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Abstract 
 

In recent years an increasing number of precision dairy farming technologies (PDFTs) 

have been incorporated into the management of dairy operations. Recently, research has been 

centered on the use of sensors to quantify animal behaviors such as activity level, rumination 

time, or lying time, and their potential for disease detection. In dairy cows, the transition period 

around parturition is considered the time when most diseases occur, being hypocalcemia, 

metritis, or hyperketonemia the most common. Whether the combination of different behaviors 

registered by sensors can better diagnose diseases during transition period, their sensitivity and 

specificity to detect diseases, or what is their predictive ability or how far in advance they can 

detect disease is not known. Our goal was to develop, test and validate a workflow for disease 

surveillance in dairy cattle with emphasis on metritis, using a combination of feature selection 

strategies and machine learning algorithms. The long-term goal was to provide a framework 

where high-frequency time series behavioral data registered by multiple PDFTs could be used as 

a tool for early detection of dairy cattle health problems during the transition period. Data from 

35 dairy cows that either did not experience any disease postpartum or were only diagnosed 

with metritis were retrospectively selected from a dataset containing behavioral, production, 

and clinical data from 138 lactating cows during the first 21 days postpartum at the University of 

Kentucky Coldstream Dairy (Lexington, KY, USA). Metritis events were created based on changes 

in metritis scores recorded during clinical examination. After a review of PDFTs and machine 

learning approaches (Chapter 1), Chapters 2 and 3 study the classification performance of three 

classifiers (k-nearest neighbors, random forest, and support vector machines) when predicting 
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metritis events by using behaviors registered by two different 3-axis accelerometers. Chapter 4 

studies the classification performance of a random forest classifier to predict metritis events 

when multiple inputs from multiple data streams were combined. Multiple time windows, time 

lags, and classification thresholds were compared under nowcasting (Chapter 2, 3, and 4) and 

forecasting frameworks (Chapter 4). Random Forest had the greatest F1 score across time 

windows and time lags, but best behaviors for classification changed depending on the 

combination of time window and time lag. Furthermore, forecasting metritis events 2 and 3 days 

forward had similar performance results compared to the nowcasting framework. Based on our 

findings, machine learning classifiers can aid in the identification of animals at higher risk of 

being sick before traditional diagnosis is performed. 
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1 Introduction 
 

 

1.1 Background Information 
 

Syndromic surveillance can be defined as the real-time (or near real-time) collection, 

analysis, interpretation, and dissemination of health-related data to enable the early 

identification of the impact (or absence of impact) of potential human or veterinary public health 

threats which require effective public health action (Dupuy et al., 2013). Modern biosurveillance 

systems are designed to take advantage of data related with health conditions that, once 

grouped into syndromes, can allow for faster detection of health problems despite being less 

specific than traditional diagnostic methods (Dórea et al., 2013). Previous studies have used 

different sources of data such as clinical records, laboratory submissions or production data in 

order to explore the potential different types of data have for syndromic surveillance. From all 

those, data recorded individually for each animal regarding different aspects of productivity and 

well-being offers the shortest time lag between a health event and its potential detection (Dórea 

et al., 2016). 

For the past years, dairy farms have been increasing in size, resulting in a lower ratio of 

labor available per animal making difficult systematic checking of animals at risk of disease on a 

regular basis (Paudyal et al., 2016). At the same time, there has been an increasing number of 

precision dairy farming technologies (PDFTs) used by the dairy industry in order to increase 

overall farm production efficiency (Wathes et al., 2008). These new automated data collection 
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systems generate large amounts of information at a higher frequency that could be used for 

syndromic surveillance of a variety of syndromes in dairy cows.  

Sickness behavior is part of an adaptive response to infection or injury that occurs when 

the animal is trying to cope with a stressor. Most of the sickness behavior are associated with 

depression, loss of appetite, weight loss, and pain (Tizard, 2008). However, traditional 

observation of sickness behavior on farms are often based upon subjective clinical evaluation, 

which are in turn influenced by the accumulated experience of farm personnel, with 

questionable consistency (Espadamala et al., 2016). The availability of new technologies to 

automatically record behaviors allows for increased use of objective measurement, and changes 

in behavioral patterns can be used to predict, identify, and assess health problems at the 

individual animal-level to prevent or mitigate clinical disease (Weary et al., 2009; LeBlanc, 2010; 

Dittrich et al., 2019). Recent PDFT literature has been focused on the validation of these 

technologies regarding feeding, rumination, and lying behaviors (Bikker et al., 2014; Borchers et 

al., 2016). However, despite the claims of manufacturer companies about other applications 

such as diagnosis of ketosis, mastitis, reproductive status or protein status, the accuracy and 

prediction ability of these PDMTs for many livestock disease syndromes is still uncertain. 

Due to metabolic challenges, diseases such as hypocalcemia, hyperketonemia, and 

metritis are commonly diagnosed around the transition period in 30 to 50% of dairy cattle 

(LeBlanc, 2010). These health events have effects on welfare and on short and long term 

reproductive health (LeBlanc, 2010). Despite the impact of diseases during the transition period, 

in a review by Rutten et al. (2013), only 16% of the precision dairy farming literature were 

related with disease around parturition. Furthermore, common limitations of these studies were 
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the lack of control for concurrent postpartum diseases, behavioral data aggregations before and 

after disease diagnosis resulting in lost temporal relationships, and lack of consideration of 

within-same-day behavior variability due to farm scheduled activities (Huzzey et al., 2007a; Stoye 

et al., 2012). 

 

1.2 Precision Dairy Farming Technologies 
  

Precision dairy farming involves the use of technologies or biosensors to measure 

physiological, behavioral, and production indicators on individual animals. The primary goals of 

precision dairy farming are to 1) maximize animal performance, 2) detect diseases in individual 

cows early, 3) detect herd level health and production problems early, and 4) minimize the use 

of medication through preventive health measures (Bewley, 2010). The use of PDFTs enables the 

fulfillment of these goals without too much additional labor input (Bewley, 2010). By processing 

the data collected by PDFTs in combination with decision support systems, the application of 

these sensors improves animal monitoring of a wide range of conditions such as heat stress, 

postpartum diseases, lameness, and mastitis (Lee, 2018). 

Technologies fall into two categories: the device is on or inside the cow’s body (cow-

attached PDFTs), or the device is off the cow’s body and measurements are registered as the 

cow walks past or through the device, or a sample is taken to run an analysis (non-attached 

PDFTs; Tsai, 2017). Developed sensor systems can be divided into four different levels: (I) sensor 

technique or signal processing of the changes in the sensor and their assumed relation with the 

animal’s behavior (e.g. steps); (II) integration of information and measurement of changes to 
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generate information about the cow’s status (e.g. increased activity and estrus); (III) integration 

of sensor information with other sources of information to generate advice at the individual (e.g. 

whether to inseminate a cow or not) or herd level if data are aggregated; (IV) decision making 

autonomously by the sensor system (Rutten et al., 2013). Most sensor systems are at levels I, II, 

and III, where companies develop proprietary algorithms to generate alerts when an increased 

likelihood of a disease event is detected for a given animal (Tsai, 2017). 

 Different levels require different validation methods. At level I, the classification of the 

animal behavior by the sensor can be achieved through different statistical methods (e.g., 

machine learning classifiers), and the results are usually validated against visual observations. At 

level II, through the analyses of one or multiple behaviors measured by one or multiple PDFTs, 

associations with diseases or reproductive events are estimated using a variety of statistical 

methods (e.g., machine learning classifiers). Validation is made through traditional clinical 

diagnosis of disease or reproductive events such as visual observations followed by additional 

tests, using blood, urine, or milk samples (Sepúlveda-Varas et al., 2014). 

During validation of a PDFT, different performance metrics are used. These are of great 

importance in order to be able to judge the usefulness of a given PDFT and to compare this to 

competing PDFTs. Basic measurements included for binary outcomes (sick and non-sick) are the 

frequency of true positives (TP; number of observations that are positive and identified by the 

test as positive), false positives (FP; number of negatives and identified as positives by the test), 

true negatives (TN; number of observations that are negative and identified by the test as 

negative), and false negatives (FN; number of positives and identified as negatives by the test). 

Based on these, other metrics such as sensitivity (Se), specificity (Sp), positive predictive value 
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(PPV), negative predictive value (NPV), and accuracy (Ac) can then be calculated (Iwersen et al., 

2009; Hogeveen et al., 2010). Briefly, Se is calculated as TP / (TP + FN), Sp as TN / (TN + FP), PPV 

as TP / (TP + FP), NPV as TN / (FN + TN), and Ac as (TP + TN) / (TP + FP + TN + FN). These are 

considered single-threshold measures, because they are defined for individual score thresholds 

or cutoff of a test, and cannot give an overview of the range of performance with varying 

thresholds (Dominiak and Kristensen, 2017). A solution to this problem is to use the Area under 

the Receiver Operating Characteristics (ROC) curve (AUC), where it shows pairs of Se and Se 

values calculated at all possible thresholds (Saito and Rehmsmeier, 2015). A summary of 

performance in validation studies for cow-attached and non-attached PDFTs with emphasis on 

diseases postpartum (hyperketonemia, hypocalcemia, metritis, or the combination of the three) 

can be found in Tables 1.1 and 1.2. However, the reader should be aware that due to the large 

variation in reported validation methods, test scales, and algorithms used, it is difficult to 

compare the performance of various sensor types across studies. 

Sickness behavior is part of an adaptive response to infection or injury that occurs when 

the animal is trying to cope with a stressor (Weary et al., 2009). Most sickness behaviors are 

associated with depression, loss of appetite, weight loss, and pain (Tizard, 2008). Therefore, 

these behavioral changes can potentially be used to estimate the risk for diseases (Weary et al., 

2009). Changes in behavior could be positive (e.g., increased frequency when cows are sick) or 

negative (e.g., decreased frequency) when cows are ill (Weary et al., 2009). Traditional 

observation of sickness behavior on farms are often based upon subjective clinical evaluation, 

which are in turn influenced by the accumulated experience of farm personnel, with 

questionable consistency (Espadamala et al., 2016). Common behavioral, physiological, and 
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production variables measured at the individual animal level by PDFTs are rumination time, 

feeding, standing, lying time, activity levels, body condition score, heart rate, body temperature, 

milk yield, and milk components. The availability of these automatically recorded behaviors at 

high frequency allows for increased use of objective measures, and changes in behavioral 

patterns can be used to predict, identify, and assess health problems at the individual animal-

level to prevent or mitigate clinical disease (Weary et al., 2009; LeBlanc, 2010; Dittrich et al., 

2019). 

 

1.2.1 Rumination and Feeding Behavior 

Rumination is a natural behavior used to break down the feed particle size and to create 

a greater concentration of bacteria for fermentation (Russell and Rychlik, 2001). Therefore, it 

plays a vital role in maintaining high levels of feed intake and efficient digestive function as 

chewing also helps to increase saliva secretion necessary for an efficient digestive function 

(Soriani et al., 2012; Beauchemin, 2018). The time a cow spends chewing during either eating or 

ruminating varies depending on chemical and physical characteristics of the diet, feeding 

management, and cow variability, but it is also associated with health in dairy cows (Radostits et 

al., 2006; Beauchemin, 2018). The amount of time cows spend ruminating and eating is highly 

variable, and it ranges from 151 – 632 min/d and from 141 – 507 min/d, for ruminating and 

eating, respectively (Beauchemin, 2018). Most rumination occurs at night when cows are at rest, 

but cattle also ruminate throughout the day when not interrupted by farm feeding schedules or 

milking hours (Paudyal et al., 2016). During the transition period, feed intake is crucial to manage 

negative energy balance and to prevent metabolic and infectious diseases postpartum (Urton et 
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al., 2005). As a consequence, rumination time and feeding behavior are both important variables 

for the detection of illnesses (Hansen et al., 2003). 

Rumination and eating time are being recorded by PDFTs such as CowManager SensoOr 

(Agis Automatisering, Harmelen, Netherlands), HR Tag (SCR Engineers Ltd., Netanya, Israel), 

SmartBow (Smartbow GmbH, Jutogasse, Austria), or TrackaCow (ENGS System Innovative Dairy 

Solutions, Israel). Different devices use various methodologies: CowManager SensoOr is an ear-

attached 3-axis accelerometer that records changes associated with jaw and ear movement 

related to chewing and ruminating (Matsui and Okubo, 1991; Dado and Allen, 1993; 

Beauchemin, 2018). TrackaCow is also a 3-axis accelerometer but in this case, the device is 

attached to the cow’s leg. Another device is located by the feedbunk and when the device 

attached to the cow’s leg comes in close contact with the device located by the feedbunk, 

feeding time and number of visits to the feedbunk are registered for a given cow. In contrast, HR 

Tag is a sensor mounted on a collar with a microphone that captures eructation and rumination 

sounds. References for validation studies and their findings can be found in Table 1.1. 

Changes in rumination and feeding behaviors have been associated with clinical mastitis 

(Stangaferro et al., 2016b), hyperketonemia, displaced abomasum (Stangaferro et al., 2016a), 

and metritis (Liboreiro et al., 2015; Stangaferro et al., 2016c; Neave et al., 2018). Cows with 

metritis were found to ruminate less during a period of time that ranged between 2 to 9 days 

postpartum (Liboreiro et al., 2015). Cows with clinical metritis ruminated about 50 minutes less 

per day than healthy cow between 5 days before and 5 days after clinical diagnosis (Stangaferro 

et al., 2016a), and ate 1 kg/d less during the 3 days before diagnosis (Neave et al., 2018). 

However, Neave et al. (2018) reported no difference in prepartum feeding time between cows 
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diagnosed with or without metritis postpartum. In validation studies, ruminating behavior and its 

association with disease postpartum showed a Se that ranged between 42% to 71%, a Sp 

between 74% and 96%, and Ac between 73% and 84%, depending on the PDFT and the disease 

studied (hyperketonemia, hypocalcemia, metritis, or the combination of the three; Table 1.1). 

Similarly, and also depending on the PDFT used and the disease studied, feeding behavior and its 

association with disease postpartum showed a Se than ranged between 56% and 79%, Sp 

between 74% and 91%, and Ac from 74% to 81% (Table 1.1). 

 

1.2.2 Activity and Lying Behavior 

In dairy cattle, increased physical activity is a sign of estrus (Firk et al., 2002). Measured 

with accelerometers that transform acceleration into angles, when attached to the leg, changes 

in angles are interpreted either as steps or lying. Among behaviors considered as resting states, 

lying time has a critical role in the production potential and welfare status of dairy cattle, as cows 

normally need to lie down an average of 12 - 13 hours per day (Drissler et al., 2005; Fregonesi et 

al., 2007; Gomez and Cook, 2010). In response of a disease, ill cows increase resting time to 

conserve energy for fever response and activation of the immune system instead of eating or 

engaging in normal activities (Hart, 1988). Lying behavior could vary by stage of lactation, as lying 

time and lying bouts increase as days in milk increases (Munksgaard et al., 2005; Vasseur et al., 

2012; Ito et al., 2014). 

Activity levels and lying behavior are being recorded by PDFTs such as AfiAct Pedometer 

(Afimilk, Kibbutz Afikim, Israel), IceQube (IceRobotics Ltd., Edinburgh, Schotland), CowManager 

SensoOr (Agis Automatisering, Harmelen, Netherlands), or TrackaCow (ENGS System Innovative 
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Dairy Solutions, Israel). Most of these are 3-axis accelerometer attached to the cow’s leg or to 

the cow’s ear. Some of these devices report the number of minutes per hour a cow spent 

performing a behavior that was classified as either not active, active, high activity, while others 

count the number of steps per hour. In contrast, other devices such as IceQube generate an 

activity index that is calculated based on a proprietary algorithm. References to validation 

studies for these devices and their findings can be found in Table 1.1. 

Changes in lying time have been used for the detection of diseases during the transition 

period such as lameness (Proudfoot et al., 2010; Calderon and Cook, 2011), dystocia (Proudfoot 

et al., 2009), and subclinical hypocalcemia (Jawor et al., 2012). Lame cows have been found to 

experience longer lying time and lying bouts (Chapinal et al., 2009; Ito et al., 2010). In validation 

studies, different activity levels and their association with disease postpartum showed a Se that 

ranged between 53% to 79%, a Sp between 68% and 91%, and Ac between 67% and 81%, 

depending on the PDFT and disease studied (hyperketonemia, hypocalcemia, metritis, or the 

combination of the three), with lower Se for those PDFTs that generate their own activity index 

(Table 1.1). Similarly, and also depending on the PDFT used and disease studied, lying behavior 

and its association with disease postpartum showed a Se than ranged between 53% and 79%, Sp 

between 68% and 90%, and Ac from 67% to 81% (Table 1.1). 

 

1.3 Metritis 

1.3.1 The Transition Period 

 In dairy cattle, the periparturient period is characterized by a sudden increase in energy 

requirements and a decrease in voluntary dry matter intake, creating a temporal negative energy 
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balance between a faster increment in the energy demand compared with a slower increment in 

the energy intake (Drackley et al., 2001; Goff, 2006). Increased energy demand is driven by 

increased metabolic demands by the fetus three to four weeks before calving, and the 

prioritization of nutrients toward the mammary gland to start a new lactation, causing fatty acid 

mobilization and the release of non-esterified fatty acids (NEFAs) in order to meet energy 

requirements (Ingvartsen and Andersen, 2000; Drackley et al., 2001; Overton and Waldron, 

2004). The liver, if overwhelmed by an excessive release of NEFAs, will transform these into 

ketone bodies, exacerbating the negative energy balance due to the clinical signs caused by the 

hyperketonemia (Baird, 1982). The periparturient period, also called transition period, is defined 

as the three weeks before and three weeks after parturition (Drackley, 1999). During this period, 

there is a complex relationship between negative energy balance, increased NEFAs, and 

immunosuppression, exacerbated by low levels of calcium in blood (Goff, 2006). In fact, most 

metabolic diseases such as milk fever (hypocalcemia) and ketosis (hyperketonemia) occur within 

the first 2 weeks postpartum in dairy cows. Even some of the diseases such as laminitis that 

occur later during the lactation can be traced back to disorders that occurred in early lactation 

(Donovan et al., 2004). Furthermore, due to the immunosuppression, cows are prone to 

increased pathogen load (Hammon et al., 2006), with the overwhelming majority of infectious 

diseases such as metritis, mastitis or salmonellosis becoming clinically apparent during the first 2 

week postpartum. It has been estimated that 30 to 50% of dairy cattle are diagnosed with either 

metabolic or infectious diseases during the transition period (LeBlanc, 2010), and these diseases 

cause decreased milk production (Fourichon et al., 1999; Edwards and Tozer, 2004; Huzzey et al., 

2007a), poor reproductive performance (Opsomer et al., 2000; Walsh et al., 2007), and 
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increased culling rate (Hadley et al., 2006; Dubuc et al., 2011). Recent studies have estimated 

that the cost of a case of metritis ranges from $240 to $884 (median $398), and milk price, 

treatment cost, replacement cost, and feed cost explain 59%, 19%, 12%, and 7%, respectively 

(Pérez-Báez et al., 2021). 

 

1.3.2 The Uterus During Postpartum 

Before parturition the uterine lumen is sterile, but during parturition the cervix opens, 

allowing environmental contamination to migrate from the vagina to the uterus (Földi et al., 

2006). However, bacterial presence does not necessarily assume later uterine infection, as more 

than 90% of cows have some bacteria present during postpartum that is not associated with 

clinical disease (Sheldon and Dobson, 2004; Sheldon et al., 2006). Compared with bacterial 

contamination, infection implies adherence of pathogenic organisms to the mucosa, colonization 

or penetration of the epithelium, and/or release of bacterial toxins that lead to establishment of 

uterine disease, which depends on the immune response of the cow and the endocrine 

environment (Janeway Jr et al., 2001; Sheldon et al., 2006).  

During parturition, the expulsion of the fetus occurs along with the associated 

membranes and fluids. Uterine involution starts right after parturition, involving physical 

shrinkage, necrosis and sloughing of caruncles, and the regeneration of the endometrium. 

Expulsion of the placenta normally occurs within 6 h of expulsion of the calf. Regeneration of the 

epithelium of the uterus postpartum is complete by 25 days postpartum, but the deeper layers 

of tissues are not fully restored until 6-8 weeks after calving (Sheldon et al., 2008). After 

parturition, the cervix reopens after 1-week postpartum and lochia is passed until 15-20 days 
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postpartum (Wehrend et al., 2003). Over the course of involution, lochia changes from a red-

brown fluid to a more viscous yellow-white material. Uterine disease is commonly associated 

with Escherichia coli, Arcanobacterium pyogenes, Fusobacterium necrophorum and Prevotella 

species, with potential for specific virulence factors or strains of bacteria to be associated with 

uterine disease (Sheldon et al., 2008; LeBlanc et al., 2011). 

Clinically, cows can present with puerperal metritis, clinical metritis, clinical endometritis, 

or subclinical endometritis. Puerperal metritis is an acute systemic illness within 10 days after 

parturition, being rare after the second week postpartum (Drillich et al., 2001). It is characterized 

by a fetid red-brown watery uterine discharge, pyrexia, reduced milk yield, dullness, anorexia, 

elevated heart rate, and apparent dehydration (Drillich et al., 2001; Sheldon et al., 2006; 

Giuliodori et al., 2013). Similarly, cows with clinical metritis present with an abnormally enlarged 

uterus and a purulent uterine discharge detectable in the vagina within 21 days after parturition, 

and without signs of systemic illness (Sheldon et al., 2006). In cases with puerperal or clinical 

metritis, there is an inflammation of the cavity, lining and deeper layers of the uterus (Sheldon et 

al., 2006, 2008). Clinical and subclinical endometritis occur 21 days or more postpartum, it is not 

accompanied by signs of systemic illness (LeBlanc et al., 2002) and it is characterized by 

superficial inflammation of the endometrium (Sheldon et al., 2006, 2008). Clinical endometritis is 

characterized by the presence of purulent uterine discharge in the vagina 21 days or more 

postpartum, or mucopurulent discharge detectable in the vagina after 26 days postpartum 

(Sheldon et al., 2006). Subclinical endometritis is characterized by inflammation of the 

endometrium in the absence of purulent material in the vagina and a cervical diameter greater 
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than 7.5 cm after 20 days postpartum (Gilbert et al., 1998; LeBlanc et al., 2002), and can only be 

diagnosed by cytology. 

The terms of puerperal metritis, metritis, and endometritis are often used 

interchangeably, but these are different diseases based on day of diagnosis, bacterial type, and 

method of assessment (Sheldon et al., 2006; Potter et al., 2010). Therefore, differences in 

definitions of metritis and tools to assess metritis may explain variation in incidence, milk 

production, and reproductive status across studies. 

 

1.3.3 Diagnosis 

 Metritis can be diagnosed with different techniques including rectal palpation, uterine 

inflammation scoring, ultrasound, radiography, and visual observations between 6 and 21 days in 

milk (DIM)(Andermann et al., 2007; Leutert et al., 2012). The most common method employed 

by producers is increased rectal temperature and manual examination of the vaginal contents, a 

cheap and rapid technique (Haimerl and Heuwieser, 2014). However, diagnosing metritis should 

not be based solely on presence of fetid, watery discharge, as there is low reliability between 

interobserver and intraobserver scoring systems (Sannmann and Heuwieser, 2015). Pleticha et 

al. (2009) attempted to create a more consistent system for evaluating vaginal discharge using a 

Metricheck device to consistently collect vaginal discharge samples. However, the system still 

requires a subjective visual scoring. 

The risk factors for metritis include retained fetal membranes, calving environment, 

twins, dystocia, abortion, stillbirth, and diet (Gröhn et al., 1990; Correa et al., 1993; Kaneene and 

Miller, 1995; Sheldon et al., 2008). Metritis incidence may also vary by parity: differences in 
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incidence have been reported, being 34% and 56% among multiparous cows (Huzzey et al., 2007 

and Sannmann et al., 2013, respectively), and greater among primiparous (61%: Sannmann et al., 

2013). This suggests that confounding factors including dystocia, twins, and retained placenta 

may be associated with parity and differences in incidence (Benzaquen et al., 2007; Dubuc et al., 

2011; Giuliodori et al., 2013). Metritis postpartum is associated with reduced milk production 

(Huzzey et al., 2007a; Dubuc et al., 2011; Giuliodori et al., 2013), decreased reproductive 

performance (LeBlanc et al., 2002; Giuliodori et al., 2013), and increased culling rate (Dubuc et 

al., 2011). 

Little progress has been made toward the control or prevention of uterine disease. The 

general objective of the treatment protocols is to support and maintain innate immune function 

through increased dry matter intake and monitoring of NEFA and ketone bodies around 

parturition (LeBlanc et al., 2011). Treatment protocols are well established and reasonably 

effective, however, even after the resolution of the clinical signs, there is still sub-fertility 

(Sheldon et al., 2008). 

 

1.4 Machine Learning 

 Generally, the goals in biological systems research can be summarized as 1) to formalize 

our understanding about the process that generates the data we observe, 2) to test an 

hypothesis about how the system behaves, and 3) to forecast unobserved future outcomes. 

Goals 1 and 2 are the emphasis of inference, helping us to understand the underlying 

mechanisms by creating and fitting a probability model. In contrast, goal 3 is the emphasis of 

prediction, which is conducted by using learning algorithms in order to find patterns with 
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minimal assumptions about the data-generating system. Machine learning (ML) is a group of 

algorithms and statistical models that computer systems use to find predictive patterns. 

Therefore, ML is useful in those cases where a controlled experimental design is lacking, in the 

presence of nonlinear interactions, when a traditional approach would be too complex, or in 

fluctuating environments (Bzdok et al., 2018). 

 The use of PDFTs in dairy farms generates large amount of data per each individual 

animal at high and low frequencies in fluctuating environments where nonlinear interactions are 

present. Given the high frequency at which changes in behavior and milk production patterns 

can be registered by PDFTs and analyzed by using ML systems, there is potential for developing 

predictive models to identify cows at higher risk of becoming clinically ill. As a consequence, 

earlier disease detections compared with traditional disease monitoring methods can be 

achieved, lowering the impact of stress and disease on animals if these are treated earlier 

(Weary et al., 2009; LeBlanc, 2010; Dittrich et al., 2019). 

 

1.4.1 Machine Learning Workflow 

 Many methods from statistics and ML can be used for both, inference and prediction. 

However, the approach and workflows for inference and prediction are different. A pretty 

standard ML workflow involves many different steps that start as soon as we have the data 

available and we have defined our problem. Géron (2017) summarized a ML workflow as follows: 

• Data pre-processing.  

• Split the data into training and test sets. 

• Model selection by fitting different models. 
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• Model selection by evaluation of model performance. 

• Fine-tune the algorithm. 

• Model assessment. 

 

1.4.2 Data Pre-processing 

 Selecting the appropriate number of features (e.g., milk yield, days in milk, etc.) and 

knowing their importance is a critical part of a ML workflow. The process called feature 

engineering involves feature selection of the most useful features and feature extraction by 

combining existing features to create more useful ones. Common data manipulations involve 

handling missing values (most ML algorithms cannot work with missing values), removing 

duplicate records, coding categorical variables (most ML algorithms work with numbers), and 

feature scaling such as normalization or standardization (most ML algorithms don’t perform well 

when the numerical variables have very different scales). It is rare to find studies in PDFT 

literature were the description of the steps conducted during the data pre-processing phase are 

included in the description of the ML workflow (Table 1.3). 

 

1.4.3 Split Data into Training and Test Set 

 Prediction aims at forecasting unobserved future outcomes, but in order to achieve this 

goal we need 1) to train the model on sample data, and 2) to evaluate the performance of the 

model on future unobserved data (Bishop, 2006). Sample data is usually split into training and 

test sets. Typical ways to split the data is to randomly select 80% of the data as training set and 

20% as test set, but other proportions such as 70/30 can be used, depending on the amount of 
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data available or the particular characteristics of the dataset. The training set should be 

representative of the cases we will generalize to once the ML system is implemented, since even 

in those cases when the amount of data are large, the risk of sampling bias still exists. 

Performance evaluation will be conducted at two different points, being the first one 

after model fitting, and the second one at the very end of the workflow. 

 

1.4.4 Fitting Different Models 

 Suppose we use linear regression to predict a person’s weight based on a sample of 

individuals for whom their height and weights are known, so you can model weight as a linear 

function of height. In this example, the model has two parameters: the intercept and the slope, 

which values you can find using the least squares approach. The linear regression algorithm 

optimizes the parameters that make the linear model fit best to our sample data, a process also 

called training the model. With the estimated parameters, we could find the predicted weight of 

a new person whose height is known, hoping that our model will generalize well to other 

instances outside our sample. 

A sense of how good our estimated line fits the data is given by the errors or residuals, 

this is, the distance between the predicted values and the actual values. It can be measured by 

the average of the squares of the errors, also called mean squared error (MSE), and the goal is to 

minimize it (Hastie et al., 2009). Common loss functions used in ML are the MSE or root mean 

squared error, and the mean absolute error, among others. The selection of one loss function 

over others will depend on a variety of factors such as presence of outliers or the choice of ML 

algorithm (Wang et al., 2020). 
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There are many different types of algorithms used in ML. Linear regression in one of 

them, but there are many others, and for those cases where least squares cannot be 

implemented to optimize the model parameters, an alternative iterative optimization approach 

such as gradient descent can be used. The selection of the algorithm depends on whether the 

outcome is known (labelled or not) in the training data. Based on this criterion, ML algorithms 

can be classified into unsupervised, supervised, semi-supervised, or reinforcement learning. In 

PDFT literature, most common ML methods fall under unsupervised and supervised learning. 

Therefore, we will further describe these two categories: 

• Unsupervised learning: the training data used to train the algorithm does not include 

the desired solutions or labels, this is, the outcome in the training set is unlabeled. 

Common unsupervised algorithms are clustering algorithms (e.g., k-means, 

hierarchical cluster analysis) and dimensionality reduction (e.g., principal component 

analysis, independent component analysis)(Hastie et al., 2009).  

• Supervised learning: the training data used to train the algorithm includes the 

desired solutions, this is, the outcome of interest in the training set is labelled. 

Depending on whether the outcome is continuous or categorical, problems are 

classified into regression or classification. The task in regression is to predict a 

numeric value given a set of features called predictors, while in classification is to 

predict the class (disease – non-disease). Being binary outcomes (healthy – sick) the 

most common ones in health research, ML classifiers are extensively used in the 

PDFT literature. Common supervised algorithms are k-nearest neighbors, linear 

regression, general linear models, logistic regression, decision trees, random forests, 
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neural networks, naïve Bayes, or support vector machines, among others (Hastie et 

al., 2009). 

For disease prediction among PDFT literature, the most common ML algorithms are 

supervised classifiers such as k-nearest neighbors (Saint-Dizier and Chastant-Maillard, 2012; 

Shahriar et al., 2016), decision trees (Kamphuis et al., 2010b; Steensels et al., 2016; Tamura et 

al., 2019), random forest (Caraviello et al., 2006; Kamphuis et al., 2010b; Vanrell et al., 2014; 

Williams et al., 2016; Probo et al., 2018), and support vector machines (Martiskainen et al., 2009; 

Vanrell et al., 2014). It is not possible to know a priori which ML algorithm will work best for a 

given dataset, and the only way to find out is to fit different ones and to compare them 

(Wolpert, 1996). 

 

1.4.5 Evaluation of Model Performance 

 Once the algorithm has been fitted to the data, we need to get a sense of how well it will 

generalize to new data by estimating the prediction error. We can use a proportion of the 

training set to fit the model and to evaluate the performance on a separate validation set. In 

those cases where there is no enough data to be split into different subsets, K-fold cross-

validation can be used to split the data multiple times into train and validation sets. Specifically, 

the data is randomly split into equal-sized parts, and for the kth part, the model is fitted to the 

other K-1 pars of the data, and the prediction error of the fitted model when predicting the kth 

part of the data is calculated. The process is repeated each time until all folds have been used for 

both, fitting and validation, resulting in an average prediction (Hastie et al., 2009). 
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In the case of binary classifiers (e.g., non-diseased, diseased), there are multiple 

performance measures that can be used after using K-fold cross-validation to obtain the 

predicted class (e.g., non-diseased, diseased). Then, we can compare the predicted class with the 

actual class (0: non-cases; 1: cases), given by the labeled data (supervised learning algorithms). 

Based on this comparison, we can estimate the number of true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). From these, we can further estimate 

sensitivity (Se; also called recall or true positive rate in ML), specificity (Sp), positive predictive 

value (PPV; also called precision in ML), negative predictive value (NPV), accuracy (Ac), F1 score 

(the harmonic mean of precision and recall), ROC curve (Se versus 1 – Sp), and Precision-Recall 

curve (PR-curve; PPV versus Se). Performance metrics such as Se, Sp, PPV, and NPV depend on 

the threshold used to classify observations based on their class probabilities. The threshold used 

by default by most ML algorithms is 0.5, and if a given observation has a class probability greater 

than 0.5, its predicted class will be 1. Similarly, if a given observation has a class probability 

smaller than 0.5, its predicted class will be 0. By changing the threshold, we can increase the PPV 

or the Se. Selection of detection threshold is very important in those cases where the dataset in 

unbalanced. This is a very common situation in health applications, where the number of cases is 

smaller than the number of non-cases. 

Common challenges in ML systems are underfitting and overfitting. Underfitting occurs 

when the model is too simple to learn the underlying structure of the data, resulting in 

inaccurate predictions. In contrast, overfitting occurs when the model is too complex relative to 

the amount and noisiness of the training data. As a result, the model performs well on the 

training data but it does not generalize well (Hastie et al., 2009). There are different ways to 
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control the amount of overfitting in our model such as regularization or early stopping during the 

learning phase of the algorithm. 

 

1.4.6 Fine-tunning the Model 

Fine-tunning in used in ML in order to achieve better model performance metrics. We 

can fine-tune the best selected model in multiple ways: from modifying the number of features 

used to fit the model, to the use of regularization to avoid overfitting. Optimize the hyper-

parameters of the algorithm is also another step that is carried out during the fine-tunning 

process. Opposite to ordinary model parameters that are optimized during the model fitting, 

hyper-parameters are set by the user and are not affected by the learning process itself. Hyper-

parameters must be set prior to training and the types of hyper-parameters depend on the type 

of algorithm used. Some examples of hyper-parameters are the number of trees in a random 

forest, the minimum number of sample instances at a leaf node in a decision tree, or the number 

of nearest neighbors used (k) in a k-nearest neighbor algorithm (Luo, 2016). 

Common ways to approach hyper-parameter optimization is by providing a set of hyper-

parameters on a predefined grid, and fitting multiple hyper-parameter combinations to select 

the one with the best performance. Two tools used in ML to search across the predefined grid 

are grid search and randomized search (Bergstra and Bengio, 2012). For the grid search a list of 

hyper-parameter values is provided and the algorithm tries all their possible combinations, using 

K-fold cross-validation. This process can be time consuming if the search space is large, this is, 

the list of the possible values for each hyperparameter is large. In contrast, randomized search 
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evaluates a given number of random combinations by selecting a random value for each hyper-

parameter at every iteration (Bergstra and Bengio, 2012). 

Among PDFT literature involving diseases postpartum it is rare to find studies where the 

description of how the fine-tunning was carried out is included in the ML workflow (Table 1.3).  

 

1.4.7 Model Assessment 

 Once we have selected the best model based on the performance on the training and 

validation sets, the last step is to evaluate the performance of the ML system on new data 

previously unseen, or test set, by the ML algorithm. This last step is rarely seen among PDFT 

literature. 

 

1.5 Research Motivation and Overview 

 Among PDFT literature, a relatively small percentage focuses on metabolic diseases 

during the transition period compared to studies on reproductive or mastitis outcomes (Rutten 

et al., 2013). There is a relatively large body of research which emphasis is to validate sensor 

measurements against visual observations and clinical findings. In contrast, fewer of these make 

use of ML algorithms trying to find predictive patterns in data using multiple data streams.  

 Monitoring a wider set of behaviors has been hypothesized to be of greater predictive 

value for detecting sick animals compared with more restricted set of behaviors (Mathews et al., 

2016, 2017). However, despite the high number of behaviors being recorded by PDFTs, the 

combination of these is rarely explored and only a limited number of behavioral variables are 

usually included in prediction models (Saint-Dizier and Chastant-Maillard, 2018). Furthermore, 
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direct comparison across studies is not possible due to differences in methodologies, time 

windows used to aggregate sensor data, time lags, and metrics chosen. Despite the fact that 

classification performance is affected by the time lags chosen (Saint-Dizier and Chastant-Maillar, 

2018), changes in classification performance have been ignored in PDFT literature (Carslake et 

al., 2021). Similarly, the study of the impact of different time windows has been poorly studied in 

the PDFT literature when trying to predict animal health using animal behavior, as many studies 

fail to establish which signal features and sampling rates are most appropriate for each behavior 

(Carslake et al., 2021). 

Common limitations in PDFT literature are lack of control for concurrent postpartum 

diseases, behavioral data aggregation before and after disease diagnosis resulting in lost 

temporal relationships, and lack of consideration of within-same-day behavior variability due to 

farm scheduled activities (Huzzey et al., 2007; Stoye et al., 2012). Common limitations in the 

studies using ML algorithms on sensor data for postpartum disease prediction is the lack of a 

systematic approach to feature selection, lack of specifications regarding study approaches to 

minimize overfitting, and fine-tunning strategies. Furthermore, poor generalization of models in 

which methods to artificially balance datasets that are in nature unbalanced have been used has 

not been addressed.  

Therefore, there is the need of a systematic approach to study algorithms performance 

at different time windows and time lags when inputs from multiple behaviors are included 

simultaneously in the model, and to combine those with other data inputs such as milk yield-

related variables, without artificially balance the data. 
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1.5.1 Overview 

 Chapter 2 focused on the study of ruminating, eating, not active, active, and high activity 

behaviors registered by an ear-tag 3-axis accelerometer. Chapter 3 studied lying, lying bouts, 

steps, intake, and intake visits behaviors registered by a leg-attached 3-axis accelerometer. 

Hourly sensor data for each behavior and device corresponding to the 3 days before each 

metritis events were aggregated using time windows of 24, 12, 6, and 3 hours. Chapters 2 and 3 

studied the performance of three different supervised classifiers (k-nearest neighbors, random 

forest, and support vector machines) on each individual behavior at different time windows and 

multiple time lags. Performance was evaluated in terms of sensitivity, specificity, positive 

predictive value, negative predictive value, F1 score across multiple classification thresholds. 

Furthermore, area under the PR-curve and ROC curve were also evaluated. Due to the 

unbalanced nature of the data, a rank-based method approach was used to classify the events, 

and priority was given to the sensitivity, positive predictive value, and F1 score as performance 

metrics. Random Forest had the greatest and most consistent performance across time windows 

and time lags. While 12 and 6 h time windows were best for the ear-attached accelerometer, 6 

and 3 h time windows were best for the leg-attached accelerometer. Furthermore, best 

performances were achieved at longer time lags. Based on our findings from Chapters 2 and 3, in 

Chapter 4 we developed a framework for model building where features from multiple behaviors 

were used to fit the models using Random Forest as classifier. Furthermore, we evaluated 

classifier performance under nowcasting and forecasting frameworks, and we evaluated the 

usefulness of combining behaviors measured by two different PDFTs. 
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Table 1. 1: Behavioral variables registered by cow-attached precision dairy farming technologies (PDFTs), common raw data 
transformations (data pre-process.), and their performance metrics from validation studies for postpartum diseases. 

Variables PDFT Frequency Data pre-process. Source 
Performance1 

r Se (%) Sp (%) Ac (%) AUC 
Core Temp DVM bolus 5 min Mean temp/d Bewley et al., 2008 0.65 31-41 92-95 79-92 0.54-0.77 
Steps AfiAct Pedomet. 1 h Steps/h; Steps/2 h; 

Steps/d 
Mattachini et al., 2013 -- 71-78 68-82 67-78  

Ice Qube 15 min McGowan et al., 2007 -- 70-72 78-84 77-80 0.59-0.64 
TrackaCow 5 min Wolfger et al., 2015 -- 74-79 74-79 74-79  

Rumination2 CowManager 1 min Min/h; % time/h; 
Min/d; Units/2 h; 
Units/d 

Bikker et al., 2014 
Borchers et al., 2016 

0.93 
0.69 

56-71 81-91 80-81 0.52-0.71 

HR Tag 2 h Burfeind et al., 2011 
Schirmann et al., 2009 

0.96 
0.92 

42-70 83-96 81-84 0.52-0.69 

SmartBow 15 min Tsai, 2017 -- 53-70 74-90 73-81 0.51-0.91 
Lying3 AfiAct Pedomet. 1 h Min/h; Min/15 

min; Min/2 h; 
Min/d 

Borchers, 2015 
Mattachini et al., 2013 >0.9 71-78 68-82 67-78  

IceQube 15 min Borchers, 2015 
McGowan et al., 2007 >0.9 70-72 78-84 77-80 0.59-0.64 

TrackaCow 5 min Borchers, 2015 
Wolfger et al., 2015 >0.9 74-79 74-79 74-79 0.58-0.64 

SmartBow 15 min Tsai, 2017 -- 53-70 74-90 73-81 0.51-0.91 
Lying bouts AfiAct Pedomet. 1 h Bouts/h; Bouts/2h; 

Bouts/d 
Mattachini et al., 2013 -- 71-78 68-82 67-78  

IceQube 15 min McGowan et al., 2007 -- 70-72 78-84 77-80 0.59-0.64 
TrackaCow 5 min Borchers et al., 2016 

Wolfger et al., 2015 
>0.9 74-79 74-79 74-79 0.58-0.64 

Eating CowManager 1 min Min/h; % time/h; 
Min/d 

Bikker et al., 2014 
Borchers et al., 2016 

0.88 
0.88 

56-71 81-91 80-81 0.52-0.71 

Time at 
Feedbunk 

TrackaCow 5 min Min/d Borchers et al., 2016 
Wolfger et al., 2015 

0.93 74-79 74-79 74-79 0.58-0.64 

Feedbunk 
Visits 

TrackaCow 5 min Visits/d Borchers, 2015 
Chapinal et al., 2007  
DeVries et al., 2003 
Wolfger et al., 2015 

-- 74-79 74-79 74-79 0.58-0.64 
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Table 1.1 (Continued) Behavioral variables registered by cow-attached precision dairy farming technologies (PDFTs), common raw 
data transformations (data pre-process.), and their performance metrics from validation studies for postpartum diseases. 
 

Variables PDFT Frequency Data pre-process. Source 
Performance1 

r Se (%) Sp (%) Ac (%) AUC 
Activity CowManager 1 min Min/h; % time/h; 

Min/d 
Bikker et al., 2014 0.73 56-71 81-91 80-81 0.52-0.71 

SmartBow 15 min Tsai, 2017  53-70 74-90 73-81 0.51-0.91 
Neck activity HR Tag 2 h Min/2h; Min/d Schirmann et al., 2009 

Burfeind et al., 2011  42-70 83-96 81-84 0.52-0.69 

Motion index IceQube 15 min Min/15 min McGowan et al., 2007  70-72 78-84 77-80 0.59-0.64 
 
1 Pearson correlation coefficient (r) has been extracted from the sources. Performance evaluation focused on the classification of hyperketonemia, 
hypocalcemia, and metritis.  

2 Rumination: the point in time of regurgitation. Starts when regurgitated boluses reach the esophagus, enters the mouth, and are subsequently 
followed by the initiation of rhythmic chewing by the cow. Ends when rhythmic chewing ceases and the bolus is swallowed (Schirmann et al., 
2009). 

3 Lying: the flank of the animal comes in contact with a surface during transition from a standing point. Standing is when the transition from a lying 
position to a standing position occurs and all four limbs are fully extended and perpendicular to the ground (Ledgerwood et al., 2010). 
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Table 1. 2: Variables registered by non-attached precision dairy farming technologies (PDFTs) at each milking, common raw data 
transformations (data pre-process.), and their performance metrics from validation studies. 

Variables PDFT Data pre-process. Source 
Performance1 

Se (%) Sp (%) Ac (%) AUC 
Milk fat AfiLab Daily sum; daily %; 

daily fat/protein ratio 
Karp and Petersson-
Wolfe, 2010 

42-70 83-96 81-84 0.52-0.69 

Milk protein AfiLab Daily sum; daily %; 
daily fat/protein ratio 

Tsai, 2017 75-79 79-86 78-84 0.67-0.83 

Milk yield (kg/d) AfiMilk Daily sum Tsai, 2017 70-78 81-90 79-89 0.67-0.83 
Milk conductivity (%) AfiMilk Percentage Tsai, 2017 70-78 81-90 79-89 0.67-0.83 
Body weight (kg) AfiWeight Mean kg/d Tsai, 2017 28-61 80-92 81-94 0.67-0.83 

 
1 Performance evaluation focused on the classification of hyperketonemia, hypocalcemia, and metritis. 
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Table 1. 3: Use of machine learning (ML) algorithms used in precision dairy farming technology (PDFT) literature with emphasis on 
hyperketonemia, hypocalcemia, and metritis during postpartum. 

Source PDFT Disease ML Algorithm ML Workflow1 
Edwards and Tozer, 2004 Pedometer Hyperketonemia 

Hypocalcemia 
General linear model No 

Alzahal et al., 2009 Radiotelemetric bolus 
pH electrode 

Ruminal dysfunction General linear model No 

Bar and Soloman, 2010 HR Tag Ruminal dysfunction Mixed linear model No 
AlZahal et al., 2011 Radiotelemetric bolus Ruminal dysfunction General linear model No 
Liboreiro et al., 2015 HR Tag 

AfiMilk 
Hyperketonemia 
Hypocalcemia 
Metritis 

Logistic regression No 

Steensels et al., 2016 HR Tag Hyperketonemia 
Metritis 

Decision tree Yes 

Stangaferro et al., 2016a; c HR Tag Hyperketonemia 
Hypocalcemia 
Metritis 

Logistic regression No 

Tremblay et al., 2018 AMS2 Hyperketonemia k-means 
Principal component analysis 

No 

Hamilton et al., 2019 3-axis accelerometer Ruminal dysfunction Support vector machines Yes 
Sturm et al., 2020 SmartBow Hyperketonemia Nearest centroid classification 

Naïve Bayes classifier 
Yes 

Wagner et al., 2020 pH electrode 
 

Ruminal dysfunction k-Nearest neighbors 
Decision tree 
Multilayer perceptron 
Long short-term memory 

Yes 

 

1 A machine learning (ML) workflow is considered to be included if the source describes the proportion of the data used for training and testing, 
methods for feature extraction, hyperparameters used, and validation. 

2 Automated Milking System (AMS) refers to milking robots where milk samples are collected in line and analyzed automatically without the need 
of sample handling.  
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2.1 Abstract 

With all the sensor data currently generated at high frequency in dairy farms, there is 

potential for earlier diagnosis of postpartum diseases compared with traditional monitoring 

methodologies. Our objectives were 1) to compare the performance of three machine learning 

classification algorithms on the detection of behavior patterns measured by an ear-tag 

accelerometer (CowManager, Agis Autimatisering, Harmelen, Netherlands) associated with 

metritis events, 2) to determine whether farm scheduled activities have an impact on model 

performance, 3) to identify which behaviors yield the highest F1 score on metritis prediction, and 

4) to estimate the best time aggregation for the sensor data and how much behavioral data are 

necessary to obtain the highest F1 score on metritis prediction. Data from 35 dairy cows that 

either did not experience any disease postpartum or were only diagnosed with metritis were 

retrospectively selected from a dataset containing sensor data and health information from 138 

lactating cows during the first 21 days postpartum at University of Kentucky Coldstream Dairy 

from June 2014 to May 2017. Metritis events were created based on changes in metritis scores 

recorded during clinical examination. Sensor data for rumination, eating, not active, active, and 

high activity behaviors corresponding to the 3 days before each metritis event were aggregated 

every 24, 12, 6, and 3 hours, resulting in 1,386 models. All behaviors changed throughout the 

study period and showed distinct daily patterns. From the three algorithms, random forest had 

the best and most consistent performance, and scheduled activities had no impact on model 

performance. Furthermore, sensor data aggregated every 6 or 12 hours had the best balance 

between model performance and consistency of results. We concluded that the data from the 

first 3 days post-partum should be discarded when studying metritis, that rank-based methods 
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should be preferred over other methods that imply to artificially balance the data, and all five 

behaviors measured with CowManager were useful in predicting metritis when sensor data were 

aggregated every 12 or 6 hours. Findings from this study will be used to develop more complex 

prediction models that could identify cows at higher risk of experiencing not only metritis but 

other negative health outcomes. 
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2.2 Introduction 

 In the 1960s and 1970s, with the development of individual cow automatic identification, 

information such as feeding, milk, and activity data started to be routinely collected to assist 

with animal management. More recently, the development of new sensor technologies has been 

intimately related with increasing herd sizes and labor cost that have resulted in lower ratios of 

farm staff to animals (Rutten et al., 2013). These new automated data collection systems 

generate large amounts of information in a less controlled way but at a higher frequency, 

increasing the volume of information that is being generated. In dairy cattle, most sensor devices 

record lying, feeding, and physical activity behaviors.  

Sickness behavior is part of an adaptive response to infection or injury that occurs when 

the animal is trying to cope with a stressor. Most of the sickness behaviors are associated with 

depression, loss of appetite, weight loss, and pain (Tizard, 2008). However, traditional 

observation of sickness behavior on farms are often based upon subjective clinical evaluation, 

which are in turn influenced by the accumulated experience of farm personnel, with 

questionable consistency (Espadamala et al., 2016). The availability of new technology to 

automatically record behaviors allows for increased use of objective measures, and changes in 

behavioral patterns can be used to predict, identify, and assess health problems at the individual 

animal-level to prevent or mitigate clinical disease (Weary et al., 2009; LeBlanc, 2010; Dittrich et 

al., 2019).  

 Machine learning (ML) is a group of algorithms and statistical models that computer 

systems use to find predictive patterns. These algorithms fit models using sample data, also 
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called training data, and evaluate the performance of the model on new data, or test data, 

providing a sense of the generalizability of the models (Bishop, 2006). Therefore, ML algorithms 

can be used to develop predictive models to identify which cows are at higher risk of becoming 

clinically ill. Given the high frequency at which changes in behavior patterns can be analyzed, 

there is potential for earlier disease detection compared with traditional monitoring methods, 

lowering the impact of stress and disease on animals if these are treated earlier. 

 Due to metabolic challenges, diseases such as hypocalcemia, hyperketonemia, and 

metritis are commonly diagnosed around the transition period in 30 to 50% of dairy cattle. These 

health events have effects on welfare, reproductive health 1 to 9 weeks after calving, and on 

long term reproductive performance (LeBlanc, 2010). Despite this fact, in a review by Rutten et 

al. (2013), only 16% of the precision dairy farming literature were related with disease around 

parturition. Common limitations of these studies were lack of control for concurrent postpartum 

diseases, behavioral data aggregation before and after disease diagnosis resulting in lost 

temporal relationships, and lack of consideration of within-same-day behavior variability due to 

farm scheduled activities (Huzzey et al., 2007b; Stoye et al., 2012). 

 The objective of the present study was to compare the performance of three ML 

classification algorithms on the detection of behavioral patterns measured with sensor data 

using an ear-tag accelerometer, associated with changes in metritis score throughout the post-

partum period in dairy cattle. A second goal was to identify whether farm scheduled activities 

had an impact on ML classification algorithm. A third goal was to determine which animal 

behaviors yield the highest F1 score for metritis prediction, to estimate the best time aggregation 

for the sensor data, and how much behavioral data are necessary to improve metritis prediction. 
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Our findings will provide the foundations to develop more complex prediction models to better 

inform caregivers whether a medical intervention is needed. 

 

2.3 Material and Methods 

 The data used in this study was part of a large study designed to quantify physiological 

and behavioral changes associated with mastitis, lameness, estrus, and postpartum diseases, 

using multiple precision dairy farming (PDF) technologies (Tsai, 2017; Lee, 2018). The larger 

study included data from 138 lactating cows at the University of Kentucky Coldstream Dairy 

(Lexington, KY, USA) that were enrolled in the study during two different periods (June 2014 to 

October 2015, and July 2016 to May 2017). All studies were performed with the approval of the 

University of Kentucky Institutional Animal Care and Use Committee (IACUC protocol number 

2013-1199 and 2016-2368). 

 

2.3.1 Population Data 

From the original dataset, a total of 35 dairy cows that either did not experience any 

disease postpartum or were only affected by metritis were retrospectively selected. Cows were 

enrolled in the study after parturition and were followed for 21 days. Cows were excluded from 

the study if they died or were culled from the herd before 21 days in milk (DIM). 

 Details about farm management are described elsewhere (Tsai, 2017; Lee, 2018). Briefly, 

about one month before expected calving date, cows were moved from a far-off dry pen and 

pasture to a close-up dry pen. Cows were maintained in a fresh cow pen from parturition to 70 

DIM. Subsequently, lactating cows were housed in two freestall barns. During the first study 
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period, one barn had 54 dual chamber waterbeds (Advanced Comfort technology, Inc., 

Reedsburg, WI) and the other was equipped with 54 rubber-filled mattresses, both surfaces 

covered with sawdust. During the second study period, both barns had compost bedded pack 

tilled twice daily, and bedded with sawdust as needed. Cows were provided ad libitum access to 

fresh water in each barn and lactating cows were fed the same TMR between 6:00 to 9:30 h and 

12:30 to 15:00 h. The lactating diet consisted of forage, alfalfa hay, mineral and vitamin 

supplement, concentrate mix, whole cottonseed, and alfalfa haylage. During the second study 

period, feed was pushed up 22 times per day by an automated feed pusher (Lely Juno, Ley 

Robots, Masslius, the Netherlands). Cows were milked two times per day from 4:30 to 5:30 h and 

from 15:30 to 16:30 h in a double 2 X 2 tandem-milking parlor. 

 

2.3.2 Clinical Data 

 Fresh cows were inspected daily after morning milking from 7:00 to 10:00 h for the first 

21 days of lactation. A MetriCheck (Simero Tech Ltd, Hamilton, New Zealand) device was used to 

obtain a uterine discharge sample and scored on 3, 5, 7, 9, 11, 17, 19, and 21 DIM. Depending on 

the study period, different number of uterine discharge samples were taken between 11 and 17 

DIM: during the first study period, one sample was taken on 14 DIM, while during the second 

study period, samples were taken on 13 and 15 DIM. A uterine discharge was evaluated on a 1 to 

3 scale using a scale modified from Sheldon et al. (2006). Briefly, score 1: thick, viscous 

discharge, clear, opaque or red to brown in color, no odor or milk; score 2: white or yellow pus, 

moderate to thick discharge, milk odor; score 3: pink, red, dark red, or black watery discharge, 

detectable offensive odor, possibly intolerable. Cows with score > 2 were classified as metritis 



 

 36 

cases (Tsai, 2017; Lee, 2018). As part of the study, cows were monitored for hyperketonemia, 

hypocalcemia, mastitis, lameness, and retained placenta as described by Tsai (2017) and Lee 

(2018). Briefly, blood was collected by caudal venipuncture on 3, 7, 14, and 21 days postpartum 

for calcium level and non-esterified fatty acid (NEFA) determination. Beta-hydroxybutyrate 

(BHBA) concentration was measured with two cowside monitors: Precision Xtra (Abbott 

Laboratories, Chicago, IL, USA) was used on days 3, 7, 14, and 21 DIM during the first study 

period, while BHBCheck (PortaCheck Inc., Moorestown NJ, USA) was used on days 1, 2, 3, 4, 5, 6, 

7, 10, 14, and 21 DIM during the second study period. Hypocalcemia was defined as a serum Ca 

level <8.6 mg/dL (Chapinal et al., 2011) and hyperketonemia was diagnosed when BHBA > 1.2 

mmol/L (Geishauser et al., 1998; McArt et al., 2012; Kaufman et al., 2016). Cows were diagnosed 

with clinical mastitis using the following criteria: watery, thickened, and discolored milk; milk 

containing blood, pus, flakes, or clots; edema, erythema; or pain in the associated quarter 

(Royster and Wagner, 2015) between 1 and 21 DIM by trained milkers. Furthermore, quarter 

milk samples were collected for somatic cell count (SCC) on days 4 + 2 DIM and 9 + 2 DIM. Cows 

with SCC > 200,000 cells/mL in one or more quarters were considered positive for subclinical 

mastitis. Finally, locomotion scores were recorded on days 1, 7, 14, and 21 postpartum on a 1 to 

3 scale (Schlageter-Tello et al., 2014). Retained placenta was recorded if fetal membranes were 

retained for > 24 hours (Sheldon et al., 2006). 

 For any given cow and day, a metritis event was assigned when a cow was getting or 

being with metritis, this is, the metritis score increased, changed from 3 to 2, or when the score 

remained 2 or 3, between two consecutive uterine discharge evaluations. Similarly, for any given 

cow and any given day, a non-metritis event was assigned when a cow was recovering from 
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metritis or being healthy, this is, when the metritis score decreased to 1, or when the score 

remained as 1, between two consecutive uterine discharge evaluations. In order to keep the 

time relationship between sensor measurements and clinical data, diagnosis of metritis was 

assigned to happen at 6:00 h on each one of the days when uterine discharge was evaluated. 

 

2.3.3 Sensor Data and Data Pre-processing 

Each cow was equipped with different PDFTs before being enrolled to allow for an 

adjustment period of at least two weeks. For this retrospective study, information per cow 

included five different behaviors measured from parturition (day 0) to 21 days postpartum with 

an ear-attached 3-axis accelerometer (CowManager, Agis Autimatisering, Harmelen, 

Netherlands) that records the number of minutes per hour for behaviors classified as ruminating, 

eating, not active (including both standing or lying), active, or high activity. CowManager has 

been previously validated by Bikker et al. (2014), and Borchers et al. (2016). 

Time series sensor data consisted on the hourly measurements for each behavior ! 

corresponding to the 3 days prior to each metritis event, assigning the time of diagnosis " at 6:00 

h on each one of the days when uterine discharge was evaluated. Therefore, the 6:00 h time was 

used as offset for later transformations of the time series sensor data. When only sensor 

measurements corresponding to evening-night were used, for any given day, only sensor data 

from 17:00 to 3:00 h were considered, being the time of diagnosis " assigned at 17:00 h on each 

one of the days when uterine discharge was evaluated. The following time series data 

transformations were applied to both time series: one with observations for every hour, and 

another one containing only those corresponding to the evening-night hours. 
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The first time series data transformation was to remove seasonality by differencing the 

time series. In order to do that, we subtracted for each cow, behavior !, and hour within a 3-day 

period before a given metritis event, the measurement registered by the sensor in the previous 

24 h from each hourly sensor measurement. The time series data for each metritis event at time 

" was defined by: 

#$!,#$%, $!,#$&, … , $!,#$'' 

where: 

$!  was the differenced hourly sensor measurement for behavior ! and time ", 
being !	 ∈ 	 {+,-!./"!0., 1/"!.2, .0"	/3"!41, /3"!41, ℎ!2ℎ	/3"!4!"6} 

.   was the time step within a 3-day (or 72 hours) period. 

Next, we transformed the time series sensor data by aggregating the differenced hourly 

measurements using the mean of the time window "8%. In order to assess classifier performance 

at different levels of sensor data aggregation, we used 4 different widths to compute the mean: 

3, 6, 12, and 24 h. As result, the new time series data for each metritis event at time " was 

defined by: 

#$̅!(,#$%, $̅!(,#$&, … , $̅!(,#$)' 

where:  

$̅!(  was the mean sensor value for behavior ! and time window "8% of width :, 
being !	 ∈ 	 {+,-!./"!0., 1/"!.2, .0"	/3"!41, /3"!41, ℎ!2ℎ	/3"!4!"6}	, 
and :	 ∈ 	 {3	ℎ, 6	ℎ, 12	ℎ, 24	ℎ} 

 - was the time step within a 3-day period. The number of time steps that could 

be included within a 3-day period was a function of the width : of the time 

window "8%. 
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2.3.4 Model Fitting 

We selected the number of model inputs (or features) by using a time window "8& of 

width @. In order to assess classifier performance at different widths, we used multiple values for 

@ within a 3-day period before each metritis event. Therefore, the model inputs for each model 

were: 

#$̅!(,#$%, $̅!(,#$&, … , $̅!(,#$*' 

where the width @ = 1, 2, … , B, and B was the number of time steps included as features 

within a 3-day period before a given metritis event. 

The number of features in our models ranged from 1, when sensor data were aggregated 

with a "8% width : of 24 hours and "8& width @ of 1, to 24 features when sensor data were 

aggregated using a "8% width : of 3 hours and "8& width @ of 24, corresponding to 72 hours 

prior to the event. 

In this paper, we evaluate the ability of 3 common supervised ML classifiers (k-nearest 

neighbors, random forest, and support vector machine). These learning algorithms can be used 

in classification problems using labeled data, in this case, to discriminate among 2 possible 

distinct patterns (metritis and non-metritis events) using sensor data from 5 animal behaviors as 

independent variables, also known as predictors, features, or inputs (Alpaydin, 2010).  

- k-Nearest neighbors (k-NN). k-NN algorithm assumes that similar data points exist in 

close proximity, this is, are close to each other. The algorithm estimates the 

closeness by calculating the Euclidean distance for each data point to the rest of the 

data points, sorts the distances from smallest to largest, and picks the first k entries 



 

 40 

and their labels (metritis, non-metritis events), returning the mode of the k labels 

(Fix and Hodges, 1951; Dasarathy, 1991; Hastie et al., 2009). 

- Random forest (RF). Random Forest is a model made up from many decision trees. 

A decision tree can be seen as a flowchart of questions asked about the data, 

eventually leading to a predicted class with the greatest reduction in Gini Impurity. 

This means that the decision tree tries to form nodes or sets of data points that are 

as pure as possible, containing a high proportion of data points from only one class 

(metritis, non-metritis events). Therefore, the Gini Impurity is the probability that a 

randomly chosen sample in a node would be correctly labeled if it was labeled by 

the distribution of samples in the node. In a decision tree, for each level of the tree, 

the weighted average Gini Impurity decreases as we approach the terminal nodes, 

also called leaf nodes, and the class is the majority classification, or prediction, for 

the data points in the node. The number of levels in a decision tree can be 

controlled by limiting the maximum depth of the tree. When the depth has no limit, 

the tree is allowed to create as many levels as necessary in order to classify all the 

points, overfitting the data by growing until it has one leaf node for every single 

observation. To deal with overfitting, we can use hundreds or thousands of decision 

trees to form a forest, and the final prediction then becomes the average prediction 

from all trees in the ensemble. The model is random because uses 1) random 

sampling of data points, with or without bootstrapping, to generate each decision 

tree; and 2) splitting nodes based on a limited number of the features (Breiman, 

2001; Hastie et al., 2009). 
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- Support vector machines (SVM). In cases where two classes can be linearly 

separated, we can divide the data points with a line into two regions labeled 

according to the classification, this is, metritis and non-metritis events. Examples of 

these methods are linear regression, linear discriminant analysis, and logistic 

regression. For those cases in which there are more than two classes, or when the 

different classes overlap, we can use SVM. In this case, instead of dividing the data 

with a line, we will need to estimate the optimal hyperplane, also called decision 

hyperplane, that separates the different classes as well as possible while maximizing 

the distance, also called margin, to the closest point from either class, also called 

support vectors. For those cases in which classes are not linearly separated, a 

kernel function can be used where data points can be mapped to a transformed 

version of the feature space so data can be then linearly separated. To deal with the 

overlap while maximizing the margin, we need to allow for some points to be on 

the wrong side of the margin. This is controlled by the cost parameter C, which 

allows data points to fall off the margin, controlling the tradeoff between the 

misclassifications and width of the margin (Vapnick, 1995; Hastie et al., 2009). 

For each one of the three ML classifiers, one model was fitted for each combination of 

behavior !, time window "8% width :, and time window "8& of width @. 

 

2.3.5 Model Performance 

Due to limitations in the amount of data available, we used fivefold cross-validation (5-

FCV) to set aside a validation set and use it to assess the performance of the prediction model. 
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Specifically, for any given model, the data were randomly split into 5 equal-sized parts where 

4/5ths were used to fit the model, whereas the 1/5th was used to calculate the prediction error 

of the fitted model. This process was repeated each time until all 5 folds had been used for both, 

fitting the model and validation, resulting in an average prediction error. First, algorithm default 

values for the different hyperparameters were used to estimate classification performance using 

5-FCV. Next, Grid Search (GS) was used as strategy to optimize the classifier, except for random 

forest, where GS was performed after Randomized Search (RS) in order to reduce the grid search 

so computing time was manageable. Optimal parameters that were found to allow for best 

mean cross-validation accuracy were used to train the final model (Table 2.1). After optimization, 

for each model that was fitted using 5-FCV, the prediction class probability for each health event 

of being classified as metritis was obtained and ranked from highest to lowest. To estimate the 

performance of each model, highest 20, 30, and 40% class probabilities were used as different 

cut-off points. For each cut-off point, classification performance was evaluated using estimates 

of sensitivity (Se or recall), specificity (Sp), positive predictive value (PPV or precision), negative 

predictive value (NPV), accuracy (Ac), F1 score, the area under the curve (AUC) for the receiver 

operating characteristic (ROC) curve and Precision Recall (PR)-curves. Sensitivity is estimated as 

the ratio of correctly predicted positive observations to all observations in the actual class 

(metritis event). Specificity is estimated as the ratio of correctly predicted negative observations 

to all observations in the actual class (non-metritis event). Positive predictive value is the ratio of 

correctly predicted positive observations to all predicted positive observations. Similarly, 

negative predicted value is the ratio of correctly predicted negative observations to all predicted 

negative observations. Accuracy is the ratio of correct predictions to all number of observations 
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(Hogeveen et al., 2010). F1 score is the weighted average of PPV and Se. This score takes both 

false positives and false negatives into account, and it is more useful than accuracy in situations 

where the distribution of the observations in each class is unbalanced. F1 score was computed as 

(1 + b2)*(PPV * Se) / ((b2 * PPV) + Se), where b = 1 (Saito and Rehmsmeier, 2015). 

 Classifier implementations were taken from the open source Python library scikit-learn 

(Pedregosa et al., 2011). The feature extraction and the optimization of the classifier parameters 

were implemented using Python programming language, version 2.7 (Python Software 

Foundation, http://www.python.org). Plots were done using ggplot2 library (Wickham, 2009), 

using R open-source statistical software (R Core Team, 2017). 

 

2.4 Results 

A total of 35 dairy cows (Jersey = 20; Holstein = 15; primiparous = 17; multiparous = 18) 

were retrospectively selected from the original dataset (n = 138) containing clinical and sensor 

data from parturition to 21 DIM. Average + SD milk yield was 36.1 kg. + 15.6. Of the 35 cows 

selected, 13 did not have any metritis event during the study period, while 22 were diagnosed at 

least once with metritis (score >2), occurring on average at 12 DIM (12.02 + 4.72 DIM). Among 

these, 2 cows had retained fetal membranes and were kept for data analysis. None of the 

selected animals had hyperketonemia, mastitis, or hypocalcemia. The proportion of metritis 

events for primiparous and multiparous cows were 20% and 23%, respectively. Based on the 

changes of metritis score between two consecutive evaluations, 239 health events were created, 

and of those, 188 were in the non-metritis event class, while 51 were in the metritis event class. 

Our data set was unbalanced given the larger number of observations from the non-metritis 



 

 44 

events class to the smaller number of observations from the metritis events class. For each one 

of the behaviors measured, we obtained 11,530 records. 

Cows showed high variability in their behaviors during the study period, especially 

regarding mean time spent not active, rumination, and eating (18.97 + 13.81 min/h, 24.07 + 

13.27 min/h, 9.41 + 11.43 min/h, respectively; Table 2.2). Furthermore, the distribution for the 

behavior variables eating, active, and high activity were right-skewed, with differences in the 

mean values of high activity behavior between primiparous and multiparous cows when the time 

was categorized into milking, morning, and evening-night. Overall, differences between 

primiparous and multiparous seemed to be lesser during milking times (Figure 2.1). 

 

2.4.1 Changes in Behavior by Days in Milk 

There were changes across all behaviors from parturition to 21 DIM, with significant 

variation in the first 3 days post-partum for rumination, eating, high activity, and active 

behaviors. During the first 3 days post-partum, there was an increase in the amount of time cows 

performed rumination behavior while there was a decrease in the amount of time performed 

eating, high activity, and active behaviors. Overall, not active and active behaviors had a 

downward trend while rumination and eating had an upward trend during the study period. 

When behaviors were stratified by parity, primiparous spent more time performing high activity 

behavior and less time performing not active behavior than multiparous between 5 and 15 DIM. 

Overall, primiparous cows spent greater time performing eating, active, and high activity 

behaviors than multiparous cows, although differences were not always significant (Figure 2.2).  
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2.4.2 Changes in Behavior by the Time of the Day 

When looking at the variation of the behaviors throughout the day, cows showed inverse 

trends regarding rumination compared to eating behaviors. Animals spent greater time 

ruminating at night, while eating behavior steadily increased from 4:00 h until it reached a first 

peak at 10:00 h, with a second peak around 18:00 h. The lowest observed time spent eating 

occurred right before 4:00 h and around 15:00 h. Active and high activity behaviors showed 

similar trends with respect to each other, and inverse trends when compared with not active 

behavior. Active and high activity behaviors peaked at 19:00 h, with increased activity levels of 

smaller magnitude around 5:00 h and 10:00 h. In contrast, cow behavior classified as not active 

was more prevalent from 0:00 to 6:00 h. When behaviors were stratified by parity, despite 

having similar trends, primiparous cows spent more time performing high activity behavior 

compared with multiparous cows on any given day, while there were no differences by parity for 

other behaviors measured with CowManager (Figure 2.3). 

 

2.4.3 Changes in Behavior by Time of the Day Stratified by Days in Milk 

To further explore the changes of the different behaviors across the study period, we also 

looked into the variation throughout the day when DIM was categorized into 3 distinct periods: 

convalescent (from parturition to 3 DIM), first week (4 to 7 DIM), second week (8 to 14 DIM), 

and third week (15 to 21 DIM). The amount of time performing each behavior changed across 

the different periods of the study, being the difference between the convalescent period and the 

third week the most evident. The amount of time performing not active, active, and high activity 
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behaviors was greater during the first 3 DIM, while cows spent less time performing rumination 

behavior during the same time period (Figure 2.4). 

 

2.4.4 Classifier Performance 

In order to estimate the performance of each one of the classifiers across all time 

windows "8& within a 72 hours period, a total of 45 models with different number of features 

were fitted for each combination of behavior and classifier: 3 models for sensor data aggregated 

every 24 hours (e.g. : = 24ℎ and B = 1, 2, 3), 6 models for sensor data aggregated every 12 

hours (e.g. : = 12ℎ and B = 1, 2, … , 6), 12 models for sensor data aggregated every 6 hours, and 

24 models for sensor data aggregated every 3 hours. A total of 45 models were fitted for each 

combination of classifier and behavior for all day time series sensor data. Model fitting was 

repeated using evening-night sensor data only. For the time series containing sensor 

measurements for the evening-night hours only, there was no difference in the data points used 

to make the 24- and 12-hour data aggregations. As a consequence, a total of 21 modes were 

fitted for each combination of classifier and behavior for evening-night only time series sensor 

data. The process of model fitting was repeated a third time for those variables that showed 

differences by parity and by hour. Hence, stratified models by parity were fitted for high activity 

and not active behaviors (all day and evening-night only time series data). A total of 1,386 

models were fitted to account for differences by parity, by width : of the time window "8% used 

to aggregate the sensor data, by the width @ of the time window "8&, and by time of the day (all 

day, evening-night time series data). 5-FCV F1 scores at the 20% cut-off was used to compare 

across different models. For all classifiers, higher F1 scores were obtained when the time series 
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including sensor data for each hour was used (Figure 2.3). Figure 2.4 shows an overview of the 

distribution of F1 scores at the 20% cut-off at different times before the health event, stratified 

by the different levels of sensor data aggregations, when sensor data for all day were used. 

Random forest had the highest and most consistent F1 scores across multiple levels of data 

aggregations, followed by k-NN and SVM. Metrics performance from all the models can be found 

in a data repository (Vidal et al.). 

To select amongst the best models, we focused on those that were in the upper quartile 

of the F1 score distribution at the 20% cut-off within each classifier, when sensor data for all day 

were used. For RF, the upper quartile for F1 score values at the 20% cut-off were between 

94.74% and 98.76%, while the upper quartile for k-NN was between 41.97% and 58.82%. In 

contrast, the top 25% values for SVM F1 scores were between 25.32% and 66.67% (Figure 2.5). 

Figure 2.6 shows the best models considered so far at the different levels of time series sensor 

data aggregations and number of time steps before the health event. Our results showed that RF 

had the best performance at any level of time aggregation, and the differences in performance 

between k-NN and SVM decreased as the sensor data became less aggregated (e.g., 3h time 

window). When data were aggregated using 24 hour time window, active, eating, and high 

activity were the predominant behaviors amongst the best models. All five behaviors were 

present amongst the best models when data were aggregated either using 12 or 6 hour time 

windows, although k-NN and SVM yielded less consistent results. When data were aggregated 

using 3 hour time window, not active, rumination and eating were the most prevalent behaviors. 

Models stratified by parity were also fitted for high activity and not active behaviors. While not 
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active behavior performed better when sensor data were not stratified, high activity performed 

slightly better when sensor data were stratified by parity, regardless of classifier (Figure 2.7). 

 

2.4.5 Best Classifier, Time Window, and Time Lag 

In our study, the best balance between number of behaviors, and consistency regarding 

number of times before an event a given behavior ranked amongst the best models was found 

when RF was used with data aggregated with 6 or 12 hour time windows. When data were 

aggregated using 12 hour time windows, best models were found for the previous 36 to 72 

hours before event (time steps before event = 3, 4, 5, and 6). When data were aggregated using 

6 hour time window, most consistent results were found between 42 to 72 hours before event 

(time steps before event = 7 to 12). Table 2.3 and 2.4 show the performance metrics for the 

selected best models at two different cut-off percentages. Sensitivities were slightly higher when 

data were aggregated using 12 hour time window and increased as we got closer to the event. 

Using the estimated predicted class probabilities, we compared the metritis events identified by 

RF with the clinical data. We found that the missed events occurred in 2 or 3 cows, depending on 

the level of sensor data aggregation and number of time steps before event. Among these, the 

majority had had multiple metritis events throughout the study, and those missed occurred 

when the cow had previously been identified with metritis at least once and was, most likely, 

undergoing medical therapy. The other situation where an event was missed occurred in a cow 

with just one metritis event on day 11 postpartum. All cows starting with severe metritis (score 

3) were correctly identified. 
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2.5 Discussion 

In this paper, we compared the performance of three different classification ML 

algorithms on five different behavior variables. Our goal was to assess the ability of the 

classification algorithms to identify patterns in the sensor data that may be associated with 

changes in metritis score during the first 21 days post-partum. To preserve the time structure of 

the sensor data, metritis events were created and sensor data from the 3 days prior to an event 

were aggregated using 4 different time windows. To our knowledge, this is the first paper 

studying the potential use of sensor data for disease association between sensor and metritis 

data, where time structure has been kept intact while controlling for other diseases post-

partum.  

In this study, the dataset was unbalanced, which is a common problem when farm 

management is appropriate and the disease to non-disease ratios are small. Most ML algorithms 

focus on minimizing classification errors, favoring the majority class and making the minority 

class harder to predict. Different methods are being used to approach unbalance data and these 

can be broadly classified as: 1) under-sampling, or to leave out data from the majority class to 

match the number of samples coming from each class; 2) over-sampling, creating synthetic 

samples that belong to the minority class; 3) resample, using bootstrap with weights so new 

class sizes come out equal; and 4) ranking-based approach, where observations are ranked 

based on their classification probabilities. Methods 1 through 3 do artificially balance the data, 

however, these approaches don’t necessarily fix the problem. Sometimes, the patterns for a 

given class may be harder to learn and balancing the data may decrease the presence of such 

class, resulting in overall worse performance (Lacroix et al., 1997). Algorithm performance also 
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depends on the behaviors, with activity states being easier to classify by RF compared to resting 

behaviors (Williams et al., 2016). In contrast, a rank-based approach like the one used in this 

study has a number of attractive features: does not create false assumptions regarding the true 

population proportion among classes, does not underestimate the leverage of outliers on the 

estimates, and does not imply the removal of data that has a cost to collect, store, and process. 

We expected ranking-based approaches to yield generalizable results in those cases where the 

ultimate goal is to build predictive models. Once models are fitted, different metrics can be used 

to quantify classifier performance. Accuracy and AUC for the ROC are appropriate metrics when 

the minimization of classification error is the priority and datasets are balanced, and these two 

are widely used in precision dairy farming and disease postpartum studies. However, with 

unbalanced datasets, metrics such as F1 score and PR-curve AUC may be preferred (Davis and 

Goadrich, 2006; Saito and Rehmsmeier, 2015). In our study, non-disease events were the 

majority class, and as a consequence, Sp was expected to be high regardless of how good or bad 

the classifier is with this type of data. Since our priority was to improve the Se and PPV of our 

models, we prioritized the F1 score, the harmonic mean of PPV and Se with equal weights for 

both. Is worth noting that, in order to account for the different costs different misclassification 

errors may have, weights for PPV and Se can be modified adapting the formula as follows: Fb = (1 

+ b2) * (PPV * Se) / (b2 * PPV) + Se. To account for the trade-off between Se, Sp, PPV, and NPV, 

we explored different classification probabilities cut-offs. We found that when the threshold 

value was decreased from the top 20% to the top 40% most likely of being a metritis event, the 

number of false positives increased, which was in agreement with other studies (Shahriar et al., 

2016). 
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In this study, the behaviors changed according to the DIM of the animal. Our findings 

showed that most behaviors have a trend during the first 3 days post-partum that differs from 

the trend observed during the rest of the study period. Activity and high activity had an overall 

downward trend, while eating declined during the first 3 DIM with an overall upward trend after 

the convalescent period. In contrast, rumination behavior had an upward trend that was steeper 

during the first 3 DIM. Increased rumination and eating time have been observed in the 4 -8 

hours after parturition in other studies (Schirmann et al., 2013; Pahl et al., 2014). Furthermore, 

feeding behavior has been found to decrease by 35% over the 2 weeks before calving and to 

increase by 99% over the 3 weeks following parturition (Urton et al., 2005). Not only did 

behaviors change according to DIM, but also according to the time of the day. When behaviors 

were observed in a 24 hour period, there were differences regarding the type of behaviors 

animals would perform. Rumination was more prevalent during nighttime and had opposite 

trend compared with eating, a behavior that decreased before A.M. milking when the food 

available was the oldest sitting feed. Eating behavior steadily increased between A.M. milking 

and 10 h and dropped again during the hottest part of the day around 15 h. Not active behavior 

was also more prevalent during nighttime, when cows spent more time lying and was the coolest 

part of the day, and had opposite trend to active and high activity, which increased during 

milking and feeding times. Our findings are in agreement with previous studies, where 

rumination and eating time have been found to have opposite trends, with rumination time 

being more prevalent during nighttime (Soriani et al., 2013). Despite the differences in behavior 

throughout the day, we found that farm scheduled activities had no effect on the performance 

of each classifier and, in fact, performance was slightly better when all sensor data regardless of 
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time of the day were used, possible due to a maximization of the sample size. Nevertheless, 

depending on the goal of the study, there are some behavior data that may not be worth 

considering given certain times of the day, particularly during milking times, where behaviors 

such as lying cannot be performed. If the goal is to detect cows in heat, removing sensor data 

from the milking will reduce the number of false positives (Shahriar et al., 2016). If the goal in 

removing data is to reduce noise, then other strategies such as stratification by DIM may be 

more relevant. Using all sensor data or just data from certain parts of the day should be studied 

on a case basis, taking into account the number of animals in a given farm with sensor data, and 

the goal of the predictive model.  

To better understand the dynamics of cow behavior throughout the study period, we 

looked at the different behaviors in a 24 hour period when DIM is categorized. We found that 

behaviors progressively evolved as we got closer to the end of the study, so the convalescence 

period was very different from what was observed during the last week of the study. During 

second and third week, behaviors became more similar to the crude data, having a more marked 

pattern if we consider the scheduled farm activities. Based on our findings, we conclude that 

sensor data from the first 3 days post-partum should be disregarded as, most likely, adds noise 

to the data given current management practices around calving (frequent movements between 

pens, frequent health checked, first time in milking parlor, etc.). In our study, the first and 

second metritis score evaluation happened at 3 and 5 DIM, and metritis events were only found 

after 5 DIM. Since the metritis (or non-metritis) events were created based on the change (or 

lack thereof) in the metritis score, the earliest an event can occur is at 5 DIM and therefore, it is 

safe to assume that the convalescent period is not affecting classifier performance. Animal 
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behavior can also change based on different animal-level factors. In this study, we found 

differences by parity for high activity behavior that started to appear between 4 and 7 DIM. Our 

finding is in agreement with what has been found in grazing cattle (Williams et al., 2016). These 

findings may be explained by social dominance dynamics between primiparous and older cows 

(Sepúlveda-Varas et al., 2014). 

One of our goals in this study was to determine, among three different ML classifiers, 

which one performed best using F1 score at the 20% cut-off as criterion to select amongst all the 

models. Based on the F1 score distribution, RF had higher F1 score values overall and better 

performance than k-NN or SVM classifiers. Furthermore, even though k-NN and SVM had some 

models with high F1 scores, RF had consistently higher F1 scores across all the different time 

aggregations. In this study, amongst those models with best performance, k-NN achieved an F1 

score with values around 50%, while SVM F1 score values were from 25 – 65%. Regardless of 

classifier, fewer models ranked among the best when sensor data were aggregated using 24 

hour versus 3 hour time windows (Figure 2.4). k-NN is a classifier that is simple and easy to 

implement. It has been previously used in heat detection studies, with accuracy of 82 – 100%, Se 

over 80%, and Sp between 90 – 100% (Saint-Dizier and Chastant-Maillard, 2012; Shahriar et al., 

2016). In contrast, in this study, accuracy, Se and Sp were around 79%, 49%, and 87%, 

respectively, yielding suboptimal results when k-NN classifier was used with our data. The 

differences observed between this study and others are most likely due to the unbalance dataset 

used in this study compared with heat detection studies, where a higher proportion of animals is 

expected to have a positive outcome.  
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Of the three classifiers studied, SVM had the poorest performance, having the lowest 

values for Se, Sp, PPV, NPV, and Ac. Interestingly, SVM was the only classifier whose F1 score 

improved as sensor data were using 3 hour time windows instead of 24, 12, or 6 hours, 

increasing from 25% to F1 scores around 60%. This has also been observed in previous studies, 

where SVM has been reported to have better performance with shorter time aggregations 

(Vanrell et al., 2014). In dairy cattle, SVM classifier has been mainly used to test the ability of 

accelerometers to identify cows in heat (Vanrell et al., 2014) and in sensor calibration studies 

(Martiskainen et al., 2009). Due to the differences in the nature of these studies, results 

regarding classifier performance are not comparable across studies. Among all the classifiers, RF 

had the best performance, with Se values around 92%, and Se, PPV, NPV, and Ac higher than 

98%. As described above, RF is based on decision trees, a classification method that has been 

used in the precision dairy farming with great success to study grazing cattle behavior (Williams 

et al., 2016), to predict fertility and improve heat detection in dairy cows (Caraviello et al., 2006; 

Vanrell et al., 2014), to predict mastitis (Kamphuis et al., 2010a), or to understand relationships 

between metabolic diseases postpartum and culling risk (Probo et al., 2018). Compared to other 

classifiers, RF can handle large data sets with high number of features, but interpretation is less 

intuitive when trying to understand the relationship existing in the input data. Nevertheless, we 

were able to link the classification probabilities with the clinical data, finding that, among those 

metritis events that were misclassified as false negatives by the model at the 20% cut-off, the 

majority were cows that were undergoing medical treatment. 

In our models, best results were obtained using RF for activity (high activity in 

primiparous, active, eating, and rumination) as well as resting states (not active). Activity is a sign 
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of estrus in dairy cattle and, consequently, increased physical activity has been studied to 

improve heat detection (Firk et al., 2002). Activity can be measured with pedometers or 

accelerometers that transform the acceleration into angles. When an accelerometer is attached 

to the ear, changes in angles are interpreted as rumination, eating, or activity (Saint-Dizier and 

Chastant-Maillard, 2012). However, decreased activity is also a sign of sickness behavior whose 

goal is to conserve energy and, therefore, it could be used to detect disease. Changes in activity 

have been observed in cows that have suffered metabolic or digestive disorders postpartum 

(Edwards and Tozer, 2004). Most importantly, other authors that have found decreased activity 

before and even beyond metritis diagnosis (Liboreiro et al., 2015; Stangaferro et al., 2016a; 

Steensels et al., 2017). Feeding behavior is an activity state that has been found to decrease in 

cows with metritis, with a Se ranging between 71 – 89%, and Sp between 62 – 77% when 

multivariable logistic regression is used as classifier (Urton et al., 2005). In our study, we found 

higher Se and Sp (90 – 95.12%, 100%, respectively), showing that RF is a better than logistic 

regression for this type of data, where a linear separation between classes is not possible, 

indicating that decision tree methods may be more appropriate. 

In this study, rumination showed high variability; the mean rumination time was 577.68 

minutes per day (mean 24.07 minutes per hour + 13.27 SD), and is within the range found by 

others (Zebeli et al., 2006; White et al., 2017). This high variability can be attributed to animal 

variability, milk yield, dry matter intake, chemical and physical characteristics of the diet, and to 

differences in the measuring technique (Beauchemin, 2018). Rumination is important for an 

efficient digestive function that tends to occur during nighttime in association with lying and in 

opposition to eating behaviors. Rumination has been found to decrease before metritis 
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(Liboreiro et al., 2015; Stangaferro et al., 2016a; Steensels et al., 2017) as well as during estrus, 

subclinical acidosis, parturition, disease, and acute stress (Herskin et al., 2004; Beauchemin, 

2018). In this study, Se was 90 – 95%, Sp was 98.74 – 100%, PPV was 95 - 100%, NPV was 97.24 – 

97.97%, and Ac was 97 – 90% for rumination when the 20% cut-off was used. Our findings were 

higher than those found by (Paudyal et al., 2018), with reported value ranges for PPV and Se of 

40 - 60% and 52 – 63%, respectively. Similarly, model performance in this study was superior to 

that found by (Stangaferro et al., 2016a), with reported values for Se, Sp, PPV, NPV, and accuracy 

of 59%, 97.6%, 58.3%, 97.7%, and 95.6%, respectively. Both of these studies had unbalanced 

datasets, with fewer animals in the metritis class, however, none of these used rank-based 

methods for the classification probabilities, nor they reported their different metrics at different 

cut-offs. Opposite to activity state are behaviors that can be considered as resting state. 

Behavior classified as not active can be interpreted as standing or lying down, because the way 

the CowManager works. Previous studies have reported increased time standing inactive before 

calving and before metritis diagnosis (Patbandha et al., 2012). 

In the precision dairy farming field, multiple levels of time aggregations have been used 

for time series data: from seconds (Vanrell et al., 2014), to days (Paudyal et al., 2018), to weeks 

(Tsai, 2017; Lee, 2018). To our knowledge, this is the first study where throughout comparisons 

have been made across different time windows. We found that the number of models that 

ranked amongst the best ones changed based on the different time windows: fewer models 

were found when sensor data were aggregated using 24 hour time windows compared with the 

3 hour time window. Furthermore, when data were aggregated using 3 hour time windows, 

some behaviors were less consistent in their results: some behaviors ranked amongst the best 
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model some time before the event but not in a consistent manner. We found that the best 

balance between number of behaviors ranking amongst the best models and consistency of 

results were obtained when sensor data were aggregated using 12 or 6 hour time windows. We 

hypothesize that, when data are aggregated every 24 hours, fewer features are included as 

inputs and disease patterns in the sensor data may be masked by noise, as data non relevant 

with the sickness behavior are also included in the data sample (i.e., activity level, or eating time 

during milking times). As result, fewer models yield high Se and PPV estimates. In contrast, 

aggregating sensor data using 6 or 12 hour time windows include higher number of model 

inputs, allowing for more opportunities to detect patterns associated with cows at risk of 

metritis. When sensor data are aggregated every 3 hour time windows, the classifier may be 

finding patterns associated with disease that, in the bigger picture, do not translate well into 

behavioral changes since results are less consistent. Besides, the computing cost of analyzing a 

higher number of features such as those generated when data is aggregated every 3 hours does 

not seem to translate into a better performance overall. In this study, we also found that all five 

behaviors measured with CowManager device can be used to detect cow at risk of a metritis 

event using sensor data from 1.5 to 3 days before the event as model inputs. This is in 

agreement with what has been found by other authors: rumination time has been found to 

change 2 - 3 days prior to metritis diagnosis (Steensels et al., 2017; Paudyal et al., 2018) while 

activity has been found to change 2 days before diagnosis of metritis as well as metabolic and 

digestive problems (Edwards and Tozer, 2004; Steensels et al., 2017). 

Limitations remain with current prediction models regarding how to deal with cases of 

more than one illness and how to detect one illness without excluding the others from analyses, 
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how classifier performance can change by adding multiple behaviors or devices at the same 

time, without artificially balancing the data, and how model performance translate in 

commercial farms in terms of Se and PPV when interactions between behavior and response to 

therapy occur. Future studies to address these aspects are highly needed. 

 

2.6 Conclusions 

The findings of this study have a number of practical implications. Our results indicate 

that data from the first 3 DIM should be studied as a complete separate period of time when 

studying metritis events. The second major finding was that rank-based methods for model 

fitting yields superior results to those studies where data were artificially balanced. Therefore, 

rank-based methods should be preferred when developing predictive models that will be 

implemented in the future. Lastly, we found that activity data, eating, and rumination time can 

be used to predict metritis events when sensor data is aggregated using either 12 or 6 hour time 

windows. 
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Table 2. 1: Hyperparameter values used for optimization of k-nearest neighbors (k-NN), random forest (RF), and support vector 
machines (SVM) classification algorithms used on behavioral variables measured with CowManager. 

Classifier Hyperparameter Randomized Search Grid Search Models Used
1
 Optimum Value 

k-NN k2
 N/A 1 to 15 tw1 j = 24h, tw2 k = 1, 2, 3 8 

RF Bootstrap
3
 True, False True tw1 j = 24h, tw2 k = 2 

tw1 j = 3h, tw2 k = 24  

True 

Max. depth
4
 10, 20, 30, 40, 50, 60, 70, 80, 

90, 100, 110, None 

10, 20, 30, 40 10 

Max. features
5
 ‘auto’, ‘sqrt’ ‘sqrt’ ‘sqrt’ 

Min. samples leaf
6
 1, 2, 4 1, 2, 3, 4 2 

Min. samples split
7
 2, 5, 10 2, 3, 4, 5, 6 4 

Number of 

estimators
8
 

100, 200, 300, 400, 500, 600, 

700, 800, 900, 1000 

200, 400, 600, 800 300 

SVM Kernel
9
 N/A Linear, rbf, poly, sigmoid tw1 j = 24h, tw2 k = 2 

tw1 j = 3h, tw2 k = 24 

Linear 

C
10

 N/A 0.01, 0.1, 1, 10, 100, 1000 0.01 

Degree
11

 N/A 2, 3 2 

Gamma
12

 N/A ‘auto’, 0.01, 0.1, 1, 10, 100 ‘auto’ 

1
 All models used to find the optimum values for each hyperparameter included rumination data, and for each combination of time window j and 

number of time steps k, two different time series were used: all sensor data regardless of the time of the day (all day time series), and sensor 

values corresponding to the evening-night hours only (evening-night time series). 

2
 k: number of neighbors. 

3
 Bootstrap: method for sampling data points (with or without replacement). 

4
 Max. depth: maximum number of levels in each decision tree to control for overfitting. 

5
 Max. features: maximum number of features considered for splitting a node. 

6
 Min. samples leaf: minimum number of data points allowed in a leaf node. 

7
 Min. samples split: minimum number of data points in a node before the node is split. 

8
 Number of estimators: number of trees in the forest. 

9
 Kernel: type of kernel used to map the data to a different space where a linear hyperplane can be used.  

10
 C: cost parameter to control the tradeoff between the misclassifications and width of the margin. 

11
 Degree: degree of the polynomial used when kernel = ‘poly’. 

12
 Gamma: defines how far the influence of a single data point reaches and configures the sensitivity to differences in the data. When gamma is 

large, the radius of the area of influence only includes the support vector itself, and no amount of regularization with C will be able to prevent 

overfitting. 
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Table 2. 2: Descriptive statistics for the five behavior variables measured with an ear-attached 3-
axis accelerometer (CowManager, Agis Autimatisering, Harmelen, Netherlands). 

 Raw Data 

Time Aggregation1 Time of the Day2 

3 hrs. 6 hrs. 12 hrs. 24 hrs. Milking Morning 
Evening-

Night 
Rumination 
(minutes per hr.) 

n 11,530 3,736 1,967 1,014 522 2,083 4,684 4,763 
mean 24.07 0.38 0.41 0.53 0.50 24.16 21.84 26.22 

std 13.27 8.80 7.05 4.90 3.34 11.83 12.98 13.77 
min 0 -38 -38 -23 -12.57 0 0 0 
25% 14 -5 -3.33 -2.33 -1.49 16 11 16 
50% 24 0.33 0.333 0.5 0.42 24 22 27 
75% 33 5.67 4.2 3.16 2.32 32 31 36 
max 60 43 43 43 18.5 60 60 60 

Eating 
(minutes per hr.) 

n 11,530 3,736 1,967 1,014 522 2,083 4,684 4,763 
mean 9.41 -0.04 -0.07 -0.09 -0.09 7.02 11.30 8.60 

std 11.43 6.87 5.29 3.42 2.41 8.28 12.40 11.33 
min 0 -41 -41 -41 -20.17 0 0 0 
25% 1 -3.33 -2.5 -1.70 -1.42 1 1 0 
50% 5 0 0 0 0.09 4 7 3 
75% 14 3.33 2.45 1.70 1.36 10 17 13 
max 60 44 44 16 7 52 60 60 

Not Active 
(minutes per hr.) 

n 11,530 3,736 1,967 1,014 522 2,083 4,684 4,763 
mean 18.97 -0.17 -0.17 -0.25 -0.18 20.47 18.96 18.32 

std 13.81 10.22 8.20 5.78 4.29 12.09 14.30 13.98 
min 0 -55 -55 -48 -20.17 0 0 0 
25% 8 -6 -4.5 -3.17 -2.32 11 7 7 
50% 17 -0.33 -0.17 -0.29 -0.14 19 17 16 
75% 28 6 4 2.67 1.94 29 28 28 
max 60 57 57 36.58 34 60 60 60 

Active 
(minutes per hr.) 

n 11,530 3,736 1,967 1,014 522 2,083 4,684 4,763 
mean 3.98 -0.08 -0.08 -0.08 -0.09 4.46 4.01 3.74 

std 4.09 2.72 2.10 1.48 1.21 3.66 4.09 4.25 
min 0 -19.33 -12 -9.33 -9.33 0 0 0 
25% 1 -1.33 -1.17 -0.83 -0.67 2 1 1 
50% 3 0 0 0 0 4 3 2 
75% 6 1.33 1 0.75 0.5 6 6 5 
max 46 18.67 12 6.5 5.06 34 44 46 
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Table 2.2 (Continued): Descriptive statistics for the five behavior variables measured with an ear-
attached 3-axis accelerometer (CowManager, Agis Autimatisering, Harmelen, Netherlands). 
 

 Raw Data 

Time Aggregation1 Time of the Day2 

3 hrs. 6 hrs. 12 hrs. 24 hrs. Milking Morning 
Evening-

Night 
High Activity 
(minutes per hr.) 

n 11,530 3,736 1,967 1,014 522 2,083 4,684 4,763 
mean 3.92 -0.09 -0.10 -0.11 -0.13 4.28 4.25 3.44 

std 4.93 3.03 2.27 1.68 1.34 4.83 5.10 4.77 
min 0 -16.67 -13.5 -8.22 -8.17 0 0 0 
25% 0 -1.33 -1.17 -0.85 -0.79 1 1 0 
50% 2 0 0 0 -0.07 3 3 2 
75% 6 1.33 1 0.74 0.58 6 6 5 
max 40 19 13.67 8.42 5.46 37 40 38 

 
1 Time aggregation was done after differentiation of the raw sensor data.  
2 Time of the day: for data analysis purposes, milking is from 4:00 to 5:59 h and from 15:00 to 16:59 h; 
morning is from 6:00 to 14:59 h; evening-night is from 17:00 to 3:59 h in the following day. 
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Table 2. 3: Results from models performance (%) where random forest (RF) classifier was used on sensor data from an ear-attached 3-
axis accelerometer (CowManager, Agis Autimatisering, Harmelen, Netherlands) device from all day using a 12 hour time window. 
Different cut-off values were chosen based on the highest classification probabilities 

Behavior 
Time 

Lag k 

Sample Size 20% cut-off 30% cut-off 

Metritis 
Non-

metritis 
Se Sp PPV NPV Ac. 

F1 

score 
Se Sp PPV NPV Ac. 

F1 

score 

High activity 

(primiparous) 

3 21 86 95.24 98.84 95.24 98.84 98.13 95.24 100 87.21 65.63 100 89.72 79.25 

4 21 82 95.24 100 100 98.8 99.03 97.56 100 89.02 70 100 91.26 82.35 

5 21 81 95.24 100 100 98.78 99.02 97.56 100 88.89 70 100 91.18 82.35 

6 21 77 90.48 100 100 97.47 97.96 95 100 89.61 72.41 100 91.84 84 

Not active, 

Active,  

Eating 

3 41 157 95.12 100 100 98.74 98.99 97.5 100 88.54 69.49 100 90.91 82 

4 41 150 92.68 100 100 98.04 98.43 96.2 100 89.33 71.93 100 91.62 83.67 

5 40 149 92.5 100 100 98.03 98.41 96.1 100 89.26 71.43 100 91.53 83.33 

6 40 143 90 100 100 97.28 97.81 94.74 100 90.21 74.07 100 92.35 85.1 

Rumination 3 41 157 92.68 99.36 97.44 98.11 97.98 95 100 88.54 69.49 100 90.91 82 

4 41 150 92.68 100 100 98.04 98.43 96.2 100 89.33 71.93 100 91.62 83.67 

5 40 149 92.5 100 100 98.03 98.41 96.1 100 89.26 71.43 100 91.53 83.33 

6 40 143 90 100 100 97.28 97.81 94.74 100 90.21 74.07 100 92.35 85.1 
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Table 2. 4: Results from models performance (%) where random forest (RF) classifier was used on sensor data from an ear-attached 3-
axis accelerometer (CowManager, Agis Autimatisering, Harmelen, Netherlands) device from all day using a 6 hour time window. 
Different cut-off values were chosen based on the highest classification probabilities. 

Behavior 
Time 

Lag k 

Sample Size 20% cut-off 30% cut-off 

Metritis 
Non- 

metritis 
Se Sp PPV NPV Ac. 

F1 

score 
Se Sp PPV NPV Ac. 

F1 

score 

High activity 

(primiparous) 

7 21 82 95.24 100 100 98.8 99.03 97.56 100 89.02 70 100 91.26 82.35 

8 21 81 95.24 100 100 98.78 99.02 97.56 100 88.89 70 100 91.18 82.35 

9 21 81 95.24 100 100 98.78 99.02 97.56 100 88.89 70 100 91.18 82.35 

10 21 78 90.48 100 100 97.5 97.98 95 100 89.74 72.41 100 91.92 84 

11 21 77 90.48 100 100 97.47 97.96 95 100 89.61 72.41 100 91.84 84 

Not active, 

Active,  

Eating 

7 41 150 92.68 100 100 98.04 98.43 96.2 100 89.33 71.93 100 91.62 83.67 

8 40 149 92.5 100 100 98.03 98.41 96.1 100 89.26 71.43 100 91.53 83.33 

9 40 149 92.5 100 100 98.03 98.41 96.1 100 89.26 71.43 100 91.53 83.33 

10 40 145 92.5 100 100 97.97 98.38 96.1 100 89.66 72.73 100 91.89 84.21 

11 40 142 90 100 100 97.26 97.8 94.74 100 90.14 74.07 100 92.31 85.1 

Rumination 7 41 150 92.68 100 100 98.04 98.43 96.2 100 89.33 71.93 100 91.62 83.67 

8 40 149 92.5 100 100 98.03 98.41 96.1 100 89.26 71.43 100 91.53 83.33 

9 40 149 92.5 100 100 98.03 98.41 96.1 100 89.26 71.43 100 91.53 83.33 

10 40 145 92.5 100 100 97.97 98.38 96.1 100 89.66 72.73 100 91.89 84.21 

11 40 142 90 100 100 97.26 97.8 94.74 100 90.14 74.07 100 92.31 85.1 
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Figure 2. 1: Distribution of the raw sensor data stratified by parity and time of the day for the 

behavioral variables measured with an ear-tag attached 3-axis accelerometer (CowManager, Agis 

Autimatisering, Harmelen, Netherlands). Horizontal lines indicate mean and standard deviation. 

Milking is from 4:00 to 5:59 h and from 15:00 to 16:59 h; morning is from 6:00 to 14:59 h; 

evening-night is from 17:00 to 3:59 h in the following day.
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Figure 2. 2: Mean raw sensor data and 95% C.I. for the mean by days in milk (DIM) stratified by 

parity for the five behavioral variables registered by an ear-tag 3-axis accelerometer 

(CowManager, Agis Autimatisering, Harmelen, Netherlands) for the whole study period. 
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Figure 2. 3: Mean raw sensor data and 95% C.I. for the mean by the time of the day (Hour) 

stratified by parity for the 5 behavioral variables measured with an ear-tag 3-axis accelerometer 

(CowManager, Agis Autimatisering, Harmelen, Netherlands). 
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Figure 2. 4: Mean raw sensor data and 95% C.I. for the mean sensor values for each behavior 

measured with an ear-attached 3-axis accelerometer (CowManager, Agis Autimatisering, 

Harmelen, Netherlands) in a 24 hour period by parity and days in milk (DIM) categorized as 

convalescent (parturition to 3 DIM), first week (4 – 7 DIM), second week (8 – 14 DIM), and third 

week (15 – 21 DIM). 
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Figure 2. 5: Distribution of F1 scores using the 20% highest class probabilities as threshold when 

sensor data registered by an ear-attached 3-axis accelerometer (CowManager, Agis 

Autimatisering, Harmelen, Netherlands) were aggregated using time windows of 24, 12, 6, and 3 

hours. 
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Figure 2. 6: F1 scores using the 20% highest class probabilities as cut-off when sensor data were 

aggregated using time windows of 24, 12, 6, and 3 hours. F1 scores (%) are shown for those 

models where all sensor data were used to fit the modes and parity was not taken into account. 

F1 scores are shown for different time lags before a given metritis event for each one of the 

classifiers (k-nearest neighbors, random forest, and support vector machines).  
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Figure 2. 7: Distribution of F1 scores (%) using the 20% highest class probabilities as threshold 

from the upper quartile by behavior and classifier when sensor data registered by an ear-tag 3-

axis accelerometer (CowManager, Agis Autimatisering, Harmelen, Netherlands) were aggregated 

using time windows of 3, 6, 12, and 24 hours, and time series sensor data from all day were 

used.  
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Figure 2. 8: Distribution of F1 scores (%) for high activity behavior registered by an eat-attached 

3-axis accelerometer (CowManager, Agis Autimatisering, Harmelen, Netherlands) at the 20% cut-

off by classification algorithm and parity stratified by different time windows (3, 6, 12, and 24 

hours).  
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3.1 Abstract 

Routinely collected sensor data could be used in disease predictive modeling but a better 

understanding of its potential is needed. The objectives of this study were 1) to compare the 

performance of k-nearest neighbors, random forest, and support vector machines classification 

algorithms on the detection of behavior patterns associated with metritis events measured by a 

leg-attached accelerometer (TrackaCow, ENGS, Hampshire, UK); 2) to study whether farm 

scheduled activities have an impact on classifier performance; 3) to identify which behaviors 

yield the greatest F1 score for metritis events prediction; and 4) to estimate the optimal level of 

aggregation for the hourly raw sensor data and how much behavioral data are needed in order 

to obtain the greatest F1 score on metritis prediction. Data from 35 dairy cows that either did not 

experience any disease postpartum or were only diagnosed with metritis were retrospectively 

selected from a dataset containing sensor data and clinical information from 138 lactating cows 

during the first 21 days after parturition at University of Kentucky Coldstream Dairy from June 

2014 to May 2017. A total of 188 non-metritis and 51 metritis events were created based on 

changes in metritis scores recorded during clinical examination. These events were associated 

with a total of 10,874 - 14,138 hourly sensor data from lying time, lying bouts, steps, intake, and 

intake visits. Sensor data corresponding to the 3 days before a metritis event were aggregated 

every 24, 12, 6, and 3 hours, resulting in 1,386 models. All behaviors changed throughout the 

study period and showed distinct daily patterns. From the three algorithms, Random Forest had 

the highest and most consistent performance, with no impact scheduled farm activities on 

classifier performance. Furthermore, 3 and 6 hours aggregation levels for the sensor data had 

the best balance between F1 scores and consistency of results across different times units before 
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a metritis event. Based on our findings, we concluded that steps and lying time can be used to 

predict metritis using data from up to 2 to 3 days before a metritis event. Findings from this 

study will be used to develop more complex prediction models that could identify cows at higher 

risk of experiencing metritis, among other negative health outcomes. 
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3.2 Introduction 

Metritis is a common disease that is diagnosed in 30 to 50% of dairy cows (LeBlanc, 

2010). Combined with other metabolic diseases such as hypocalcemia or hyperketonemia, post-

partum infectious diseases have short- and long-term effects on welfare, reproductive health, 

and antibiotic use (LeBlanc, 2010). It is generally accepted that these diseases do translate into 

sickness behaviors as part of an adaptive response to infection or injury that help the animal to 

cope with the stressor. Most sickness behaviors are associated with depression, loss of appetite, 

and weight loss (Tizard, 2008), which can be measured with precision dairy farming (PDF) 

technologies such as sensor devices. Increasing herd sizes and labor cost, together with lower 

ratios of farm staff to animals have resulted in a rapid growth of these technologies (Rutten et 

al., 2013). Machine learning (ML) is a group of statistical models used in precision farming, 

among other fields, which goal is to find predictive patterns. Therefore, ML algorithms can be 

used to develop predictive models to identify which cows are at higher risk of becoming clinically 

ill. Given the high frequency at which changes in behavioral patterns can be analyzed when PDM 

technologies and ML algorithms are combined, there is potential for earlier disease diagnosis 

compared with traditional diagnostic methods. Resulting earlier clinical or management 

interventions could prevent or mitigate the impact of stress and clinical disease on animals 

(Weary et al., 2009; LeBlanc, 2010; Dittrich et al., 2019). Despite its potential, precision farming 

on metritis detection has been understudied, with only an estimated 16% of the precision 

farming literature being related with disease around parturition (Rutten et al., 2013). 

 Different authors have found reduced behaviors such as lying time (Neave et al., 2018; 

Sepúlveda-Varas et al., 2014; Urton et al., 2005), feeding, and rumination duration associated 
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with metritis during the transition period (Neave et al., 2018; Stangaferro et al., 2016; Steensels 

et al., 2017). However, common limitations of these studies are lack of control for concurrent 

postpartum diseases, behavioral data aggregation before and after disease diagnosis resulting in 

lost temporal relationships, and lack of consideration of within-same-day behavior variability due 

to farm scheduled activities (Huzzey et al., 2007b; Stoye et al., 2012). The objective of the 

present study was to compare the performance of three ML classification algorithms (k-nearest 

neighbors, random forest, and support vector machines) on the detection of behavioral patterns 

measured with a leg-attached accelerometer, associated with changes in metritis score 

throughout the post-partum period in dairy cows. A second goal was to identify whether farm 

scheduled activities had an impact on ML classification algorithm performance. A third goal was 

to determine which animal behaviors yield the greatest F1 score for metritis prediction, to 

estimate the optimal time aggregation for the raw sensor data, and to estimate how much 

behavioral data are necessary to analyze for metritis prediction. Our findings would provide a 

base for the development of more complex prediction models. These can indicate to the farmer 

which cows are at higher risk of developing metritis while optimizing the use of sensor data. 

 

3.3 Material and Methods 

 The data used in this study was part of a large study designed to quantify physiological 

and behavioral changes associated with mastitis, lameness, estrus, and postpartum diseases, 

using multiple PDM technologies (Tsai, 2017; Lee, 2018). The larger study included data from 

138 lactating cows at the University of Kentucky Coldstream Dairy (Lexington, KY, USA) that were 

enrolled in the study during two different periods: the first, from June 2014 to October 2015, 
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and the second, from July 2016 to May 2017 under Institutional Animal Care and Use Committee 

#2013-119 and 2016-2368, respectively.  

 

3.3.1 Population Data 

From the original dataset, a total of 35 dairy cows that either did not experience any 

disease postpartum or were only affected by metritis were retrospectively selected. Cows were 

enrolled in the study after parturition and were followed for 21 days. Cows were excluded from 

the study if they died or were culled from the herd before 21 days in milk (DIM). 

 Details about animal management and study design are provided in a companion 

manuscript. Briefly, cows were moved to a close-up dry pen a month before the expected calving 

date, and moved again to a fresh cow pen upon parturition. Lactating cows were housed in two 

free-stall barns and were provided ad libitum access to fresh water in each barn. Lactating cows 

were fed the same TMR between 6:00 to 10:00 h and 12:30 to 15:00 h. The lactating diet 

consisted of forage, alfalfa hay, mineral and vitamin supplement, concentrate mix, whole 

cottonseed, and alfalfa haylage. During the second study period, feed was pushed up 22 times 

per day by an automated feed pusher (Lely Juno, Ley Robots, Masslius, the Netherlands). Cows 

were milked two times per day at 4:30 to 5:30 h and 15:30 to 16:30 h in a double 2 X 2 tandem-

milking parlor. 

 

3.3.2 Clinical Data 

 Disease definitions and the health-monitoring program used in the study are provided in 

detail in Chapter 1 (Vidal et al., Chapter 1). In short, fresh cows were monitored daily from 7:00 
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to 10:00 h for the first 21 days of lactation. A MetriCheck (Simero Tech Ltd, Hamilton, New 

Zealand) device was used to obtain a uterine discharge sample and scored on a 1 to 3 scale using 

a scale modified from Sheldon et al. (2006). Briefly, score 1: thick, viscous discharge, clear, 

opaque or red to brown in color, no odor or milk; score 2: white or yellow pus, moderate to thick 

discharge, milk odor; score 3: pink, red, dark red, or black watery discharge, detectable offensive 

odor, possibly intolerable. Cows with score > 2 were classified as metritis cases (Tsai, 2017; Lee, 

2018). Uterine discharge was scored on 3, 5, 7, 9, 11, 17, 19, and 21 DIM, and during the first 

study period, an additional sample was scored on 14 DIM, while during the second study period 

additional samples were taken on 13 and 15 DIM. Cows were also monitored for hypocalcemia, 

hyperketonemia, mastitis, lameness, and retained placenta. Hypocalcemia was defined as 

calcium level in blood serum < 8.6 mg/dL (Chapinal et al., 2011), collected by caudal 

venipuncture on 3, 7, 14, and 21 DIM. Hyperketonemia was defined as beta-hydroxybutyrate 

(BHBA) concentration in blood > 1.2 mmol/L (Kaufman et al., 2016) measured with Precision Xtra 

electronic handheld device (Abbott Laboratories, Chicago, IL, USA) on days 3, 7, 14, and 21 DIM, 

and BHBCheck (PortaCheck Inc., Moorestown NJ, USA) on days 1, 2, 3, 4, 5, 6, 7, 10, 14, and 21 

DIM for the first and second study periods, respectively. Cows were diagnosed with clinical 

mastitis using the following criteria: watery, thickened, and discolored milk; milk containing 

blood, pus, flakes, or clots; edema, erythema; or pain in the associated quarter (Royster and 

Wagner, 2015) between 1 and 21 DIM by trained milkers. Furthermore, subclinical mastitis was 

assessed measuring somatic cell count (SCC) on days 4 + 2 DIM and 9 + 2 DIM via flow cytometry 

in quarter milk samples. Cows with SCC > 200,000 cells/mL in one or more quarters were 

considered positive for subclinical mastitis. Finally, locomotion scores were recorded on days 1, 
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7, 14, and 21 postpartum on a 1 to 3 scale (Schlageter-Tello et al., 2014). Retained placenta was 

recorded if fetal membranes were retained for > 24 hours (Sheldon et al., 2006). 

 For any given cow and day, a metritis event was assigned when a cow was getting or 

being with metritis, this is, the metritis score increased, changed from 3 to 2, or when the score 

remained 2 or 3, between two consecutive uterine discharge evaluations. Similarly, for any given 

cow and any given day, a non-metritis event was assigned when a cow recovered from metritis 

or stayed healthy, this is, when the metritis score changed or remained as 1, between two 

consecutive uterine discharge evaluations. Diagnosis of metritis was assigned to happen at 6:00 

h on each one of the days when uterine discharge was evaluated for time series data 

manipulation purposes. To study the effect of scheduled farm activities, models were also fitted 

using only sensor data from 17:00 h to 3:00 h (evening-night models) and therefore, diagnosis of 

metritis was assigned to happen at 17:00 h on each one of the days when uterine discharge was 

evaluated for later time series data manipulation. 

 

3.3.3 Sensor Data and Data Pre-processing 

For this study, information per cow included five different behaviors measured from 

parturition to 21 days postpartum with a leg-attached 3-axis accelerometer (TrackaCow, ENGS, 

Hampshire, UK) that records hourly data regarding lying time (minutes per hour), lying bouts 

(number per hour), steps (number per hour), intake (minutes per hour), and intake visit (number 

of visits to the feedbunk per hour). This device has been previously validated by Borchers (2015), 

Borchers et al. (2016), and Chapinal et al. (2007). 



 

 80 

Time series sensor data consisted on the hourly measurements for each behavior ! 

corresponding to the 3 days prior to each metritis event, assigning the time of diagnosis " at 6:00 

h on each one of the days when uterine discharge was evaluated. Therefore, the 6:00 h time was 

used as offset for later transformations of the time series sensor data. When only sensor 

measurements corresponding to evening-night were used, for any given day, only sensor data 

from 17:00 to 3:00 h were considered, being the time of diagnosis " assigned at 17:00 h on each 

one of the days when uterine discharge was evaluated. The following time series data 

transformations were applied to both time series: one with observations for every hour, and 

another one containing only those corresponding to the evening-night hours. 

The first time series data transformation was to remove seasonality by differencing the 

time series. In order to do that, we subtracted for each cow, behavior !, and hour within a 3 day 

period before a given metritis event, the measurement registered by the sensor in the previous 

24 h from each hourly sensor measurement. The time series data for each metritis event at time 

" was defined by: 

#$!,#$%, $!,#$&, … , $!,#$'' 

where: 

$!  was the differenced hourly sensor measurement for behavior ! and time ", 
being !	 ∈ 	 {+,!-., +,!-.	/01"2, 2"342, !-"563, !-"563	7!2!"} 

- was the time step within a 3 day (or 72 hours) period. 

Next, we transformed the time series sensor data by aggregating the differenced hourly 

measurements using the mean of the time window "9%. In order to assess classifier performance 

at different levels of sensor data aggregation, we used 4 different widths to compute the mean: 
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3, 6, 12, and 24 h. As result, the new time series data for each metritis event at time " was 

defined by: 

#$̅!(,#$%, $̅!(,#$&, … , $̅!(,#$)' 

where:  

$̅!(  was the mean sensor value for behavior ! and time window "9% of width ;, 
being !	 ∈ 	 {+,!-., +,!-.	/01"2, 2"342, !-"563, !-"563	7!2!"}	, 
and ;	 ∈ 	 {3	ℎ, 6	ℎ, 12	ℎ, 24	ℎ} 

 B was the time step within a 3 day period. The number of time steps that could 

be included within a 3 day period was a function of the width ; of the time 

window "9%. 

 

3.3.4 Model Fitting 

We selected the number of model inputs (or features) by using a time window "9& of 

width 6. In order to assess classifier performance at different widths, we used multiple values for 

6 within a 3 day period before each metritis event. Therefore, the model inputs for each model 

were:  

#$̅!(,#$%, $̅!(,#$&, … , $̅!(,#$*' 

where the width 6 = 1, 2, … , +, and + was the number of time steps included as features 

within a 3 day period before a given metritis event. 

The number of features in our models ranged from 1, when sensor data were aggregated 

with a "9% width ; of 24 hours and "9& width 6 of 1, to 24 features when sensor data were 

aggregated using a "9% width ; of 3 hours and "9& width 6 of 24, corresponding to 72 hours 

prior to the event. 
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In this paper, we evaluate the ability of 3 supervised ML classifiers (k-nearest neighbors, 

random forest, and support vector machines) to discriminate among 2 possible distinct patterns 

(metritis and non-metritis events) in 5 animal behaviors. Within each one of the 5 behaviors, for 

each one of the three classifiers, and for each combination of sensor data aggregation and 

number of time units before the metritis event, different models were fitted. Details about each 

classifier are provided in a companion manuscript. Briefly, k-nearest neighbors (k-NN) relies on 

the assumption that similar data points exist in close proximity and estimates the closeness using 

Euclidean distance for each data point to the rest of the data points (Fix and Hodges, 1951; 

Dasarathy, 1991; Hastie et al., 2009). Random forest (RF) is made up from many decision trees, a 

flowchart of questions asked about the data that leads to a predicted class (metritis or non-

metritis events) with the greatest reduction in Gini Impurity, or the probability that a randomly 

chosen sample in a set of data points or node would be correctly labeled if it was labeled by the 

distribution of samples in the node (Breiman, 2001; Hastie et al., 2009). In contrast, support 

vector machines (SVM) estimates the optimal hyperplane, or decision hyperplane, that separates 

the different classes while maximizing the distance, or margin, to the closest point from either 

class, also called support vectors. One of the advantages of SVM is the use of the kernel function, 

a mathematical function that transforms the feature space to deal with cases in which classes 

are not linearly separated (Vapnick, 1995; Hastie et al., 2009). 

 For each one of the three ML classifiers, one model was fitted for each combination of 

behavior +, time window "9% of width ;, and time window "9& of width 6. 
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3.3.5 Model Performance 

To assess model performance, we used fivefold cross-validation (5-FCV). Specifically, for 

any given model, 4/5ths of the data were used to fit the model, whereas the other 1/5th was 

used to calculate the prediction error of the fitted model. This process was repeated each time 

until all 5 folds had been used for both, fitting the model and validation, resulting in an average 

prediction error. Grid Search (GS) was used as a strategy to optimize the classifier, except for RF 

classifier, where GS was performed after Randomized Search (RS) in order to reduce the grid 

search so computing time was manageable. Optimal parameters that were found to allow for 

best mean cross-validation accuracy were used to train the final model (Table 3.1). After 

optimization, the prediction class probability for each health event of being classified as metritis 

was obtained and ranked from highest to lowest, and the top 20, 30, and 40% class probabilities 

were used as different cut-off points. For each cut-off point, classification performance was 

evaluated using estimates of sensitivity (Se or recall), specificity (Sp), positive predictive value 

(PPV or precision), negative predictive value (NPV), accuracy (Ac), F1 score, the area under the 

curve (AUC) for the receiver operating characteristic (ROC) curve and Precision Recall (PR)-

curves. Sensitivity is estimated as the ratio of correctly predicted positive observations to all 

observations in the actual class (metritis event). Specificity is estimated as the ratio of correctly 

predicted negative observations to all observations in the actual class (non-metritis event). 

Positive predictive value is the ratio of correctly predicted positive observations to all predicted 

positive observations. Similarly, NPV is the ratio of correctly predicted negative observations to 

all predicted negative observations. Accuracy is the ratio of correct predictions to all number of 

observations. F1 score is the weighted average of PPV and Se. This score takes both false 
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positives and false negatives into account, and it is more useful than Ac in situations where the 

distribution of the observations in each class is unbalanced. F1 score was computed as (1 + 

b2)*(PPV * Se)/((b2 * PPV) + Se), where b = 1 (Saito and Rehmsmeier, 2015). 

 Classifier implementations were taken from the open-source Python library scikit-learn 

(Pedregosa et al., 2011). The feature extraction and the optimization of the classifier parameters 

were implemented using Python programming language, version 2.7 (Python Software 

Foundation, http://www.python.org). Plots were done using ggplot2 library (Wickham, 2009), 

using R open-source statistical software (R Core Team, 2017). 

 

3.4 Results 

A total of 35 dairy cows (Jersey = 20; Holstein = 15; primiparous = 17; multiparous = 18) 

were retrospectively selected from the original dataset (n = 138) containing clinical and sensor 

data from parturition to 21 DIM. Average + SD milk yield was 36.1 kg. + 15.6. Of the 35 cows 

selected, 13 did not have any metritis events during the study period, while 22 were diagnosed 

at least once with metritis (score >2), occurring at 12 DIM (12.02 + 4.72 DIM). Among these, 2 

cows had retained fetal membranes and were kept for data analysis. None of the selected 

animals had hyperketonemia, mastitis, or hypocalcemia. The proportion of metritis events for 

primiparous and multiparous were 20% and 23%, respectively. Based on the changes of metritis 

score between two consecutive evaluations, 239 health events were created, and of those, 188 

were in the non-metritis event class, while 51 were in the metritis event class, resulting in an 

unbalanced dataset. The number of hourly sensor records ranged from 10,874 for behaviors 

intake and intake visit, to 14,138 for lying, lying bouts, and steps. 
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Cows showed high variability in their behaviors during the study period, especially 

regarding number of steps (98.8 + 72.51 number/h) and lying time (21.74 + 21.06 min/h), 

followed by intake (7.54 + 12 min/h). This trend was constant regardless of the level of sensor 

data aggregation and time of the day (Table 3.2). Furthermore, the distributions for lying bouts, 

steps, intake, and intake visits, were right-skewed, and differences in the mean values by parity 

were greater during the evening-night hours for lying and steps (Figure 3.1). 

 

3.4.1 Changes in Behavior by Days in Milk and Time of Day 

There were changes across all behaviors from parturition to 21 DIM, with significant 

changes in the first 3 days post-partum for some of the behaviors. During the first 3 DIM, lying 

time increased while lying bouts and steps decreased. Overall, intake showed an upward trend 

throughout the study period. When behaviors were stratified by parity, multiparous cows 

showed significantly lower number of lying bouts than primiparous cows throughout the study 

period, while significant differences in number of steps by parity occurred around 7 and 14 DIM. 

During the whole study period, primiparous cows tended to spend less time lying down with 

greater number of steps than multiparous cows (Figure 3.2). When looking at the variability of 

each behavior throughout the day for the whole study period, lying time and steps had inverse 

trends, with greater number of steps during milking times and at 10:00 h, time at which lying 

bouts were also the greatest. Intake and intake visits showed similar trends, with greater values 

right after milking times. Differences by parity were observed for lying bouts throughout the day, 

while differences by parity regarding lying and steps were observed during the evening-night 
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hours, when multiparous spent more time lying down and took fewer steps than primiparous 

(Figure 3.3). 

 

3.4.2 Changes in Behavior by Time of Day Stratified by Days in Milk 

To further explore the changes of the different behaviors across the study period, we also 

looked into the variation throughout the day stratified by DIM. We categorized DIM into 3 

distinct periods: convalescent (from parturition to 3 DIM), first week (4 to 7 DIM), second week 

(8 to 14 DIM), and third week (15 to 21 DIM). No significant differences were observed across 

the different periods, however, intake and lying tended to be greater while steps tended to be 

lower during the third week compared with the convalescent period. It is worth noticing that 

such trends became unnoticeable during milking times and, in some cases, around 10:00 h 

(Figure 3.4). 

 

3.4.3 Classifier Performance 

The total number of models fitted is described in a companion paper. Briefly, a total of 

1,386 models were fitted to account for differences by parity (primiparous, multiparous), by level 

of sensor data aggregation defined by the width ; of the time window "9% (3, 6, 12, and 24 

hours), by number of time steps before a metritis events included as features within a 3 day 

period (width 6 of the time window "9&), and by time of the day (all day and evening-night only 

time series data). Of these, 45 models were fitted for each combination of behavior and classifier 

using sensor data regardless of the time of the day (all day), resulting in a total of 675 models. 

From the final number of models, 21 were fitted for each combination of behavior ! and 
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classifier when sensor data pertaining to evening-night hours were used, resulting in a total of 

315 models. Models by parity were also fitted for lying (evening-night only time series data), 

lying bouts (all day and evening-night only time series data), and steps (evening-night only time 

series data) behaviors. Fivefold cross-validation F1 scores at the 20% cut-off were used to 

compare across different classifiers. For all classifiers, higher F1 scores were obtained when 

sensor data were used regardless of the time of the day. Figure 3.5 shows an overview of the 

distribution of F1 scores at the 20% cut-off at different times before the health event, stratified 

by the different levels of sensor data aggregations. Random forest had the greatest and most 

consistent F1 scores across multiple levels of time aggregation and time before an event, 

followed by k-NN and SVM. Metrics performance from all models can be found in a data 

repository (Vidal et al.). 

To better understand the performance of each classifier, we looked further into the 

models in the upper quartile of the F1 score distribution at the 20% cut-off, when sensor data for 

all day were used. For RF, the upper quartile for F1 score values at the 20% cut-off were between 

89.93% and 97.67%, while the upper quartile for k-NN was between 45.39% and 60%. In 

contrast, the top 25% values for SVM F1 scores were between 22.93% and 57.89% (Figure 3.6). 

Figure 3.7 shows the best models considered at the different levels of time aggregation and 

number of time steps included in the model before a health event. Our results confirmed that, 

among the three classifiers, RF had the best performance and, for each classifier, a greater 

number of behaviors with slightly greater F1 score values ranked in the upper quartile as the 

level of sensor data aggregation became smaller. When data were aggregated using 24 hour 

time windows, the predominant behaviors were steps and intake visit when using k-NN or SVM 
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classifiers. When sensor data were aggregated using 12 hour time windows, the predominant 

behaviors were steps, followed by intake, lying, and intake visit. Again, the majority of models 

were classified using k-NN and SVM. When sensor data were aggregated using 6 or 3 hour time 

windows, lying and steps were the predominant behaviors when RF was used. In contrast, for 

the same level of time aggregation, intake and intake visit were the predominant behaviors 

when k-NN or SVM were used. Among the behaviors for which separate models were fitted by 

parity, only lying bouts ranked in the upper quartile of the distribution of F1 score at the 20% cut-

off, regardless of classifier. Our results showed that greater F1 scores were obtained for lying 

bouts in primiparous compared with multiparous (Figure 3.8). 

 

3.4.4 Best Classifier, Time Window, and Time Lag 

In our study, the best balance between high F1 score values, number of behaviors ranking 

amongst the best models, and consistency regarding the number of time steps before an event 

included in the model a given behavior ranked amongst the best models was found when RF was 

used with sensor data aggregated using 6 or 3 hour time windows. For the 6 hour time window, 

best models were found between 30 to 72 hours before the event (number of time steps before 

event from 5 to 12). Similarly, for the 3 hour time window, best models were found between 18 

to 72 hours before the event (number of time steps before event from 6 to 24). Table 3.3 and 

3.4 show the performance metrics for the selected best models at two different cut-off points. 

For the selected times, Se and PPV decreased as we increased the number of time steps before 

the health event, with their greatest values at 36 and 18 hours and 6 or 3 hour time window for 

the sensor data aggregation, respectively. Using the estimated predicted probabilities, we 
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compared the metritis events identified by RF with the clinical data. We found that the number 

of missed events ranged between 1 and 4, increasing as we increased the number of time steps 

before the health event, and none of them were two consecutive missed events, this is, the 

metritis had either been diagnosed before, or it was diagnosed at the following metritis 

evaluation. 

 

3.5 Discussion 

In this paper, we compared the performance of three different classification ML 

algorithms on five different behavior variables. Our goal was to assess the ability of the 

classification algorithms to identify patterns in the sensor data that may be associated with 

changes in metritis score during the first 21 days post-partum. To preserve the time structure of 

the sensor data, metritis events were created and sensor data from the 3 days prior to an event 

were aggregated at different time windows. Furthermore, to deal with the challenge of the 

unbalanced dataset, we used the F1 score to evaluate classifier performance based on the 

predicted classification probabilities ranked from high to low. 

Based on our results, behavior data can be highly variable. From the results summarized 

in Table 3.1 stands out that cows spent, on average, 8.7 hours/day lying down (21.74 + 21.06 

min/h), had 14.88 lying bouts per day (0.62 + 0.85 per h), and took 2,371.2 steps per day (98.80 

+ 72.51 per h). Our findings are similar to those found by others, although mean lying time was 

found to be in the lower of what is recommended (Bewley et al., 2010; Gomez and Cook, 2010). 

Differences in the mean values across studies could be due to differences in the devices used or 

the average DIM of the animals. Most of the studies that report descriptive statistics of different 
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behaviors are validation studies where cows across the whole lactation were used, increasing the 

average DIM of the animals in the study. This is particularly relevant since cow’s behavior is 

constantly changing postpartum. Furthermore, differences in management practices such as 

high frequency feed delivery will translate into differences in lying time and lying bouts across 

studies (Mattachini et al., 2019). 

In this study, animal behavior changed according to DIM. During the first 3 DIM, lying 

bouts and steps behaviors had a downward trend while lying time had an upward trend. Overall, 

intake had an upward trend for the whole study period. We also found that multiparous had a 

lower number of lying bouts and steps than primiparous, while the amount of time lying was 

greater than that found in primiparous, particularly during evening-night hours. The trends 

observed during the study period are in agreement with those found by other authors. Lying 

time decreased in the days following parturition, with increasing lying time as DIM increased 

(Chaplin and Munksgaard, 2001; Bewley et al., 2010). Udder discomfort or high demand for food 

have been proposed as explanations for this trend (Chaplin and Munksgaard, 2001). Feeding 

behavior has been found to decrease by 35% over the 2 weeks before calving and to increase by 

99% over the 3 weeks following parturition (Urton et al., 2005). Differences by parity regarding 

lying bouts, lying time, and number of steps have been found in other studies, where 

primiparous cows have shown increased lying times among grazing dairy cows (Sepúlveda-Varas 

et al., 2014), as well as in free-stall housed cows (Vasseur et al., 2012; Barragan et al., 2018; 

Neave et al., 2018). In contrast, multiparous cows had greater lying times in our study, a finding 

supported by Piñeiro et al. (2019). It is not clear why different studies yield contradictory results 

for the interaction between parity and lying time, but it is possible that different findings may be 
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attributed to inflammatory response differences by parity (Humblet et al., 2006; Piñeiro et al., 

2019), or to social dominance dynamics between primiparous and older cows (Sepúlveda-Varas 

et al., 2014). Nevertheless, we found that classifier performance for lying time by parity was not 

superior to that one in which data from all cows were pooled together.  

The studied behaviors also changed according to the time of the day. When behaviors 

were observed in a 24 hour period, cows showed inverse trends regarding lying and steps. Lying 

time is a resting state that was higher during night hours, followed by the hours between 

morning and afternoon milking. In contrast, steps is an activity state that was higher during 

milking times and at 10:00 h, time at which cows were being moved to be treated or checked. 

These trends are supported by circadian cycle research (Ruckebusch, 1972) and similar findings 

have also been reported by other authors, although small differences can be found across 

studies due to differences in milking times, feeding management, or environmental temperature 

(Overton et al., 2002; DeVries and Von Keyserlingk, 2005). Differences by parity were only 

observed during the evening-night hours, a fact that could support the hypothesis that when left 

alone, cows may have greater opportunities to express their natural behavior and, therefore, 

using sensor data from evening-night only hours would increase the performance of classifiers. 

Our findings regarding model performance comparing sensor data regardless of the time of the 

day vs. data from evening-night hours only did not support this hypothesis. Nevertheless, future 

studies should evaluate classifier performance under different scenarios on a case basis, as there 

are some behaviors that may not be worth considering given certain times of the day such as 

milking times, where animals will not lay down or eat.  
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To better understand the dynamics of cow behavior throughout the study period, we 

looked at the behaviors in a 24 hour period when DIM was categorized. Based on our findings, 

we did not find significant differences across the weeks of the study. This is opposite to what we 

found in our companion paper, where differences were found between the convalescent period 

and the third week. However, based on our results, we proposed that the inclusion or exclusion 

of data from the first 3 DIM should be routinely evaluated in these types of studies, since results 

may change depending on the type of sensor device used and the nature of behavioral data 

being collected. 

One of our objectives was to compare the performance of three different ML classifiers. 

Our approach to model performance evaluation with unbalanced datasets is to use F1 score vs. 

Ac or ROC curve, two metrics that are commonly used in precision dairy farming but are not 

appropriate when datasets are unbalanced. When non-disease events are the majority class, Sp 

is expected to be high regardless of how good or bad the classifier is with the type of data at 

hand. Another advantage of the F1 score is that, in order to account for the different costs 

different misclassification errors may have, weights for PPV and Se can be modified using the 

formula Fb = (1 + b2) * (PPV * Se) / (b2 * PPV) + Se . In this study, we also explored different 

classification cut-off probabilities to account for the trade-off between Se, Sp, PPV, and NPV. 

Interested readers will find all the estimated metrics at different cut-offs for each one of the 

different model specifications in a data repository (Vidal et al.). Based on the F1 score 

distribution and consistency of results at the 20% cut-off, RF had the best performance, followed 

by k-NN and SVM, with slightly greater F1 scores as the level of time aggregation became smaller 

(e.g. 3 hour time window), a finding also reported in other studies (Martiskainen et al., 2009). In 
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this study, amongst those models with best performance, k-NN achieved an F1 score with values 

between 45.39 – 60%, while SVM yielded an F1 score between 22.93 – 57.89%. In contrast, the 

best RF models had F1 scores in the range between 89.93 – 97.67%. Random forest is based on 

decision trees, a classification method that has been used in the precision dairy farming with 

great success to study grazing cattle behavior (Williams et al., 2016), to predict fertility and 

improve heat detection in dairy cows (Caraviello et al., 2006; Vanrell et al., 2014), to predict 

mastitis (Kamphuis et al., 2010a), or to understand complex relationships between metabolic 

diseases postpartum and culling risk (Probo et al., 2018). Random forest can handle large data 

sets with a high number of features; however, the decision trees the RF is made of are not 

intuitive, making it harder to grasp the relationship existing in the input data when compared 

with other methods. 

In dairy cattle, increased physical activity is a sign of estrus (Firk et al., 2002) and a sign of 

sickness behavior when decreased before and beyond metritis diagnosis (Liboreiro et al., 2015; 

Stangaferro et al., 2016a; Steensels et al., 2017). Measured with accelerometers that transform 

acceleration into angles, when attached to the leg, changes in angles are interpreted either as 

steps or lying. In our study, number of steps had a Se that ranged between 86.36 to 93.33%, PPV 

between 93.02 and 100%, and Ac between 91.57 and 98.54%, being these estimates similar 

when sensor data were aggregated every 6 or 3 hours. These performance metrics were greater 

than those reported by Mayo et al. (2019) for heat detection, although their sample size was 

smaller and they did not use a ranked-based approach to evaluate model performance. Our 

findings were also higher than those reported by Stangaferro et al. (2016), with average Se of 

53% and a maximum of 70% Se for those cows with rectal temperature > 40.0 ºC. However, 
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comparison is not straightforward since performance metrics provided by other authors were for 

the associations between metritis diagnosis and a health index, computed with proprietary 

algorithms that combined rumination and activity measured in arbitrary units per day. 

Furthermore, no values for PPV were reported since no specific disease was provided in the alert 

generated by their device. 

Among behaviors considered as resting state, lying time has a critical role in the 

production potential and welfare status of dairy cattle. Associated with disease, increased lying 

time has been found in animals with metritis as a consequence of depression (Barragan et al., 

2018), while it has been found to decrease associated with mastitis due to discomfort while lying 

down (Siivonen et al., 2011). In this study, lying time Se, Sp, PPV, NPV, and Ac were 90.48 – 

95.45%, 98.71 – 100%, 94.87 – 100%, 97.55 – 98.82%, and 97.04 – 99.06%, respectively, with 

slightly greater values when sensor data were aggregated using a time window of 3 hours. Our 

performance metrics are higher than those found in accelerometer device validation studies, 

with Se, PPV, and Ac of 80%, 83%, and 84%, respectively (Martiskainen et al., 2009), as well as 

higher than those found using lying time 1 week before calving to predict metritis post-partum, 

with reported Se and Sp of 75% and 66.67%, respectively (Patbandha et al., 2012). 

The number of models that ranked amongst the best ones changed based on the 

different levels of time aggregations and classifier. We also found that, even though intake and 

intake visit did not yield high F1 scores, SVM and k-NN classifiers performed better with 

behaviors intake and intake visit while RF performed better with behaviors lying and steps. This 

supports the idea that some ML classifiers may work better than others for certain behaviors, 

and alternative ML algorithms for feeding related behaviors measured with Trackacow device 
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should be explored. Based on our findings, best results were obtained with sensor data 

aggregated using 6 or 3 hour time windows, being the 6 hour time window better for steps, 

while the 3 hour time window resulted in better performance for lying bouts. For optimal 

performance, sensor data from the previous 30 – 72 hours before the event were needed when 

sensor data using 6 hour time windows, although when data were aggregated every 3 hours, 

data from the previous 18 hours before an event did suffice. This is in agreement with what has 

been found by other authors: steps have been found to change 2 days before diagnosis of 

metritis (Steensels et al., 2017), metabolic, or digestive problems (Edwards and Tozer, 2004). 

Similarly, lying bouts have been found to change 2 to 3 days before metritis diagnosis (Neave et 

al., 2018; Piñeiro et al., 2019). Nevertheless, the appropriate combination of number of 

observations used as cut-off, level of sensor data aggregation, and number of time steps before 

metritis event to be included as features should be chosen on a farm case basis, and should be 

dynamically adjusted to reflect changes in the incidence of metritis cases, costs for medical 

treatments, and cost of missed metritis cases. 

Limitations remain with current prediction models regarding how to deal with cases 

where multiple illnesses are present, understanding how classifier performance can change by 

adding multiple behaviors or devices at the same time, and how model performance translates 

into commercial farms. Further studies are also needed in order to identify other ML methods 

that have optimal performance when feeding behaviors measured with Trackacow are used. 
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3.6 Conclusions 

 The findings of this study have a number of practical implications. Our results indicate 

that rank-based methods for model fitting yields superior results to those studies where data 

were artificially balanced. Therefore, rank-based methods should be preferred when developing 

predictive models that will be implemented in the future. We also found that data from the last 

two days regarding steps and lying time measured with Trackacow device could be used to 

predict metritis events with RF classifier when sensor data were aggregated using either 6 or 3 

hour time windows. 
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Table 3. 1: Hyperparameter values used for optimization of k-nearest neighbors (k-NN), random forest (RF), and support vector 
machines (SVM) classification algorithms used on behavioral variables measured with a leg attached 3-axis accelerometer (TrackaCow, 
ENGS, Hampshire, UK). 

Classifier Hyperparameter Randomized Search Grid Search Models Used
1
 Optimum Value 

k-NN k2
 N/A 1 to 15 tw1 j = 24h, tw2 k = 1, 2, 3 7 

RF Bootstrap
3
 True, False True tw1 j = 24h, tw2 k = 2 

tw1 j = 3h, tw2 k = 24  

True 

Max. depth
4
 10, 20, 30, 40, 50, 60, 70, 80, 

90, 100, 110, None 

5, 10, 15, 20 10 

Max. features
5
 ‘auto’, ‘sqrt’ ‘auto’, ‘sqrt’ ‘auto’ 

Min. samples leaf
6
 1, 2, 4 2, 4, 6 5 

Min. samples split
7
 2, 5, 10 2, 3, 4, 5 2 

Number of 

estimators
8
 

100, 200, 300, 400, 500, 600, 

700, 800, 900, 1000 

100, 500, 800 500 

SVM Kernel
9
 N/A Linear, rbf, poly, sigmoid tw1 j = 24h, tw2 k = 2 

tw1 j = 3h, tw2 k = 24 

Linear 

C
10

 N/A 0.01, 0.1, 1, 10 0.01 

Degree
11

 N/A 2, 3 2 

Gamma
12

 N/A ‘auto’, 0.01, 0.1, 1, 10 ‘auto’ 

1
 All models used to find the optimum values for each hyperparameter included lying time data, using all sensor data regardless of the time of the 

day (all day time series). 

2
 k: number of neighbors. 

3
 Bootstrap: method for sampling data points (with or without replacement). 

4
 Max. depth: maximum number of levels in each decision tree to control for overfitting. 

5
 Max. features: maximum number of features considered for splitting a node. 

6
 Min. samples leaf: minimum number of data points allowed in a leaf node. 

7
 Min. samples split: minimum number of data points in a node before the node is split. 

8
 Number of estimators: number of trees in the forest. 

9
 Kernel: type of kernel used to map the data to a different space where a linear hyperplane can be used.  

10
 C: cost parameter to control the tradeoff between the misclassifications and width of the margin. 

11
 Degree: degree of the polynomial used when kernel = ‘poly’. 

12
 Gamma: defines how far the influence of a single data point reaches and configures the sensitivity to differences in the data. When gamma is 

large, the radius of the area of influence only includes the support vector itself, and no amount of regularization with C will be able to prevent 

overfitting. 



 

 98 

Table 3. 2: Descriptive statistics for the five behavioral variables measured with a leg-attached 3-
axis accelerometer (TrackaCow, ENGS, Hampshire, UK). 

  Raw Data 

Time Window1 Time of the Day2 

3 h 6 h 12 h 24 h Milking Morning 
Evening-

Night 
Lying 
(minutes per hr.) 

n 14,138 4,374 2,199 1,138 588 2,356 5,312 6,470 
mean 21.74 0.33 0.34 0.36 0.46 11.78 21.88 25.25 

std 21.06 14.94 10.63 8.39 7.58 15.87 20.81 21.76 
min 0 -60 -60 -60 -60 0 0 0 
25% 0 -8.67 -5.83 -4.17 -3.05 0 1 2 
50% 17 0 -0.17 -0.17 0 3 17 23 
75% 39 9.33 6.33 4.56 3.55 19 39 45 
max 60 58 56 43 43 60 60 60 

Lying Bouts 
(number per hr.) 

n 14,138 4,374 2,199 1,138 588 2,356 5,312 6,470 
mean 0.62 0.00 0.00 0.00 0.00 0.53 0.71 0.57 

std 0.85 0.60 0.44 0.33 0.27 0.77 0.94 0.79 
min 0 -5 -3.33 -2.67 -2.67 0 0 0 
25% 0 -0.33 -0.17 -0.17 -0.13 0 0 0 
50% 0 0 0 0 0 0 0 0 
75% 1 0.33 0.17 0.17 0.13 1 1 1 
max 12 5.33 4.33 2.25 1.5 6 11 12 

Steps 
(number per hr.) 

n 13,631 4,422 2,219 1,142 587 2,372 5,348 5,911 
mean 98.80 -1.71 -1.64 -1.77 -1.90 117.64 109.47 81.59 

std 72.51 54.52 41.70 34.07 28.53 56.29 81.24 65.88 
min 0 -536.50 -291.20 -208.27 -152.33 0 0 0 
25% 45 -29 -20.73 -16.95 -13.17 81 49 29 
50% 91 -0.67 -0.17 0 -1.30 114 98 73 
75% 138 27.67 18.4 14.10 11.61 150 152 118 
max 636 448 267.2 202.82 115.70 479 636 574 

Intake 
(min per hr.) 

n 10,874 3,312 1,667 869 452 1,812 4,088 4,974 
mean 7.54 0.22 0.22 0.17 0.31 5.30 8.39 7.65 

std 12.00 8.69 5.90 4.49 3.46 9.51 12.58 12.23 
min 0 -43 -40 -33 -24 0 0 0 
25% 0 -4.33 -2.67 -1.83 -1.21 0 0 0 
50% 0 0 0.17 0.17 0.35 0 0 0 
75% 12 5 3.33 2.42 1.80 7 14 12 
max 60 47.33 33.5 25 25 60 60 60 
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Table 3. 2 (Continued): Descriptive statistics for the five behavioral variables measured with a 
leg-attached 3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK). 

  Raw Data 

Time Window1 Time of the Day2 

3 h 6 h 12 h 24 h Milking Morning 
Evening-

Night 
Intake Visit 
(number per hr.) 

n 11,330 3,456 1,739 906 471 1,888 4,259 5,183 
mean 0.38 0.00 0.00 0.01 0.01 0.39 0.41 0.35 

std 0.56 0.37 0.26 0.20 0.17 0.55 0.59 0.54 
min 0 -1.67 -1 -0.67 -0.54 0 0 0 
25% 0 -0.33 -0.17 -0.08 -0.08 0 0 0 
50% 0 0 0 0 0 0 0 0 
75% 1 0.33 0.17 0.08 0.08 1 1 1 
max 3 1.67 1.17 1 1 3 3 3 

1 Time window: level of hourly sensor data aggregation. Computations were done after removal of 
seasonality in the raw sensor data by differentiation.  
2 Time of the day: to assess differences based on scheduled farm activities, activities were classified based 
on farm schedule: milking was from 4:00 to 5:59 h and from 15:00 to 16:59 h; morning was from 6:00 to 
14:59 h; evening-night was from 17:00 to 3:59 h of the following day. 
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Table 3. 3: Results from models performance (%) where random forest (RF) classifier was used on sensor data registered by a leg-
attached 3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK) from all day were aggregated using a 6 hour time window. Different 
cut-off values were chosen using classification probabilities ranked from high to low. 

Behavior Time 
Lag k 

Sample Size 20% cut-off 30% cut-off 

Metritis Non- 
metritis Se Sp PPV NPV Ac. F1 score Se Sp PPV NPV Ac. F1 score 

Lying 7 43 163 93.02 99.39 97.56 98.18 98.06 95.24 100 88.96 70.49 100 91.26 82.69 
8 43 162 93.02 99.38 97.56 98.17 98.05 95.24 100 88.89 70.49 100 91.22 82.69 
9 42 161 90.48 98.76 95 97.55 97.04 92.68 100 88.82 70 100 91.13 82.35 

10 41 156 92.68 99.36 97.44 98.1 97.97 95 100 88.46 69.49 100 90.86 82 
11 41 156 92.68 99.36 97.44 98.1 97.97 95 100 88.46 69.49 100 90.86 82 
12 40 155 92.5 98.71 94.87 98.08 97.44 93.67 100 88.39 68.97 100 90.77 81.64 

Step 7 45 167 91.11 99.4 97.62 97.65 97.64 94.25 100 89.22 71.43 100 91.51 83.33 
8 45 166 93.33 100 100 98.22 98.58 96.55 100 89.16 71.43 100 91.47 83.33 
9 44 165 90.91 99.39 97.56 97.62 97.61 94.12 100 89.09 70.97 100 91.39 83.02 

10 44 160 88.64 99.38 97.5 96.95 97.06 92.86 100 89.38 72.13 100 91.67 83.81 
11 44 160 88.64 99.38 97.5 96.95 97.06 92.86 100 89.38 72.13 100 91.67 83.81 

 12 43 159 88.37 98.74 95 96.91 96.53 91.57 100 89.31 71.67 100 91.58 83.50 
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Table 3. 4: Results from models' performance (%) were random forest (RF) classifier was used on sensor data registered by a leg-
attached 3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK) from all day aggregated using time windows of 3 hours. Different 
cut-off values were chosen using classification probabilities ranked from high to low. Only rows where a change in either sensitivity 
(Se) or positive predictive value (PPV) at the 30% cut-off are shown. 

Behavior Time 
Lag k 

Sample Size 20% cut-off 30% cut-off 

Metritis Non- 
metritis Se Sp PPV NPV Ac F1 score Se Sp PPV NPV Ac F1 score 

Lying 6 44 168 93.18 99.4 97.62 98.24 98.11 95.35 100 88.69 69.84 100 91.04 82.24 
8 44 168 95.45 100 100 98.82 99.06 97.67 100 88.69 69.84 100 91.04 82.24 

10 44 164 93.18 100 100 98.2 98.56 96.47 100 89.02 70.97 100 91.35 83.02 
11 43 159 93.02 100 100 98.15 98.51 96.38 100 89.31 71.67 100 91.58 83.5 
16 42 157 92.86 100 100 98.13 98.49 96.3 100 89.17 71.19 100 91.46 83.17 
23 40 150 95 100 100 98.68 98.95 97.44 100 88.67 70.18 100 91.05 82.48 
24 40 149 92.5 100 100 98.03 98.41 96.1 100 89.26 71.43 100 91.53 83.33 

Step 6 45 171 88.89 98.25 93.02 97.11 96.3 90.91 100 88.89 70.31 100 81.02 68.71 
7 45 171 91.11 98.83 95.35 97.69 97.22 93.18 100 88.89 70.31 100 81.02 68.71 

10 45 167 91.11 99.4 97.62 97.65 97.64 94.25 100 89.22 71.43 100 81.6 69.77 
11 45 163 91.11 100 100 97.6 98.08 95.35 100 89.57 72.58 100 81.73 70.32 
12 45 163 88.89 99.39 97.56 97.01 97.12 93.02 100 89.57 72.58 100 81.73 70.32 
14 45 163 91.11 100 100 97.6 98.08 95.35 100 89.57 72.58 100 81.73 70.32 
16 44 161 93.18 100 100 98.17 98.54 96.47 100 89.44 72.13 100 81.46 69.84 
18 44 159 88.64 99.37 97.5 96.93 97.04 92.86 100 89.94 73.33 100 81.77 70.4 
19 44 155 88.64 100 100 96.88 97.49 93.98 100 90.32 74.58 100 82.41 71.55 
22 44 155 86.36 99.35 97.44 96.25 96.48 91.57 100 90.32 74.58 100 82.41 71.55 
23 43 154 88.37 99.35 97.44 96.84 96.95 92.68 100 89.61 72.88 100 82.23 71.08 
24 43 153 90.7 100 100 97.45 97.96 95.12 100 90.2 74.14 100 82.14 71.08 
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Figure 3. 1: Distribution and density of raw sensor data stratified by parity and time of the day 
for the five behaviors registered by a leg-attached 3-axis accelerometer (TrackaCow, ENGS, 
Hampshire, UK). Horizontal lines indicate mean and standard deviation. Milking is frm 4:00 to 
5:59 h and from 15:00 to 16:59 h; morning is from 6:00 to 14:59 h; evening-night is from 17:00 
to 3:59 h in the following day.
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Figure 3. 2: Mean raw sensor data and 95% C.I. for the mean by days in milk (DIM) stratified by 
parity for the five behavioral variables registered by a leg-attached 3-axis accelerometer 
(TrackaCow, ENGS, Hampshire, UK) for the whole study period. 
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Figure 3. 3: Mean raw sensor data and 95% C.I. for the mean by the time of the day (Hour) 
stratified by parity for the 5 behavioral variables measured with a leg-attached 3-axis 
accelerometer (TrackaCow, ENGS, Hampshire, UK). 
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Figure 3. 4: Mean raw sensor data and 95% C.I. for the mean for each behavioral variable 
measured with a leg-attached 3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK) in a 24 
hour period stratified by parity and days in milk (DIM) categorized as convalescent (parturition to 
3 DIM), first week (4 – 7 DIM), second week (8 – 14 DIM), and third week (15 – 21 DIM).
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Figure 3. 5: F1 scores (%) using the 20% highest class probabilities as cut-off when sensor data 
registered by a leg-attached 3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK) were 
aggregated using time windows of 24, 12, 6, and 3 hours. F1 scores are shown for those models 
where all sensor data were used to fit the models and parity was not taken into account. F1 
scores are shown for different time lags and for each one of the classifiers (k-nearest neighbors, 
random forest, and support vector machines).
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Figure 3. 6: Distribution of F1 scores (%) using the 20% highest class probabilities as threshold 
when sensor data registered by a leg-attached 3-axis accelerometer (TrackaCow, ENGS, 
Hampshire, UK) were aggregated using time windows of 24, 12, 6, and 3 hours. 
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Figure 3. 7: Distribution of F1 scores (%) at the 20% cut-off from the upper quartile by behavior 
and classifier when sensor data registered by a leg-attached 3-axis accelerometer (TrackaCow, 
ENGS, Hampshire, UK) were aggregated using 24, 12, 6, and 3 time windows, and sensor data 
from all day were used.
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Figure 3. 8: Distribution of lying bouts F1 scores (%) at the 20% cut-off by classification algorithm 
and parity stratified by different time windows (3 and 6 hours). 
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4.1 Abstract 

 Due to the large volume of data available, there is the need to study machine learning 

algorithms performance at different time windows and time lags when inputs from multiple 

behaviors are included simultaneously in the model, and to combine those with other data 

inputs such as milk yield-related variables. Our objectives were 1) compare the classifier 

performance when, for a given device, multiple behavioral patterns are combined using a model 

selection framework; 2) study whether classifier performance improves when multiple 

behavioral patterns measured with two different devices are combined; 3) study whether 

classifier performance improves when milk-related variables are added to the best selected 

models; and 4) compare model performance under nowcasting and forecasting frameworks. 

Data from 35 dairy cows that either did not experience any disease postpartum or were only 

affected by metritis were retrospectively selected from a dataset containing sensor data and 

clinical data from 138 lactating cows during the first 21 days postpartum at University of 

Kentucky Coldstream Dairy from June 2014 to May 2017. Metritis events were created based on 

changes in metritis scores recorded during clinical examination. Random forest was used on 

sensor data from ten different cow behaviors that were aggregated using 12, 6, and 3 hour time 

windows. Better results were obtained when a 20% threshold was used to classify the 

observations into cases and no-cases. At shorter time lags, performance decreased across all 

time windows, with model complexity increasing in order to maintain performance levels. The 

addition of milk-yield related variables did not always improved performance, and in those cases 

where it did, it was driven by an increase in sensitivity. Furthermore, the combination of devices 

did not improve classification performance. Lastly, forecasting models had a level of 
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performance comparable to those resulted from nowcasting models, with the advantage that 

earlier interventions could be implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: predictive modeling; random forest; sensor fusion; forecasting; nowcasting



 

 113 

4.2 Introduction 

 Different health states have an impact on animal welfare and economic efficiency of 

dairy farms. During the post-partum period, their impact is associated with decreased milk 

production (Fourichon et al., 1999; Edwards and Tozer, 2004; Huzzey et al., 2007b), poor 

reproductive performance (Opsomer et al., 2000; Walsh et al., 2007), and increased culling rate 

(Dubuc et al., 2011). Therefore, early detection of sick animals can have an impact on 

productivity and welfare if medical interventions are implemented in a timely manner. The use 

of existing commercial sensors combined with data-driven modeling approaches can aid in the 

detection of sick animals in real-time based on changes in high frequency and low frequency 

data such as behavioral patterns, daily milk yield, or parity (Steensels et al., 2016). 

There is a growing body of literature dedicated to the validation of changes in behaviors 

measured by precision dairy farming technologies (PDFT) for heat and disease detection such as 

ketosis, metritis, mastitis, or lameness under different management systems such as freestall 

(Dolecheck et al., 2015) or pasture (Kamphuis et al., 2012; Sepúlveda-Varas et al., 2014). 

Different animal behaviors such as rumination, eating, lying, lying bouts, steps, and activity are 

usually recorded with PDFTs, and data-driven modeling approaches such as machine learning 

classifiers for binary outcomes (healthy - sick) are commonly used for predictive modeling. For 

disease prediction, common classifiers are decision trees (DT) (Kamphuis et al., 2010a; Steensels 

et al., 2016; Tamura et al., 2019), random forest (RF) (Vidal et al., Chapter 1 and 2), support 

vector machines (SVM) (Vanrell et al., 2014), and logistic regression models (LR) with or without 

random effects (Urton et al., 2005). Overall, decision tree-based methods such as random forest, 
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have yielded better performance when compared to other methods (Vidal et al., Chapter 1 and 

2). 

Monitoring a wider set of behaviors has been hypothesized to be of greater predictive 

value for detecting sick animals compared with more restricted set of behaviors (Matthews et 

al., 2016, 2017). However, despite the high number of behaviors being recorded by PDFTs, these 

are rarely combined and only a limited number of behavioral variables are usually included in 

prediction models (Saint-Dizier and Chastant-Maillard, 2018). The most common classifier 

performance metrics used in PDFT literature are sensitivity (Se), specificity (Sp), positive and 

negative predictive values (PPV, NPV), accuracy (Ac), and F1 score. However, results across 

studies differ due to differences in methodologies, time windows used to aggregate sensor data, 

time lags, and metrics chosen, making the comparison across studies difficult. Despite the fact 

that classification performance is affected by the time lags chosen (Saint-Dizier and Chastant-

Maillard, 2018), changes in classification performance due to low prevalence and sensor 

sampling strategies to improve performance have been ignored in PDFT literature (Carslake et 

al., 2021). Similarly, the study of the impact of different time windows has been poorly studied in 

the PDFT literature when trying to predict animal health with animal behavior, as many studies 

fail to establish which signal features and sampling rates are most appropriate for each behavior 

(Carslake et al., 2021). Therefore, there is the need to study algorithms performance at different 

time windows and time lags when inputs from multiple behaviors are included simultaneously in 

the model, and to combine those with other data inputs such as milk yield-related variables. 

The objectives of the present study were: 1) to compare classifier performance when, for 

a given device, multiple behavioral patterns are combined using a model selection framework; 2) 
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study whether classifier performance improves when multiple behavioral patterns measured 

with two different devices are combined; 3) study whether classifier performance improves 

when milk yield-related variables are added to the best selected models; and 4) compare model 

performance under nowcasting and forecasting working frameworks. Our findings will be needed 

for the development of cost analysis models where the cost of the investment of different 

devices, data storage and data analysis, and cost of medical intervention in terms of labor, 

duration of medical interventions, and milk revenues could be evaluated. 

 

4.3 Material and Methods 

 The data used in this study was part of a large study designed to quantify physiological 

and behavioral changes associated with mastitis, lameness, estrus, and postpartum diseases, 

using multiple PDF technologies (Tsai, 2017; Lee, 2018). The larger study included data from 138 

lactating cows at the University of Kentucky Coldstream Dairy (Lexington, KY, USA) that were 

enrolled in the study during two study periods (June 2014 to October 2015 and July 2016 to May 

2017). All studies were performed with the approval of the University of Kentucky Institutional 

Animal Care and Use Committee (IACUC protocol number 2013-1199 and 2016-2368).  

 

4.3.1 Population Data 

From the original dataset, a total of 35 dairy cows (Jersey = 20; Holstein = 15) that either 

did not experience any disease postpartum or were only affected by metritis were 

retrospectively selected. Cows were enrolled in the study after parturition and were followed 
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during 21 days postpartum, and were removed from the study if they died or were culled from 

the herd before 21 days in milk (DIM). 

Details about farm management are described elsewhere (Tsai, 2017; Lee, 2018). Briefly, 

about one month before expected calving date, cows were moved from a far-off dry pen and 

pasture to a close-up dry pen. Cows were maintained in a fresh cow pen from parturition to 70 

DIM. Subsequently, lactating cows were housed in two freestall barns. During the first study 

period, one barn had 54 dual chamber waterbeds (Advanced Comfort technology, Inc., 

Reedsburg, WI) and the other was equipped with 54 rubber-filled mattresses, both surfaces 

covered with sawdust. During the second study period, both barns had compost bedded pack 

tilled twice daily, and bedded with sawdust as needed. Cows were provided ad libitum access to 

fresh water in each barn and lactating cows were fed the same TMR between 6:00 to 9:30 h and 

12:30 to 15:00 h. The lactating diet consisted of forage, alfalfa hay, mineral and vitamin 

supplement, concentrate mix, whole cottonseed, and alfalfa haylage. During the second study 

period, feed was pushed up 22 times per day by an automated feed pusher (Lely Juno, Ley 

Robots, Masslius, the Netherlands). Cows were milked two times per day from 4:30 to 5:30 h and 

from 15:30 to 16:30 h in a double 2 X 2 tandem-milking parlor. 

 

4.3.2 Clinical Data 

Fresh cows were monitored daily after morning milking from 7:00 to 10:00 h for the first 

21 days of lactation. A MetriCheck (Simero Tech Ltd, Hamilton, New Zealand) device was used to 

obtain a uterine discharge sample and scored on 3, 5, 7, 9, 11, 17, 19, and 21 DIM. Depending on 

the study period, different number of uterine discharge samples were taken between 11 and 17 
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DIM: during the first study period, one sample was taken on 14 DIM, while during the second 

study period, samples were taken on 13 and 15 DIM. Each uterine discharge was evaluated on a 

1 to 3 scale modified from Sheldon et al. (2006). Briefly, score 1: thick, viscous discharge, clear, 

opaque or red to brown in color, no odor or milk; score 2: white or yellow pus, moderate to thick 

discharge, milk odor; score 3: pink, red, dark red, or black watery discharge, detectable offensive 

odor, possibly intolerable. Cows with score > 2 were classified as metritis cases (Tsai, 2017; Lee, 

2018). As part of the study, cows were monitored for hyperketonemia, hypocalcemia, mastitis, 

lameness, and retained placenta as described by Tsai (2017) and Lee (2018). Briefly, blood was 

collected by caudal venipuncture on 3, 7, 14, and 21 DIM for calcium level from blood serum and 

non-esterified fatty acid determination (NEFA), while beta-hydroxybutyrate (BHBA) 

concentration was measured with two cowside monitors. Precision Xtra (Abbott Laboratories, 

Chicago, IL, USA) was used on days 3, 7, 14, and 21 post-partum during the first study period, 

while BHBCheck (PortaCheck Inc., Moorestown NJ, USA) was used on days 1, 2, 3, 4, 5, 6, 7, 10, 

14, and 21 post-partum during the second study period. Hypocalcemia was defined as a serum 

Ca level <8.6 mg/dL (Chapinal et al., 2011) and hyperketonemia was diagnosed when BHBA > 1.2 

mmol/L (Geishauser et al., 1998; McArt et al., 2012; Kaufman et al., 2016). Cows were diagnosed 

with clinical mastitis using the following criteria: watery, thickened, and discolored milk; milk 

containing blood, pus, flakes, or clots; edema, erythema; or pain in the associated quarter 

(Royster and Wagner, 2015) between 1 and 21 DIM by trained milkers. Furthermore, quarter 

milk samples were collected for somatic cell count (SCC) on days 4 +/- 2 DIM and 9 +/- 2 DIM. 

Cows with SCC > 200,000 cells/mL in one or more quarters were considered positive for 

subclinical mastitis. Finally, locomotion scores were recorded on days 1, 7, 14, and 21 



 

 118 

postpartum on a 1 to 3 scale (Schlageter-Tello et al., 2014). Retained placenta was recorded if 

fetal membranes were retained for > 24 hours (Sheldon et al., 2006). 

For any given cow and day, a metritis event was assigned when a cow was getting or 

being with metritis, this is, the metritis score increased, changed from 3 to 2, or when the score 

remained 2 or 3, between two consecutive uterine discharge evaluations. Similarly, for any given 

cow and any given day, a non-metritis event was assigned when a cow was recovering from 

metritis or being healthy, this is, when the metritis score decreased to 1, or when the score 

remained as 1, between two consecutive uterine discharge evaluations. In order to keep the 

time relationship between sensor measurements and clinical data, diagnosis of metritis was 

assigned to happen at 6:00 h on each one of the days when uterine discharge was evaluated.  

 

4.3.3 Sensor Data and Data Pre-processing 

Each cow was equipped with different PDM technologies before being enrolled to allow 

for an adjustment period of at least two weeks. For this retrospective study, information per cow 

included ten different behaviors measured from parturition to 21 days postpartum with a 3-axis 

accelerometer attached to the ear (CowManager, Agis Autimatisering, Harmelen, Netherlands), 

and a 3-axis accelerometer attached to the leg (TrackaCow, ENGS; Hampshire, UK). The ear tag 

device records the number of minutes per hour for behaviors classified as rumination, eating, 

not active (this could happen either while standing or lying), active, or high activity. CowManager 

has been previously validated by Bikker et al. (2014) and Borchers et al. (2016). The leg-attached 

accelerometer records hourly data for lying time (minutes per hour), lying bouts (number per 

hour), steps (number per hour), intake (minutes per hour), and intake visit (number of visits to 
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the feedbunk per hour). TrackaCow has been previously validated by Borchers (2015), Borchers 

et al. (2016), and Chapinal et al., (2007). 

Time series sensor data consisted on the hourly measurements for each behavior ! 

corresponding to the 3 days prior to each metritis event, assigning the time of diagnosis " at 6:00 

h on each one of the days when uterine discharge was evaluated. Therefore, the 6:00 h time was 

used as offset for later transformations of the time series sensor data. 

The first time series data transformation was to remove seasonality by differencing the 

time series. In order to do that, we subtracted for each cow, behavior !, and hour within a 3 day 

period before a given metritis event, the measurement registered by the sensor in the previous 

24 h from each hourly sensor measurement. The time series data for each metritis event at time 

" was defined by: 

#$!,#$%, $!,#$&, … , $!,#$'' 

where: 

$!  was the differenced hourly sensor measurement for behavior ! and time ", 

being !	 ∈ 	 {+,-!./"!0., 1/"!.2, .0"	/3"!41, /3"!41, ℎ!2ℎ	/3"!4!"6,

76!.2, 76!.2	80,"9, 9"1:9, !."/;1, !."/;1	4!9!"} 

. was the time step within a 3 day (or 72 hours) period. 

Next, we transformed the time series sensor data by aggregating the differenced hourly 

measurements using the mean of the time window "=%. In order to assess classifier performance 

at different levels of sensor data aggregation, we used different widths for the time window "=% 

to compute the mean. Based on our previous findings, classifier performance changes depending 

on the device and width of the time window "=%. Therefore, the time series generated by 

CowManager device was aggregated by computing the mean using widths of 6 and 12 hour for 
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the time window "=% (Vidal et al., Chapter 1). In contrast, the time series generated by 

TrackaCow device was aggregated by computing the mean using widths of 3 and 6 hour for the 

time window "=% (Vidal et al., Chapter 2). As result, the new time series data for each metritis 

event at time " was defined by: 

#$̅!(,#$%, $̅!(,#$&, … , $̅!(,#$)' 

where:  

$̅!(  was the mean sensor value for behavior ! and time window "=% of width ?, 

being !	 ∈ 	 {+,-!./"!0., 1/"!.2, .0"	/3"!41, /3"!41, ℎ!2ℎ	/3"!4!"6,

76!.2, 76!.2	80,"9, 9"1:9, !."/;1, !."/;1	4!9!"} 

and ?	 ∈ 	 {3	ℎ, 6	ℎ, 12	ℎ}, depending on the device. 

 - was the time step within a 3 day period. The number of time steps that could 

be included within a 3 day period was a function of the width ? of the time 

window "=%. 

 

4.3.4 Model Building 

Model building was done under two different frameworks: nowcasting and forecasting, 

and the number of time steps included as features changed depending on the framework used.  

- Nowcasting Framework: 

Under a nowcasting framework, the selection of model features was conducted by using 

a time window "=& of width ;. Furthermore, in order to assess classifier performance at 

different widths, we used multiple values for ; within a 3 day period before each metritis 

event. Therefore, the model inputs for the classifier were: 

#$̅!(,#$%, $̅!(,#$&, … , $̅!(,#$*' 
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where the width ; = 1, 2, … , 7, and 7 number of time steps included as features within a 

3 day period before a given metritis event. The number of features in our models ranged 

from 1, when sensor data were aggregated with a "=% width ? of 24 hours and "=& width 

; of 1, to 24 features when sensor data were aggregated using a "=% width ? of 3 hours 

and "=& width ; of 24, corresponding to 72 hours prior to the event. 

- Forecasting Framework: 

Under a forecasting framework, the selection of model features was conducted by using 

a time window "=& of width ; and taking into account the number of time steps ahead E 

for our predictions corresponding to 2 or 3 days ahead for a given event. Therefore, the 

model inputs for the classifier were:  

($̅!(,#$+ , $̅!(,#$+$%, $̅!(,#$+$&, … , $̅!(,#$*) 

where the width ; = E + 1, E + 2,… , 7, being the number of time steps skipped E a 

function of the width ? of time window "=% and number of days ahead, and 7 the number 

of time steps included as features within a 24 hour period. Therefore, for width ? = 3	ℎ , 

then E = 8 or E = 16 for the 2 or 3 day forward, respectively. Similarly, for width ? =

6	ℎ, then E = 4  or E = 8 for the 2 or 3 day forward, respectively. Lastly, for width ? =

12	ℎ ,then  E = 2  or E = 4 for the 2 or 3 day forward, respectively. 

Next, a series of modeling steps were used under nowcasting and forecasting frameworks in 

order to build the models, starting with those that included only features from one behavior at a 

time, following by those that included features from multiple behaviors, and finishing by adding 

milk yield-related variables as features to see whether classification performance could improve. 

Under each framework, the following modeling steps were implemented: 
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- Step 1. One model was fitted for each combination of behavior ! and time window "=% of 

width ?, and time window "=& of width ; within a 3 day period. Resulting models were 

ranked from greatest to smallest F1 score; 

- Step 2. The two models with greatest F1 score from modeling step 1 were selected, and a 

model that combined each one of their features was fitted. If the F1 score of the resulting 

model increased, the next best model from step 1 was selected and its features added 

into the model. If the F1 score of the resulting model did not increase, the second best 

model from step 1 was removed and the features from the next best model from step 1 

were added into the model. Best model (greatest F1 score, Se, and PPV) was selected 

from step 1 and 2. Among competing models (equal Se, PPV, and F1 score), models with 

fewer number of features were preferred. 

- Step 3. Next, milk yield-related features were added to the best model from previous 

steps. The milk-related features used were: daily milk yield (m; kg) from each one of the 3 

days before an event as model inputs (-#$%, -#$&, -#$,), the mean milk yield of the last 

3 days before event as model input #∑ -#$-,
-.% 3⁄ ', the variance of the milk yield of the 

last 3 days before the event as model input #∑ -#$-&,
-.% −	-N&', the slope of the milk 

yield of the last 3 days before the event as model input (-)/0 −-)!' 2⁄ ), and the 

combination of daily milk yield (kg) and milk yield variance as model inputs 

#-#$%, -#$&, -#$,, ∑ -#$-&,
-.% −-N&'. Under forecasting framework only the milk yield 

(kg) corresponding to day -2 or day -3 before event was used for the 2 and 3 days 

periods, respectively. 
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4.3.5 Model Performance 

Based on our findings from previous studies, a RF classifier was implemented to fit the 

models (Vidal et al., Chapter 1 and 2). Due to limitations in the amount of data available, we used 

fivefold cross-validation (5-FCV) to set aside a validation set and use it to assess the performance 

of the prediction model. Randomized search (RS) was used as strategy to optimize the classifier. 

Optimal parameters that were found to allow for best mean cross-validation accuracy were used 

to train the final model at each modeling step. After optimization, we used a rank-based method 

to classify the events, where the prediction class probability for each health event of being 

classified as metritis was ranked from highest to lowest. To estimate the performance of each 

model, highest 20, 30, and 40% class probabilities were used as different thresholds. For each 

threshold, classification performance was evaluated using estimates of sensitivity (Se or recall), 

specificity (Sp), positive predictive value (PPV or precision), negative predictive value (NPV), 

accuracy (Ac), F1 score, the area under the curve (AUC) for the receiver operating characteristic 

(ROC) curve, and Precision Recall (PR)-curves. Sensitivity was estimated as the ratio of correctly 

predicted positive observations to all observations in the actual class (metritis event). Specificity 

was estimated as the ratio of correctly predicted negative observations to all observations in the 

actual class (non-metritis event). Positive predictive value was the ratio of correctly predicted 

positive observations to all predicted positive observations. Similarly, NPV was the ratio of 

correctly predicted negative observations to all predicted negative observations. Accuracy was 

the ratio of correct predictions to all number of observations (Hogeveen et al., 2010). F1 score is 

the weighted average of PPV and Se and, therefore, it is preferred over Ac in situations where 

the dataset is unbalanced (Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015). F1 score was 
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computed as (1 + b2)*(PPV* Se)/(( b2 * PPV) + Se), where b = 1 (Saito and Rehmsmeier, 2015). At 

each modeling step, best performance was defined as the greatest possible values for F1 score, 

Se, and PPV, in that particular order. 

Classifier implementations were taken from the open-source Python library scikit-learn 

(Pedregosa et al., 2011). The feature extraction and the optimization of the classifier parameters 

were implemented using Python programming language, version 2.7 (Python Software 

Foundation, http://www.python.org). Plots were done using ggplot2 library (Wickham, 2009), 

using R open-source statistical software (R Core Team, 2017). 

 

4.4 Results 

 A total of 35 dairy cows (primiparous = 17; multiparous = 18) were retrospectively 

selected from the original dataset (n = 138) containing clinical and sensor data from parturition 

to 21 DIM. The average (± SD) milk yield was 36.11 kg + 15.6. Of the 35 cows selected, 13 did not 

have any metritis during the study period, while 22 were diagnosed at least once with metritis 

(score 2, or higher), occurring on average at 12 DIM (12.02 DIM + 4.72). Among these, 2 had 

retained fetal membranes and were kept for data analysis. None of the selected animals had 

hyperketonemia, mastitis, or hypocalcemia. The proportion of metritis events among 

primiparous was 20%, while the proportion of metritis events among multiparous was 23%. 

Based on the changes of metritis score between two consecutive evaluations, 239 health events 

were created, and of those, 188 were in the non-metritis event class, while 51 were in the 

metritis event class, resulting in an unbalanced dataset. Across all modeling steps, time windows, 
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and time lags, best performance in terms of F1 score, Se, and PPV was obtained when the 20% 

threshold was used. 

 

4.4.1 Nowcasting Framework: Individual Devices 

When comparing the different levels of sensor data aggregation, there was a trend in 

model performance across the different aggregations. During modeling step 1, overall 

performance decreased as time windows became narrower, this is, the number of features used 

to fit the model decreased. However, the width of the time window at which performance 

started to drop varied depending on the level of aggregation of the time series data. Figure 4.1 

shows that when sensor data were aggregated using 12 hour time window, performance 

dropped starting at -4 time steps before event, while performance for sensor data aggregated 

using 6 hour time window dropped starting at -5 and -4 time steps before the event for 

CowManager and TrackaCow, respectively. Similarly, when sensor data were aggregated using 3 

hour time window, performance started to drop at -6 time steps before the event. Therefore, 

the smaller the level of data aggregation, the longer F1 score value remained high before starting 

to drop. F1 score oscillations were more evident for 6 hour versus 3 hour time windows. Similar 

trend could be observed for modeling step 2, where for all levels of data aggregation, classifier 

performance decreased with narrower time windows. However, at modeling step 2, 

performance at narrower time lags did not decrease as acutely as during modeling step 1 (Figure 

4.1). Less clear trends could be observed for classifier performance at modeling step 3. Overall, 

adding a milk yield-related variable during modeling improved the F1 score at -1 time steps 

before the event with respect to modeling step 2. However, the improvement in F1 score was 
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greater at wider time windows: between -1.5 and -3 days before the event with sensor data 

aggregated using 12 hour time windows, and between -1.75 and -12 days before the event with 

sensor data collected with CowManager device and 6 hour time windows. Improvement of F1 

score during modeling step 3 was less consistent with sensor data registered by TrackaCow 

device and 3 hour time window, being constantly higher between -2.5 and -3 days before the 

event (Figure 4.1). 

Table 4.1 shows the most relevant performance metrics at the different modeling steps 

when CowManager data were aggregated using a 12 hour time window. Complete list of 

performance metrics from all the models can be found in a data repository (Vidal et al.). At 

modeling step 1, the behaviors with greatest F1 scores were eating and ruminating, with Se 

values that ranged between 85.4 – 92.5% and 61.9 – 82.9%, respectively, and with PPV values 

that ranged between 92.1 – 100% and 63.4 – 87.2%, respectively (Table 4.1). At modeling step 2, 

the addition of multiple behaviors only improved performance at narrower time windows 

(models 4 through 1; Table 4.1). At modeling step 3, the milk yield-related variable that yielded 

greatest F1 score was the variance of the daily milk yield for the previous 3 days before the 

metritis event. Nevertheless, for those models where adding this feature improved performance 

it was at wider time lags, with an F1 score that increased by 2.5%, 4.1%, and 1.5% for models 4, 

5, and 6, respectively (Table 4.1). Adding the milk yield variance to models 1, 2, and 3 lowered 

the F1 score, a result that was driven by a small decrease on PPV compared to a marginal 

improvement of Se (Table 4.1). Other milk yield transformations were explored, with some of 

these increasing the Se but lowering the PPV, or vice versa. 
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When sensor data measured with CowManager device were aggregated using a 6 hour 

time window, behaviors with best performance in terms of F1 score at modeling step 1 were for 

those associated with different levels of activity (not active, active, and high activity behaviors; 

Table 4.2). At modeling step 2, best performances were also found in models where behaviors 

corresponding to different levels of activity were combined (models 12 through 18), although 

adding more features from multiple behaviors did not always improve the F1 score obtained 

during modeling step 1, especially for models 12 through 18 (Table 4.2). In those cases where an 

improvement in the F1 score was observed between steps 1 and 2, it was driven by an increment 

in both, Se and PPV. With respect to modeling step 1, at modeling step 2 F1 score increased by a 

range of 8.6% - 47.7% for models 7 through 10, and by 2.8% - 54% for models 11, 14, and 16. At 

modeling step 3, best milk-related features were either the daily milk yield, or the daily milk yield 

variance, although 100% F1 score was achieved in models 14 and 11 using the milk yield variance 

as model input. At modeling step 3, there was a tradeoff between Se and PPV, with greater F1 

score than those obtained at step 2 that were driven by an improvement in the Se, outweighing 

a poorer performance in terms of PPV when compared with modeling step 2 (Table 4.2). 

When sensor data measured with TrackaCow device were aggregated using a 6 hour time 

window, behaviors with best performance in terms of F1 score at modeling step 1 were for lying 

time, followed by number of steps (Table 4.3). During modeling step 2, the best combinations of 

behaviors were for lying time and number of steps, with the exception of model 19, where 

features from all behaviors measured with TrackaCow had to be added in order to improve the 

F1 score (Table 4.3). Overall, greater improvement in F1 score was observed at narrower time 

windows driven by both, Se and PPV: F1 score at modeling step 2 improved by 6% to 42% for 
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models 22 through 19. Greatest F1 score was obtained at step 3 by adding the milk yield variance 

(models 27, 28, and 29; Table 4.3). For models 23 through 26, adding either daily milk yield or 

milk yield variance did either improved Se or PPV, but not both, resulting in a lower F1 score that 

the one estimated during modeling step 2. For the models where daily milk yield improved 

performance, F1 score increased by 0.44 – 5.2% (models 19 through 22, and 27 through 29), and 

from 0.3% to 4% (models 36, and 39 through 53; Table 4.3). 

When sensor data measured with TrackaCow device were aggregated using a 3 hour time 

window, behaviors with best performance in terms of F1 score at modeling step 1 were for lying 

time and number of steps (Table 4.4). At modeling step 2, the best combinations were either 

lying and lying bout, or lying and steps (Table 4.4). Nevertheless, no improvement of the F1 score 

at modeling step 1 was found by adding multiple behaviors at model step 2, with the exception 

of narrower time lags (models 31 through 36). Therefore, and except for narrow time lags, 

simpler models from modeling step 1 were selected as best models before attempting to add 

milk yield-related variables in modeling step 3. Greatest F1 scores were obtained when features 

from milk variables were added to the best models from modeling steps 1 and 2, being most of 

these models that included features from one behavior (Table 4.4). Among the milk yield 

transformation, the raw daily milk yield in the previous 3 days before the event was the best 

feature, but the improvement was marginal: from 0.3% - 4% for models 31 through 36, and 39 

through 53. In almost all cases, the increment in the F1 score was driven by an increment in Se, 

while 100% PPV was achieved in most cases during modeling step 1. 
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4.4.2 Nowcasting Framework: Combination of Devices 

The only time window at which performance resulting from combining both, 

CowManager and TrackaCow devices, could be explored was the 6 hour time window. Overall, 

TrackaCow had greater F1 scores across all time windows compared to CowManager (Figure 4.2), 

and those were obtained with fewer features. Furthermore, at narrower time windows, the drop 

in performance for CowManager was sharper (from 97.5% at time -5 to 89% at time -1; Figure 

4.2) than the drop for TrackaCow (from 97.7% at time -5 to 94.5% at time -1; Figure 4.2). In any 

case the combination of the best models from each device improved performance, except at 

time before event -1, when performance was comparable to that one obtained with TrackaCow: 

94.4% and 94.7% at time before event -1 for TrackaCow and the combination of TrackaCow with 

CowManager, respectively. The drop in performance was driven by a drop in Se, even though 

PPV either increased to 100%, or stayed at 100% when compared to individual device 

performance. Among milk-related variables, milk yield variance had the best performance 

compared with the others. However, in any case did daily milk yield or its transformations 

improved model performance compared to using behavioral variables alone, with the only 

exception of time step -1, when F1 score reached 100% by adding either mean milk yield, milk 

yield variance, or milk yield slope into the model (Table 4.5). 

 

4.4.3 Forecasting Framework 

Finally, we also estimated model performance under a forecasting framework. Best 

performance for CowManager was found 2 days forward before an event with the combination 

of active and eating behaviors using a 12 hour time window (Se = 92.68%, PPV = 100%, F1 score = 
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96.2 at modeling step 2; Table 4.6), representing an increment by 35.7% with respect to 

modeling step 1. In contrast, ruminating behavior yielded best performance 3 days forward 

before an event (Se = 92.5%, PPV = 100%, F1 score = 96.1 at modeling step 1; Table 4.6). At 

modeling step 3, the addition of milk yield only improved F1 score with the 6 hour time window, 

improving by 0.2% and 1.4% for the 2 and 3 days forward predictions, respectively. 

Best performance for TrackaCow was found 2 days forward and modeling step 1 with a 

time window of either 6 hours (Se = 95.35%, PPV = 100%, F1 score = 97.62%; Table 4.7), or 3 

hours (Se = 95.24%, PPV = 100%, F1 score = 97.56%; Table 4.7). For the 3 days forward 

predictions, the best model was for lying behavior (Se = 95%, PPV = 97.44%, F1 score = 96.2% 

and modeling step 3; Table 4.7). Improvement in performance was only observed 3 days forward 

and 6 h time window, with F1 score improving by 2.7% between modeling step 1 and 2, and by 

1.3% between modeling step 2 and 3, driven by an increment in PPV that outweighed the 

decrease in Se between modeling step 2 and 3. 

 

4.5 Discussion 

 In this study, we assessed the performance in terms of Se, PPV, and F1 score of a RF 

classifier for the prediction of metritis events, using a total of ten animal behaviors measured by 

two PDFTs and aggregated at two different time windows under multiple time steps. 

Furthermore, we selected our best models using three distinct modeling steps based on model 

complexity, exploring changes in behavioral variables performance when milk yield variables 

were added into the models. Additionally, we explored RF performance when best selected 

models from both PDFTs were combined into one model. Finally, all the different combinations 
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of sensor data aggregation and time windows were explored under nowcasting and forecasting 

frameworks. Our results address the current need for a systematic approach to the study of 

appropriate level of sensor data aggregation and number of time steps included as features for 

metritis prediction using different animal behaviors registered by PDFTs, and their combinations. 

In our study, we had an unbalanced dataset and therefore, we used a rank-based method 

approach followed by the comparison in performance under different thresholds (Vidal et al., 

Chapter 1 and 2). Many software algorithm implementations use by default the 50% class 

probability as threshold to classify observations into cases and non-cases, however, changing the 

default has been proposed as an strategy to improve classifier performance (Ouellet et al., 2016; 

Steensels et al., 2016). Our results showed that best results in terms of Se, PPV and F1 score were 

obtained at the 20% threshold across all devices, time windows, and number of time steps. This 

threshold was closer to the prevalence of metritis events in our sample than the 30% and 40% 

thresholds. We suggest that in those case where animals are being categorized according to one 

or several underlying continuous traits, different thresholds should be tested, since not only PPV 

and NPV change with prevalence but also do Se and Sp (Brenner and Gefeller, 1997).  

 

4.5.1 Nowcasting Framework: Individual Devices 

Our results under nowcasting framework showed that, overall F1 score across multiple 

levels of sensor data aggregation was lower at narrower time windows when only the features 

corresponding to one behavior were used (modeling step 1). For those narrower time window, 

F1 score improved when features from more than one behavior were added to the model 

(modeling step 2), obtaining only a marginal improvement when milk yield was added to the 
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model (modeling step 3). The changes in RF performance observed in our study were directly 

influenced by the increase in the number of features between modeling steps 1 and 2 under the 

nowcasting framework. This effect can be attributed to the bias-variance trade-off, this is, the 

relationship with the expected prediction error and the mean squared error of our predictions. 

More generally, as the model complexity increases (higher number of features), the variance 

tends to increase and the squared bias (the amount by which the average of our estimate differs 

from the true mean) tends to decrease (Hastie et al., 2009). In our study, at narrower time 

windows for modeling step 1, where fewer features were used to fit the model, models may 

have been too simplistic and underfitting may have occurred. In contrast, when for the same 

time windows more features were added during modeling steps 2 and 3, resulting in an increase 

in model complexity with the associated risk of overfitting. Fine tuning the complexity of 

prediction models will need to be explored in those cases where classification algorithms will be 

implemented either as validation studies or as clinical trials in commercial farms. 

In our study we found that classifier performance changed across the different levels of 

sensor data aggregation. Under the nowcasting framework and 12 h time window, several 

behaviors measured with CowManager device were useful when classifying events at modeling 

step 1, being eating preferred for wider time windows while ruminating was preferred for 

narrow time windows. In contrast, features from almost all behaviors measured with 

CowManager were needed in order to increase model complexity so an improvement in 

performance at narrower time windows could be achieved. For those behaviors measured with 

TrackaCow under a nowcasting framework, features corresponding to behaviors lying, steps, or 

to the combination of both, showed best classification performance at both, 6 h and 3 h time 
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windows. When the former time window was used, greater improvement in F1 score was 

observed between modeling step 1 and 2 with fewer time steps included in the model. The 

improvement in F1 score was driven by both, Se and PPV. The study of the impact of different 

time windows has been mainly investigated in sensor research, where animal behaviors are 

predicted based on sensor signals (Walton et al., 2018), but it has been poorly studied in 

research where changes in animal behavior are being used to predict different health states 

(Carslake et al., 2021). Comparison of our findings with previous studies was not completely 

possible, as performance at different levels of data aggregation and time windows have not been 

systematically explored for disease detection (Carslake et al., 2021). Previous studies have 

investigated the performance of a RF classifier to classify estrus events using all behaviors 

measured with CowManager device with 12 h time windows (Dolecheck et al., 2015), finding a 

wider range of values for Se (47.82 – 100%) compared to the models that used 12 h time 

windows in our study (90 – 95.24%, models 1 through 6). The study by Dolecheck et al. (2015) 

did not report PPV, but differences in Se could be due to the fact that their dataset was small, 

unbalanced, and features from all behaviors were combined into one model, an strategy we 

have proven in this study as not necessarily beneficial for classifier performance (Vidal et al., 

Chapter 1 and 2). Steensels et al. (2016) used a decision-tree model to detect a combination of 

ketosis, metritis, or both, during postpartum. In their model, they combined rumination, activity, 

milk yield, milk slope, and body weight change since parturition (Steensels et al., 2016). Using 

different time windows than those used in this study (2 h for activity and 24 h for rumination), 

reported Se was 86% and PPV was 88%. These values are lower than the mean values (± SD) we 

found in our study for rumination and activity behaviors using either 12 h or 6 h time windows 
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and for multiple time window widths at modeling step 3 (for 12 h time window: mean Se 94.66% 

± 3.76; mean PPV 96.49% ± 4.48; for 6 h time window: mean Se 97.64 ± 3.43; mean PPV 94.88 ± 

4.66). Differences between both studies could be due to the fact that both, ketosis and metritis 

were combined, making the assumption that the patterns in the data for ketosis and metritis 

may be equivalent while that may not be true. Furthermore, Steensels et al. (2016) used a 24 h 

time window for the behavior ruminating, a level of aggregation for sensor data we found might 

not be the preferred one (Vidal et al., Chapter 1). 

Among all the features related with milk yield explored in modeling step 3, milk yield 

variance and daily milk yield from the previous 3 days before an event had best performance 

compared to milk yield mean and milk yield slope. Among all the models and time windows, milk 

yield variance was preferred for CowManager, while daily milk yield was preferred for TrackaCow 

in terms of performance. Nevertheless, adding milk yield variables to the best selected models 

from modeling steps 1 and 2 did not always improve performance, and sometimes improvement 

was only observed at wider time windows, or the improvement was marginal. Generally, at 

modeling step 3, an improvement in F1 score was driven by an increase in Se that outweighed a 

decrease in PPV. Our findings are different from those found by others: a study by Steensels et 

al. (2016) included milk yield slope in their models for ketosis and metritis, while in our study, 

milk yield slope did not perform well. A more recent study has found that milk yield 

perturbations last between 5 and 207 days (mean 19.8 days ± 20.7; Adriaens et al., 2021). In light 

of these findings, we hypothesized that our 3 day time window for milk yield-related variables 

may be too small. Future studies should include wider time windows (at least 5 days before 
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event) and different milk yield transformations should be explored, as these may be 

characteristic of different diseases (Adriaens et al., 2021). 

Additionally, prioritization of one performance metric over the others is problem-specific: 

in some cases, such as estrus detection, capturing all true positives at the expense of a higher 

false positive rate would be preferred due to the cost associated with missed events, while in 

other cases such as illness detection or calving events, high number of false positives will cause 

financial losses due to unnecessary treatment (Borchers et al., 2017). The advantage of using F1 

score is that the weights for the Se and PPV can be modified to adapt to different management 

scenarios (Vidal et al., Chapter 1 and 2).  

 

4.5.2 Nowcasting Framework: Combination of Devices 

In this study, we were able to explore the RF classifier performance using behaviors 

registered by both, CowManager and TrackaCow devices, and 6 h time window for the 

aggregation of the sensor data. Overall, TrackaCow had greater F1 scores at all time windows 

compared to CowManager, and these were obtained with simpler models. Our findings are in 

agreement with those found by Tsai (2017) and Lee (2018) during their primary analysis of the 

dataset used in our study. Despite the fact that different time windows and classifiers were used 

to identify cows with metritis, Tsai (2017) found that TrackaCow had a Se of 75% while the Se for 

CowManager was 57%. Similarly, Lee (2018) found that TrackaCow had a Se of 77% while 

CowManager had a Se of 57%. Although the combination of CowManager and TrackaCow had 

not been studied, primary data analysis showed that when behavioral data registered by 

TrackaCow was combined with the behavioral data registered by other devices other than 
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CowManager, performance of TrackaCow in terms of Se and Sp worsen (Lee, 2018). Similar 

results were found for the combination of different devices registering rumination, steps, lying 

time, and lying bouts, where PPV decreased compared with performances for each device alone 

(Borchers et al., 2017). Performance resulting from the combination of multiple devices has also 

been studied to classify reproductive events. A previous study combined rumination time, lying 

time, and lying bouts using 6 h time windows with logistic regression as classifier for calving 

events, reporting a Se that ranged from 42% to 86%, and a PPV between 10% and 23% (Ouellet 

et al., 2016). In our study, none of the best selected models contained the same combination of 

behaviors, and instead, different levels of activity, lying time, and steps yielded best results, with 

greater mean (± SD) Se and PPV (86.5% ± 5.4 and 98.5% ± 3.6, respectively) that those reported 

by Ouellet et al. (2016). 

 

4.5.3 Forecasting Framework 

Forecasting frameworks are studied in the prediction of infectious diseases (Rashid, 

2003; Thompson and Brooks-Pollock, 2019). To our knowledge, these have not been compared 

with nowcasting frameworks for a given dataset in PDFT literature. For this study, we explored 

the differences in performance under a forecasting framework, using 2 and 3 days forward 

forecasts. For the behaviors measured by CowManager, improvement in performance was only 

observed for the combination of 12 h time window and 2 days forward, while for those 

behaviors measured by TrackaCow, improvement was only observed for the combination of 6 h 

time window and 3 days forward. Even though differences between the best models for 

CowManager were not very different in terms of Se and PPV, the advantage of identifying a sick 
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cow 3 days earlier may outweighs small differences in Se and PPV. Similarly, the selection of the 

number of days forward for the forecast may change depending on if we want to prioritize a high 

PPV over a lower Se. 

Results under nowcasting and forecasting frameworks are not directly comparable, 

because the features included in the model to make the predictions are different. Still, it is worth 

noting that under a nowcasting framework, a similar performance in terms of Se was obtained 

when all sensor data from the previous 2 days registered by CowManager was used to fit the 

model (model 4), with the difference that under a nowcasting framework, producers won’t be 

able to implement earlier medical interventions. Therefore, for the same level of performance, 

we could have a Se of 92.68% and PPV of 100% by combining sensor data from 2 days before the 

event for behaviors active and eating. 

In this study, the performance of our best selected forecasting models was greater than 

90% Se and PPV, which is higher than those reported in previous studies. Ouellet et al., (2016) 

found that lying time could predict calving 1 day forward with a Se between 47% and 65%, and a 

PPV between 26% and 39%. Slightly higher values were reported by Borchers et al., (2017) for 

calving prediction using an 8 hour forward forecast, with a Se between 65.5% and 72.4%, and a 

PPV between 67.9% and 77.8%. Straightforward comparison with other studies was not possible 

due to methodological differences, and discrepancies between our finding and those by others 

could be due to the classifier used, threshold chosen, and time windows used to aggregate the 

data, as we know these impact performance (Vidal et al., Chapter 1 and 2). 
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4.5.4 Future Directions 

Given the high volume of data generated by sensor devices and the relative novelty of 

the precision dairy farming field, finding multiple studies where same methodology and 

approach were used was challenging. Further studies are needed to identify the behavioral 

variables that may improve classification performance under different levels of sensor data 

aggregation and time windows. Furthermore, we showed how the combination of data 

registered by multiple devices was not beneficial in this particular dataset. Therefore, we also 

need a better understanding of return on investment of combining and connecting multiple 

sensor devices, and the technological challenges of when integrating diverse sources of data 

(Rutten et al., 2013). Lastly, forecasting frameworks can be advantageous over nowcasting 

frameworks since earlier interventions can be implemented. Nevertheless, further studies are 

needed to understand the cost of premature interventions, and the cost of technical support 

(Borchers, 2015). Limitations remain with current prediction models regarding how to deal with 

cases of more than one illness, and how to predict one illness without excluding others from the 

analyses. 

 

4.6 Conclusions 

This study presents a new methodology to study the optimal number and types of 

behaviors measured with PDFTs to predict metritis events. We have developed a framework for 

model building, allowing a better understanding of the interactions between model complexity, 

level of sensor data aggregation, and time windows, and the value of adding milk yield-related 

variables for improved performance. This study has shown that good classification performance 
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can be achieved with simple models involving one or two behavioral variables. The second major 

finding was that the combination of TrackaCow with CowManager and 6 h time windows does 

not improve performance compared with using TrackaCow only. Lastly, we found that when 

CowManager data were aggregated using 12 hour time windows, forecasting models can allow 

prediction of metritis 1 day earlier than nowcasting models. 
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Table 4. 1: Metrics (%) used for model building under nowcasting framework at each one of the 
modeling steps for behaviors measured with an ear-attached 3-axis accelerometer 
(CowManager, Agis Autimatisering, Harmelen, Netherlands), with sensor data aggregated using 
12 hour time windows and using random forest to classify metritis events. 

Model ID 6 5 4 3 2 1 
Time Lag k -6 -5 -4 -3 -2 -1 
Step 
13 

Behaviors1 E E E R R R 
Nfeatures2 6 5 4 3 2 1 
Se 90 92.5 85.4 82.9 76.2 61.9 
PPV 100 100 92.1 87.2 80 63.4 
F1 score 94.7 96.1 88.6 85 78.1 62.7 

Step 
23 

Behaviors1 E+HA E+HA R+E+NA R+NA R+E+NA R+A+HA+NA 
Nfeatures2 12 10 12 6 6 4 
Se 90 92.5 92.7 95.1 95.2 92.9 
PPV 100 100 100 100 100 95.1 
F1 score 94.7 96.1 96.2 97.5 97.6 94 

Step 
33 

Behaviors1 
and Milk 
Vars.4 

E+MV E+MV R+E+NA+MV R+NA+MV R+E+NA+MV R+A+HA+NA+MV 

Nfeatures2 7 6 13 7 7 5 
Se 92.6 100 96.4 89.3 96.6 93.1 
PPV 100 100 100 89.3 96.6 93.1 
F1 score 96.2 100 98.2 89.3 96.6 93.1 

1 Behaviors: R: ruminating; E: eating; NA: not active; A: active; HA: high activity. 

2 Number of Features: model inputs were !"̅!",$%&, "̅!",$%', … , "̅!",$%(&, where "̅ was the mean of the hourly sensor 
values for behavior ' and ( = 12	ℎ, being the diagnosis assigned at 6:00 h on each one of the days when uterine 
discharge was evaluated, ' ∈ {ruminating, eating, not active, active, high activity}, and number of time steps before 
the event / = 1, 2,… , 0, where 0 was the number of time steps included as features within a 3 day period before a 
given metritis event. 
3 Modeling steps: Step 1: only features corresponding to one of the 5 behaviors measured with the device were 
used to fit the model; Step 2: features corresponding to multiple behaviors measured with a single device were used 
to fit the model; Step 3: features from milk yield-related variables were added to best model selected from steps 1 
and 2.  

4 Milk Variables: MV: milk yield variance computed as the variance for the daily milk yield (kg) for the last 3 days 
prior to an event. 
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Table 4. 2: Metrics (%) used for model building under nowcasting framework at each one of the modeling steps for behaviors 
measured with an ear-attached 3-axis accelerometer (CowManager, Agis Autimatisering, Harmelen, Netherlands), with sensor data 
aggregated using 6 hour time windows and using random forest to classify metritis events. 

Model ID 18 17 16 15 14 13 12 11 10 9 8 7 

Time Lag k -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 

Step 

1
3
 

Behaviors
1
 HA NA HA A A HA NA NA NA E NA NA 

Nfeatures
2
 12 11 10 9 8 7 6 5 4 3 2 1 

Se 90 90 90 92.5 90 92.7 92.7 90.2 83 85.4 71.4 59.5 

PPV 100 100 97.3 100 97.3 100 100 94.9 87.1 87.5 75 61 

F1 score 94.7 94.7 93.5 96.1 93.5 96.2 96.2 92.5 85 86.4 73.2 60.2 

Step 

2
3
 

Behaviors
1
 HA+R NA+A HA+A A+NA A+HA+N

A 

HA+NA NA+R NA+E+HA

+A 

NA+R+

E 

E+HA

+A 

NA+R+E+ 

A+HA 

NA+R+E+ 

HA+A 

Nfeatures
2
 24 22 20 18 24 14 12 20 12 9 10 5 

Se 90 90 92.5 92.5 92.5 92.5 92.7 95.1 95.1 92.7 90.5 88.1 

PPV 100 100 100 100 100 100 100 100 100 95 95 90.2 

F1 score 94.7 94.7 96.1 96.1 96.1 96.2 96.2 97.5 97.5 93.8 92.7 89.2 

Step 

3
3
 

Behaviors
1
 

and Milk 

Vars.
4
 

HA+MY NA+MY HA+A

+MV 

A+MV A+HA+N

A+MV 

HA+MV NA+MY NA+E+HA

+A+MV 

NA+R+

E+MY 

E+HA+A

+MV 

NA+R+E+A

+HA+MS 

NA+R+E+H

A+A+MY 

Nfeatures
2
 15 14 21 10 25 8 9 21 15 10 11 8 

Se 100 100 96.3 96.3 100 92.9 100 100 100 96.4 89.7 100 

PPV 93.8 93.8 100 96.3 100 96.3 88.2 100 88.2 93.1 100 88.9 

F1 score 96.8 96.8 98.1 96.3 100 94.6 93.8 100 93.8 94.7 94.6 94.1 

1
 Behaviors: R: ruminating; E: eating; NA: not active; A: active; HA: high activity. 

2
 Number of Features: model inputs were !"̅!",$%&, "̅!",$%', … , "̅!",$%(&, where "̅ was the mean of the hourly sensor values for behavior ' and ( = 6	ℎ, being the 

diagnosis assigned at 6:00 h on each one of the days when uterine discharge was evaluated, ' ∈ {ruminating, eating, not active, active, high activity}, and number 

of time steps before the event . = 1, 2,… , 1, where 1 was the number of time steps included as features within a 3 day period before a given metritis event. 
3
 Modeling steps: Step 1: only features corresponding to one of the 5 behaviors measured with the device were used to fit the model; Step 2: features 

corresponding to multiple behaviors measured with a single device were used to fit the model; Step 3: features from milk yield-related variables were added to 

best model selected from steps 1 and 2. 

4
 Milk Variables: MV: milk yield variance computed as the variance for the daily milk yield (kg) for the last 3 days prior to an event; MY: daily milk yield (kg) for 

each one of the 3 days before an event; MS: milk yield slope computed as the slope between maximum and minimum value for daily milk yield (kg) during the 3 

days before an event. 
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Table 4. 3: Metrics (%) used for model building under nowcasting framework at each one of the modeling steps for behaviors 
measured with a leg-attached 3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK), with sensor data aggregated using 6 hour 
time windows and random forest to classify metritis events. Models which performance metrics did not differ from other models have 
been omitted. 

Model ID 30 29 28 27 26 24 23 22 21 20 19 

Time Lag k -12 -11 -10 -9 -8 -6 -5 -4 -3 -2 -1 

Step 

1
3
 

Behaviors
1
 L L L L L L S S L S L 

Nfeatures
2
 12 11 10 9 8 6 5 4 3 2 1 

Se 95 92.7 95.1 95.2 95.4 95.4 95.6 88.9 86.4 73.3 65.2 

PPV 97.4 97.4 100 100 100 100 100 93 88.4 76.7 68.1 

F1 score 96.2 95 97.5 97.6 97.6 97.6 97.7 90.9 87.4 75 66.7 

Step 

2
3
 

Behaviors
1
 L+LB L+S L+S L+LB L+S L+S S+L L+S L+S L+S L+S+I+LB+IV 

Nfeatures
2
 24 22 20 18 16 12 10 8 6 4 5 

Se 97.5 95.1 92.7 95.2 95.4 95.4 95.5 95.5 95.5 95.5 89.5 

PPV 100 100 97.4 100 100 100 100 97.7 97.7 97.7 100 

F1 score 98.7 97.5 95 97.6 97.6 97.6 97.7 96.7 96.6 96.6 94.4 

Step 

3
3
 

Behaviors
1
 

and Milk 

Vars.
4
 

L+LB+ 

MV 

L+S+ 

MY 

L+MY L+MY L+MY L+MV+MY S+MV L+S+MY L+S+MY L+S+MY+

MV 

L+S+I+LB+IV

+MV 

Nfeatures
2
 25 25 11 12 11 10 6 11 9 8 6 

Se 96.2 100 100 100 100 100 93.3 100 100 100 91.7 

PPV 100 100 100 100 93.8 93.8 96.6 94.1 94.1 94.1 100 

F1 score 98 100 100 100 96.8 96.8 94.9 97 97 97 95.7 

1
 Behaviors: L: lying; LB: lying bouts; S: steps; I: intake; IV: intake visit. 

2
 Number of Features: model inputs were !"̅!",$%&, "̅!",$%', … , "̅!",$%(&, where "̅ was the mean of the hourly sensor values for behavior ' and ( = 6	ℎ, being the 

diagnosis assigned at 6:00 h on each one of the days when uterine discharge was evaluated, ' ∈ {lying, lying bouts, steps, intake, intake visit}, and number of time 

steps before the event . = 1, 2,… , 1, where 1 was the number of time steps included as features within a 3 day period before a given metritis event. 
3
 Modeling steps: Step 1: only features corresponding to one of the 5 behaviors measured with the device were used to fit the model; Step 2: features 

corresponding to multiple behaviors measured with a single device were used to fit the model; Step 3: features from milk yield-related variables were added to 

best model selected from steps 1 and 2. 

4
 Milk Variables: MV: milk yield variance computed as the variance for the daily milk yield (kg) for the last 3 days prior to an event; MY: daily milk yield (kg) for 

each one of the 3 days before an event; MS: milk yield slope computed as the slope between maximum and minimum value for daily milk yield (kg) during the 3 

days before an event. 
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Table 4. 4: Metrics(%) used for model building under nowcasting framework at each one of the modeling steps for behaviors 
measured with a leg-attached 3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK), with sensor data aggregated using 3 hour 
time windows and random forest to classify metritis events. Models which performance metrics did not differ from other models have 
been omitted. 

Model ID 54 53 51 48 46 45 40 39 38 37 36 

Time Lag k -24 -23 -21 -18 -16 -15 -10 -9 -8 -7 -6 

Step 

1
3
 

Behaviors
1
 L L L L S L S S S L L 

Nfeatures
2
 24 23 21 18 16 15 10 9 8 7 6 

Se 92.5 95 92.7 92.7 93.2 93 93.3 95.6 95.6 95.5 93.2 

PPV 100 100 100 100 100 100 100 100 100 100 97.6 

F1 score 96.1 97.4 96.2 96.3 96.5 100 96.6 97.7 97.7 97.7 95.4 

Step 

2
3
 

Behaviors
1
 L+LB L+LB L+LB L+S S+L L+S S+L S+L S+L L+S L+S 

Nfeatures
2
 48 46 42 36 32 30 20 18 16 14 12 

Se 92.1 95 92.7 92.9 92.9 93 93.2 95.5 95.5 95.5 95.5 

PPV 100 100 100 100 100 100 100 100 100 100 100 

F1 score 96.1 97.4 96.2 96.3 96.3 96.4 96.5 97.7 97.7 97.7 97.7 

Step 

3
3
 

Behaviors
1
 

and Milk 

Vars.
4
 

L+MV L+MY L+MY L+MY S+MY L+MY S+MY S+MY S+MY L+MV L+S+MY 

Nfeatures
2
 25 26 24 21 19 18 13 12 11 8 15 

Se 100 100 100 93.3 93.8 100 100 100 100 93.1 100 

PPV 100 100 100 100 100 100 100 100 94.1 96.4 100 

F1 score 100 100 100 96.6 96.8 100 100 100 97 94.7 100 

1
 Behaviors: L: lying; LB: lying bouts; S: steps; I: intake; IV: intake visit. 

2
 Number of Features: model inputs were !"̅!",$%&, "̅!",$%', … , "̅!",$%(&, where "̅ was the mean of the hourly sensor values for behavior ' and ( = 3	ℎ, being the 

diagnosis assigned at 6:00 h on each one of the days when uterine discharge was evaluated, ' ∈ {lying, lying bouts, steps, intake, intake visit}, and number of time 

steps before the event . = 1, 2,… , 1, where 1 was the number of time steps included as features within a 3 day period before a given metritis event. 
3
 Modeling steps: Step 1: only features corresponding to one of the 5 behaviors measured with the device were used to fit the model; Step 2: features 

corresponding to multiple behaviors measured with a single device were used to fit the model; Step 3: features from milk yield-related variables were added to 

best model selected from steps 1 and 2. 

4
 Milk Variables: MV: milk yield variance computed as the variance for the daily milk yield (kg) for the last 3 days prior to an event; MY: daily milk yield (kg) for 

each one of the 3 days before an event; MS: milk yield slope computed as the slope between maximum and minimum value for daily milk yield (kg) during the 3 

days before an event. 
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Table 4. 5: Metrics used for model comparison under nowcasting framework for the combination 
of the best models selected at modeling step 1 and 2 for both, ear-attached and leg-attached 3-
axis accelerometers (CowManager and TrackaCow, respectively), and performance comparison 
when milk-related variables were added into the models. Random forest was used to classify 
metritis events. Only the first 5 time lags are shown. 

Time Lag k Metrics (%) Both Devices Milk Yield Variance1 
-1 Se 100 100 

PPV 90 100 
F1 score 94.7 100 

-2 Se 77.8 73.3 
PPV 100 100 
F1 score 87.5 84.6 

-3 Se 82.4 71.4 
PPV 100 100 
F1 score 90.3 83.3 

-4 Se 82.4 71.4 
PPV 100 100 
F1 score 90.3 83.3 

-5 Se 87.5 76.9 
PPV 100 100 
F1 score 93.3 87 

1 Milk Yield Variance was computed as the variance for the daily milk yield (kg) for the last 3 days prior to an event. 



 

 145 

Table 4. 6: Metrics (%) used for model building under forecasting framework at each one of the 
modeling steps for behaviors measured with an ear-attached 3-axis accelerometer 
(CowManager, Agis Autimatisering, Harmelen, Netherlands), with sensor data aggregated using 
12 and 6 h time windows and using random forest to classify metritis events. 

Days Forward 2 days 3 days 
Time window 12H 6H 12H 6H 
Step 13 Behaviors1 A E R A 

Nfeatures2 2 4 4 8 
Se 68.25 92.5 92.5 90 
PPV 73.68 100 100 100 
F1 score 70.86 96.1 96.1 94.74 

Step 23 Behaviors1 A+E E+R R+NA+HA A+R+NA 
Nfeatures2 4 8 12 24 
Se 92.68 92.5 92.5 90 
PPV 100 100 100 100 
F1 score 96.2 96.1 96.1 94.74 

Step 33 Behaviors1 and Milk Vars.4 A+E+MY E+MY R+MY A+MY 
Nfeatures2 5 5 6 10 
Se 86.21 92.86 88.46 92.31 
PPV 92.59 100 95.83 100 
F1 score 89.29 96.3 92 96 

1 Behaviors: R: ruminating; E: eating; NA: not active; A: active; HA: high activity. 
2 Number of Features: model inputs were !"̅!",$%& , "̅!",$%&%', … , "̅!",$%(&, where "̅ was the mean of the hourly sensor 
values for behavior ' and ( = {6	ℎ, 12	ℎ}, being the diagnosis assigned at 6:00 h on each one of the days when 
uterine discharge was evaluated, ' ∈ { ruminating, eating, not active, active, high activity }, and number of time steps 
before the event 2 = 3 + 1, 3 + 	2,… , 5, where 5 was the number of time steps included as features within 24 hour 
period, and for ( = 6	ℎ, 3 ∈ {4, 8} for the 2 or 3 days forward, respectively, and for ( = 12	ℎ, 3 ∈ {2, 4} for the 2 or 
3 days forward, respectively. 
3 Modeling steps: Step 1: only features corresponding to one of the 5 behaviors measured with the device were 
used to fit the model; Step 2: features corresponding to multiple behaviors measured with a single device were used 
to fit the model; Step 3: features from milk yield variables were added to best model from steps 1 and 2. 
4 Milk Variables: MY: daily milk yield (kg). Daily milk yield (kg) for the day -1 before event was not included in the 
forecasts. 
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Table 4. 7: Metrics (%) used for model building under forecasting framework at each one of the 
modeling steps for behaviors measured with a leg-attached 3-axis accelerometer (TrackaCow, 
ENGS, Hampshire, UK), with sensor data aggregated using 6 and 3 h time windows and using 
random forest to classify metritis events. 

Days Forward 2 days 3 days 
Time window 6H 3H 6H 3H 
Step 13 Behaviors1 L L L L 

Nfeatures2 4 8 8 16 
Se 95.35 95.24 92.5 95 
PPV 100 100 92.5 97.44 
F1 score 97.62 97.56 92.5 96.2 

Step 23 Behaviors1 L+S L+S L+S L+S+LB 
Nfeatures2 8 16 16 48 
Se 93.02 95.24 95 95 
PPV 97.56 100 95 97.44 
F1 score 95.24 97.56 95 96.2 

Step 33 Behaviors1 and Milk Vars.4 L+MY L+MY L+S+MY L+S+LB+MY 
Nfeatures2 5 9 18 50 
Se 86.21 82.76 92.59 92 
PPV 96.15 96 100 100 
F1 score 90.91 88.89 96.15 95.83 

1 Behaviors: L: lying; LB: lying bouts; S: steps; I: intake; IV: intake visit. 
2 Number of Features: model inputs were !"̅!",$%& , "̅!",$%&%', … , "̅!",$%(&, where "̅ was the mean of the hourly sensor 
values for behavior ' and ( = {3	ℎ, 6	ℎ}, being the diagnosis assigned at 6:00 h on each one of the days when 
uterine discharge was evaluated, ' ∈ { ruminating, eating, not active, active, high activity }, and number of time steps 
before the event 2 = 3 + 1, 3 + 	2,… , 5, where 5 was the number of time steps included as features within 24 hour 
period, and for ( = 6	ℎ, 3 ∈ {4, 8} for the 2 or 3 days forward, respectively, and for ( = 3	ℎ, 3 ∈ {8, 16} for the 2 or 
3 days forward, respectively. 
3 Modeling steps: Step 1: only features corresponding to one of the 5 behaviors measured with the device were 
used to fit the model; Step 2: features corresponding to multiple behaviors measured with a single device were used 
to fit the model; Step 3: features from milk yield variables were added to best model from steps 1 and 2. 
4 Milk Variables: MY: daily milk yield (kg). Daily milk yield (kg) for the day -1 before event is not included in the 
forecasts. 
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Figure 4. 1: Model performance comparison of the models with greatest F1 score (%) at each 
modeling step, level of data aggregation (12, 6, and 3 hours), and number of time steps (time 
lags) before a metritis event.
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Figure 4. 2: Model performance comparison (F1 score, %) before and after combining two 
devices, using random forest to classify metritis events and 6 hour time windows to aggregate 
sensor data. Models from each device to be combined were the best selected models from 
modeling step 1 and 2 
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Figure 4. 3: Model performance (F1 score, %) at each modeling step for each sensor device and 
time window under forecasting framework. Step 1: one model for each behavior was fitted and 
models were ranked from greatest to smallest F1 score; step 2: models from step 1 were 
combined in a stepwise manner, starting with those with greatest F1 score, Se, and PPV, in that 
order; step 3: milk yield-related variables were added independently to the best model selected 
from step 1 and 2, and the F1 score of resulting model with greatest F1 score, Se, and PPV was 
plotted. 

. 

 



 

 150 

5 Conclusions and Future Directions 
 

 

 My dissertation focused on the performance comparison of three machine learning 

supervised algorithms (k-nearest neighbors, random forest, and support vector machines) used 

for classification of metritis events in dairy cattle. To compare their performances, I used high 

frequency sensor data registered by two different devices: an ear-tag 3-axis accelerometer 

(chapter 2), and a leg-attached 3-axis accelerometer (chapter 3), and I combined data registered 

by these two devices with low frequency milk yield data (chapter 4). The whole research was 

conducted by controlling for other postpartum diseases such as hypocalcemia, hyperketonemia, 

and mastitis, while keeping temporal relationships between sensor measurements and metritis 

events.  

Although PDFTs have been developing at a fast pace in recent years, very little is known 

about their prediction ability for postpartum diseases despite the high proportion of dairy cows 

suffering from these. Furthermore, when machine learning algorithms are used, most of the 

studies in PDFT literature lack a systematic workflow approach. For my research, I used a 

classical machine learning workflow that can be used to build other predictive models in the 

future for diseases affecting cow during postpartum such as hypocalcemia or hyperketonemia. 

Relevant contributions were made in the field of PDFTs for metritis prediction by using a 

systematic approach to feature engineering and feature selection (chapter 2, 3, and 4). I studied 

the effect of within-same-day variability due to farm scheduled activities, and the interaction 

between number of days postpartum and farm scheduled activities (chapter 2 and 3). Even 
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though farm scheduled activities influenced animal behavior, better classification performance 

was achieved in those models where all sensor data were used, regardless of the time of the day. 

Based on our findings we further concluded that behavioral sensor data corresponding to the 3 

days following parturition should be studied separately. Underlying mechanism such as those 

from social dynamics may add noise to the sensor data being used for disease prediction. 

Additionally, I compared classifier performance using multiple time windows (chapter 2, 3, and 

4) and multiple lags (chapter 2, 3, and 4), contributing to our understanding of the impact that 

these have on classifier performance. I found that random forest yielded the best performance 

at predicting metritis events by using activity data, eating, and rumination time when time 

windows of 12 or 6 hours were used on sensor data (chapter 2). Similarly, random forest had the 

best performance at predicting those same metritis events by using lying time, number of lying 

bouts, and number of steps when time windows of 6 or 3 hours were used on sensor data 

(chapter 3). 

There is a growing interest in using of ML algorithms to build predictive models for 

diseases postpartum using a combination of high frequency data registered by PDFTs and low 

frequency data that is being routinely collected such as production data. For my research I used 

a step wise approach to feature selection that included the study of classifier performance when 

features from multiple behaviors were added into the model, followed by the addition of milk 

yield-related variables. Additionally, I studied classifier performance when features from multiple 

behaviors registered by two different devices were combined into one model. I showed that 

good classification performance can be achieved with random forest and simple models where 
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features from one or two behavioral variables are included. My results were robust as similar 

findings were obtained across multiple time lags and time windows. 

Another important aspect of my work is the contribution made in the evaluation of 

classifier performance to predict metritis events with unbalanced data as training sets (chapters 

2, 3, and 4). Most studies found in the PDFT literature either do not address the challenges of 

using unbalanced datasets to train classifiers, or they artificially balance the dataset without 

addressing the limitations of implementing such practice in commercial farms. For my research, I 

used a rank-based approach to rank the observations based on their class probabilities (chapter 

2, 3, and 4). As results, we obtained a higher sensitivity and positive predictive value than those 

reported by previous studies. 

Lastly, another important contribution of my work was the comparison in performance 

for metritis prediction under nowcasting and forecasting frameworks (chapter 4). We found that 

similar results were yielded under both, nowcasting and forecasting frameworks using 12-hour 

time windows and 2 days forward before the metritis event. Consequently, the use of 

forecasting models could potentially identify cows at higher risk of developing metritis earlier 

than traditional diagnostic methods. 

Despite our promising results regarding model performance across chapter 2, 3, and 4, 

model assessment on a test set remains a challenge due to limited amount of clinical data 

available. Similarly, model tunning when machine learning workflows are implemented on farms 

may cause important differences in performance compared with those seen here. This may be 

due to differences in feature importance, interactions with other concurrent diseases, different 
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selection of thresholds for classification, or different costs associated with the balance between 

positive predictive value and sensitivity. 
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