the base of the convection zone, HP is the pres-

sure scale height there, and D0 is the mixing coefficient from MLT near that location.

Figure 5.9 shows the resulting diffusion coefficient profiles for two MESA models. In the

absence of thermohaline mixing, this will lead to a new mass of the fully mixed surface

region (Movr) defined by the location where the overshoot mixing decays to where element

diffusion takes over (Dovershoot < Ddiffusion, see Figure 5.9). There is then a corresponding

new diffusion timescale for each element

τovr,i ≡
Movr

4πr2ρvovr,i

, (5.12)

where ρ, r, and vovr,i are all evaluated at the base of the new mixing region defined by
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Movr. The equilibrium observable abundance of an accreted element will then be

Xeq,i =
Ṁi

Movr

τovr,i (5.13)

instead of the analogous value given in Equation (5.2).

Figure 5.10 shows how observable abundances of accreting metals change when in-

cluding this form of overshoot in our MESA models. For models at Teff = 11, 000 K,

the new diffusion timescale for Ca is τovr = 1300 yr, almost 100 times larger than the

timescale without overshoot. The larger mixing region means that accreted metals are

more diluted for a given accretion rate, and so larger accretion rates are needed for ther-

mohaline mixing to cause the observable abundances to diverge from the prediction of

Equation (5.13). Still, for accretion rates of Ṁacc > 107 g s−1, thermohaline mixing begins

to dominate the final observed abundance, and overshoot causes only small adjustments

when thermohaline mixing is active (see also the upper panel of Figure 5.9). For the

case of a Teff = 14, 000 K WD shown in Figure 5.11, overshoot extends the small surface

mixing region to Movr ≈ 8× 10−16M� (see lower panel in Figure 5.9), but this is still so

thin that thermohaline mixing dominates even for modest accretion rates.

While the results shown in this section may serve as a useful qualitative description

of effects that can be expected from overshoot, it is likely that the overshoot mixing

prescription given in Equation (5.11) is too simplistic for WD pollution applications.

Simulations are beginning to probe regimes specific to convective overshoot in WDs

(Montgomery & Kupka, 2004; Tremblay et al., 2015; Kupka et al., 2018), and they appear

to show that a simple exponential decay in the diffusion coefficient is only accurate
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within a few scale heights of the convective boundary. Extrapolation down to the much

smaller diffusion coefficients relevant for particle diffusion is likely inaccurate. Simulations

by Lecoanet et al. (2016) found overshoot mixing that decays with a Gaussian profile

(Dovershoot ∝ exp[−(r − r0)2/2H2] for some scale height H) rather than the exponential

of Equation (5.11). A few more recent results appear to confirm this Gaussian overshoot

profile in other contexts (Jones et al., 2017; Korre et al., 2019). This faster decay of the

diffusion coefficient would imply that the extra extent of overshoot mixing is smaller than

what is shown in Figure 5.9. We therefore refrain from a complete exploration of MESA

models including overshoot until simulations can provide better constraints on overshoot

mixing well below convective boundaries.

Our results are sufficient to conclude that overshoot will have negligible effects on most

accretion rate inferences for Teff & 12, 000 K, where thin surface mixing regions result in

strong concentrations of metals that make thermohaline mixing dominant. For lower

temperatures, Figure 5.10 suggests that overshoot may cause significant adjustments to

accretion rate inferences in cases where thermohaline mixing is not active. Even at higher

temperatures, the new timescales due to overshoot may be important for decay phases

where supply of fresh accreted material has ended and there is nothing to maintain the

∇µ needed to drive thermohaline instability near the surface mixing region. In this case,

the Movr and τovr parameters will govern the exponential decay of observable surface

abundances.
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5.4 Discussion

A significant fraction of WDs show evidence of pollution (Koester et al., 2014), and if this

fraction represents the fraction of the lifetime of each individual WD that it is polluted,

then Figure 5.6 may be taken as approximately showing a complete history of accretion

rates experienced over a WD lifetime. In this case, the total mass of planetesimal mate-

rial accreted over a WD lifetime would be dominated by the high rates experienced by

young WDs, yielding a high estimate of Mtot ∼ (3× 108 yr)(1012 g s−1) ∼ 1028 g. How-

ever, Koester et al. (2014) point out that the Ca based sample used to construct Fig-

ure 5.6 may be biased toward objects that are especially heavily polluted, since the optical

Ca lines used to select this sample require higher Ca abundances to be detectable for

Teff & 15, 000 K as total WD flux moves primarily into the UV. While this is unlikely to

change the accretion rates inferred for the objects shown in Figure 5.6, it could hide a

much larger intrinsic scatter in the accretion rates for young DA WDs. Therefore, 1028 g

could be an overestimate of the total mass accreted over a WD lifetime.

This sample of polluted WDs may reveal that some young WDs are undergoing short

timescale bursts of accretion such as those suggested by Rafikov (2011b) and Metzger

et al. (2012). This may help explain the discrepancy with DBZ WDs for Teff & 15, 000 K.

The rates here are too high to be explained by Poynting-Robertson drag (Rafikov, 2011a),

but rare runaway bursts would leave very different observational signatures for DA and

DB WDs (Farihi et al., 2012). DA WDs approach a quasi-equilibrium surface abundance

within days or years in this temperature range even for our MESA models including ther-
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mohaline mixing. On the other hand, the diffusion timescales in DB WDs are of order

105-106 years, and bursts lasting less than 104 years would never approach an equilibrium

surface pollution level suggesting a high rate. Instead, DB WD surfaces may represent

a more accurate estimate of accretion rates averaged over their much longer diffusion

timescales. A more conservative mass estimate for total planetesimal material may then

be Mtot ∼ (3× 108 yr)(1010 g s−1) ∼ 1026 g.

Alternative processes could supply polluting material for longer timescales at rates

higher than the limits of Poynting-Robertson drag, e.g., collisional cascades (Kenyon &

Bromley, 2017a,b) or viscous evolution of earth-mass dust disks (van Lieshout et al.,

2018). Hence, short bursts are not strictly necessary to explain the rates shown in

Figure 5.6, but longer timescale processes may then require that the planetesimal envi-

ronments form with significantly different amounts of mass around DA and DB WDs.

Wyatt et al. (2014) found that stochastic accretion of a distribution of planetesimal sizes

may be able to explain some discrepancies in inferred accretion rates for DA and DB

WDs without the need to appeal to large bursts, but this analysis assumed accretion

rates inferred without accounting for thermohaline mixing.

Finally, we note that some authors have pointed out trends of inferred accretion rates

that decline with WD age over timescales of Gyr (e.g., Hollands et al., 2018; Chen et al.,

2019), consistent with slow depletion of the planetesimal reservoirs that can obtain highly

eccentric orbits on which they will eventually be tidally disrupted (e.g., Debes et al.,

2012; Mustill et al., 2018). Our results appear to suggest that this decline may be more
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dramatic during the first Gyr of evolution when thermohaline mixing is accounted for. In

particular, the broken power-law for accretion rates over time used by Chen et al. (2019)

may not be necessary for rates inferred using our MESA models. Instead, a single power-

law may work for all WD ages, consistent with the rate at which asteroids dynamically

encounter the WD in the model of Chen et al. (2019).

5.5 Conclusions

We have confirmed the result of Chapter 4 that thermohaline mixing in polluted DA

WDs with Teff & 10, 000 K requires accretion rates several orders of magnitude larger

than calculations assuming only gravitational sedimentation. We have provided results

from an expanded grid of models to allow interpolation in log g as well as Teff (https:

//doi.org/10.5281/zenodo.2541235, Bauer, 2019). We also find that thermohaline

mixing is inconsequential in polluted DB WDs with Teff . 18, 000 K due to much more

massive surface convection zones. Polluted DA WDs experience a regime of accretion

rates low enough that thermohaline mixing is not active (Table 5.3), and so Table 5.2

provides diffusion timescales based on our MESA models. These timescales are also relevant

for WDs where accretion is no longer ongoing, as they govern the exponential decay of

metals sinking away from the surface where thermohaline mixing is no longer active,

even when it was active during accretion. Finally, we have also provided a qualitative

description of the effects of convective overshoot, though we refrain from a full exploration

of its effects due to quantitative uncertainty in the overall extent of overshoot. However,
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we note that for WDs with thin surface convection zones (Teff & 12, 000 K), thermohaline

mixing dominates down to layers deeper than overshoot can extend, and hence we do

not expect significant modifications to inferred accretion rates in this regime.
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Chapter 6

Electron Captures on 14N as a

Trigger for Helium Shell Detonations

Many accreting white dwarfs (WDs) are discovered when a thermonuclear instability (i.e.

nova) occurs on their surface. These outcomes depend on the accreting fuel, the accretion

rate, Ṁ , and the WD mass. The growing AM CVn class of binaries are WDs accreting

from a Roche lobe filling helium donor (Nelemans et al., 2004). No hydrogen is seen.

Recent observations are beginning to unveil one possible class of progenitors for these

systems, tight sdB+WD binaries (Porb < 100 min) that should make contact within the

sdB star’s helium burning lifetime (Geier et al., 2013; Kupfer et al., 2017). Due to the

large He shells that are likely to accumulate prior to the onset of the initial thermonuclear

instability, such systems are of interest as potential environments for helium detonations

that can lead to “.Ia” supernovae or even double detonation supernovae (Nomoto, 1982;
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Woosley & Weaver, 1994; Bildsten et al., 2007; Shen & Bildsten, 2009, 2014; Woosley &

Kasen, 2011; Brooks et al., 2015).

When accreting from the outer, unburned layers of a He burning star, the isotope 14N

is present with a mass fraction set by the initial stellar metallicity, X14 ≈ 0.01(Z/0.02).

When the accretor is a WD, this 14N is an important isotope, as it captures an electron

when densities above 1.25 × 106 g cm−3 are reached. The resulting 14C then undergoes

the reaction 14C(α, γ)18O that can trigger a thermonuclear flash (Hashimoto et al., 1986).

This process, known as the NCO chain, requires the accumulation of a dense shell prior

to the initiation of any thermonuclear instability, and is the subject of our study.

Hashimoto et al. (1986) showed that this reaction chain can lead to an earlier igni-

tion than expected from the 3α reaction alone when accreting He onto a He WD, and

Iben et al. (1987) and Shen & Bildsten (2009) noted its potential importance for ac-

cretion onto C/O WDs. Woosley & Weaver (1994) included the NCO chain in their

models of sub-Chandrasekhar helium detonations. Piersanti et al. (2001) discussed the

influence of NCO burning on the location of the ignition point for large, degenerate He

envelopes on C/O WDs formed at constant Ṁ ≈ 10−8M� yr−1. They concluded that

NCO burning only marginally decreased accumulated He layer mass, and noted that

NCO burning did not lift degeneracy and prevent instability. Woosley & Kasen (2011)

highlighted the role of the NCO chain in their survey of C/O WDs accreting He at

Ṁ = (1− 10)× 10−8M� yr−1, finding that the electron captures modify the neutron ex-

cess of the burned material and reduce the density at which the thermonuclear runaway
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initiates. This Ṁ and WD mass regime is coincident with that realized in the sdB donor

star scenario (Iben et al., 1987; Brooks et al., 2015) and so needs a thorough investigation.

Our exploration of NCO ignitions in accreted He envelopes on C/O WDs using MESA

confirms the importance of the NCO chain for systems accreting at rates corresponding

to sdB+WD scenarios. Section 6.1 describes the relevant reaction rates used as input

for MESA, relying on the recent work of Paxton et al. (2015) and Schwab et al. (2015) for

the electron capture physics and Johnson et al. (2009) for α captures on 14C. Section 6.2

shows MESA results for models at constant Ṁ to explore broad trends in the influence

of the NCO chain. Section 6.3 shows MESA results that include binary evolution with

resulting variable accretion rates. These binary results are qualitatively different from

what is found at constant Ṁ , demonstrating the importance of self-consistent evolution

coupling detailed binary evolution and accretion histories to modeling of the accreting

WD up to ignition of the He. The system CD −30◦11223 (Geier et al., 2013) serves as

a case study that naturally illustrates the importance of models including both NCO

reactions and realistic binary accretion histories.

6.1 The NCO Reaction Chain

Unless otherwise specified, all modeling presented in this work relies on MESA version

r8118 with reaction networks including weak reactions between 14N and 14C as well as

α-capture onto 14C. This section describes the details of the rates for these reactions,

which together make up the complete NCO chain.
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6.1.1 Weak Reactions for 14N and 14C

Tabulated rates for the electron-capture and beta-decay reactions linking 14N and 14C

are not included in MESA version r8118. In order to incorporate these important rates,

we used a modified version of MESA’s on-the-fly weak reaction rate capabilities1 (Paxton

et al., 2015; Schwab et al., 2015; Paxton et al., 2016; Schwab et al., 2016). The rate

of interest is that of the ground state (14N : Jπ = 1+) to ground state (14C : Jπ = 0+)

transition. This a has Q-value of 0.1565 MeV, corresponding to a threshold density of

ρth = 1.156× 106 g cm−3 for electron fraction Ye = 0.5. The ft-value for 14C beta decay is

log(ft/s) = 9.04 (Ajzenberg-Selove, 1991), with the ft-value for electron capture being a

factor of 3 lower, corresponding to the ratio of the spin degeneracies (2JN + 1)/(2JC + 1).

Previous application of these capabilities (Schwab et al., 2015; Mart́ınez-Rodŕıguez

et al., 2016) focused on the high-density regime where the degenerate electrons are ultra-

relativistic, and therefore we must make one slight modification to the treatment included

in MESA version r8118. The equations implemented assume that G, the Coulomb barrier

factor, can be approximated as a constant and thus removed from the phase space in-

tegral. This is true in the ultra-relativistic regime, where G = exp(παZ) ≈ 1.2 as well

as in the non-relativistic regime, where G = 2παZ ≈ 0.32 (Fuller et al., 1980). How-

ever, the density where the electron Fermi energy EF ≈ mec
2 is ρ ≈ 2 × 106 g cm−3 (for

Ye = 0.5), near ρth. We are not in either limiting regime. Fuller et al. (1985) remove G

from the integral by replacing it with a suitably defined average value, 〈G〉. These values

1Our inlists and patches for MESA r8118 are available at http://mesastar.org.
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vary with density and temperature; however, we find the choice of a single average value

〈Gβ〉 = 0.75 (for beta decay) and 〈Gec〉 = 0.95 (for electron capture) reproduces the

rates calculated without removing G from the integral to within ≈ 10% over the regime

of interest (5 ≤ log(ρ/g cm−3) ≤ 7 and 7 ≤ log(T/K) ≤ 9).

Figure 6.1 shows these weak reaction rates. We confirmed that these rates agree with

the rates in Hashimoto et al. (1986) to within ≈ 10% at the relevant, near-threshold

densities. The work of Woosley & Kasen (2011) used the Hashimoto et al. (1986) results.

As discussed by Hashimoto et al. (1986), the most important aspect of these rates is the

shift in equilibrium composition from 14N (at ρ < ρth) to 14C (at ρ > ρth) over a narrow

range in density ∆ log ρ ≈ (kBT )/EF.

The rates in our MESA calculations include an additional correction not present in the

rates shown in Figure 6.1; this “ion Coulomb correction” corresponds to the energetic

cost to change the ion charge in the dense plasma. We evaluate the magnitude of this

effect using the ion chemical potential from Potekhin et al. (2009). At the densities and

temperatures of interest, this energy difference is ∆µion ≈ 7 keV. This corresponds to an

increase of the threshold density by ∆ρth ≈ 105 g cm−3. When referring to the threshold

density for our MESA models, we use the value ρth = 1.25× 106 g cm−3 which accounts for

this correction.
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(for Ye = 0.5). So as to compare with previous work, this plot neglects the Coulomb
correction.
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6.1.2 The 14C(α, γ)18O Rate

Historically, the 14C(α, γ)18O rate has been uncertain by several orders of magnitude

due to a poorly constrained, near-threshold, 3− resonance in 18O at 6.404 MeV, which

dominates the rate for temperatures 3× 107 K < T < 3× 108 K. Figure 6.2 shows the

rate given in equation (1) of Hashimoto et al. (1986), as well as the rate from Iliadis

et al. (2010), via the JINA Reaclib database (Cyburt et al., 2010), that was adopted

as the default rate in MESA (Paxton et al., 2011, 2013). The contrast between these

rates illustrates the large historical uncertainty associated with the temperature regime

dominated by the resonance.

For this work we use the measurements of Johnson et al. (2009) for the temperature

regime T > 3 × 107 K, where the rate is dominated by the 3− and 4+ resonances. We

have adopted the rates given in their equation (12) for those resonances, with a claimed

uncertainty of just 35% for the 3− resonance. Thus, the historical uncertainty associated

with the 14C(α, γ)18O rate is now greatly reduced in the temperature regime relevant

for our problem. The contributions from these resonances are plotted in Figure 6.2 for

comparison to the other full rates. For lower temperatures where these resonances do

not dominate, we switch back to using the rate from Iliadis et al. (2010) for simplicity,

though the rate is so small in this region that it will not be significant. The lower panel

of Figure 6.2 shows the total resulting rate that we have adopted for this work relative

to the default rate found in MESA version r8118 from Iliadis et al. (2010).
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6.1.3 Example of He Accretion onto a He WD

To exhibit how MESA compares to prior work, we used MESA to reproduce the He WD evo-

lution scenarios described in section 4 and figure 5 of Hashimoto et al. (1986). A 0.3M�

He WD model accretes He until the center is compressed and heated enough to undergo

an NCO induced thermonuclear runaway. In Figure 6.3, we compare cases with different

rates for the 14C(α, γ)18O step in the NCO chain, as well as a case where NCO reactions

are omitted from the network. For higher accretion rates, the temperature of the core

is high enough that electron captures are the rate limiting step for the NCO chain, and

hence we see no difference in the evolution tracks when using different 14C(α, γ)18O rates.

For lower accretion rates, however, the core evolution tracks reach well beyond the thresh-

old density for electron captures, so that electron captures are no longer the rate limiting

step for the NCO chain. Instead, the tracks lie in a temperature region where 14C burning

dominates the net NCO rate, and we see that the improved 14C(α, γ)18O rate (Johnson

et al., 2009) substantially changes the final outcome for case B. In case C, He burning

triggers the thermonuclear runaway before NCO has a chance, so the 14C(α, γ)18O rate

ends up being irrelevant for igniting the flash.

6.2 NCO Reactions and Helium Accretion

Due to the steep density dependence of the electron capture rates, we expect the NCO

chain to play a significant role only when the density at the base of an accreted He

shell reaches values above the threshold density of ρth = 1.25 × 106 g cm−3 prior to
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Figure 6.3: MESA models of He accretion onto a He WD reproducing those shown by
figure 5 in Hashimoto et al. (1986). Solid black lines show core ignition via the NCO chain
using the 14C(α, γ)18O rate given by Hashimoto et al. (1986) equation (1). Dashed lines
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thermonuclear ignition. The rate at which NCO burning occurs can be governed by the

electron captures on 14N (and hence the local density), but most of the energy production

from the chain is supplied by the subsequent burning of 14C. Once the right conditions

are reached for electron captures onto 14N, alpha captures occur on the freshly produced

14C, releasing Q = 6.227 MeV per 14C consumed. At constant pressure and for ions

strongly in the liquid state, complete consumption of the 14C at abundance X14 � 1 in

a helium background leads to a temperature change of

∆T =
2

21

Q

kB

X14 ≈ 7× 107 K

(
X14

0.01

)
. (6.1)

This entropy input is often large enough to trigger a full He burning runaway, and

3α burning quickly takes over as the dominant energy source once NCO has raised the

temperature enough to initiate a runaway.

In contrast, when NCO reactions are ignored and ignition depends on 3α reactions

alone, the models experience a later ignition in a different location. Helium burning

via 3α is much more temperature sensitive than the electron captures that initiate the

NCO chain, which depend primarily on the density. Despite previous work on mixing

and viscous heating due to shear instabilities for white dwarfs accreting helium (Yoon

& Langer, 2004a; Yoon et al., 2004; Yoon & Langer, 2004b), we ignore these effects in

our models. Recent work by Piro (2015) suggests that this should be justified due to the

baroclinic instability inhibiting development of shear instabilities at depths relevant for

helium ignition.
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6.2.1 Constant Ṁ Without NCO

As a baseline for comparison, we first created a grid of WD models over a range of

constant He accretion rates until they reached 3α ignition in their shells. During the

accretion phase, the location of peak temperature lies outside the base of the accreted

envelope due to the generic feature of a temperature inversion at these accretion rates,

where electron conduction competes with the compressional heating by draining heat

into the core and cooling the most dense inner layers of the envelope (Nomoto, 1982).

Since temperature inversions can cause a 3α based runaway to happen at a location in

the accumulated material other than the base, the convective shell mass can be less than

the total accreted mass. The top panel of Figure 6.4 shows the mass of the accumulated

(solid) and convective (dashed) He shells at the moment of the instability triggered by

the 3α reactions alone. The convective shell mass is defined here as all mass exterior to

the location of the thermonuclear runaway, which will be swept up in the convection that

occurs as a result of unstable ignition.

Models to the left of the solid point in Figure 6.4 accumulated sufficiently large He

envelopes to achieve a density above 1.25× 106 g cm−3 at the base of the He layer prior

to 3α ignition, implying that for Ṁ < 4× 10−8M� yr−1, the NCO reaction chain should

provide extra heat near the dense base of the envelope. For all models accreting at

constant Ṁ , we assume an initial core temperature of Tc = 2× 107 K, appropriate for

sdB+WD binary scenarios where the WD certainly has 10− 100 Myr to cool before the

system makes contact. Lower core temperatures do not significantly impact the results.
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Figure 6.4: Accumulated helium shell masses and convective shell masses for flashes
on various WD masses over a range of constant accretion rates. The upper panel shows
flashes ignited by 3α alone, while the lower panel shows flashes when NCO reactions are
included. Points indicate the first flash where the density at the base of the accreted
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6.2.2 Constant Ṁ With NCO

A set of models similar to those shown in the top panel of Figure 6.4, but now including

NCO reactions, is shown in the lower panel of Figure 6.4. For the region where density

is beyond the threshold for NCO, we can see that the total accreted mass is somewhat

lower due to earlier ignition, but in some cases the convective shell can still encompass

more total mass due to the ignition occurring deeper in the accreted material.

The discontinuous feature in total accreted mass at low Ṁ in the lower panel of

Figure 6.4 is due to failed NCO ignitions for certain accretion rates. The finite supply of

14C at X14 ≈ 0.01 can be exhausted before NCO burning can fully ignite a 3α runaway.

Due to the highly degenerate conditions at the base of He envelopes that are dense

enough for NCO to occur, electron conduction can carry significant amounts of heat

inward toward the cooler core as 14C(α, γ)18O begins to run away. This leads to a ∆T

smaller than that predicted by equation (6.1). Figure 6.5 shows the envelope ρ − T

evolution of two models at very similar Ṁ , where one experiences a failed NCO runaway

at its base before eventually experiencing a true 3α runaway at the peak temperature

location further out in the accreted He envelope.

The metallicity sets the total amount of 14N available for NCO reactions. Since ∆T

from complete NCO consumption scales with X14 in equation (6.1), variation in metal-

licity directly corresponds to variation in the total thermal impact that NCO reactions

can have. Varying only the initial 14N content in the grid of constant Ṁ models reveals a

strong dependence on metallicity. These results are shown in Figure 6.6. For simplicity,
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we only present the variation in runs for the 0.7M� WD accretor model. Results for other

accretor masses are similar. We assume that both the donor and accretor were born with

the same metallicity, and that all CNO elements from the initial metallicity eventually

end up as 14N in both stars due to CNO burning in the evolution that produces them.

Hence the initial mass fraction of 14N in the He envelope of the WD is correlated with

that in the He accreted from the donor. Since the initial He envelope ends up as the base

of the He layer after accretion, it contributes to the energy produced in the dense layers

where NCO reactions occur.

Larger convective shell masses are associated with denser ignition locations that may

be expected to experience dynamical burning. This provides the potential for developing
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detonation fronts that can give rise to interesting phenomenology such as .Ia supernovae

(Bildsten et al., 2007; Shen & Bildsten, 2009) or double detonation type Ia supernovae

(Woosley & Weaver, 1994) if the detonation can transition into the C/O core. The

threshold envelope mass for dynamical burning is on the order of ∼ 0.1M�. Because the

NCO chain increases the convective shell mass in some regions, and the lower accretion

rate regime is associated with large total accumulation masses, we see that NCO reactions

are important for systems that have the potential to ignite dynamically.

Realistic binary systems often have accretion rates that vary across the boundary for

high-density ignition shown by solid dots in Figure 6.4. Furthermore, Figure 6.4 shows

that small variations in accretion rate around 2− 4× 10−8M� yr−1 can significantly im-

pact the final convective shell mass, determining the dynamical fate of ignition. Clearly

the constant Ṁ approximation is a concern, so we now use the robust binary capabilities

present in MESA to test a range of realistic parameters and scenarios for NCO ignitions.

6.3 Realistic Mass Transfer Scenarios

We now show that NCO burning plays a significant role in the initial flash encountered in

He star or sdB donor systems when the WD builds up a large He envelope. Our results

at constant Ṁ in Section 6.2.2 suggest that the main impact of NCO reactions is to

decrease both total accreted mass and convective envelope mass at low Ṁ . However, our

simulations of realistic binary evolution scenarios indicate that NCO burning can be much

more significant than the constant Ṁ results suggest. Neunteufel et al. (2016) studied

119



systems like these using detailed binary evolution and accretion rates while drawing on

Woosley & Kasen (2011) for ignition outcomes of WDs treated as point mass accretors.

However, our results indicate that the constant Ṁ results have limited predictive power

in binary systems. Both the system and the WD must be evolved.

6.3.1 The First Flash after Contact

Brooks et al. (2015) used MESA’s binary evolution capabilities to model AM CVn sys-

tems, including realistic accretion histories for systems that are brought into contact by

gravitational wave radiation, with self-consistent binary stellar evolution tracked through

the accretion phase. Their study included many cycles of accretion, ignition, and flashes,

but NCO reactions were not included. For many of the flashes, they found accumulated

masses that were insufficient for the He layer to reach densities required for NCO reac-

tions. A few of the flashes, however, did accumulate sufficient mass, particularly those

occuring after the system first comes into contact and has not yet been warmed by pre-

vious flash episodes. In this section, we re-examine two of these binary scenarios where

NCO reactions can play a role. The first is a 0.4M� He star donating onto a 0.8M� WD,

and the second is the same donor model with a 1.0M� WD accretor. These correspond

to panels 2 and 4 in figures 12 and 13 from Brooks et al. (2015).

The accretion rate is primarily governed by the physics of the donor star, and our

study here leaves this unmodified, so we use the same Ṁ histories as presented in figure 12

of Brooks et al. (2015) up to the point of ignition. With an identical starting model for
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Table 6.1: Accreted and convective masses for the first helium flash

Accreted Mass (∆Macc) Without NCO With NCO
0.4M� He + 0.8M� WD 0.107M� 0.107M�
0.4M� He + 1.0M� WD 0.082M� 0.078M�

CD −30◦11223 0.175M� 0.163M�
Convective Mass (∆Mconv) Without NCO With NCO
0.4M� He + 0.8M� WD 0.055M� 0.064M�
0.4M� He + 1.0M� WD 0.039M� 0.054M�

CD −30◦11223 0.084M� 0.153M�

the WD accretor and the accretion rate as specified by previous MESA binary runs, it is

sufficient to follow the single star evolution in MESA for the accretor, with no further need

to invoke MESA binary.

Figure 6.7 and Table 6.1 show that NCO reactions can modify the thermal structure

prior to ignition, and more importantly, lead to ignition in the much deeper layers near

the base of the accreted He. This effect is more pronounced for some systems than

others, and the accretion rate from binary evolution plays a large role in determining the

thermal structure of the accreting WD, which governs the impact of NCO reactions. The

accretion rate varies from 2− 4× 10−8M� yr−1 over the course of accumulation leading

to the first flash (see e.g. figures 11 and 12 in Brooks et al., 2015). Since this Ṁ range is

precisely where Figure 6.4 shows the most significant variation in convective shell mass,

there appears to be no reliable way to estimate the impact of NCO on ignition based on

results at constant Ṁ . Thus, accretion histories from full, self-consistent binary evolution

such as those provided here need to be used to assess the condition at the time of thermal

runaway.
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Figure 6.7: Profiles from models of the accreting WD in several binary systems after
the flash has ignited. Models that include NCO reactions ignite in the deeper, denser
region. In the case of CD −30◦11223, the outer envelope has been noticeably warmed by
additional heat from NCO burning prior to thermonuclear runaway.

122



6.3.2 The First Flash in CD −30◦11223

CD −30◦11223 (Geier et al., 2013) is a sdB+WD binary system with an orbital period

of 70.5 minutes that will make contact in 40 Myr, likely while the sdB star’s core is still

burning He. Brooks et al. (2015) used MESA to model the binary evolution of this system

as a 0.510M� sdB star donating onto a 0.762M� WD, with initial conditions tuned to

match the observations of Geier et al. (2013) assuming that the sdB star is just beginning

helium core burning. They predicted that the WD would accumulate a large He envelope

(∆Macc ≈ 0.175M�) which will then experience 3α ignition above the base of envelope,

leading to a smaller convective envelope (∆Mconv ≈ 0.084M�). For more information

on the details of the modeling of this binary system, see section 3.2 in Brooks et al.

(2015). Using the same accretion history and starting model, we modeled the evolution

of the accreting WD both with and without NCO reactions. If we do not include the

reactions necessary for the NCO chain in our network, our results match those described

by Brooks et al. (2015). In contrast, with NCO burning included in the network, the

extra heat injected in the deeper, denser layers of the envelope leads to an earlier ignition

of a slightly smaller (∆Macc = 0.163M�) He envelope triggered by 14C. However, since

the ignition is triggered much deeper in the accreted envelope, as seen in Figure 6.7, this

results in a much larger, and more dynamically important, convective envelope of mass

∆Mconv = 0.153M�.

This near doubling of the convective shell mass has no parallel from the results at

constant Ṁ shown in Section 6.2.2. In fact the trend seen there is in the opposite
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Constant Ṁ
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Figure 6.8: Effect of varying accretion history for CD −30◦11223. The solid density-
temperature profile shows the model evolved with a realistic accretion history from binary
evolution. The dashed profile shows a model with a constant Ṁ , corresponding to the
time-average of the realistic history. The profiles are shown when the models reach a
total mass of M = 0.925 M�.

direction, where Figure 6.4 shows that NCO ignitions mostly tend to suppress the size

of the convective shell by causing an earlier ignition while less total helium has had a

chance to accumulate. This qualitatively different result of a much larger convective shell

further motivates the use of full binary calculations in MESA to avoid the approximation

of constant Ṁ .

Figure 6.8 shows the contrast between modeling of CD −30◦11223 including realistic

accretion histories and modeling that makes the approximation of constant Ṁ . The latter

case assumes Ṁ = 1.93× 10−8M� yr−1, the time-average of the accretion rate from the

binary evolution calculations of Brooks et al. (2015). Both models here include the NCO
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reaction chain. After accumulating the same amount of mass to reach M = 0.925M�,

the model with constant Ṁ has not yet reached 3α ignition, while the realistic Ṁ model

has. Indeed, the constant Ṁ model must accumulate 3% more mass before reaching

ignition at a final mass of M = 0.930M�.

6.3.3 Metallicity and 14N Abundance in sdB Donors

For sdB star donors, the interior abundance of 14N may be somewhat lower due to

burning during the helium core flash having processed some of the 14N to 18O and 22Ne.

MESA models of the helium core flash show about half of the 14N in the interior of the

He core will be consumed, leaving behind X14 ≈ 0.005 of the original X14 ≈ 0.01 for

resulting sdB models (at solar metallicity). The abundance remains X14 ≈ 0.01 only

in the unprocessed outer ∼ 0.01M�; see Figure 2.4. This means that after the first

0.01M� of material donated, the abundance of 14N in the donated material will drop

to X14 ≈ 0.005. However, NCO reactions are primarily significant in material from the

initial He envelope of the accretor and first donated material, which will eventually form

the most dense region of the He layer at its base. As Table 6.1 shows, these NCO reactions

at the base of the He layer can provide sufficient heating to ignite the envelope within

≈ 0.01M� of its base, so the lower abundance of 14N in the accreted material further out

should not significantly impact the outcome, and we ignore this change in abundance for

all models presented in this work.
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Figure 6.9: Masses from Table 6.1 showing that NCO burning pushes convective shells
toward masses that will be more dynamical. Red points are for the 0.4M� He +
0.8M� WD system, and blue points are for the 0.4M� He + 1.0M� WD system. Gold
points are for CD −30◦11223, with diamonds used to show models with metallicity other
than solar. The gray shaded region shows the minimum allowed envelope masses for
detonation or deflagration found by Woosley & Kasen (2011) for a range of core tem-
peratures. Note that core mass in this figure is defined as all of the mass inside the
convective shell.

6.4 Dynamical Burning in Large Helium Envelopes

Following Bildsten et al. (2007), we study the possibility of dynamical burning that may

transition into a detonation by plotting the convective shell masses from Table 6.1 along

with lines comparing the dynamic timescale to the heating timescale from burning in

Figure 6.9. These timescales are defined as τdyn = H/csound and τheat = cPT/εnuc, where

H = P/ρg, and εnuc is dominated by 3α burning that takes over once the thermonuclear

runaway is initiated. These quantities are evaluated at the base of the convective burning
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shell. These lines are taken from figure 5 in Shen & Bildsten (2009). See also figure 7 in

Brooks et al. (2015) for comparison, which has three points matching the three triangular

symbols on our Figure 6.9, corresponding to binary models that did not include NCO

reactions. For comparison, we also include the range of minimum allowed convective

envelope masses for detonation or deflagration found by Woosley & Kasen (2011) in

their extensive grid of constant Ṁ models.

The solar metallicity model for CD −30◦11223 (gold star in Figure 6.9) is likely to

reach especially dynamical burning conditions. At 0.1 s before the most rapid evolution

occurs in the MESA model, τheat becomes shorter than τdyn. If allowed to evolve beyond

that point, peak burning reaches τheat ≈ 0.1τdyn, and convective velocities reach nearly

the sound speed. We expect that a detonation should develop around this point, but

hydrostatic 1D MESA calculations are not reliable for evolution beyond this point. For

more detailed study of the conditions of dynamical burning and convection leading to

potential ignition of a detonation, see the recent work of Jacobs et al. (2016). The

outcomes of their 3D hydrodynamical simulations appear to be broadly consistent with

our expectations based on Figure 6.9, but further study is warranted.

The models for binary systems described in Sections 6.3.1 and 6.3.2 assumed so-

lar metallicity for both the donor star and the WD progenitor, but the metallicity of

CD −30◦11223 is not known. Varying the metallicity of the system changes the amount

of time necessary for the NCO chain to deposit enough heat to initiate a runaway, and

hence the metallicity influences both total accreted mass and convective shell mass. This
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trend is clear in the diamond symbols showing convective shell masses in Figure 6.9, which

represent the binary system described in Section 6.3.2 modeled with NCO reactions over

a range of metallicities. For Z . 0.02, there is a continuous progression toward larger

convective shell masses as metallicity increases for this system. However, once Z & 0.02,

there is plenty of 14N present for the NCO chain to ignite runaway burning quickly after

electron captures get underway past the threshold density, and hence higher metallicity

does not significantly change the burning outcome past this point of saturation around

solar metallicity.

6.5 Conclusions

Our results show that NCO reactions play an important role in triggering envelope ig-

nitions for WDs accreting He at rates in the range 1− 5× 10−8M�/yr. Binary systems

composed of an sdB star donating He onto a WD naturally give rise to accretion rates

that vary within this range. Because the thermal time is comparable to the accretion

time in these He envelopes, it is necessary to model systems in a way that consistently

tracks both the full accretion rate history and the evolution of the WD in response.

Extrapolations from results using constant accretion rates are inadequate.

Though studies at constant Ṁ have concluded that NCO reactions provide only minor

corrections with no qualitative differences, binary evolution with Ṁ that varies over the

accumulation phase shows that NCO can be more important than previously thought.

Models for the observed system CD −30◦11223 illustrate the most pronounced qualitative
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differences that can arise as a result of NCO triggered ignitions during binary evolution,

with a convective envelope mass that is twice as large in the case that includes NCO

reactions. The recent discovery by Kupfer et al. (2017) of another system with a tight (87

min) sdB+WD binary demonstrates that detailed binary modeling with NCO reactions

will continue to remain important as more of these systems are discovered.

The dynamical nature of the most extreme flashes presented here suggests that NCO

triggered ignitions can lead to He detonations. We have also found that metallicity is

directly correlated with the potential outcomes in these systems, with solar metallicity

progenitors providing ample fuel for the NCO chain, while lower metallicities predictably

soften its effects. Helium shell detonations are still possible in low metallicity environ-

ments without NCO triggers, but they appear less likely according to Figure 6.9. Though

we have not exhaustively studied this trend, it may suggest a correlation between higher

metallicity environments and observations involving events with thick helium shell deto-

nations.

Future exploration should include modeling of additional variables that can impact

the binary evolution of sdB+WD systems. Models presented here assumed that the

sdB star in CD −30◦11223 is at the beginning of core He burning, but this age is not

constrained. If the sdB star has a different He core burning age, the system will make

contact at a different stage of the sdB life cycle, and the resulting accretion rate will vary

accordingly. Since our results here show that the details of the accretion rate are crucial,

variations in the Ṁ predicted by binary evolution may lead to different results for the
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total convective shell mass ignited on the WD. We anticipate a potential variation of

predicted outcomes for the final fate of any given system where the sdB star age is not

known.

More work is also necessary to strengthen our understanding of evolution beyond

the onset of dynamical burning. Understanding the transition into detonation and the

resulting effects on both the envelope and core will be crucial for making a specific

prediction about the ultimate observable nature of these NCO triggered events.
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Chapter 7

Conclusions and Future Work

Mixing timescales on the surfaces of white dwarf stars are the key theoretical ingredients

needed to unlock the potential of observed systems for revealing properties of their sur-

roundings. In this dissertation, I have shown how carefully quantifying these timescales

enables inferring accretion rates that approach Ṁacc ≈ 1013 g s−1, with rocky composi-

tions similar to bulk earth material. Based on these accretion rates, inferences about

populations of polluted white dwarfs imply that some white dwarfs have mass reservoirs

of rocky material perhaps as large as an Earth mass. The work presented here has fo-

cused on white dwarfs with hydrogen-dominated atmospheres, but these are not the only

sample of observed polluted white dwarfs. White dwarfs with helium-dominated atmo-

spheres have longer mixing timescales, and their observations therefore probe a different

regime of accretion timescales. Further work to resolve apparent discrepancies between

systems with hydrogen and helium dominated atmospheres may yield deeper insight into
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the physical nature of the accretion processes that supply material onto white dwarf sur-

faces. The data point to a need for a more complete physical picture that can unify our

understanding of these two observational classes, such as bursts of accretion that occur

over a characteristic timescale yielding distinct observable signatures depending on the

white dwarf surface mixing timescales.

Eliminating remaining theoretical uncertainties for polluted white dwarfs may require

further work to constrain the physics of helium-dominated atmospheres. Opacities are

difficult to calculate in the regime of cool, dense, neutral helium, and this makes it

challenging to set appropriate surface boundary conditions in stellar models with such

atmospheres. These boundary conditions have a large impact on the extent of surface

convection zones. Opacities are further complicated by the introduction of even small

amounts of polluting metals, and trace amounts of hydrogen can also cause modifications.

The EOS for cool, partially ionized helium is uncertain as well, and this also has an im-

pact on stellar modeling of convective boundaries. With further work to constrain these

physical uncertainties, we may be able to produce a set of MESA models for white dwarfs

with helium-dominated atmospheres to complement the hydrogen-dominated models pre-

sented here.

Convective overshoot is another area of uncertainty for model input physics. Our pri-

mary grid of models presented in Chapter 5 neglected overshoot. We demonstrated that

overshoot has negligible effects in the regime where thermohaline mixing dominates near

the white dwarf surface, but some cooler white dwarfs with lower accretion rates do not
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experience significant thermohaline instability, and therefore may require corrections due

to overshoot. For now, the full extent of overshoot mixing beneath white dwarf surface

convection zones is poorly understood, but simulations are expected to begin providing

constraints on this extent soon. Once information is available to calibrate overshoot mix-

ing regions in 1D simulations, it will be possible to produce a new generation of MESA

models for polluted white dwarfs that fully accounts for convective overshoot along with

diffusion, convection, and thermohaline mixing.

The tools for white dwarf surface mixing studied in this dissertation also have po-

tential for application beyond the regime of planetary debris accretion. As shown in

Chapter 6, a white dwarf accreting from a binary companion can experience a thermonu-

clear detonation. This can cause the accreting white dwarf to explode as a supernova,

polluting its companion donor star with heavy elements from the ejecta. In the case

where the donor star is initially a helium-burning sdB star as in Chapter 6, it can donate

enough material that its central burning ceases. Liberated from the binary with a high

orbital velocity at the time of explosion, the donor star will then cool as a low-mass white

dwarf with a heavily polluted surface composition. Supernovae may also occur in binary

systems where the donor star is initially a white dwarf. White dwarf remnants thought

to originate from systems such as these have recently been identified (Shen et al., 2018;

Raddi et al., 2018a,b, 2019), and theoretical modeling is needed to help understand the

timescales over which observable ejecta pollution may remain at the surface. Models

may help distinguish between potential stellar evolution channels that can produce high
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velocity objects with anomalous surface compositions.

Finally, models for white dwarf cooling are another natural next step based on the

tools developed in this work. Though not a primary focus of this dissertation, the physics

of white dwarf cooling appears in connection with many of the details discussed in Chap-

ter 3 and Appendix B. With the extensive groundwork laid in those discussions, MESA is

now in a position to offer grids of detailed white dwarf cooling tracks and isochrones with

unprecedented resolution. These may be especially useful as a continuous extension of

main sequence and giant branch MESA model grids that already exist (e.g. Dotter, 2016;

Choi et al., 2016). Robust and flexible tools for white dwarf evolution within the open-

source MESA framework will provide enhanced capacity to adapt and expand modeling as

growing data sets present new challenges.
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Appendix A

Diffusion Implementation Details

This appendix provides implementation details not contained in Chapter 3. Equations

(3.2)–(3.4) and (3.9) give the full set of diffusion equations that must be solved to obtain

diffusion velocities. For S total species in the plasma (including electrons), Equation (3.9)

provides S − 1 equations (one for each ion species), Equation (3.2) provides S equations

(one for each species including electrons), and Equations (3.3) and (3.4) each provide one

additional equation, for a total of 2S + 1 independent equations. The 2S + 1 unknowns

are S diffusion velocities ws, S heat flow vectors rs, and the electric field E.

The inputs provided from the MESA model are the number densities ns, temperature

T , gradients of each of these quantities d lnns/dr and d lnT/dr, species mass in atomic

units As, species mean charge as an average ionization state Z̄s, and resistance coefficients

Kst, zst, z
′
st, z

′′
st (defined in Equation 2.6). The coefficients are calculated as described

in Section 3.3. Together with the mean ionization states, these are the key pieces of
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input physics that determine the diffusion of all ions. Extra acceleration terms grad,s for

radiative levitation are either set to zero by default, or calculated as in Hu et al. (2011)

when the option to include radiative levitation is enabled.

In the spirit of Thoul et al. (1994), Equations (3.2)–(3.4) and (3.9) are grouped into

a single matrix equation:

βrad,i + αimpg + νikBT
d lnT

dr
+ kBT

∑

j

γij
d lnnj

dr
=
∑

j

∆ijWj. (A.1)

The vectors capturing the driving terms are

αi =

{
niAi i = 1, . . . , S − 1,

0 i = S, . . . , 2S + 1,
(A.2)

νi =





ni i = 1, . . . , S − 1,
5
2
ni i = S, . . . , 2S − 1,

0 i = 2S, 2S + 1,

(A.3)

γij =

{
niδij i = 1, . . . , S − 1,

0 i = S, . . . , 2S + 1,
(A.4)

βrad,i =

{
−niAimpgrad,i i = 1, . . . , S − 1,

0 i = S, . . . , 2S + 1.
(A.5)

The vector containing the unknowns is

Wj =





wj j = 1, . . . , S,

rj j = S + 1, . . . , 2S,

eE j = 2S + 1.

(A.6)
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For i = 1, . . . , S − 1, the right hand side matrix of Equation (A.1) is

∆ij =





−∑l 6=jKil j = i,

Kij j = 1, . . . , S and j 6= i,∑
l 6=jKilzilAl/(Ai + Al) j = i+ S,

−Ki,j−Szi,j−SAi/(Ai + Aj−S) j = S + 1, . . . , 2S and j 6= i+ S,

niZ̄i j = 2S + 1.

(A.7)

For i = S, . . . , 2S − 1, the matrix terms are

∆ij =





5

2

∑

l 6=j
Ki−S,lzi−S,l

Al
Ai−S + Al

j = i− S,

−5

2
Ki−S,jzi−S,j

Aj
Ai−S + Aj

j = 1, . . . , S and j 6= i− S,

−
∑

l 6=j−S
Ki−S,l

[
3A2

i−S + A2
l z
′
i−S,l

(Ai−S + Al)2

+
4

5

Ai−SAl
(Ai−S + Al)2

z′′i−S,l

]

−2

5
Ki−S,i−Sz

′′
i−S,i−S





j = i,

Ki−S,j−S
Ai−SAj−S

(Ai−S + Aj−S)2

×
(

3 + z′i−S,j−S −
4

5
z′′i−S,j−S

)





j = S + 1, . . . , 2S and j 6= i,

0 j = 2S + 1.

(A.8)

For i = 2S,

∆ij =

{
njAj j = 1, . . . , S,

0 j = S + 1, . . . , 2S + 1.
(A.9)

For i = 2S + 1,

∆ij =

{
njZ̄j j = 1, . . . , S,

0 j = S + 1, . . . , 2S + 1.
(A.10)

Indices i = 1 . . . S−1 capture the S−1 equations (3.9) for the ions. Indices i = S . . . 2S−1
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capture the S equations (3.2). Indices i = 2S, 2S + 1 capture the two constraints in

Equations (3.3) and (3.4).

For a generic driving term that takes the form of an extra force fs on ions of species s,

a term −nsfs appears on the left hand side of Equation (3.9). This can be accounted for

in the matrix setup by adding another vector βf,i to the left hand side of Equation (A.1)

with the form

βf,i =

{
−nifi i = 1, . . . , S − 1,

0 S, . . . , 2S + 1.
(A.11)

One such extra driving force that may be explored with MESA in the future is Coulomb

separation in dense matter arising from non-ideal corrections for the ions (Chang et al.,

2010; Beznogov & Yakovlev, 2013; Diaw & Murillo, 2016).

The diffusion velocities are separated into two terms capturing the distinct effects of

gravitational settling and ordinary diffusion in the tradition of Equation (11) of Iben &

MacDonald (1985):

wi = wgi −
∑

j

σij
d lnCj

dr
, (A.12)

where Cj ≡ nj/ne following the notation of Thoul et al. (1994). These separate terms

are constructed by inverting the matrix ∆ij and then solving Equation (A.1) for just one

of α, β, ν, and γ∗,j at a time on the left hand side. These results can then be linearly

combined to construct wgi and σij such that the the full sum in Equation (A.12) gives a

solution that satisfies the complete set represented by Equation (A.1).

When electrons become degenerate, we drop all S Equations (3.2) and set the S

heat flow vectors to rs = 0. Equation (A.1) then represents a system of just S + 1
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equations and the vectors and matrices simplify considerably, dropping all entries for

indices i = S . . . 2S − 1 or j = S + 1 . . . 2S in the definitions given in Equations (A.2)–

(A.10). To avoid discontinuities, we employ a blend that smoothly transitions between

the diffusion velocity solutions over a range in η ≡ µe/kBT , where µe is the electron

chemical potential. By default, the blend is centered around η ≈ 1, with user controls

available to adjust the range of this blending region.
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Appendix B

Energy Accounting in Stellar

Evolution

MESA I describes the stellar structure equations and their implementation in MESA. In

order to provide physically and numerically accurate solutions of these equations, it is

often necessary to evaluate them in different ways depending on the details of the star

being simulated. In particular, there are a number of different ways to formulate and

evaluate the equations solved by MESA that encode local and global energy conservation.

The goal of this section is to clarify the available options, discuss when and why they are

used, and describe how various forms of energy are tracked and accounted for in stellar

evolution.

In Section B.1 we describe the fundamental equations we are solving, and in Sec-

tion B.2 we describe choices associated with their numerical implementation. In Sec-
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tion B.3 we clarify how the energy associated with ionization is included in MESA. In

Section B.4 we describe the numerical approach necessary to ensure that the latent heat

associated with crystallization in a white dwarf (WD) is included in MESA. In Section B.5

we discuss the difficulties introduced by the necessity to blend between different equa-

tions of state (EOS) as the thermodynamic conditions in the stellar interior change, and

how MESA minimizes artifacts associated with these blends. In Section B.6 we discuss the

energy associated with gravitational settling.

B.1 Fundamental Equations

In the stellar structure equations (e.g., Cox & Giuli, 1968; Kippenhahn et al., 2012),

energy conservation is typically formulated by considering the energy flow in and out of

a fluid parcel. In this Lagrangian picture, to understand how the energy of a fluid parcel

is changing, we account for the specific (i.e., per unit mass) rate of energy injection into

the parcel, ε, and the specific rate of energy flow through the boundaries (∂L/∂m; L(m)

is the luminosity profile and m the Lagrangian mass coordinate). The specific heating

rate (Dq/Dt) for the parcel must then satisfy

Dq

Dt
= ε− ∂L

∂m
, (B.1)

where D/Dt is the Lagrangian time derivative. Except in the case of implicit hydrody-

namics (where a total energy equation is solved; see MESA IV), the basic equation to be

solved is always some form of Equation (B.1). By tradition, the negative of the left-hand

side of Equation (B.1) is called εgrav.
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Thermodynamics relates the heating of material to the changes in its properties. The

first law of thermodynamics states that the total heat added δQ for a parcel is

δQ ≡ dE + PdV, (B.2)

where E is the internal energy, P is the pressure, and V is the volume. Let Ni be the

number of particles of species i in the parcel. Then expanding E in terms of the in-

dependent thermodynamic basis variables (S, V,Ni) yields the following thermodynamic

identity:

dE + PdV = TdS +
∑

i

µidNi , (B.3)

where S is the entropy, and T is the temperature. The sum runs over all species present,

and

µi ≡
(
∂E

∂Ni

)

S,V

(B.4)

is the chemical potential for species i.

The number abundance of every species is defined with reference to the total number

of baryons NB as Yi ≡ Ni/NB. Denoting Avogadro’s number by NA, the atomic mass

unit is mamu = 1 g/NA. The specific (i.e., per unit mass) form of Equation (B.3) is then

given by multiplying by the invariant NA/NB to find

δq ≡ de+ Pd

(
1

ρ

)
= Tds+

∑

i

(
∂e

∂Yi

)

s,ρ

dYi . (B.5)

The total baryonic mass density is ρ, so that 1/ρ is the specific volume, and e and s

are specific energy and entropy respectively. Local thermodynamic equilibrium (LTE)

determines a unique solution for the ionization state of each isotope. Thus, composition
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is completely specified by a set of number abundances {Yi} for all nuclear isotopes.

Equation (B.5) is relativistically correct when the rest mass is included in the energy

and the chemical potentials. Therefore, in principle, changes in nuclear rest masses due

to nuclear reactions could be accounted for via this equation. However, in MESA, the

energetic effects associated with composition changes due to nuclear reactions are not

included in εgrav. Instead, these important terms are accounted for via εnuc (the specific

energy generation rate of nuclear reactions) which is evaluated separately and included

as part of the local source term ε in Equation (B.1) (see MESA I).

It is often convenient to specify compositions in terms of the baryonic mass fractions

{Xi} via the relation Xi = AiYi, where Ai is the mass number for isotope i. Since rest-

mass changes due to nuclear reactions are handled separately from εgrav, ρ and {Xi} can

be treated as independent basis variables without introducing any ambiguity into the

chemical potential term in Equation (B.5). Some EOS options express the composition

dependence in terms of aggregate quantities; examples include hydrogen abundance X,

helium abundance Y , metallicity Z, average mass number Ā, and average atomic number

Z̄.

The value for εgrav can be computed beginning from either the left or right hand side

of the equals sign in Equation (B.5). Usually, some form of the left hand side is used,

but in Section B.4 we will describe a case where it is more convenient to use the right

hand side.
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B.2 Implementation

Basic variables are those quantities directly calculated by MESAstar’s solver. Exam-

ples include velocity, radius, and the thermodynamic variables. MESA offers options for

selecting (ρ, T, {Xi}) or (Pgas, T, {Xi}) as the thermodynamic variables. The EOS rou-

tines calculate other thermodynamic quantities as a function of the chosen variables,

e.g., e = e(ρ, T, {Xi}). MESA solves the stellar structure equations implicitly, thus it is

possible to approximate total time derivatives of any quantity calculated in the stellar

model simply by differencing its value at the start and end of a timestep. Therefore, one

way to evaluate εgrav would be to directly calculate the time derivatives in Equation (B.5).

Two possible versions of εgrav would then be

−εgrav = T
Ds

Dt
+
∑

i

∂e

∂Yi

DYi
Dt

, (B.6)

and

−εgrav =
De

Dt
+ P

D

Dt

(
1

ρ

)
. (B.7)

While simple to construct, the finite differences necessary to calculate these equations

are often numerically problematic.

To see the potential numerical issues, consider the implementation of Equation (B.1)

using Equation (B.7) in cell k with mass dmk over a timestep δt. The derivative of a

quantity Dy/Dt is typically constructed as a finite difference of y over the timestep, so

after integrating over the mass of zone k, we have

0 =

(
εk −

ek,end − ek,start

δt
− Pk

1/ρk,end − 1/ρk,start

δt

)
dmk − (Lk − Lk+1) . (B.8)
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The implicit solver scheme in MESA attempts to reduce the residual from evaluating the

right hand side of this equation below some tolerance.

While the implicit scheme in MESA may sometimes find acceptable results for an

equation such as Equation (B.8), finite numerical precision can result in troublesome

behavior for the time derivatives involving subtractions. In particular, over a small

timestep where the change in ek or ρk is small compared to the overall magnitude of

these quantities, floating point arithmetic can suffer significant loss of precision. When

energy scales arising from these types of finite difference derivatives are comparable to

εk, the implicit solver may be unable to converge to an acceptable solution.

To avoid these problems, the equations can be cast in terms of derivatives that are not

evaluated using subtractions. Such derivatives are available only for the basic variables,

since the Jacobian matrix for an evolution step satisfying the equations of stellar structure

in MESA is written in terms of the basic variables and their derivatives (see MESA I,

Section 6.2 and MESA II, Section B.2 and Figure 47). For MESA, ρ and T serve as default

variables.

Modifying Equation (B.7) to take advantage of ρ as a basic variable yields

−εgrav =
De

Dt
− P

ρ

D ln ρ

Dt
, (B.9)

but the change in e is still evaluated using subtraction. Another related form, obtained

by application of mass continuity, is

−εgrav =
De

Dt
+ P

∂

∂m
(vA) , (B.10)

where v is the cell velocity and A is the area of the cell face. This is the form used in
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the artificial viscosity based hydrodynamics options described in MESA III.

Expanding the total derivative of energy and thus eliminating the subtraction mo-

tivates the following alternative forms. Expanding e in terms of its dependence on the

basic variables ρ and T and dropping the dependence on composition gives

−εgrav = cV T
D lnT

Dt
+

[
ρ

(
∂e

∂ρ

)

T

− P

ρ

]
D ln ρ

Dt
, (B.11)

where cV ≡ (∂q/∂T )ρ = (∂e/∂T )ρ. One can also choose to expand e in terms of its

dependence on P and T (dropping composition dependence) and then convert to a form

given in terms of ρ instead of P to obtain

−εgrav = cPT

[
(1−∇adχT )

D lnT

Dt
−∇adχρ

D ln ρ

Dt

]
, (B.12)

where cP ≡ (∂q/∂T )P and ∇ad ≡ (∂ lnT/∂ lnP )s. The derivation for this expression

in terms of P and T is given in Chapter 4 of Kippenhahn et al. (2012), from which

it is straightforward to obtain Equation (B.12) using χT ≡ (∂ lnP/∂ lnT )ρ and χρ ≡

(∂ lnP/∂ ln ρ)T .

Since ρ and T are basic variables, the time derivatives appearing in Equations (B.11)

or (B.12) involve no subtractions. Hence, solving Equation (B.1) with εgrav as defined

by those two equations will not be susceptible to the same losses of numerical preci-

sion as other forms, at the cost of dropping the composition terms. Similarly, Equa-

tion (4.47) of Kippenhahn et al. (2012) will yield the same stability when P and T are

used as basic variables. When Pgas and T are selected as basic variables, the identification
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Figure B.1: Schematic showing the relationships in Equations (B.6)–(B.12).

P = Pgas + aT 4/3 allows writing

−εgrav = cPT

[(
1− 4∇ad

Prad

P

)
D lnT

Dt
−∇ad

Pgas

P

D lnPgas

Dt

]
. (B.13)

Section 4.5 in Kippenhahn et al. (2012) also shows how this local energy treatment of

εgrav results in global energy conservation, including total gravitational potential energy

from which the name εgrav is derived.

The superior numerical stability of Equations (B.11)–(B.13) comes at the cost of using

derivative quantities such as cV and χρ. The Jacobian matrix of an implicit method thus

requires the partial derivatives of cV and χρ. An EOS must therefore be capable of

returning the state functions P , e, and s along with their first derivatives (e.g., cV and

χρ) and second derivatives (e.g., ∂cV /∂T ).

As noted above, Equations (B.11)–(B.13) drop the composition terms, which is jus-

tifiable if the derivatives (∂e/∂Xi)(DXi/Dt) are negligible for each Xi. Dropping com-
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Table B.1: Summary of εgrav Options

Inlist Option εgrav

use_PdVdt_form_for_eps_grav (B.7)
use_dlnd_dt_form_for_eps_grav (B.9)
use_dedt_form_of_energy_eqn (B.10)
use_dEdRho_form_for_eps_grav (B.11)
MESA default (all other inlist options .false.) (B.12)
lnPgas_flag (and other inlist options .false.) (B.13)
use_lnS_for_eps_grav (B.14)

position terms is often justified in stellar evolution scenarios where timescales for these

changes are very slow or their associated energies are negligible, such as main-sequence

(MS) burning where energy release from nuclear burning dominates any small changes

in internal energy due to composition evolution over a single step (Kippenhahn et al.,

1965; Garćıa-Berro et al., 2008). Making this assumption, MESA also offers an option for

calculating εgrav in terms of a simplified form of Equation (B.6):

−εgrav = T
Ds

Dt
, (B.14)

which drops composition dependence to offer an expression that is more convenient to

evaluate.

However, even after composition dependence related to nuclear burning is accounted

for with a separate εnuc term as discussed in Section B.1, other processes that change

abundances (e.g., mixing) may be important. In cases where dropping these terms is

not justifiable, it may be necessary to add a compensating local source term ε in Equa-

tion (B.1).

In summary, MESA currently offers options for solving Equation (B.1) with εgrav defined
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in any of the ways given in Equations (B.7)–(B.14). Figure B.1 schematically summa-

rizes the relationships between these equations and Table B.1 shows the inlist commands

necessary for invoking each of these options. Usually, the superior numerical stability

gained by using Equation (B.12) is to be preferred, and hence it is the MESA default, but

users should be aware of the possibility that other forms may be necessary to capture

important physics. One such case for Equation (B.14) is described in Section B.4. An-

other is the artificial viscosity-based implicit hydrodynamics described in MESA III (see

Section 4, Equation 41), where choosing Equation (B.10) helps ensure intrinsic energy

conservation.

B.3 Ionization

The internal energy reported by the EOS should include the energy associated with

ionization1 and molecular dissociation. The assumption of LTE specifies the ionization

state given (ρ, T, {Xi}). Since MESA does not regard a change in ionization as a change

in composition, it is not necessary to include separate composition derivatives in εgrav in

order to account for the energetic effects of changes in ionization state.

To demonstrate a specific scenario where MESA accounts for ionization energy, we

evolve a 1 M� pre-MS model composed of pure H. We compare quantities calculated

by MESA with other, simpler estimates. We calculate the thermal energy assuming a

1Since this energy is released upon recombination, it is also often referred to as “recombination
energy”.
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monatomic ideal gas,

ethermal =
3NAkBT

2µ
. (B.15)

We calculate the ionization energy for pure H as

eion = (1− fH)NAEH +
NAEH2

2
, (B.16)

where we assume the ionization fraction of H is given by the Saha equation. The variable

fH represents the neutral fraction of H. The H ionization energy is EH = 13.6 eV and

Equation (B.16) also includes the dissociation energy of molecular H (EH2 = 4.52 eV)

assuming that no H is in the molecular state.

During the evolution, we record εgrav calculated by MESA using Equation (B.12). We

also evaluate the quantity

D

Dt
(ethermal)

︸ ︷︷ ︸
εthermal

+
D

Dt
(eion)

︸ ︷︷ ︸
εion

+P
D

Dt

(
1

ρ

)

︸ ︷︷ ︸
εPdV

that separates out the thermal and ionization energy. In Figure B.2 we compare these

two approaches, making it clear that all three terms in the above expression play an

important role. Their sum agrees with the MESA εgrav, indicating that each of these terms

is accounted for in the MESA calculation.

Figure B.3 shows the history of the material at the Lagrangian coordinate (M −

m)/M� = 10−5. We plot e reported by the MESA EOS along with ethermal and eion

(calculated in same manner as above). At this location, the specific internal energy is

dominated by the ionization energy. The lower panel of this figure shows the neutral

fraction of H; towards the left of the plot, the H is fully neutral. In this region the
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Figure B.2: The value of εgrav in the pure-H pre-MS model, evaluated over a region near
the stellar surface that includes an ionization zone (where εion 6= 0). The solid colored
lines indicate the individual energy terms. Their sum (dotted black line) agrees with the
value calculated by MESA (solid gray line).

ionization energy plateaus at the dissociation energy of molecular H (see Equation B.16).

For a star in hydrostatic equilibrium, the virial theorem states that

−1

2

∫ M

0

Gm

r
dm+

∫ M

0

3P

2ρ
dm = 0 . (B.17)

The right term’s integrand, 3P/(2ρ), is the specific thermal energy of an ideal monatomic

ideal gas. Figure B.4 shows the total internal energy and gravitational potential energy

reported by MESA for the pure-H pre-MS model. On the same scale we show half the

total potential energy plus the internal energy. This quantity is not zero; rather, by

the virial theorem, it should sum to the non-thermal and non-ideal internal energy (e.g.,

the ionization energy). This value, recorded from the MESA model, agrees well with our
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model (upper panel). The solid colored curves indicate the individual energy terms. The
internal energy reported by MESA (solid gray curve) exceeds the thermal energy because
of the ionization energy. The lower panel shows the neutral fraction of the H.
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virial theorem should be the non-thermal internal energy, agrees well with our estimate
of the ionization energy (dashed black curve). The deviation at & 105 yr is caused by
non-ideal gas effects.

estimate of the ionization energy. Also note that at early times the total energy of the star

(internal + potential, not shown) is positive. The phenomenon of positive total energy

when ionization energy is included also occurs for envelopes of stars on the asymptotic

giant branch (AGB; Paczyński & Zió lkowski, 1968). Figure B.5 shows the total energy

in the envelope of a 1.0 M� MESA model on the AGB. This confirms that the ionization

energy is included when MESA reports the total energy of a model.

153



0.5 0.6 0.7 0.8 0.9 1.0

m [M�]

−1

0

1

2

∫ M m
(e
−
G
m
/
r)

d
m

[1
0

4
5

er
g
]

−1

0

1

2

e
−
G
m
/
r

[1
0

1
3

er
g

g
−

1
]

Figure B.5: Specific (red) and cumulative (black) total energy (IE + PE) in the envelope
of an AGB model (M = 1.0 M�, L = 4.97 × 103 L�, Teff = 2, 920 K, R = 276 R�). This
energy is positive in the envelope due to the inclusion of ionization energy in the internal
energy reported by MESA.

B.4 Latent Heat

MESA II discusses the inclusion of the latent heat of crystallization for long term WD

cooling. Crystallization is a first-order phase transition that manifests in the PC EOS

(Potekhin & Chabrier, 2010) as an entropy discontinuity at a plasma coupling parameter

of Γ = 175, and can be captured in stellar evolution with εgrav in the form of Equa-

tion (B.14). Since the publication of MESA II, controls have been added to MESA to

allow smoothing out the injection of latent heat in εgrav over a user-specified range of Γ.

By default, the range for crystallization is softened to 150 ≤ Γ ≤ 175 to avoid numerical

difficulties with sudden energy injection associated with a sharp transition at Γ = 175.

The controls allow for tightening this range for more precise timing on the occurrence
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Figure B.6: Cooling for a 0.6 M� C/O WD (MH = 2.7× 10−5 M�, MHe = 1.5× 10−2 M�)
with different treatments of the latent heat of crystallization. The default treatment
smoothly injects the latent heat over the range 150 ≤ Γ ≤ 175. The lower panel shows
differences in cooling time (relative to the default shown in the upper panel) required to
reach a given luminosity for other treatments.

155



of crystallization if necessary. Figure B.6 shows the small impact on cooling time for

a 0.6 M� WD from spreading the latent heat over this broader range of Γ relative to a

tighter phase transition for 174 ≤ Γ ≤ 176.

The spreading of the phase transition is accomplished by calculating both the liquid

and solid solutions within the PC EOS and linearly blending the entropy s and internal

energy e over the specified range of Γ. With εgrav expressed in the form of Equation (B.14),

the energy of the phase transition is captured as fluid elements smoothly traverse from

liquid-phase to solid-phase. By default MESA automatically switches to using εgrav in the

form of Equation (B.14) for Γ > 150. This choice ensures the capture of latent heat

release.

Theoretical and observational work has suggested that crystallization in C/O mix-

tures may occur at higher Γ than the classical one component plasma value of Γ = 175

(Horowitz et al., 2007; Winget et al., 2009; Medin & Cumming, 2010; Althaus et al.,

2012). Our updated crystallization controls allow for investigating the effect on stellar

evolution of crystallization at Γ ≈ 240. Figure B.6 shows the potential effects on WD

cooling times of varying the Γ for crystallization. Because the heating from crystalliza-

tion is released very late in the WD evolution, its effects on cooling times are on the

order of Gyr, and variations in crystallization treatment can lead to changes that are a

significant fraction of this timescale.

The composition terms in Equation (B.6) that were dropped to form Equation (B.14)

are negligible as long as there is no mixing in the crystallization region. Phase separation
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may violate this assumption and require a modified treatment, but we do not consider

this process here. Detailed phase-diagrams for crystallization and the possible associated

phase-separation effects are not currently supported in MESA, so our investigation here is

limited to the effects of crystallization as a function of a fixed Γ range.

B.5 EOS Blending

As shown in Figure 1 of MESA I, MESA employs a patchwork of several EOSs to provide

coverage of a maximal amount of ρ − T space. When blending from one EOS region

into another, care is required to avoid introducing spurious contributions into εgrav. At

high density, MESA blends from the Helmholtz EOS (HELM, Timmes & Swesty, 2000)

for Γ < 10 to the PC EOS (Potekhin & Chabrier, 2010) for Γ > 20 by default. This

default has been changed from the original default of 40 ≤ Γ ≤ 80 given in MESA I due

to the optimal agreement between relevant quantities shown in Figure B.8, as explained

below. Overall, the two EOSs agree well on thermodynamic quantities in the blending

region (∼ 1% for e and s), but Figure B.7 shows that the absolute magnitude of the

disagreement can still be large enough to influence εgrav for a cooling WD when εgrav is

expressed in the form of Equations (B.6)–(B.10).

The upper panel of Figure B.7 indicates that typically the internal energy difference

is ∆e ∼ 1015 erg g−1, while cPT ∼ 1014−1015 erg g−1 in the region of the blend. As a WD

model cools, most of its ∼ 1033 g of mass must eventually pass through this transition. If

the energy equation is being solved in the form of Equation (B.8), ∼ 1048 erg of spurious
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Figure B.7: Magnitude of the energy differences between the HELM and PC EOS for
specific internal energy e (top) and entropy s (bottom) in a 50/50 C/O mixture. Dashed
lines show the EOS blending boundaries for 10 ≤ Γ ≤ 20, and the solid black lines show
representative profiles for a 1.0 M� WD cooling from Teff = 26, 000 K to Teff = 17, 000 K.
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energy would be introduced into the model by EOS blending. Since much of this blending

happens after the WD model has cooled to a luminosity of L . 0.1 L�, this extra energy

corresponds to ∆t & 100 Myr of extra WD cooling time.

The default form of εgrav given in Equation (B.12) does not suffer from this spurious

heating, since it is expressed in terms of thermodynamic derivatives from the EOS rather

than e and s. For this form of εgrav, the differences between e or s do not directly

enter the equations. Instead, changes in e with D ln ρ/Dt and D lnT/Dt are tracked

with quantities such as cP and χT , and Figure B.8 shows that these agree well for the

EOS blend region. Since the implementation of Equation (B.12) does not involve any

derivatives constructed as finite differences, the fact that quantities such as cP agree to

within a few percent guarantees that εgrav will be consistent across the blend, with no

significant spurious energy injected due to blending. Crucially, the release of latent heat

described in Section B.4 requires switching to εgrav in the form of Equation (B.14) only

for zones with Γ > 150, so both EOS blending and crystallization simultaneously receive

appropriate treatments with different forms of εgrav in different stellar regions.

B.6 Gravitational Settling

Equation (B.12) for εgrav ignores changes in internal energy e due to composition changes.

Garćıa-Berro et al. (2008) point out that a self-consistent evolutionary approach to WD

cooling including the effects of 22Ne settling requires accounting for composition changes

due to element diffusion in εgrav. They adopt pure 12C or 16O core compositions with
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trace 22Ne and no other isotopes. While this approach is useful for rigorous study of self-

consistent WD evolution with diffusion fully coupled to evolution, it is not well suited

for a general treatment of realistic mixed core compositions.

MESA splits element diffusion into a separate step before the main structural solve,

and hence diffusive effects are not included in εgrav. We ensure that the energy associated

with 22Ne settling is not included in εgrav by using Equation (B.12), and we compensate

by including an extra heating term ε22 in Equation (B.1). This term is calculated using

velocities saved from the element diffusion step as described in Section 3.5. Our results

for the effects of 22Ne settling on WD cooling agree well with Garćıa-Berro et al. (2008)

and with Deloye & Bildsten (2002) who adopt a heating term similar to our approach.
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Appendix C

Diffusion Coefficients for Neutral

Atoms

When diffusion occurs near the surface of a star, even a very small fraction of neutral

particles for a given species can have a dramatic effect on the net diffusion flux for the

element. The Coulomb collision formalism for diffusion coefficients no longer applies

for neutral atoms, and induced dipole scattering of the neutral atoms with background

ions becomes the relevant physical process for diffusion (Vennes et al., 2011a,b). MESA

does not currently offer options for diffusion coefficients based on dipole scattering, but

Chapter 2 describes much of the formalism necessary to construct them. Referring to

Chapter 2, we see that the relevant coefficients for the Burgers (1969) diffusion equations

are expressed in terms of

Σ
(lj)
st =

4π

π3/2

∫ ∞

0

dv exp

(−v2

α2
st

)
v2j+3

α2j+4
st

S
(l)
st , (C.1)
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where αst = 2kBT/µst, µst = msmt/(ms + mt) is the reduced mass of the scattering

particles, and

S
(l)
st = 2π

∫ ∞

0

(1− cosl χst)b db (C.2)

are the traditional scattering cross section integrals. The scattering angle χst is a function

of both impact parameter b and relative velocity v, depending on the physics of the

scattering process between particles s and t. For dipole scattering, Chapter 2 in Draine

(2011) gives the scattering cross section of an ion with a polarizable neutral atom as

S
(1)
st = 2.41πZe

(
αN
µst

)1/2
1

v
, (C.3)

where Z is the charge of the ion and αN is the polarizability of the neutral atom. The

result for Σ
(11)
st is then

Σ
(11)
st = 3.62π

Ze

αst

(
αN
µst

)1/2

. (C.4)

Hence the result for the resistance coefficient for ions scattering with induced dipoles of

neutral atoms is

Kst =
2

3
nsntµstαstΣ

(11)
st = 2.41πnsntZe (µstαN)1/2 . (C.5)

For comparison, the resistance coefficient given by Burgers (1969) for diffusion of ions

with other ions is

Kst =
16
√
π

3

nsntZ
2
sZ

2
t e

4

µstα3
st

ln Λ , (C.6)

where ln Λ is the Coulomb logarithm. Diffusion velocities scale inversely with the resis-

tance coefficients Kst, so we can use these expressions to estimate the relative speeds of
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neutral and ionized metals.

Consider the case of a mixture of singly ionized oxygen and neutral oxygen diffusing

in an ionized Hydrogen background. The above equations give that the ratio of the

ion-neutral coefficient to the ion-ion coefficient is

K
(dipole)
st

K
(coulomb)
st

=
3.62(2kBT )3/2 (παN)1/2

8e3 ln Λ
. (C.7)

The polarizability of neutral oxygen is given in Table 2.1 of Draine (2011) as αN =

5.326a3
0, where a0 is the Bohr radius. For T = 15, 000 K, we find that the resistance

coefficient ratio is

K
(dipole)
st

K
(coulomb)
st

=
0.054

ln Λ
. (C.8)

For conditions near the surface of a WD, we estimate the Coulomb logarithm as ln Λ ≈ 5

(Spitzer, 1962, Table 5.1). The final result for the ratio of coefficients is

K
(dipole)
st

K
(coulomb)
st

∼ 10−2 . (C.9)

This means that the neutral oxygen particles will have diffusion velocities approximately

100 times faster than the singly ionized particles. A mere 1% of particles being neutral for

a particular element can therefore significantly modify the net diffusion flux for that ele-

ment. This effect would be most noticeable for metals with relatively high first ionization

potentials.

Since the physics of scattering is fundamentally different for charged and neutral par-

ticles, the diffusion and resistance coefficients do not scale in a meaningful way as Z → 0.

It is hence meaningless to adopt an average charge for an element for purposes of diffu-
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sion calculations in the case of Z̄ < 1. This is why the diffusion implementation in MESA

currently assumes that all diffusing particles are at least singly ionized. Extending the

implementation to account for neutral particles would require two improvements: a) the

ability to separate neutral particles off as distinct diffusion classes, and b) incorporating

tables of atomic polarizabilities to use with Equation (C.5) for the resistance coefficients

to use in the Burgers equations.

165



Bibliography

Ajzenberg-Selove, F. 1991, Nuclear Physics A, 523, 1

Althaus, L. G., & Benvenuto, O. G. 2000, MNRAS, 317, 952
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Gänsicke, B. T., Koester, D., Farihi, J., et al. 2012, MNRAS, 424, 333

Garaud, P. 2018, Annual Review of Fluid Mechanics, 50, 275
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