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[21, 24, 29, 30, 31, 32, 33, 45, 46, 54, 63, 64, 65]. There are very well developed 

theoretical analyses by Hald & Del Prete [41], Hald [37, 38, 39, 40], Beale & Majda 

[7, 8, 9, 10], Beale [5, 6], Anderson & Greengard [1], Perlman [58], Goodman [34], 

Chang [14], and Roberts [60] for both two- and three-dimensional methods. In three

dimensional space, however, there are some difficulties in simulating the motion of 

vortex tubes by these methods due to lack of connectivity between blobs. 

The three-dimensional vortex filament methods overcome the difficulties 

t.hat appear in three-dimensional vortex blob met.hods. The essent.ial idea, _as de

scribed in Chorin [15, 16, 17], is to chop a vortex tub~ or filan-:ient into a finite 

number of segment.s that. are short, thin, circular cylinders wit.h their axes t.angen

tial at a point t.o the vorticit.y vector. We evaluate t.he velocity at. both ends of a 
. ~ • J • , • r 

segment just. as' for a vortex bloh' 'in vortex blob m~tl~~ds. The -~onnected' segments 

remain connected. Fr~m Kelvin's circulat.ion t.heorem and St.okes' theorem, the ~ir

culation around the ~lament remains co~stant in our comp~t~tion. Sever?,l authors' 
, '.; I I' , ~ ~ , , . I \ r '! 

have employed this type of method t.o investigate various complex flows (see del Pret.e 

[28], Chorin [16, 17], Leonard [54, 55], Winckel~ans [72], and Knio &' bh~niem [49]). 
- I J , ,. ~ I - , 

There are also some theoretical analysis for this type of methods (Greengard [35]). 

We try to understand vo'rtex tube stretching from the st.udy of wave prop-
~ • t I I. ' • ~ t I ' 

agation along a vort.ex tube by the self-induced velocity. Vort.ex filament met.hods 
. I ; 

are a proper numerical t.ool for t.his st,udy. Therefore, we will focus our attent.ion on 

vort.ex filament methods.' The effe~ts of numerical param~ter's, tl~e ch~ices of core 

functions, an'ci 'numerical methods for solving the time evolution ordin'a~'Y differential 
• I , I ~. ; .' I ' . ~" : ~ I 

equation on accuracy and stability of the vortex filament methods are investigated 
• t • ~ " ~ 

in order to distinguish physical vortex stretching from the stretching caused by nu-

merical instability. We also examine the conserved quantities such as kinetic energy, 

linear impulse, and total vorticity for various numerical parameters, core functions, 

and time integration methods. 

A controllable single smo~th initial wave datum is impor~ant for the study 

of wave propagation along a vortex tube. A solitary wave' solution fo~ Localized 

Induction Approximation (LIA) meets such a requirement. The so-called LIA was , 
introduced to study a very thin vortex filament (see Arms & Hama [3], Hama [42,43]' 

)t • 
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and Buttke [12]). In the study of, LIA, Betchov [11] derived the so-called intrinsic 

equation and discovered the helicoid wave on a thin vortex filament by solving this 

equation. Later, Hasimoto [44] proved that the intrinsic equation can be reduced to a 

nonlinear Schrodinger equation and gave an analytic soliton solution for this equation. 

However, a vortex evolving according to the Betchov intrinsic equation does not 

stretch or contract [12] whereas study on three-dimensional vortex dynamics shows 

that vortex stretching is a common phenomenon. We like to know whether a solitary 

wave, with velocity induced by the Biot-Savart law, can propagate in a vortex tube 

for a long time without stretching. If there is a stretching in a vortex tube evolution, 

what causes the stretching? 

Recently, Chorin [18, 20, 21, 22,23] has studied vorticity/energy relations. 

His studies suggest that the folding of vortex lines or the development of hairpin 

structures in turbulent flow are required by energy conservation. To examine this 

idea it is critical to compute energy correctly. There are two parts in the computed 

energy: one is called the interaction energy, the other is called the self-energy. Chorin 

[18, 20, 21] computed the first part by a discretization of a formula due to Lamb [52]. 

The second part is computed by scaling laws developed by Chorin [18, 19, 20, 22, 23, 

24]. We will examine these computations and use them to check our vortex method 

computation. 

For convergence of numerical scheme and physical validity, we use several 

filaments to simulate part of a "fat" vortex tube. Some techniques to treat the 

truncated ends of a part of a vortex tube will be given in this thesis. 

The thesis is organized as follows: 

In Chapter 2, we review the physical background and the derivation of vortex 

filament methods. The details of the computational scheme are given. 

In Chapter 3, we summarize results of the LIA study of a thin vortex fila

ment. Derivations of the intrinsic equations and of Hasimoto's solution are reviewed. 

The equivalence of the Betchov intrinsic equation and the nonlinear Schrodinger equa

tion is proved. 

In Chapter 4, following Chorin's work [18, 19, 20, 21, 22, 23, 24], we study 

the conservation of energy and the scaling laws for self-energy. For constant core 
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function, we derive a new formula for computing self-energy. We also study certain 

properties of this new formula. The numerical schemes for other diagnostics, such as 

total vorticity and linear impulse, are given in this chapter. 

In Chapter 5, we study the calculation on a part of a vortex tube. The 

treatments at truncated ends are given. 

In Chapter 6, we present the numerical results with initial solitary wave 

data. We study the effects of the numerical methods for solving the time evolution 

ordinary differential equation, the core functions, core size, the time tolerance control 

constant, number of filaments used to simulate a vortex tube, the distance between 

filaments, the pattern of placement of filaments, and the circulation of each filament 

on the accuracy of computational results and on vortex stretching (both numerical 

and physical). 'vVe also study the effect of torsion of the initial solitary wave data on 

vortex stretching. We attempt to determine how vortex stretching starts and whether 

a solitary wave can propagate for a long time in a vortex tube with velocity induced 

by the Biot-Savart law. Vve will show that core size and torsion of perturbation 

wave are the two most sensitive factors in studying vortex stretching: a small torsion 

of wave will cause a discontinuity on the velocity component in the direction of the 

wave propagation. The long-time propagation of a wave of constant shape on a vortex 

tube will be discussed. Results suggest that the long-time propagation of a wave of 

constant shape on a vortex tube is possible. 
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Chapter 2 

Physical Background and 

Numerical· Schemes 

2.1 Physical Background 

We consider unbounded, incompressible, inviscid fluid flows. The motion of 

such flows is described by Euler's equations 

Du au 
- = - + (u . V')u = - V' P 
Dt at 

V'·u=O 

(2.1 ) 

(2.2) 

where u(x,t) = (u,v,w) is the velocity field, x = (x,y,z) is the position, t is time, 

V' = (a/ax,a/ay,a/az) is the gradient operator, and P is pressure. Conservation of 

mass and incompressibility give equation (2.2). Equations (2.1) express the conser

vation of momentum for inviscid fluid of constant density. (See Chorin & Marsden 

[27, p. 18] or Batchelor [4, p. 75] for details of the derivation of these equations.) 

Define the vorticity w as the curl of velocity, i.e. 

w=V'xu (2.3) 

We can write equations (2.1) in terms of vorticity by taking the' curl of equations 

(2.1 ), 

~~ + V' X ((u . V')u) = 0 (2.4) 
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Figure 2.1. Portion of a vortex line. 

Note that \7 x \7 P = 0 for any scalar function P. The second term in the left side of 

equation (2.4) can be written as follows, 

\7 x [(u . \7)u] = (u· \7)w - (w . \7)u + (\7 . u)w = (u . \7)w - (w . \7)u (2.5) 

The last equality holds by equation (2.2). Substituting equation (2.5) into equation 

(2.4), we have the vorticity transport equation 

ow - + (u· \7)w = (w· \7)u at 
where (u . \7)w is the convective term for fluid. 

(2.6) 

Comparing equations (2.6) with the evolution equations for a material line 

element 81 given by Batchelor [4, p. 133] 

081 7ft + (u . \7)81 = (81· \7)u (2.7) 

we see that vortex lines move as material lines, where a vortex line is defined as a line 

in the fluid whose tangent is everywhere parallel to the vorticity vector. In a fluid, a 

materialline consists of the same fluid particles and move with them in a fluid. The 

term (w . \7)u corresponds to the changes in the vortex lines that come partly from 

rigid rotation of the line element due to the component of 8u normal to wand partly 

from the stretching or the contraction of the line element due to the component of 

8u parallel to w , where 8u is the velocity of the fluid at a point Q relative to that 

at a neighboring point P, both Q and P being on the vortex line (see Figure 2.1). In 

r~ 

'.I 
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two-dimensional incompressible, inviscid flow; this term vanishes. Therefore, vortex 

lines in two-dimensional inviscid flow do not stretch. 

For any well-defined integrable function fJ(x, t), we know 

d i P i P 
DO i P 

-d fJdl = -. dl + fJ( dl . \7)u 
t Q Q Dt Q 

(2.8) 

where the integration is along a material curve from point P to Q. (See Batchelor [4, 

p. 133] for a detailed derivation of equation (2.8).) 

Vortex lines through every point of a given closed curve Ct, where t repre

sents the curve moving with the fluid, form a tube called a vortex tube. We define 

the circulation of a vortex tube as 

f = 1 u· dl 
JOt 

Take the derivative of f with respect to time, 

where 

..if 
dt 

..i1 u.dl 
dt Jet 
1 (DD

U
). dl + 1 u· ((dl· \7)u) Jet t Jet 

- 1 \7 P . dl + 1 F· dl Je, Jet 

F = ( ~. ::~ ) 

u·ozu 

A simple computation shows that F is curl free; i.e., 

\7xF=O 

Therefore, by Stokes' theorem we have 

d 
-f=O 
dt 

(2.9) 

(2.10) 

(2.11) 

i.e., the circulation of a vortex tube of inviscid flow is constant in time. This is the 

well-known Kelvin circulation theorem [47]. 
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By Stokes' theorem, the circulation can be written as 

r = j w ·dA 
5 t 

(2.12) 

where dA = ndA is an element of the open surface St bounded by the closed curve 

Ct. 

Consider a piece of vortex tube with two end cross-section faces S1 and S2 

and the surface of the tube St. Denote the boundaries of S1 and S2 as C1 and C2, 

respectively. Let Wt be the region of this piece of tube with boundary E = S1 US2USt . 

By Gauss' theorem and t.he fact \7 . w = 0, 

o = f \7. wd~! = f W· dA = j w . dA + j W· dA 1wt 12:. 51 U52 5 t 

since w . n = O. 

Thus, 

j w ·dA= 0 
5t 

o = j w . dA = j w· dA + j w· dA = f u· ds - f u· ds 
~U~ ~ ~ k1 1~ 

(2.13) 

The last equality holds by Stokes' theorem and consideration of the normal directions 

of S1 and S2' Equation (2.1:3) shows that the circulation of a vortex tube is the same 

for any curve encircling the vortex tube that is the statement of Helmhotz' theorem 

(see Chorin & Marsden [27, p. 36]. We call the circulation of a vortex tube t.he 

st.rength of the tube. 

From equat.ions (2.2) and (2.3), we set 

(2.14) 

where l/f is called a vector potential to be determined. Thus 

(2.15) 

If we assume that l/f is divergence free, i.e. \7. l/f = 0, then 

(2.16) 
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The solution of equation (2.16) in terms of w is 

!Ii"(x, t) = G * w = j G(x - x')w(x')dx' (2.17) 

where the volume integral is taken over the region occupied by the fluid, x' is the 

position of the volume element dx', and G(x) = 1/(41rr) is the fundamental solution 

for the Laplace operator, where r = Ixl and * denotes convolution. One can easily 

check that the !Ii" expressed by equation (2.17) is divergence free. Taking curl of !Ii" , 

we find 

u = V' x !Ii" = V' x (G * w) = j K(x - x') X w(x')dx' (2.18) 

where 
T oG x 1 x 

J\ (x) = -(Ixl)- = ---
or Ix141r r3 

is known as a kernel. We write 

o K(x) = I«x)x = -~3 ( ~ 
41r1' 

-y 

-z 

x 

then 

(2.19) 

A singular filament C is a curve on which the vorticity is concentrated with 

zero vorticity elsewhere in the fluid. We denote its strength r -the circulation num

ber. Let vector 81 represent a material line element determined by the equation 

We have· 

d81 dt = 81 . V'u + 0(1811) 

( wdV = r 81 Jsv 
(2.20) 

where 8~1 is a nearly cylindrical piece of element on the filament curve with negligible 

cross-section diameter. Thus equation (2.18) becomes, at time t and position x, 

u(x, t) = r ( K(x _ x') X dl(x') = _~ { (x -I x') x ,~l(X') 
Jc 41r Jc x - x 

(2.21 ) 
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Equation (2.21) is the well-known Biot-Savart law. Notice that equation (2.21) di

verges with rate 1jlx - x /12 if x is a point on curve C (see Batchelor [4, p. 94]). 

Moreover, it will be shown in the next chapter that a singular filament with nonzero 

curvature has infinite self-induced velocity. 

2.2 The Smoothed Kernel 

The difficulties arising from equation (2.21) for a singular filament force us 

to find a way to smooth out the singularity in this equation. Following Beale & Majda 

[10] (who have followed an idea of Hald [37] for two-dimensional vortex methods), we 

replace the kernel ]( by ](0- = ]( * 'l/Jo-, 'l/Jo-(x) = 0'-3 7p(~), where 0' is a parameter to 

be chosen. We assume that 'l/J satisfies the conditions 

(i) 'l/J is smooth and rapidly decreasing; i.e., 

(2.22) 

for every muti-index f3 and every integer j; 

(ii) 

J'l/J(x) dx = 1 (2.23) 

(iii) 

J xf3'l/J(x) dx = 0 1:::; 1131 :::; m - 1 (2.24) 

m is an integer. 

The functions 'l/Jo- are called core functions or cutoff functions; parameter 0' is known 

as core size or cutoff size. 

Condition (i) implies that the 7P and its Fourier transform are smooth and 

rapidly decreasing. Condition (iii) always holds for 'l/J = 'l/J(r), r = Ixl with m even. 

Recall equation (2.18), and let Go- = G * 'l/Jo-. Then 

( )) J BG 0- I I X - x' I I 

](0- * W (x = a;:-( x - x I) Ix _ x'I x w(x )dx 
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I.e., 
oGq x 

f{q(X) = Tr(lxl)~ 

To find a simple expression for f{q, let us consider a = 1 and assume 

Then 

I.e., 

We try to find the relation between f and 'ljJ. We expect 

oGl oG 1 
- rv - = - --, as l' -t 00 or 01' 411"1,2 

1'(1') 
'ljJ = 411"1,2 

To have conditions (i)-( iii) hold for 'ljJ, f must satisfy 

(1) f(r)/r3 is a smooth function of 1'2 

(2) f ( 1') -t 1 as l' -t 00 

(3) Iooo f'(r)r 2k dr = 0 2 ~ 2k ~ Tn - 2 

(4) IDi f(r)1 ~ Cjr-1
-

j , l' 2: 1, for each j 2: 1 and a. fixed l 2: Tn + 1 

Choosing f that satisfies the above requirements, we get 

Therefore, 
1 

I<U(x) = - 411"r3f(r,/a)x 

There are some explicit expressions for f and 'ljJ: 

for Tn = 2, f(r) = 1 _ e-r3 

f(r) = tanh 1'3 

for Tn = 4, f4(r) = f(r) + trf'(r) 

'ljJ(r)=4: e-
r3 

1jJ(1') = 437rsech2r3 

'ljJ(4) = s:r2 [3f'(r) + rf"(r)] 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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Figure 2.2. Four core functions. 

where f(r) is a function with m = 2. (See Beale & Majda [10].) We plot the following 

four core functions in Figure 2.2: 

Core function 1 for 1 _ e- r3 

Core function 2 for tanh r3 

Core function 3 for 1 + (-1 + ~r3)e-r3 
Core function 4 for tanh 1,3 + ~r3sech 2r3 

Replace J( with I(, in equation (2.21). We find 

ucr(x, t) = r r J(cr(x _ x') x dl(x/) = -~ r f( Ix - xII) (x I x') X ~l(x/) (2.30) 
le 471" le (7 x - x' 

Let us try to get equation (2.30) from 

By the property of convolution, 

(2.31 ) 

. . 
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where 

Wa = 'fa * W = r 'fa (X - x')w(x')dx' JR 3 
(2.32) 

Note that we must perform this operation with caution since not all conditions re

quired in the distribution theory (see, e.g., Rudin [61]) hold here. Nevertheless, this 

operation is valid here subject to a nonregular approach of proof (see Hald [40]), which 

is not a topic of this thesis. Thus, the cross section of the filament with vorticity Wa 

does not vanish, and the radius of the cross section is determined by a. Remember 

that 

where the scalar function 8(x) is the so-called Dirac-function. Vie can write 

for a singular filament. 

w(x) = r 8(x - x')w(x')dx' JR3 
(2.33) 

By Helmholtz' theorem, the direction and the magnitude of w in a material 

element with volume 8V change with time in the same way as the direction and 

magnitude of the vector 81 representing a material line element that at t = 0 was 

chosen to be parallel to the local vorticity; i.e., 

w(t) 
Iw(O)1 

81( t) 
181(0) 1 

Recall equation (2.20), w(0)8V ~ f81(0). Therefore, 

ICa(t) * w(t) = J J(a(x(t) - x'(t)) X w(x'(t))dx'(t) 

f fc I<a(x(t) - x'(t)) x dl(t) (2.34) 

This is ~quation (2.30). As we can see, this approach gives some indication of physical 

meaning of 'fa and a. 

Now we can start to construct our numerical scheme. 

2.3 Vortex Filament Methods 

Let us consider first the evolution of an isolated thin tube of vorticity, or 

vortex filament with strength r. We divide this filament into small pieces or segments. 
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For the jth segment, the two ends are points Xj and Xj+1' Let 8lj = Xj+1 - Xj denote 

a vector element of length of jth vortex segment that lies in the volume element 8Vj. 

Thus equation (2.30) can be written as 

uu(x, t) = _~ f: { (x - x') X dl(x
/
) f( Ix - xII) 

411". Jol Ix - x /
1
3 cr J=1 J 

(2.35) 

Notice that we can only carry out computation for the filament with finite length 

in reality. This is no problem for the periodic case, but one must be careful for the 

non periodic situation. 

We require 18lj l < h for all j where h is a predetermined small number. 

Thus 
{ (x - x') X dl(x/) f( Ix - xII) ~ rj x 8lj f(j) 

Jol j Ix - x /
1
3 cr 1'; cr 

where 

rj x - HXj+1 + Xj) 

rj Irj I 

Insert equation (2.36) into equation (2.35), 

( . r~rjx8Ijf(rj) 
U u x, t) = - - L...J 3 

411" j=1 1'j cr 

Knowing U u , solving the ordinary differential equations 

dx 
dt = uu(x, t) 

(2.36) 

(2.37) 

(2.38) 

we can determine the position for Xj at the next time step t + flt. There are various 

numerical methods for solving equation (2.38), we have used the first-order Euler's 

method, the second-order Heun's method, and the fourth-order Runge-Kutta method 

in our study. The algorithms are 

Euler's method 

Xi(t + flt) = Xi(t) + fltuu(Xi, t) 

Modified tmpezoidal method (or second-orde1' HeU1~'s method) 

X* 
1 

Xi( t + flt) 
Xi(t) + fltUu(Xi, t) 

Xi(t) + tflt(Uu(Xi' t) + u(xi, t)) 
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Fourth-order Runge-[( utta method 

(1 ) 
x· , 

(2) 
x· , 

(3) 
X· , 

Xi(t) + ~tU",(Xi' t) 
Xi(t) + ~tu".(x~1),t + ~t) 
Xi( t) + 6.tU".(X~2), t + ~t) 
Xi(t) + ~t[U",(Xi,t) +2u".(xF),t + ~t) 

+ 2U".(X)2), t + ~t) + u".(xP), t + 6.t)] 

As we mentioned on page 6 in Section 2.1, the filament stretches as the flow 

evolves; thus 81j and the amount of vorticity carried by this vortex element grow. If 

181j I > h, we split this segment into two from the middle of 81j with length 181j 1/2 to 

maintain the partition fine enough for accurate computation. 

We also need to control our time step 6.t since velocity u". could change 

dramatically for the change of curvature, as explained in Section 2.1. The requirement 

for the choice of 6.t at step n is given by 

6.t m~x luj I ::; C 
J 

(2.39) 

where C is a given constant, u'] = u".(Xj(tn), tn), and tn is the time at step n. 

From the consideration of accuracy of the scheme, we require a = hq , 0 < 

q < 1, or simply a / h > 1 (see Beale & Majda [8, 9], Anderson & Greengard [1], and 

Greengard [35]). 

For the scheme given above, we take the cutoff parameter a as constant for 

the whole filament. It is also possible to have a = a(s, t); i.e., we can choose aj for the 

jth segment and let each aj vary to conserve volume of the corresponding segment. 

I.e., 

(2.40) 

We can also attempt to conserve volume by varying a at each time step such that 

(2.41) 
J j 

From equation (2.33), the vorticity distribution for a singular filament can 

be written as 

w(X, t) = L lVj b(x - x'(t))w(x'(t))dx'(t) 
J 

(2.42) 
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and the vorticity distribution for the corresponding nonsigular thin filament is 

W<7(x, t) = L lv 'l/;<7(x - x'(t))w(x'(t))dx'(t) 
J ) 

r L 1 'l/;<7(X - x'(t))dl(t). 
j 61j 

~ r L 'l/;<7( rj( t) )8Ij( t) 
j 

This is approximately equal to the velocity field described by equation (2.37). 

From equation (2.43), 

W<7(x,O) = r L 1p<7(rj(0))8Ij (0) 
j 

. (2.43) 

(2.44) 

Thus the initial value needed to start our computation is given as the initial vorticity 

distribution. 

So far, we have completed the description of algorithms of the vortex filament 

methods for an isolated thin filament. In real flow, we must use several filaments to 

simulate a thick vortex tube. The first reason is that 'l/;<7 is an approximation of 

the Dirac-function, and the approximation will be inaccurate if we take (7 too large. 

Secondly, the cross section of a numerical filament is always a disc, whereas this is 

not true in real flow. The cross section of a real vortex filament or tube should 

be deformed as the flow evolves, and the deformation may be seen by using several 

filaments to simulate a vortex tube. (See WidnaJl [69], Widnall et ai. [70], Widnall 

& Tsai [71], and Knio & Ghoniem [49].) 

For several filaments, e.g. A1 filaments, we can modify equation (2.34) as 

follows: 

(2.45) 

Notice that for different numbers of filaments, the circulation and core size may be 

chosen to be different. Equation (2.37) can be modified as follows: 

(2.46) 
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where a = am if X is not on any given filamnet and a = (<7~~o1 )1/2 or a = (ama/)1/2 

if x is on the lth filament; am may also be varied with time or with arclength and 

time to conserve volume . 
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Chapter 3 

The Self-Induction Approximation 

3.1 LIA and Betchov Equation 

In this chapter, we follow Betchov [11], Hasimoto [44], and Buttke [12] to find 

the velocity induced by a filament itself near a point 0 on the filament. Parametrize 

the vortex line (filament) by arclength s; i.e., r = r( s), and assume s = 0 at the point 

O. Take the derivative of r, 

dr _ (dx dy dz) _ t 
ds - ds' ds 'ds -

where t is the unit tangent vector. Define the curvature I'C of the filament by 

dt 
-=I'Cn 
ds 

I.e., 

I'C = Idtl 
ds 

where n is the unit normal vector. Define the unit binormal vector b = t x n. The 

unit vectors t, n, and b form an orthonormal coordinate system at all points along 

the curve r(s). At s = 0, we denote these coordinate vectors as to = t(O), no = n(O), 

and bo = b(O). Let ro = r(O), for some small positive value L, -L < s < L, 
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no 

r(s) 

Figure 3.1. The curve r(s) near point 0 in Frenet-Serret coordinate system. 

(3.1 ) 

Thus a curve near 0 lies roughly on the t-n plane, with no component along the 

binormal if we drop the terms with order equal to or higher than S3 (see Figure 3.1). 

Similarly, 

Pick a point x near 0 but off the curve r(s) to be x = yno + zbo. Note that the 

variable x' in equation (2.21) is actually r here, and dl(x/) = t( s )ds; take the point 

o as origin in Cartesian coordinates, and, after dropping terms of order equal to or 

higher than S3, we find 

( ') ys2 ( ") ZS2 ( ") K,S2 
X - X x t ~ -yto + zno - ZK,sto + - no x to + - bo x to - -bo 2 2 2 

Ix _. x /
1
2 ~ y2 + Z2 + s2(1 - yK,) = rl + s2(1 - yK,) 

where ri = y2 + Z2. Let y = e cos</> and z = (! .sin</>; then the integrand of equation 

(2.21) can be written approximately as 

(bocos¢ - nosin¢)e- l + toK,(sin¢ + bo~ - ~[(no X t~)cos¢ + (bo x t~)sin¢l 
[1 + (2(1- (!K,cos¢)l~ 

where ( = sj e. As e --+ 0, 

ef [(no X t~)cos¢ + (bo x t~)sin¢l --+ 0 
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Because (~ is an odd function 
(1+(2) 

J

Lle ( 
-~~3d( = 0 

-LIe (1 + (2)2" 

We ignore the contribution to the velocity at 0 arising from parts of the filament 

outside the range lsi < L since this part of velocity is bounded in magnitude. Then 

for 1. ~ 00. 
e 

u(x, t) 
r JLle (bocos<p - llosin<p)e-1 + bo~ 

~ - 3 d( 
471" -LIe (1 + (2)2" 
r . rK L 

-(bocos<p - llOS11l<p) + bo-ln - + 0(1) 
271"e 471" e 

(3.2) 

The first term represents the circular motion around a straight filament, and 

the second term gives the velocity depending on curvature K of the filament. After 

eliminating the first term, we have 

(3.3) 

This is called t.he self-induction approximation or localized induction approximation 

(L1 A). For nonzero curvat.ure, 

ax L 
at --:-t 00, as r; ~ 00 

If we consider ,:: log; as a constant, we can write equation (3.3) as 

ax r L dto 
- = (-In-)to x-at 471" e ds 

since Kbo = to x (Kllo) = to x *". Let. i = t,:: log;. We find 

ax dto 
-A = to x - = Kbo at ds 

After dropping t.he "hat" and subscript, we get 

ax dt - = t x - = Kb at ds 

(3.4) 

(3.5) 
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We designate I == %8 and· == %t. Thu~ equation(3.5) can be written as 

x = txt' = n:b (3.6) 

Since x' = t, and x" = t' = n:n, then 

where T is the torsion of the curve defined by 

T = -b'· n (3.7) 

Since t . n = 0, 

o = t' . n + t . n' = n: + t . n' 

that is, 

t· n' = -n: 

From b . n = 0, we get 

o = b' . n + b . n' = -T + b . n' 

that is, 

b· n' = T 

Therefore 

n' =< t . n' > t+ < n . n' > n+ < b· n' > b = -d + Tb (3.8) 

where we use the fact that n . n' = o. ]:<'rom t . b = 0, we find 

o = t' . b + t . b' = n:n . b + t . b' = t . b' 

With -T = n . b', and remembering that b . b' = 0, we get 

b' = -Tn (3.9) 

We have the well-known Serret-Frenet equations, which consist of equations (3.8) and 

(3.9) and 

t'= n:n (3.10) 
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If we take the derivative with respect to s for equation (3.6), 

By the definition of Ii:, 

Thus, 

that is, 

or 

i = (x)' = Ii:'b + li:b' = Ii:'b - Ii:Tn 

2t' . i' = 2t' . (Ii:'b - Ii:Tn), 

21i:n· [Ii:"b - Ii:'Tll - Ii:'Tll - Ii:T'n - Ii:T( Tb - Ii:t)] 

2 Ii: ( -21i:'T - Ii:T') 

-2(1i:2)'T - 21i:2T' 

-2 O(1i:
2
T) 

as 

ali: , , 
- = -21i:T -Ii:T at 

Equation (3.11) is the jil'St intrinsic equation, derived first by Betchov [11]. 

22 

(3.11) 

(3.12) 

Now let us derive the second intrinsic equation, also due to Betchov. Start 

from the formula 1i:2T = t . (t' x t"). Thus, 

Considering 

t 

Oli:
2

T = i . (t' x til) + t . (i' x t") + t . (t' xi") at 

i' 1i:2Tt - (21i:'T + Ii:T')n + (Ii:" - Ii:T2)b 

i" (41i:'Ii:T + 21i:2T')t + (1i: 3T + Ii:T 3 
- 31i:"T - 31i:'T' - Ii:T")n + (Ii:'" - 31i:'T2 - 3Ii:TT')b 
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we find 

Thus 

t' X til 

1;' X til 

t' X i" 

_(",,,,'r2 + ",2rr' + ",'",II)t - /\,2",lIn - (",2",'r + ",3 r ')b 

"'( ",III _ 3",' r2 - 3",rr')t - '" (4/\'",' r + 2",2r ,) b 

On the other hand, using equation (3.11), we find 

a",2 ar _r+",2_ 
at at 

tJ",2 r 2 ar 
-2--r+ '" -

as at 

(( 2)' 2')' 2 ar 
- 2 '" r + '" r , T + '" at 

If we combine equations (3.13) and (3.14) 

that is, 

The second intrinsic equation is 

~[(",2)1I + ~",4 _ 4(K,')21' 

~[(",2)'" + ~(K,4)' _ 4((",')2)'] 
2 2 

23 

(3.13) 

(3.14) 

(3.15) 
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or 
aT "," 1 

( 2 2)' - = --T +-'" at '" 2 
(3.16) 

Let us seek some special exact solutions for equations (3.16) and (3.12). We consider 

only the case where torsion T = constant and assume ",' # 0 in this thesis. Thus 

equation (3.16) becomes 

Integrating this equation, we find 

where A is an integral constant that may depend on t. It is equivalent to 

or 

Integrating the above equation again, we get 

where C is a. constant. It can be written as 

Integrating the positive branch, we find 

Let us assume C = 0; then 

. 2 A1
/

2 + J A - ",2 

S - f(t) = --A-l/-2 In ---",---

A 1 / 2 
Let /3 = -2-; then 

"'(8, t) = 2/3sech{/3[s - f(t)]} (3.17) 
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Taking the derivatives of equation (3.17), we find 

_2132 jtanh{j3[s - f(t)]}sech{j3[s - f(t)]} 

_2132 tanh{j3[s - f(t)]}sech{j3[s - f(t)]} 

From equation (3.12) and 7 = constant, we get 

0'" I - = -2"'7 ot 
Thus, 

f = 27 

Integrating the above, we find 

f(t) = 27(t - to) 

Let to = 0 and 27 = c. VVe finally get 

",(s, t) = 2j3sech[j3(s - ct)] (3.18) 

\Ve will see in the following section that the intrinsic equations (3.12) and 

(3.16) are equivalent to the nonlinear Schrodinger equation. 

3.2 Nonlinear Schrodinger equation and Hasimoto 

Solitary Wave 

Hasimoto [44, 1972] reduced the self-induction a.pproxima.tion [equation (3.5)] 

to the nonlinear Schrodinger equation 

(3.19) 

by the following transformation 

(3.20) 

The detailed derivation can also been found in the book by Lamb [.51]. 
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In this section, we prove that the nonlinear Schrodinger equation is actually 

equivalent to the Betchov intrinsic equations. 

To show this, we integrate the second intrinsic equation (3.16) with respect 

to s 

i s K," 1 1 
id( = - - T2 + _K,2 + -A 

o K, 2 2 

where A = A(t). We can write this equation as 

is . dl" " 2 1 3 1 A K, T" = K, - K,T + -K, +-K, 
o 2 2 

(3.21 ) 

With the help of the first intrinsic equation (3.12), we find 

. . 18

• dl" (2 I ') '(" 2 1 3 1 A) K, + ZK, T" = - K, T + K,T + Z K, - K,T + -K, +-K, 
o 2 2 

or 

1 ( . 'is. dl") '2' " " 2 1 3 1 A -:- K, + ZK, T" = z' K, T + ZK,T + K, - K,T + -K, +-K, 
Z 0 2 2 

(3.22) 

We multiply both sides of equation (3.22) by exp(i J; TdO. Then 

lOiS -:-~[K,exp(i TdO] = 
Z ut 0 

(3.23) 

Using the transformation [equation (3.20)]' we get the nonlinear Schrodinger equation 

(3.19). Note that every step is reversible. Thus the nonlinear Schrodinger equation 

is equivalent to the Betchov intrinsic equations. 

Then 

To eliminate A from equation (3.19), let 

W = W(s, t) = 'IjJ(s, t) exp[_i r A(Od(] 
210 

~ oW = 02W ~WIWI2 
i at Os2 + 2 

(3.24) 

," 
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We want to determine the actual shape of the curve that has curvature given 

by equation (3.18) with constant torsion T. This has been done by Hasimoto [44]. 

From equation (3.9), 

b" , = -Tn 

From equation (3.8), 

Thus, 

that is, 

Taking the derivative with respect to s, we find 

Tt' = [~(b" + T 2b)1' 
K, 

By equation (3.10), 

that is, 

[2~Coshf3e(b" + T 2b)]' + 2f3sechf3eb' = 0 

where e = s - ct. Equation (3.25) can be written as 

~b ~b ~ 
-1 3 + tanh1]-d 2 + (T2 + 4sech21])-1 + T 2tanh1]b = 0 
(1] 1] C1] 

where 1] = f3e and T = T / 13· 
Define 

db 
B = d1] + tanh1] b 

We can transform equation (3.26) to 

d2 B 
-d 2 + (T2 + 2sech217)B = 0 

17 

which has the trivial solution B = 0 and two linear independent solutions 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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where e_ and e+ are constant vectors. The corresponding solutions of equation (3.27) 

are 

where eo is a constant vector. 

eosech7] 

e± (1 - T2 =F 2iTtanh7] ) e±iT'1 

(3.29) 

(3.30) 

To have real h with Ihl = 1 satisfying the condition that the filament parallel 

to the x-axis at infinity, we choose the linear combination of ho, h+, and h_ as 

b [ 2f 1 sech~ +" [ : 1 (1 - T' - 2iTtanh~) e;S 

+" [ ~t 1 (1- 1" + 2iT tanh~) e;e 

[ 
1'[2T tanh~ c:: ~~h(: - 1") sin 0] 1 
f1[2Ttanh7] sin 8 + (1 - T2) cos 8] 

(3.31) 

where f1 = Hlp and 8 = T7] + O"(t). The function O"(t) is determined by equation 

(3.5). Use the Serret-Frenet equations (3.8) and (3.9) and x' = t, 

[ 

2fl sech7] tanh1] 1 
11 = -(1 - 2fl tanh27]) cos 8 + 2pT tanh7] sin 8 

-(1 - 2p tanh2 7]) sin 8 - 2f1T tanh7] cos 8 

(3.32) 

[ 

1 - 2fl sech
2

7] 1 
t = -2f1 sech17 [tanh7] cos 8 + T sin 8] 

-2f1 secl17] [tanh1J sin 8 - T cos 8] 

(3.33) 

and 

[ 

S - 2~ tanh1J 1 
x = 2~ sech1J cos 8 

2 ~ secl17] sin 8 

(3.34) 
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If we substitute equations (3.18), (3.31), and (3.34) into equation (3.5), we get 

d(}'(t) = f.l2 _ T2 
dt fJ (3.35) 

Integrating equation (3.35) and defining (}'(O) = 0, we find 

(3.36) 

There is a solitary wave moving along the curve given by equation (3.34). Figure 

3.2 shows that the Ivl determines the amplitude of curvature K, and increasing ITI will 

increase the speed of wave and decrease the amplitude of the wave. In a real-time 

scale, the soliton speed along the x-axis is V;;[lne:-) - 1]. For T = 0, the soliton 

speed on the x-axis should be zero, but the velocity components in both the y and 

z directions are not zero; thus the soliton shape changes with time such that the 

solitary wave oscillates along the x-direction (Figure 3.3). 

3.3 Comments on the LIA 

The localized-induction approximation ignores several important aspects of 

the dynamics of real concentrated vortices (see Aref & Flinchem [2] and Leibovich & 

Ma [53]). 

First, vorticity stretching is absent in this approximation (see Buttke [12]). 

However, numerical simulation shows that stretching must happen for a thin filament 

in incompressible fluids. Several authors have made new asymptotic equations to 

capture the stretching phenomenon for the motion of a thin filament (see Aref & 

Flinchem [2], Klein & Majda [48], and Callegari & Ting [13]). 

The second defect is that the deformation of the vortex core is not repre

sented since we have assumed that the term ,::. In ~ is constant. Also, the values of L 

and (} can not be determined a pl'ion:, although the correct time scaling depends on 

these values for equation (3.3). 

As we have said, this approximation is locaL It totally ignores the interaction 

between filaments and between two portions of a filament approaching each other 

closely. 
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TAU 3 . 0 0 V N U 3 . 0 0 TAU 2 . 0 0 V N U 2 . 0 0 

Figure 3.2. Perspective VIews of a solitary wave movmg along a filament. The 

parameters T = 3.0 and 1/ = 3.0 are for the left figures; T = 2.0 and /J = 2.0 are for 

the right figures. 

• 
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., 

Figure 3.3. Perspective views of a solitary wave motion with T = O. 
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Chapter 4 

Energy Conservation and Other 

Diagnostics 

4.1 Some Invariants of Euler's Equations 

We use several invariants of Euler's equations to check the validity of our 

numerical schemes. They are the total vorticity 0, linear impulse I, and kinetic energy 

E of'a vortex system defined by 

J wdV 

I 1 J . 2" x X wdV 

E ~ J u· udV 

where we have assumed that the density is one. 

(4.1 ) 

(4.2) 

(4.3) 

For an unbounded flow with zero velocity and zero vorticity at infinity, 

for example, the closed ring, the total vorticity 0 is zero. The linear impulse I is 

independent of tirne. To see this, we write the vorticity transport equation (2.6) as 

ow ot = (w . \7)u - (u . \7)w = \7 X (u X w) ( 4.4) 

where we have used the facts that \7 . u = 0 and \7 . w = 0 and the vector identity 

\7 X (v X w) = (w· \7)v - w(\7 . v) - (v· \7)w + v(\7 . w) 

<. 
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Note that the integrating region is fixed in this case. Thus 

ell 1 J aw 1 J - = - x x -a dV = - x x [~x (u x w)]dV 
dt 2 t 2 

Expanding the integrand, performing integration by parts, and using the fact that u 

and w vanish at infinity, we find 

A simple computation shows 

uxw 

ell = Ju x wdV 
dt 

1 
-~(u· u) - (u . ~)u 
2 
~~(u, u) _ a(uu) _ 8(vu) _ a(wu) 
2 ax ay az 

( 4.5) 

( 4.6) 

where the last equality holds, since ~ . u = O. Thus the integral of equation (4.5) can 

be transformed to a surface integral that is zero because u = 0 at infinity. 

The kinetic energy is also conserved. By Euler's equations (2.1) and (2.2) 

and the same argument as above, 

dE 
dt 

J U· ~~ dV = - J ti . [~P + (u· ~)u]dV 
-J ~ . [(~u. u + P)u]dV = 0 

It is possible to find an expression for the total kinetic energy in terms of the 

vorticity distribution. Let tP be the function defined by the expression u = ~ x tP, 

with the constraint ~ . tP = 0, as in Chapter 2. From the vector identity 

(~ x tP) . u = tP· (~ x u) - ~ . (u x tP) = t/f. w - ~ . (u x t/f) 

we get 

E = ~ J tP . wdV - ~ J ~ . (u x t/f)dV (4.7) 

The second integral vanishes by the same argument as before. Thus 

E = ~ J tP· wdV (4.8) 

By equation (2.17), 

E = ~ J J w . Wi dV(x)dV(x' ) 
81l' T' 

( 4.9) 

This expression is also called the Lamb integral [52]. 
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4.2 Numerical Diagnostics 

We call the conserved quantities such as kinetic energy, linear impulse, and 

total vorticity the diagnostics of our numerical scheme because a good numerical 

scheme for solving the Euler's equation in unbounded region should preserve these 

quantities. The discretizations of these diagnostics are based on the same theoretical 

analysis used to obtain the schemes for vortex filament methods in Chapter 2. We 

adopt the same notations used in Chapter 2. Then, for a single filament, 

( 4.10) 

11 . 1'1 I - x x wdV = - x x dl 
2 w, 2 c, 

l' N 1 r N 
- '" X x dl ~ - '" a· X 81· 
2.~ olj 2 ~ J J 

(4.11) 

where aj = (Xj+1 + xj)/2. 

Similarly, for .M filaments, 

( 4.12) 
m=l j=l 

I ~ ( 4.13) 

where a;mJ = (x;~~ + x)mJ)/2. 
The energy computation is a little more complicated. From equation (4.9), 

E = ~ r r w(x)· w(x') dV(x)dV(x') 
87r Jv Jv Ix - x'i . 

~ t t r r. w(x)· w~x') dV(x)dV(x') 
87r i=1 j=l }OVi }6vj Ix - x I 
N N 

LLEij + LEii ( 4.14) 
i=1 jf.i i=1 

where 

Eij = _1 r r w(x)· w(x') dV(x)dV(x') 
87r }r,Vi }{j\fj Ix - xii 
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x 

Figure 4.1. A piece of a cylindrical vortex tube. 

Now we see that the total kinetic energy in a considered region consists of two parts. 

One is the sum of E ii , the self-energy, denoted by Es; the other consists of the 

remaining terms, the exchange energy, denoted by Ee. 

For these terms Eij in Ee , i :/ j, under the more restrictive condition: 

where rij is the distance between the midpoints of two segments 8l i and 81j . We may 

approximate Eij as usual, 

E .. - _'_J 'J ~ _' _J , J f .f·i.i. dl·· dl· fT· 81·· bl· 
'J - I ,-

87f 51. 51) Ix - x I 87f rij 
( 4.15) 

However, it is clear that the terms Eii in Es can not be approximated so simply, and 

Eii is also too large to be ignored. Chorin resolved this difficulty by using a scaling 

property of Ei; [18, 19, 20, 21, 22, 23, 24, 26]. 

4.3 Scaling Property and Computation of Self

Energy 

To derive the scaling property of self-energy, we consider a piece of a cylin

drical vortex tube with height £ and cross-section radius a lying on the coordinate 
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system given by Figure 4.1. We denote the total kinetic energy in this piece as E( G', f); 

I.e., 

E(G', f) = ~ ja dy j Ja
Ly2 

dz rf. dx ja dy'jJa
2

-
y

/

2 

dz' (dx'w(x). w~x') 
87r -u _Ju2 _y2 Jo -a -Ju2 _y/2 Jo Ix - X I 

( 4.16) 

Clearly, the vorticity W depends on the radius G' and can be written as Wa = (eu,O,O) 

in the given coordinate system. We will assume that the circulation Wa . nA( G') = 

euA(G') is fixed, where A(G') = 7rG'2 (one will see the justification later); that is, for a 

real parameter E > 0, 

or 

( 4.17) 

Thus, let x = EX and x' = EX', 

E( EG', d) = 

That is, 

( 4.18) 

Let E = 1; we then find 
a 

( 4.19) 

where T(f) = E(l,f) is a single variable function. 

To study the properties of T(f), we assume that the vorticity Wa is constant 

in space and time, e.g., wa(x) . wa(x') = C(G'). Then 

T(f) = C(l) r jdydz r jdY'dz' rf. dx (dx' 1 
87r JS(l) JS(l) J o J o V(x'-x)2+(y'_y)2+(Z'-z)2 
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where 5(0') = {(y,z): y2 + Z2 ~ O'
2}. Since 

re 
dx (dx' 1 

10 10 J(x' - x)2 + (y' - y)2 + (z' - z)2 

2£1n [f + Jf2 + (y' - y)2 + (z' - z)2] 

-2J12 + (y' - y)2 + (z' - Z)2 

+2J(y' - y)2 + (z' - Z)2 

-£1n[(y' - y)2 + (z' _ z)2] 

Let y = p cos 0, z = p sin 0, y' = p' cos 0', and z' = p' sin 0'. Then 

T(£) = C(l) r21r r21r 
dOdO' rt rt 

dpdp'pp' 
811" 10 10 10 10 
. {2£ ·In [f + Jr-'£2-+-p-2 -+-p-'2-_-2p-p-'-co-s-(O---0-')] 

-2J£2 + p2 + p,2 - 2pp' cos((} - (}') 

-£1n[p2 + /2 - 2pp' cos( () - (}')] 

+2Jp2 + p,2 - 2pp' cos(O - O')} 
Let us look at the asymptotical behavior of T( e). For f ~ +00, 

lim ;l(£~ C(l) r21r r21r 
dOdO' rt rt dpdp'pp' 

e--+oo {. n {. 411" 10 10 10 10 

. Inn 
{

. In [e + J~e2-+-p2-+-p-'2 ---2p-P'-co-s(O---O-')] } 

(--+00 In £ 

C(l) r21r r21r 
dOdO' rt rt dpdp'pp' .1 

411" 10 10 10 10 
1I"C(1) 

4 

That is, 

T( e) I'V constant· e In £ f 01' £ ~ +00 

(4.20) 

.(4.21) 

To find the asymptotical formula of T(£) for £ ~ 0, we take the derivative of T(f), 

dT C (1) r21r r21r 
dOdO' rt e dpdp' pp' 

d£ 811" 10 10 10 10 
. { 2ln [£ + Jr-'£2-+-p2-+-p-,2-_-2-p-p-' c-o-s(-(}---(}-')] 

- In [p2 + p,2 - 2pp' cos( () - (}') 1 } 
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Figure 4.2. Asymptotical properties of T(R.) with C(I) = 1. 

Then 

1
. dT 
Im-dR. £ ..... 0 

1
. 1 dT 
l!]idl 

Thus, 

o 

_C_(I_) {21r {21r dO dO' {I (
I 

dpdp'--;:::======P:::::P=' ==== 
471" Jo Jo Jo Jo J p2 + p,2 - 2pp' cos( 0 - 0') 

T( R.) rv constant· R.2 for e -+ 0 ( 4.22) 

. Figure 4.2 shows the asymptotical properties of T(R.), where C(1) = 1. For R. -+ 0, the 

asymptotical function is 0.6 R.2 • For R. -+ 00 the asymptotical function is 0.845 R.ln R.. 

Now the question is how to compute T(R.). Once we find a way to compute 

T(R.), we can make a data ba.se and use interpolation and equation (4.19) to compute 

E( 0-, e) for any given 0- and R.. Since the vorticity w depends on core structure, we 

should not assume w to be a constant vector. We must evaluate T(R.) from equation 

(4.16). Therefore we need to compute Wf7 first. From equations (2.43) and (2.27) and 

the definition of "pf7(x) at page 10 Chapter 2, 

r 1 1'(!. )dl(x') w f7 (x, t) = __ _...;;:..f7 __ _ 
471" Ct o-r2 
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( 4.23) 

where r = Ix - x'i and a; = I xz±~ +xz - x1 2. From the first equality, we can see that 

which justifies the assumption of equation (4.17). From equation (4.23), 

T( f!) ~ 1 ;~:3 fo21r dO fo1 dp foe dz fo21r dO' fo1 dp' foe dz' 

'""I:" ""I:" fl(a;)fl(ai)SL·sl j 

PP L...,=l L...J=1 a2a,2 
• J 

Vp2 + p,2 - 2pp' cos(O - 0') + (z - Z')2 
( 4.24) 

Using standard integration schemes such as the trapezoidal sum and Gaussian inte

gration methods (see, for example, Stoer & Bulirsch [68, pp. 121, 142]), we can easily 

generate a data base for various core functions. The self-energy can be computed as 

N 

Es = L (J'iT(f!;j(J'i) ( 4.25) 
i=1 

where f!i = 181J 
In Figure 4.3, We plot the T( f)s for the four core functions given in Chapter 

2, where the label in the picture is defined as follows: 

Core function 1 is 1 _ e- r3 

Core function 2 is tanh 1,3 

Core function 3 is 1 + ( -1 + ~r3) e _r3 

Core function 4 is tanh r3 + ;lr3sech2r3 
2 

In the future, the kinetic energy is given by the approximate expression 

h E - ""N "" E·· E·· - rirj sl;.sl j dE' . b t' (425) were e - L...i=l L...j'ti 'J' 'J - 81r rij an s IS gIVen y equa Ion . . 
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Figure 4.3. T( e)s corresponding to four core functions. 
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Portion of vortex tube W t moving with the flow 

Figure 4.4. A portion of a vortex tube. 
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4.4 The Limitations of the Diagnostics 

We studied the invariants of Euler's equations such as kinetic energy, total 

vorticity, and linear impulse. We also derived the numerical schemes for computing 

these invariants. It is important to note that all the derivation in previous sections 

in this chapter is carried out in whole three-dimensional space R3. However, in our 

study, we often take only a portion of space, for exa~ple, the x direction bounded and 

the y and z directions unbounded, for an unbounded flow (see Figure 4.4). The chosen 

portion moves with the flow. We therefore designate the volume of that portion as 

lVt = {(:r, y, z,): a(t) ~ x ~ b(t), -00 < y, z < +oo}. 

It is of practical interest to know whether the quantities discussed in previous sections 

are conserved in the restricted circumstance. 

It is clear that the total vorticity in the given portion IIVt does not vanish. 

However, the total vorticity in the given portion IVt is independent of time, 

d
d { wdV 
t }wt 

d 1 1 Du -d V x udV = V x -D dV 
t ~ ~ t 

- { V x (V P)dV = 0 
}Wt 

where we have used Euler's equations (2.1) and (2.2). 

Generally, in the restricted region IVt , the kinetic energy is not conserved, 

and equation (4.9) is not equivalent to equation (4.3) due to the nonvanishing bound

ary terms. We denote u = (ll,V,w)t, W = (~,(,,)t, and.:p- = (a,j3,7])t. Let us 

compute dE/dt on Wt , 

dE 

dt 
{ ~(u. u)dV 

}w, Dt 

11 Du - u·-dV 
2 w, Dt 

-~ { U· V PdV 
2 }w, 

-~ ( V(uP)dV 
2 }wt 

-~ JR2[(llP)I~~~ldA(Y, z) 
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where u = (u, v, w) and we used the fact that 

u . V P = V(uP) - (V . u)P = V(uP) 

since V . u = O. The last surface integration does not vanish unless u = 0 or P = 0 

at both planes x = a and x = b. Therefore the kinetic energy E in the restricted 

region Wt is not conserved generally. The second term of equation (4.7) can not be 

eliminated generally on the restricted portion Wt because 

r V. (u x w) = r 2 [(V1J - w,8)I~~~ldA(y,z) 
}Wt }R 

Thus, on the restricted portion ltVt , equation (4.9) is not equivalent to equation (4.3) 

generally. 

The linear impulse in the restricted region lVt is also not conserved generally. 

Let us compute dI/ dt, 

where 

and 

dI 1 D 1 . Dw - = -(x x w)dV = (u x w + x x -)dV 
dt W t Dt W t Dt 

r u x wdV 
}w, 

r x x Dw dV = r x x (w· V)udV 
}w, Dt }Wt 

Both the surface integration and the integration fWt x x (w . V)udV do not vanish 

generally. Therefore, dI/ dt =J. 0; that is, the linear impulse in the restricted region Wt 

is not conserved. 

For a straight filament lying on, or parallel to, the x-axis with the velocity 

field induced by itself, the discussion about kinetic energy and linear impulse in 

previous sections is valid for the portion within the region ltVt . In this case, y = 

constant, z = constant, U = 0, ( = 0, and I = O. Thus Vx = 0 and Wx = 0 from 
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the definition of wand (3 = 0, TJ = 0 by equation (2.17). With these facts and the 

assumption that u and w vanish at infinity, we can eliminate all of the boundary 

terms generated in our calculation as well as the integration fWt x x (w . \7)udV. 

This argument explains that in our numerical computation the kinetic energy 

E can remain constant as long as the perturbation waves stay far from the steady 

boundaries and start to vary once the boundaries are affected by perturbation waves. 

From the analysis given in this section, in the computation of a portion of 

a vortex tube moving with the flow, we know that the total vorticity remains a good 

diagnostic of a numerical algorithm; the kinetic energy can be used as a diagnostic 

of a numerical algorithm only if there is no perturbation near the boundaries of the 

considered region on the vortex tube, and the linear impulse cannot be used as a 

diagnostic of a numerical algorithm because any perturbation on the vortex tube in 

the considered region will change the linear impulse. 
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Chapter 5 

Calculations on Part of a Vortex 

Tube 

It is often convenient to calculate part of a (possibly infinitly long) vortex 

tube. To do this, we must truncate the uncomputed tails of the vortex tube. This 

Chapter discusses how this can be done. 

Consider first a straight vortex tube. Assume that the tube consists of a 

bundle of straight parallel filaments with equal circulation. To simplify the discus

sion, we assume that the straight filaments are parallel to the x-axis. Thus a plane 

perpendicular to these filaments should be parallel to the y-z plane. Denote a plane 

parallel to the y-z plane and passing through the point (x, 0, 0) on the x-axis by Px ' 

Thus Po is the y-z plane. We define the velocity center Cv (x) on the plane Px as 

the point where the y-z component of velocity is zero, as shown in Figure 5.2. There 

may be several velocity centers. For simplicity, we consider only the pattern of the 

velocity distribution shown in Figure 5.2. Thus, there is only one velocity center on 

a given plane Px ' Let Cv be a curve consisting of all Cv(x), see Figure 5.1. 

The filaments away from the center curve Cv will rotate around the Cv' We 

can also see that the rotation speed at various points (x, y, z) changes according to 

the values of the y and z coordinates. For an infinitly long straight vortex tube, the 

velocity distribution on the plane Px with a different x is the same. Thus, all points 

on the same straight filament should rotate with the same speed around the velocity 
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Figure 5.1. A finite part of an infinitly long vortex tube. 
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center curve Cv ' Without proper treatment at the truncated ends, a computational 

result of part of a vortex tube will not preserve the above property due to the loss of 

the appropriate contribution from the truncated parts during the computation. Near 

the truncated ends, the computed velocity magnitude will be quite different from the 

velocity magnitude induced by whole vortex tube. Consequently, the points on the 

same straight filament will rotate with different speeds. A physically unreasonable 

twisting of filaments will start at. the t.runcat.ed ends and quickly spread to the middle 

parts. 

The way to eliminate this physically unreasonable twisting of filaments is to 

recover the correct. velocity intensity; near the truncated ends. We have used two ways 

to do so in our computation: (1) treat the data periodically, which is a conventional 

method of dealing with this kind of situation, and (2) extend each filament with 

straight lines at both ends. Both of the methods are simple to implement in the 

computation. Both methods require extension on both ends. The extension on each 

end is equivalent to adding the terms into the summation in equation (2.46). For the 

first method, we copy the computed part at each end and connect it to the previous 
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Figure 5.2. Cross-section velocity fields around va.nous numbers of filaments. The 

symbol "*,, indicates the position a.t which a filament crosses the section plane. 
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part. In the second method, for each filament, at each end, we copy the end segment 

N times and connect them to each other at the end. With both treatments, the 

three-dimensional vortex filament method scheme [equation (2.46)J can be modified 

as follows: 
1 M N m r(m) x 81(m) r(m) f(m) x 81(m) f(m) f(m) x 81(m) f(m) 

u (x t) - __ . '" r(m) "'[ J J J(_J_)+ J J {(_J_)+ J J J(_J_)J 
~ , - 47l" ~l ~ (r;m}p (J" (f;m)p' (J" (f;m}p (J" 

where 
r· J 

r· J 

r· J 

r· J 

f· J 

f· J 

x - HXj+l + xJ 
X - l(Xj+l + Xj) 2 . 

X -- t(Xj+l + Xj) 

Irjl 

Ifjl 

Ifjl 

For the periodic treatment, 

For 'the straight line extension, 

( 

2
_· -) ( ?- -) 
XJ-l - XJ-2 _ ~XJ-l - XJ-2 

YN+1 Xj = YN+l 

zN+l ZN+l 

Xj = 

where .il = XN+l, X2 = 2XN+l - XN, Xl = Xl, and X2 = 2Xl - X2' One should modify 

the scheme of straight line extension to deal with the situation of perturbed waves 

passing through the truncated ends. We suggest that in a computation, one follow 

the wave shape of interest, add new segments (or new grid) at the forward truncated 

end, and drop segments at the opposite end. We may call this a moving Lagrangian 

grid method. With this method, we can study the long-time behavior of a wave with 

limited computer memory space. The theoretical validity of this method is based on 

the observation that the behavior of a wave in a part of a vortex tube is governed 

mainly by this part of the vortex tube as long as the wave stays in the middle of the 

part and the truncated ends have been treated appropriately. 
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Chapter 6 

Numerical Results 

6.1 Goal and Experimental Design 

We present our numerical results in this chapter. Our goal is to answer the 

following questions: 

A. What are the effects on the accuracy of our vortex filament scheme of the choices 

of the numerical methods for solving the time evolution ordinary differential 

equation, the core functions, and the parameters? 

B. What are the main factors causing numerical and physical vortex stretching? 

Solitary wave propagation along a vortex tube is the physical-model problem we study 

here to provide answers for the above questions. Besides, solitary wave propagation 

along a vortex tube is an interesting research subject in itself. In particular, we would 

like also to know 

c. Can a solitary wave propagate along a vortex tube for a long time? 

The numerical and physical factors we are going to examine are the following: 

1. the numerical method we choose to solve the time evolution ordinary differential 

equation; 

2. the core function we construct to approximate the singular Biot-Savart kernel; 



CHAPTER 6. NUMERICAL RESULTS 49 

3. the core size (7 defined at page 10, Chapter 2; 

4. the time tolerance control constant C; 

5. the number of filaments we use to simulate a vortex tube; 

6. the distance between filaments; 

7. the placement partten of filaments used to simulate a vortex tube; 

8. the circulation r defined in equation (2.9); and 

9. the torsion T of the initial solitary wave data generated by equation (3.34). 

In the list, the numerical method solving the time evolution ordinary differential 

equation, the core function, the time tolerance control constant C, and the number 

of filaments in the simulation of a vortex tube are clearly numerical factors. The 

accuracy of our results and the efficiency of our computation depend on these factors. 

The circulation r and the torsion T of the initial solitary wave data are physical 

factors chosen in accordance with the physical phenomenon we attempt to simulate. 

The core size, the distance between filaments, and the placement partten of filaments 

have both numerical and physical significance, which we will explain in later sections. 

To answer question A, we must examine the sensitivity of our numerical 

algorithm to the factors 1-8 listed above. In a computational result, a vortex tube 

stretching can be caused by either the computational inaccuracy or physical nature, or 

both .. We will try to distinguish the different causes of the vortex stretching appearing 

in our results whenever it is possible. The answers to questions A to B will help us 

to answer question C. 

In our vortex filament method, we split a segment in two if the length of 

this segment is larger than a predetermined positive number. When a filament starts 

stretching, the total arclength of the filament will grow very quickly. Thus, the 

number of segments for the filament grows quickly. Therefore, the total arclength 

is a direct measurement of vortex stretching. The total arclength is proportional to 

the total number of segments. Both numerical inaccuracy and the physical nature 
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of the vorticity field can cause vortex stretching in our numerical result. A vortex 

dynamic system is a highly unstable physical system. The numerical errors often 

introduce high-frequency perturbation waves with small torsion. Such waves easily 

cause violent stretching, as we will explain in a later section. This type of stretching 

is numerical stretching. The distinction between physical stretching and numerical 

stretching is not always possible. We usually must look at the geometric pattern of a 

perturbation wave and the location of the appearance of the wave to decide whether 

the perturbation wave is caused by numerical error or by physical instability and thus 

distinguish physical stretching from numerical stretching. 

Computer memory limits the maximum number of segments per filament. 

If the number of segments for any filament exceeds the maximum value, our compu

tation is stopped at that step. Thus, the smaller the number of steps for which our 

computation can be carried out, the more stretching we get for the simulated vortex 

tube. If a computation can be carried out till the allowed maximum step, then the 

total number of segments at that step reflects the stretching of the simulated vortex 

tube; the larger number of total segments implies more stretching in the computation. 

The elapsed time is an indicator of the efficiency of our computation and a 

diagnostic of the accuracy of the computational results, because the slower growth of 

the elapsed time usually means that the time tolerance of each step is too small and 

thus may be not efficient. The rapid growth of the elapsed time means that the time 

tolerance of each step is large and may therefore cause inaccuracy. 

The kinetic energy, total vorticity, and linear impulse are conserved quanti

ties in an unbounded region for the Euler equations. Thus, in an unbounded region, 

a variation from the initial value of each of these quantities indicates error. However, 

as we have explained in the last section of Chapter 4, in the computation of a portion 

of a vortex tube, the case in which we are interested for all computations in this 

Chapter, the kinetic energy is approximately conserved only if perturbation waves 

are far from the truncated ends and linear impulse is not conserved at all as long as 

there are perturbations in the computed portion of a vortex tube. The total vorticity 

is conserved in all cases. Therefore, a variation from the initial value of the total 

vorticity indicates error. If the kinetic energy is conserved, we can be sure that our 
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computational results are accurate, but a variation of kinetic energy in the data does 

not necessaryly mean that the result is bad (inaccurate). \lIle should not use linear 

impulse as a diagnostic of our numerical schemes in this case. 

Therefore, we use the following quantities to measure the accuracy and the 

vortex stretching of our computational results: 

1. the number of time steps in a computation; 

2. the number of segments at the last computational step; 

3. the total arclength at the last computational step; 

4. the elapsed time, i.e., the accumulated sum of the time tolerances for each 

computational step from the beginning to the last step; 

5. the total kinetic energy; and 

6. the total vorticity. 

In each numerical experiment, we generate vortex filament curves from equa

tion (3.34) with predetermined parameters. Thus, there is a solitary wave in each 

initial vortex filament curve. Each curve approaches at infinity a line parallel to the 

x-axis. Therefore, we should see the solitary wave in each filament propagating along 

the x-axis. There are three parameters that may change the shape of the initial curve: 

(1) the torsion T, (2) the parameter v, and (3) the initial time parameter to, which 

merely determines the position of the initial solitary wave. The significance of the first 

two parameters has been explained in Section 2 of Chapter 3. In our computation, we 

record the measurements described above and the propagation behavior of the initial 

solitary wave for various combinations of the investigated factors~ We will use tables 

to display the results in terms of the first four measurements: the total number of 

computational steps, the total number of segments at the last computational step, 

the total arclength at the last computational step, and the elapsed time. We will give 

figures to illustrate three measurements if needed. Finally, we will analyze the results 

obtained and try to find answers for our questions. 
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6.2 Numerical Factors 

In this section we examine the factors that affect the accuracy of our com

putation and try to find a reasonable combination of choices of the factors that can 

give accurate results. The stretching now is a measurement of accuracy of our com

putation; that is, more stretching indicates more error in computation because these 

examined factors have no physical significance. These factors are the number of fil

aments used to simulate a vortex tube, the numerical method for solving the time 

evolution ordinary differential equation, the core function, and the time tolerance 

control constant C. 

We start the discussion with the number of filaments used to simulate a 

vortex tube. In Chapter 3, we derived the solitary wave solution for the localized 

induction approximation of a thin vortex tube. To understand a wave motion in an 

inviscid incompressible flow, we would like to determine the propagation behavior of 

the solitary wave in the velocity field induced by a thin vortex tube governed by the 

Biot-Savart law. A single filament can be viewed as a thin vortex tube. However, 

the lack of change of core structure in the cross section of a filament makes the 

simulation of a thin vortex tube by a single filament physically unreasonable, because 

the shape of a vortex tube core is not preserved (see [56, 57, 59, 49]). Moreover, 

for a "fat" vortex tube, it is unreasonable to approximate the tube by one filament 

with large core size because, mathematically, it is unreasonable to approximate the 

singular kernel K(x) given at Chapter 2 by the smoothed one K,,(x) with large (J'

the core size. The convergence theory shows t.hat. to have a bett.er approximation for 

a vortex method, one should choose t.he time tolerance and the spatial-mesh size as 

a function of the gradients of vort.icit.y. The bigger the gradients of the vorticity, the 

smaller the t.ime tolerance and the spatial mesh size. The several filament. simulation 

of a vortex tube seems a good way to solve t.hese problems. Note that when we 

increase the number of filament.s, we should decrease t.he circulation of each filament. 

to preserve the t.otal circulat.ion of the simulat.ed vortex tube. Nevert.heless, t.he one 

filament simulations of a thin vortex tube give us some useful information on vortex 

stretching and how vortex filament methods respond to various parameters. Our 

.. 
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Table 6.1. The total number of computational steps, the total number of segments 

at the last computational step, the total arclength at the last computational step, 

and the elapsed time for various core functions and numerical schemes for solving 

ODE with one filament. 

1 filament with core size a = 0.4, 
to = -0.1, C = 0.05, r = 5.0 

and periodic treatment at truncated ends 

Methods Core Steps At the Last Step 
No. Seg. Time Arclength 

1 200 7,52 3.83 23.74 
Euler 2 200 804 3.44 26.25 

3 157 993 2.10 34.05 
4 124 979 1.79 34.30 
1 200 416 5.32 10.84 

Heun 2 200 408 4.68 10.75 
3 200 588 3.02 18.58 
4 200 547 2.90 17.31 
1 200 422 5.68 10.76 

RK4 2 200 406 4.70 10.69 
3 200 521 3.08 16.30 
4 200 503 2.92 15.23 

studies of vortex filament methods and vortex stretching begin with the one filament 

simulations of a thin vortex tube; therefore, we should provide the data of the one 

filament simulations of a thin vortex tube. 

Theoretically, computational accuracy will increase as a vortex tube is simu

lated with an increasing number of filaments. However the simulations of our physical

model problem require long filaments and, therefore, many segments for each filament 

and long time computations to obtain enough information to understand the ques

tions raised at beginning of this Chapter. The cost of computation and the capacity of 

current computer memories do not permit us to simulate a vortex tube with many fil

aments. We will provide results of one filament simulations and three or four filament 

simulations for some of the following computational experiments. 
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In this section, all initial data for our computation are generated by equation 

(2.33) with T = 3.0, v = 2.0. The length ds of each segment is 0.04 initially. A segment 

must split in two if its length is longer than 0.05. The computation is terminated if 

there is a filament with more than 1000 segments. 

Vile examine the following numerical methods for solving the time evolution 

ordinary differential equation: (1) the first-order Euler's method, (2) the second-order 

modified trapezoidal method (the second-order Heun's method), and (3) the fourth 

order Runge-Kutta method (RK4). These schemes are given on page 14, Chapter 2. 

The core functions we examine are the following: 

Core 1 : 
3 1 - e-r ; 

Core 2: tanh r3. , 
Core 3: 1 + (-1 + ~r3)cr3; 
Core 4: tanh r3 + ~r3sech2r3. 

We make runs with each numerical method and each core function for one filament. 

In Table 6.1, we list the total number of computational steps, the total number of 

segments at the last computational step, the total arclength at the last computa

tiona.! step, and the elapsed time. In Table 6.2, we list t.he results from the runs wit.h 

the second-order Heun's method and the fourth-order Runge-Kutta method and for 

several core functions for three filaments. We also give, in Table 6.2, the compar

ison results for two treatments of the truncated ends: periodicity and straight line 

extension. 

From Table 6.1 we can see that the vortex filament method is much less 

accurate with the first-order Euler method for solving the time evolution ordinary 

differential equation than with the other two methods. Therefore, we did not make 

runs for three filaments with the Euler method solving the time evolution ordinary 

differential equation. There is no great difference between the second-order modified 

trapezoidal method and the fourth-order Runge-Kutta. method. We will use the 

fourth-order Runge-Kutta method for the rest of our runs in this Chapter. 

Both Table 6.1 and Table 6.2 show that the various core functions produce 

different results. VVe can not really see, however, which core function gives us a more 

• 
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Table 6.2. The total number of computational steps, the total number of segments 

at the last computational step, the total arclength at the last computational step, 

and the elapsed time for various core functions, numerical schemes for solving the 

time evolution ordinary differential equation, and extension methods at truncated 

ends with three filaments. 

3 filaments with core size (J' = 0.4, 
to = -0.1, C = 0.05, r = 5.0 

200 time steps 

Methods Core Extension At the Last Step 
Method at Ends No. Seg. Time Arclength 

1 period 1417 2.000 38.98212 
straight lines 1428 2.000 38.96558 

2 period 1348 1.860 35.99836 
Heun straight lines 1362 1.885 36.36842 

3 period 1385 1.010 42.93497 
straight lines 1384 1.010 42.98206 

4 period 1179 0.710 36.72602 
straight lines 1179 0.710 36.72324 

1 period 1385 2.000 37.75273 
straight lines 1391 2.000 37.78472 

2 period 1343 1.945 35.32752 
RK4 straight lines 1363 2.000 35.83455 

3 period 1390 1.015 42.82489 
straight lines 1387 1.015 42.85716 

4 period 1184 0.71.5 36.98255 
straight lines 1184 0.715 36.97923 
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Figure 6.1. The velocity distribution on a plane perpendicular to a straight vortex 

tube for various core functions. 

accurate solution because the behavior of a core function is governed by the core size. 

Each core function responds to a same value of core size differently, as can be seen 

from Figure 6.1. 

From Table 6.2 we see that the treatment of the truncated ends makes very 

little difference to our computational results. However, different treatments at the 

ends will cause a great difference if the perturbation has traveled to the ends. In the 

runs made for Table 6.2, we did not compute long enough to see the difference in the 

results. 

At the suggestion of Hald [36], we plot the relationship between arclength 

and computational step at a given elapsed time in Figure 6.2 for various numerical 

methods and core functions. The data are from the same runs that give the results 

presented in Table 6.1 and Table 6.2. With a given core function, the number of 

computational steps and the arclength produced by various numerical methods should 

be close to each other at the same elapsed time if all of the numerical methods give 

accurate solutions. Thus from Figure 6.2 (a), we can see immediately that results 

• 
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produced with the first-order Euler method are inaccurate. The core functions behave 

differently, as we expected, with one exception: in Figure 6.2 (c) the results with core 

function 1 and core function 2 are in good agreement because of the short time 

span. For shorter time span, the two method-the second-order modified trapezoidal 

method and the fourth-order Runge-Kutta method-give close agreement. Figure 6.2 

(b) may indicate that the fourth-order Runge-Kutta method could be better than the 

second-order modified trapezoidal method for longer time spans. 

The total kinetic energy is approximately conserved for all runs except for 

the runs made with the first-order Euler method. With the second-order and the 

fourth-order numerical methods, the percentages P of maximum variation from initial 

total kinetic energy, where 

are 

P = 
Ima.Timum total energy - initial total ene1'gyl 
~--------------~--------------~~x100 

initial total ene1'gy 

6.2 '" 6.5 for core 1 and 2, ) 

13 '" 14 for core 3, with one filament computation 

18 '" 19 for core 4, 

7.3 '" 10 for all four core functions with three filaments 

With the first-order Euler method, the percentage is 20 '" 30. Similarly, to measure 

the variation of the total vorticity, we compute the percentages with the following 

formulations: 

Iitotal vorticity with max magnitude - initial total vorticitYl1 00 
Ptotal vorticity = . II' . . I I .. II xl mztw tota vortzczty 

The percentages of variation for total vorticity are 0.02 '" 0.1 for all cases. Thus the 

total vorticity is well conserved. Figure 6.3 shows how the diagnostic quantities-the 

total kinetic energy and the total vorticity-typica.lly behave in the computation. 

From equation (2.39), 

!::l.t max lu?1 ::; c 
J 

The time tolerance control constant C is one of the factors determining the accuracy 

of our computational results. However, if C is too small, the computationa.l cost will 
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Table 6.3. The total number of computational steps, the total number of segments 

at the last computational step, the total arclength at the last computational step, 

and the elapsed time for various time tolerance control constants C. 

4 filaments with core function 4, r = 5.0, 
the 4th order Runge-Kutta method, 

core size ()" = 0.2, to = -0.2, 
distance between filaments = 0.05, . 

and periodic treatment at truncated ends 

C Steps At the Last Step 
No. Seg. Time Arclength 

0.02 250 1709 0.15750 64.04793 
0.03 250 1778 0.24875 64.27265 
0.04 250 1879 0.31375 65.23524 
0.0,) 250 1934 0.33125 66.26626 
0.06 250 3518 0.43500 119.03595 
0.07 175 3624 0.43500 122.79700 
0.10 162 3647 0.42500 124.47843 
0.02 250 1709 0.15750 64.04793 
0.03 132 1710 0.15750 64.04794 
0.04 125 1709 0.15750 64.04791 
0.05 111 1710 0.1.5750 64.04775 
0.06 65 1710 0.15625 64.04724 
0.07 63 1710 0.15750 64.04726 
0.10 55 1713 0.15750 64.04207 
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Figure 6.3. The diagnostics of computation for three filaments with RK4 and core 

function 4. 

be quite high. In Table 6.3 we see that when we increase C, the elapsed time, the 

number of segments and arclength at the last computational step are increased, and 

the number of time steps to reach a given value of elapsed time is decreased. The 

dramatic increase in the number of segments and arclength at the last computational 

step and the decrease of the number of time steps to reach the elapsed time 0.1575 

at C = 0.06 indicate that the computational results with the paramenters given at 

head of Table 6.3 are not accurate for C > 0.05. We should note that the choice of C 

depends on the maximum amplitude of the velocity on the filaments, and therefore 

depends on the circulation r. 

6.3 The Circulation r and Factors Affecting the 

Placement of Filaments 

The circulation r of a vortex tube is a physical factor. However, the circu

lation r for each filament used to simulate a given vortex tube is determined by the 

circulation of the vortex tube and the number of filaments used in the simulation. 

We should decrease the circulation r of each filament when we increase the number 

of filaments in the simulation to match the correct circulation of the simulated vor-

0.7 
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Table 6.4. The total number of computational steps, the total number of segments 

at the last computational step, the total arclength at the last computational step, 

and the elapsed time for various circulations r and distances between filaments. 

4 filaments with core function 4, C = 0.05, 
the 4th order Runge-Kutta method, 

core size a = 0.2, to = -0.2, 
and periodic treatment at truncated ends 

r Dist. between Steps At the Last Step 
Filaments No. Seg. Time Arclength 

1.0 250 2616 2.05500 90.07765 
3.0 0.05 250 2163 0.62750 74.81861 
5.0 250 1934 0.33125 66.26626 

0.01 250 2295 0.50375 78.91651 
0.02 250 2009 0,,15000 68.28120 

5.0 0.05 250 1934 0.33125 66.26626 
0.08 250 2027 0.3137.5 67.64354 
0.10 239 3337 0.29875 110.62826 
0.20 101 3261 0.17625 114.06007 

tex tube. From Table 6.4 we see that with the other factors constant, the number 

of segments, t.he elapsed time, and arclength at the last. step are increased when we 

increase r for each filament. This is understandable because, from equation (2.46), 

increasing r will increases the amplitude of velocity, whereas, from equation (2.39), 

increasing the amplitude of the velocity for given constant C will decrease t.he time

step tolerance ~t. Thus, one should choose the time-step tolerance control constant 

C aft.er r is determined t.o get accurat.e results with lowest computational cost. 

The change of distance between filaments (in multifilament simulations) 

could produce different velocity distribution, as illustrated in Figure 6.5 for four fila

ment.s and Figure 6.4 for two filaments. Table 6.4 shows that increasing the distance 

between filaments will decrease t.he elapsed time at the last step but will not give 

a monotonical variation of t.he number of segments and arclength at the last time 

step. For a thin vortex tube, with smaller distance between filaments, the results will 

be closer to the results obtained with a one filament simulation with the parameters 
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Figure 6.4. Cross-section velocity fields around 2 filaments with distances 0.1, 0.2, 

0.4, and 1.0, respectively. The symbol "*,, indicates the position at which a filament 

crosses the section plane. 
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Figure 6.5. The velocity distribution on a plane perpendicular to a straight vor

tex tube changes as the distance between filaments increases, with other parameters 

constant. 

Different pattern (4 filaments) 
12 r-----~-----r----_,------._----_r----~------r_----, 

10 

symmetry with center -
symmetry no center -_. 

sheet - - -

o L-____ ~ ____ -L ____ ~ ______ L_ ____ ~ ____ ~ ______ L_ ____ J 

o 0.5 1.5 2.5 3.5 
y 

Figure 6.6. The velocity distribution on a plane perpendicular to a straight vortex 

tube for various placement partten of filaments. 
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describing the same simulated vortex tube. With the distance increasing and passing 

a certain limit, we find that, in the computational results, the vortex-line stretching 

happens sooner and more violently, as can be seen in Table 6.4. ror each set of 

given parameters, there is a critical value for the distance between filaments at which 

the least stretching happens in the computational result. In Table 6.4, this value is 

obtained around 0.05. We should note that with the same set of parameters given 

in Table 6.4, for the one filament computation in Table 6.2, the higher stretching is 

seen from the computational result. Thus, with distance between filaments smaller 

than the critical value, 0.05, in Table 6.4, more stretching will be seen in a compu

tational result because that the several filaments simulation behaves more like the 

one filament simulation with smaller distance between filaments. Therefore, to avoid 

higher stretching in a simulation of a vortex tube by a bundle of filaments, we should 

choose the distance between filaments close to certain critical value. Note that vortex 

stretching could be physical. Therefore, it may not be reasonable to put our effort 

into eliminating all stretching. 

With fewer filaments in the simulation, a change in the placement partten 

of filaments does not have a strong impact on the velocity distribution, as shown in 

Figure 6.6. However, we should note that with many filaments, the placement partten 

of filaments does affect the velocity distribution; the pattern must match the vorticity 

field we wish to model. 

6.4 Core Size 

As discussed in Section 2 of this chapter, the core size should not be too large 

because of the mathematical unreasonableness to approximate the singular kernel 

I«x) by I(,.(x) with large core size (J. The core size is an important numerical factor. 

However, we could think of core size as the thickness of our filaments, and we could 

consider that the core size has real a physical meaning for a thin vortex filament. 

We would like to find the reasonable numerical range of choices of core size and the 

response of our computational results to these choices. 

Figure 6.7 shows that, with various core sizes, the induced velocity distribu-
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Table 6.5. The total number of computational steps, the total number of segments 

at the last computational step, the total arclength at the last computationa.l step, 

and the elapsed time for increasing core size with one filament. 

1 filaments with r = 5.0, C = 0.05, to = -0.2, 
the 4th order Runge-Kutta method, 

and periodic treatment at truncated ends 

Core Core Steps At the Last Step 
Functions Size No. Seg. Time Arclength 

0.05 88 878 0.3975 31.29 
0.08 237 963 1.785 34.16 
0.09 238 978 1.9025 33.67 

0.095 241 983 1.945 33.78 
0.10 240 972 1.975 33.34 

core 1 0.11 234 987 2.025 34.03 
0.15 193 979 2.03 34.50 
0.20 142 977 2.01 33.86 
0.25 146 993 2.22 34.41 
0.30 218 992 4.04 33.21 
0.35 250 636 5.34 19.03 
0.40 250 602 6.64 17.00 
0.05 61 953 0.14063 33.90 
0.08 51 948 0.1725 33.27 
0.09 168 980 0.8175 32.02 
0.10 250 .502 1.655 16.52 
0.15 250 512 1.99 16.70 
0.20 250 813 2.18 28.18 

core 4 0.25 213 991 2.16 34.12 
0.30 157 993 2.09 34.51 
0.35 149 982 2.15 34.09 
0.40 237 997 3.29 33.05 
0.45 250 685 4.23 21.47 
0.50 250 602 5.00 16.83 
0.55 250 575 5.20 16.56 
0.60 250 695 10.00 16.64 
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Table 6.6. The total number of computational steps, the total number of segments 

at the last computational step, the total arclength at the last computational step, 

and the elapsed time for increasing core size with four filaments. 

4 filaments with core function 4, 
the 4th order Runge-Kutta method, 

r = 5.0, C = 0.05, to = -0.2, 
distance between filaments = 0.05, 

and periodic treatment at truncated ends 

Core Steps At the Last Step 
SIze No. Seg. Time Arclength 
0.10 142 2798 0.08937 97.46644 
0.15 250 2113 0.31250 69.65556 
0.20 250 1934 0.33125 66.26626 
0.25 250 2264 0.435 81.34734 
0.30 236 3314 0 .. 5975 113.05148 
0.40 250 2519 0.7075 84.75277 
0.50 250 24.51 1.25 72.87434 
0.55 250 2257 1.25 67.20053 
0.60 250 2219 1.29 66.05207 
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Figure 6.7. The velocity distributions on a plane perpendicular to a straight vortex 

tube for various core sizes. 

tions vary. In Table 6.5 and Table 6.6, we display the results of the total number of 

time steps, the number of total segments at the last computational step, the elapsed 

time, and the total arclength at the last computational step for runs made with vari

ous core sizes. The maximum number of computational steps is 250 for each run. The 

maximum number of segments for each filament is 1000. Therefore, a run stopped 

with fewer than 250 computing steps indicates that a violent stretching occurred. The 

smaller the total steps for a run, the sooner a violent stretching occurs. If a run is 

stopped with a total of 250 computing steps, the total number of segments measures 

the degree and the rate of stretching for each run. The vortex stretching behavior 

can be better illustrated by figures (see Figure 6.8 for the one filament simulation). 

It is interesting to see from Tables 6 .. 5 and 6.6 that the rate of stretching does not 

respond monotonically to the core size. Such a phenomenon is shown directly in 

Table 6.6 in terms of arclength for runs with core function 4 for a simulation with a 

single filament and for runs made with four filaments in Table 6.6. In Table 6.5, for 

core function 1 and a single filament,. the arclengths at the last step are close to each 
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other for different cases because the violent stretchings occur before the 250th com

putational step for most runs. Krasny [50] has reported the nonmonotonical response 

to core sizes for a two-dimensional blob method with a different core structure from 

the one used here. In Table 6.5, for core function 4 with a single filament, we see 

that nonstretching wave propagation occurs with core sizes in two regions around 0.1 

and 0.55. In Table 6.6, the nonstretching wave propagation occurs with core sizes in 

two other regions around 0.2 and 0.6. In Table 6.5, the values of arclength are close 

to each other for those runs terminated before the 250th step. Thus, the number of 

segments grows rapidly once stretching starts in a run. From both Tables 6.5 and 6.6, 

we see that the total elapsed time increases when we increase the core size. It means 

that the time tolerance 6.t for each step determined by equation (2.39) is larger for 

larger core size; that is, the maximum amplitude of the velocity increases when we 

increase the core size, as shown by Figure 6.7. 

Figure 6.8 shows the geometric shapes of waves propagating in one filament 

for vanous core sizes. The data correspond to the results in Table 6.5 with core 

function 4. In all the runs, the initial solitary wave can propagate without signifi

cantly changing shape for certain computational steps, then either splits into several 

waves for those no violent stretching runs or starts to stretch with different geometric 

shapes depending on the core sizes and other parameters. For smaller core size, the 

propagation of the initial solitary wave is closer the analytic solution of LIA in terms 

of the phase of the wave. For a core size equal to 0.55, we see a smaller wave split 

from the original one with a stable shape propagating in the positive direction on the 

x-axis. Later, several waves split from the original wave and move off. When the core 

size is 0.35, stretching happens soon after some perturbation appears in front of the 

initial wave. A similar pheriomenon occurs in the run made with core size 0.2, but 

the geometric structure of the stretching is quite different. All stretching happens 

in a narrow region in the x-direction; that is, the stretching does not spread along 

the x-direction. In the case of a core size (J" = 0.2, a long arm comes out from the 

filament and wraps around the axis on which the filament is lying. When we decrease 

the core size from 0.4 to 0.2, the geometric structure of the stretching varies from a 

spiral structure to a two-arm structure, at a core size of around 0.3, and changes back 
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Figure 6.9. Plot of the total kinetic energies corresponding to 5 core SIzes. 
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to a one-arm structure at a core size of around 0.2. For a core size equal to 0.1, we 

see a wave splitting from the original wave and propagating with a stable shape; this 

split wave has a longer wave length than the one seen in the case with a core size of 

0.55. With a core size of 0.09 or smaller, the stretching starts at two truncated ends, 

then gradually affects the middle. We think that this may be caused by truncation 

error. However, the original solitary wave propagates with a better preserved shape 

and phase speed. These descriptions of the geometric structure and evolution of a 

wave propagating on one filament as a function of core size also apply to runs with 

core function 1 (Table 6.5) and to the simulation with three filaments (Table 6.6). 

For the simulation with a single filament, the one-arm structure appears whenever 

the stretching happens near the original wave and the core size is less than or equal 

to 0.15. For the simulation with three filaments, if an arm grows far from the center, 

it may spread along the filaments in the direction opposite to the direction of wave 

propagation. The physical explana.tion of this phenomenon is that for stretching, the 

near center part moves with a speed higher than the part far from the center in the 

x-direction because the induced velocity is smaller far from the center. 

In Figure 6.9, we plot the total kinetic energies corresponding to the same 

five core sizes in Table 6 .. 5, with core function 4. Figure 6.9 shows that the tota.l 

kinetic energy is well conserved for various core sizes as long as there is no violent 

stretching. Figure 6.9 shows the non monotonical response of numerical results to 

core sizes. The result with core size 0.09 is physically unacceptable because the wide 

variation of kinetic energy. The total vorticity is well conserved. 

Some authors vary core size in their version of vortex methods (see Leonard 

[54, 55], Siggia [66], Winckelmans [72], and Chorin [25]). We have examined this 

treatment of the core. The results produced by varying the core size are always worse 

than the results produced by constant core size; namely, the violent stretching always 

happens in fewer computational steps for a run made with varying core size. 
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Table 6.7. The total number of computational steps, the total number of segments 

at the last computational step, the total arclength at the last computational step, 

and the elapsed time for increasing wave torsion T of initial data. 

T Step 

6.0 300 
.5.0 300 
4.5 300 
4.0 234 
3.0 259 
2.5 300 
2.0 300 
1.0 90 
0.5 77 
0.0 67 

core function 4, r = 5.0, C = 0.05, to = -0.2, 
the 4th order Runge-Kutta method, 

distance between filaments = 0.05, 
and periodic treatment at truncated ends 

one filament four filaments 
At the Last Step Step At the Last Step 

No. Seg. Time Arclength No. Seg. Time Arclength 
670 6.0000 16.15896 300 1950 0.75000 64.7750.5 
647 6.0000 16.22601 300 1955 0.73125 64.38.577 
647 3.3400 17.03079 300 2605 0.60250 83.75597 
988 2.4300 33.5388.5 300 2749 0.49125 92.79603 
989 2.2200 34.90552 300 233.5 0.39375 80.63711 
.512 2.6800 16.30441 300 2047 0.38625 70.28714 
4.56 3.0000 16.23470 300 1860 0.38125 64.67449 . 

968 0.5750 34.41.537 118 3849 0.14750 136.68418 
990 0.3925 34.96001 72 3677 0.09000 130.69027 
992 0.2425 35.26452 70 3490 0.05313 125.24485 

6.5 The Torsion T in the Initial Solitary Wave and 

Vortex Stretching 

The torsion T of initial solitary wave is clea.rly a physical factor. We have 

mentioned at page 29, Chapter 3 that increasing IT I will increase the speed and 

decrease the amplitude of the initial solitary wave. Geometrically, with smaller T, a 

given curve will be closer to a pla.ne curve. When T = 0, the given curve lies in a 

plane (see Spivak [67, p. 38]). In our computations, we find that vortex stretching 

always starts at a part of a wave whose curve is almost a plane curve; i.e., the curve 

has a small torsion. We consider this observation in this section and attempt to give 

an explanation. 
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Using Hasimoto's solitary wave as initial datum determined by the torsion 

T and the curvature, we wish to see the effects of varying T on the vortex stretching. 

The results are displayed in Table 6.7, which ahows that vortex line stretching does 

not respond to the initial wave torsion T monotonically. However, if T is small enough, 

for example, in Table 6.7 if T ::; 1.0, the vortex stretching does occur directly on the 

initial solitary wave, whereas if T > 1.0, the stretching only occurs if there is a new 

wave with small torsion produced from the original solitary wave. Thus we think 

that a perturbation wave with small torsion on a vortex tube may be one of most 

important causes of vortex tube stretching. 

In Figure 6.10, we plot the y-z coordinate plane slice of the velocity distri

bution induced by initial solita.ry wa.ve data with various torsions T (the slice is taken 

where the wave amplitude is maximum). We can see that if T is small the velocity 

will be distributed less evenly on the slice through the peak of the wave. However, 

such uneven velocity distributions on the slices do not necessarily cause vortex line 

stretching. This can be seen in Figure 6.10 and Table 6.7. In Figure 6.10, for T = 2.0, 

on the y-z coordinate plane slice through the wave peak, we have an uneven velocity 

distribution, whereas in Table 6.7 the corresponding computation shows no significant 

stretching. 

In Figure 6.11, we plot the x-z plane slice (i.e., the plane in three-dimensional 

space with y = 0) of the velocity distribution induced by initial solitary wave data 

with various values of To In the cases T = 2.0 and T = 4.0, the horizontal component 

(i.e., x-component) of the velocity distribution on the whole wave points in the same 

direction, whereas in the case T = 1.0, the sign of the horizontal component of velocity 

at and near the peak changes, which causes stretching because the vortex filaments 

are bent at the middle of the wave. For the case T = 0, the velocity distribution on 

the x-z plane is symmetric, with the line of symmetry passing through the peak of the 

wave. On the line of symmetry, the velocity is vertical, which can be considered as a 

discontinuity of the horizontal component of the velocity field. Such a discontinuity 

causes violent stretching. 

We now consider the stretching that happens after the initial wave propa

gates for a while along a vortex tube. In Figure 6.12 we plot the x-z plane slices of 
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Figure 6.10. The y-z plane slice of velocity distribution induced by initial solitary 

wave data with various torsions T. The slice is taken at the peak wave amplitude. 
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T = 0.0 

T = 2.0 

, .. 
,"' . ,. 
\ . 
\ . 

77 

T = 1.0 

T = 4.0 

Figure 6.11. The y = 0 slice of velocity distribution induced by initial solitary wave 

data with various torsions T. 
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the velocity distribution for T = 4.0 at computational steps from 200 to 280, which 

illustrates the process of vortex stretching. One can see that from step 200 to step 240 

the discontinuity of x-component velocity is developed at the right front of the wave, 

which has small torsion (on our two-dimensional projection pictures, this can be seen 

as a vertical or .nearly vertical line). The stretching happens where an x-component 

velocity discontinuity is present. The figure clearly shows that the particles at the left 

side of the discontinuity move with much greater speed than the particles at the right 

side of the discontinuity; thus, the particles from the left side of the discontinuity 

will accumulate at the discontinuity. This accumulation of particles will increase the 

velocity in the y- and z-components and cause stretching. 

We have also observed that, when stretching happens, there will be some 

vortex segments right on or over the maximum velocity region on the y-z plane. It 

is clear that once some vortex segments pass over the maximum velocity region on 

the y~z plane, the vortex lines will bend and stretch in the peak velocity area in 

the y-z plane, and form so-called "hairpin" or horseshoe structures because points 

at and near the velocity peak move faster than other points. These structures, of 

course, will change the local velocity distribution and cause more stretching. To 

illustrate our observation, in Figure 6.13, we plot the velocity distribution on the 

y-z plane at where the vortex lines stretches for step 230, 250, 280, and 300 with 

T = 4.0 for initial data. Figure 6.14 shows the two-dimensional projection views and 

three-dimensional perspective view at these computational steps. After the stretching 

starts, the analysis of the velocity distribution inside the stretching area can not 

provide too much information for studying the evolution of the stretching structure. 

One may' need other physical tools such as statistical mechanics to understand the 

further developments of the vortex stretching (see Chorin [26]) . 

6.6 Summary and Discussion 

We have investigated nine factors listed in the first section of this chapter. 

Most questions we posed at the beginning of this chapter have been answered at this 

point. We summarize these answers here. 
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Figure 6.13. The y-z plane slice of velocity distribution induced by wave initially 

with torsion T = 4.0 where the vortex lines stretches. 
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Figure 6.14. Two- and three-dimensional views of computation results for T = 4.0 

at steps 230, 250, 280, and 300 as examples of vortex lines stretching. 
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A. In our study, the higher-order numerical methods used to solve the time evolution 

ordinary differential equation generally give us more accurate results. The vor

tex tube simulation becomes more accurate as the number of filaments increases. 

The time tolerance control constant C is important to obtain an accurate re

sult. Generally speaking, the smaller C we use, the higher accuracy we obtain, 

but the computation become more expensive. The choice of C depends on the 

circulation r. The core function is core size dependent. Core sizes too big or 

too small give inaccurate results. With core size in a reasonable range, the 

vortex filaments behave differently for different choice of core sizes. With this 

information, for each numerical experiment, we can choose those parameters 

properly to avoid inaccuracy in our computation. 

B. Core size and wave torsion are the two most sensitive factors in studying vortex 

stretching. We believe that a small torsion of a wave will cause a near discon

tinuity on the velocity component in the direction of wave propagation. This 

near discontinuity causes the violent stretching of the vortex tube. 

Question C is equivalent to the question of whether a discontinuity in a cer

tain velocity component must occur in the evolution of a vortex tube. We have not 

obtained enough evidence to answer this question fully. However, with periodic data, 

we observed that, with certain initial solitary wave data and proper choice of param

eters, some wave shapes persist in the periodic computing box. This phenomenon, 

reported elsewhere (see Samuel and Donnelly [62]), indicates that a solitary wave 

can propagate along a vortex tube for a long time; otherwise, the shape should be 

destroyed soon after passing the boundary of the periodic computing box because 

of the nonsmooth connection at the boundaries. Research on this subject without a 

periodic assumption is in progress . 
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Chapter 7 

Conclusions 

We have presented three-dimensional vortex methods for unsteady, inviscid, 

incompressible flow. We have investigated the effects of various numerical parame

ters, core functions and numerical methods for solving the time evolution ordinary 

differential equation on the accuracy of the numerical scheme. Vortex stretching phe

nomena have been studied. \Ve reviewed the localized induction approximation and 

its solitary wave solution. VVe have also studied some diagnostics such as conservation 

of energy, total vorticity, and linear impulse for our vortex filament scheme. 

We have reviewed the localized induction approximation and given the de

tailed derivation. We have proved the equivalence of the Betchov intrinsic equations 

and the nonlinear Schrodinger equation. By solving the Betchov intrinsic equations 

under the assumption that torsion T is constant, we obtained the same solution for 

curvature If, as Hasimoto [44]. Then, following a method introduced by Hasimoto 

[44], we translated the intrinsic solution to the solution in the Cartesian coordinate 

system. The resulting wave is a solitary wave, as first found by Hasimoto [44]. 

In the study of diagnostics, we have given the detailed derivation of numeri

cal schemes for computing kinetic energy, total vorticity, and linear impulse. We have 

also studied the scaling property of energy conservation, and given some asymptotical 

properties of energy scaling formulation in a small cylindrical vortex segment. We 

have found that these diagnostics may not be suitable for the computation of part of 

a vortex tube because those quantities may not be conserved in the part. 
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To simulate a finite part of an infinitly long vortex tube, we must deal with 

two truncated ends. We have treated the truncated ends using two methods: a 

periodic extension of the data and an smooth extension of the ends by straight lines. 

The choice of method depends on the problem . 

In the study of the effects of numerical parameters, core functions and nu

merical methods for solving the time evolution ordinary differential equation on ac

curacy, we have found that to obtain accurate results, the time tolerance control 

constant C must be chosen smaller than a certain bound, which can only be de

termined after other parameters are given; the circulation r is the most important 

parameter for the choice of C. The choice of core function has an effect on the accu

racy of the computation, but the accuracy can be improved for each core function by 

adjusting other parameters, especially the core size. We have tested three numeri"cal 

methods for solving the time evolution ordinary differential equation: the first-order 

Euler method, the second-order modified trapezoidal method, and the fourth-order 

Runge-Kutta method. The accuracy of computation increases as the order increases. 

There is significant improvement in the accuracy from the first-order method to the 

second-order method, but not much improvement from the second-order method to 

the fourth-order method. We found that vortex stretching and accuracy of computa

tion are sensitive to core size. The stretching behavior of our results does not respond 

to the core size monotonically. However, it is generally true that too small a core size 

generates high-frequency perturbation waves at places far from the given initial per

turbation wave. Such high-frequency perturbation waves most likely represent the 

computational error, and too large a core size gives us an inaccurate approximation 

of the singular kernel. 

The simulation of a large diameter vortex tube by several' filaments is nat

ural. 'We believe that the computation will be more accurate with more filaments 

simulating a vortex tube. This conjecture comes from the observation that, even 

with straight filaments, the stretching may still occur on the plane perpendicular to 

the straight filaments, thus, more filaments will surely provide more detail of the 

stretching on that plane and make the simulation, especially the core structure, more 

accurate. The distance between filaments is important for obtaining accurate simula-
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tions with several filaments. The computation is more accurate with filaments closer 

together, but the number of filaments must be increased to match the diameter of the 

simulated vortex tube; otherwise, for a fixed number of filaments, the computation 

results will be closer to the results from a one filament simulation. We should mention 

that with many filaments, we can simulate not only a large diameter vortex but also 

shear flows and tubes with noncircular vortex core structures. 

We have studied the beginning stage of vortex tube stretching and have seen 

that violent stretching mostly occurs and remains in a plane perpendicular to the 

vortex lines. It appears that a small torsion of a perturbation wave is an important 

cause of vortex tube stretching. \iVhen stretching happens, there are always some 

points reaching the maximum velocity on a cross plane, which causes the formation 

of "hairpin" structures. Is there a properly constructed perturbation wave that can 

travel along a vortex tube simulated by vortex filaments without violent stretching? 

This question is associated with the question of whether a solitary wave can survive 

on a vortex tube for a long time, which remains open. But, with certain periodic data 

and properly chosen combinations of parameters, we have seen certain wave shapes 

persist in the periodic computing box. 
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