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Abstract

We present a novel framework for building pragmatic artificial
agents with explicit and trainable semantic representations, us-
ing the Rational Speech Act model. We train our agents on
supervised and unsupervised communication games and com-
pare their behavior to literal agents lacking pragmatic abilities.
For both types of games pragmatic but not literal agents evolve
a mutual exclusivity bias. This provides a computational prag-
matic account of mutual exclusivity and points out a possi-
ble direction for solving the mutual exclusivity bias challenge
posed by Gandhi and Lake (2019). We find that pragmatic
reasoning can cause the bias either by promoting lexical con-
straints during learning, or by affecting online inference. In ad-
dition we show that pragmatic abilities lead to faster learning
and that this advantage is even stronger when meanings to be
communicated follow a more natural distribution as described
by Zipf’s law.
Keywords: mutual exclusivity; reinforcement learning; Ratio-
nal Speech Act model; gradient-based learning

Introduction
(Deep) neural networks have surpassed not only other learn-
ing architectures but also human performance in a great va-
riety of tasks (e.g., Schmidhuber, 2015; Li, 2017). Still, in
most domains humans learn more efficiently and apply their
knowledge in more flexible ways (e.g., Lake, Ullman, Tenen-
baum, & Gershman, 2017). This is also true for the do-
main of language. In terms of language learning, humans
are equipped with useful biases, at least some of which are
not exploited by neural networks (Gandhi & Lake, 2019). In
terms of language use, humans easily produce and interpret
utterances based on the context such that their meanings are
much richer than their semantic content. This is an ability un-
matched by neural networks (Hirschberg & Manning, 2015;
Jacquet, Masson, Jamet, & Baratgin, 2019). In order to ap-
proach the design of artificial agents that are able to quickly
acquire a grounded language and flexibly communicate with
humans it seems promising to take inspiration from the cog-
nitive mechanisms at play in human language use.

In this work we develop such a design and show how it
induces an important word learning constraint, the mutual
exclusivity bias. Mutual exclusivity (ME) describes the ten-
dency to avoid assigning a second name to an object that al-
ready has a name. In a standard ME paradigm, when chil-
dren are presented with two objects and know the label for

one of them, they will tend to associate a new label with the
other object (Markman & Wachtel, 1988). While the ME
bias allows for fast language learning in humans as it helps to
disambiguate how words map to referents, Gandhi and Lake
(2019) showed that neural networks lack this bias and even
have the reverse tendency of selecting a familiar class when
presented with input from a class that was not part of the train-
ing. Therefore, capturing the ME bias is not only a major
concern for agents learning word meanings but for any model
performing categorization.

There are different theories about the mechanisms under-
lying the ME bias. The lexical constraint account, for ex-
ample, proposes that due to an innate or early emerging con-
straint children are biased towards lexica which favor one-
to-one mappings between states and messages (Markman &
Wachtel, 1988; Markman, Wasow, & Hansen, 2003). Our
model focuses on an alternative explanation based on prag-
matic reasoning. When producing and interpreting utterances
humans reason about each other’s intentions and take into ac-
count contextual influences on meaning (H. H. Clark, 1996).
The field of pragmatics studies exactly this crucial aspect of
human language use. Under a pragmatic account the bias
arises from the assumption that the speaker follows cooper-
ative principles of communication (e.g., E. V. Clark, 1988),
leading to the following reasoning process in a standard ME
paradigm: ’If the speaker wanted to talk about object x she
would use its label l, which we both know. Given that she
used a novel label k, this must refer to the other object y, for
which I do not know a label.’ Thus, among others, pragmatic
inference offers a possible explanation for the ME bias.

There are various ways of modeling pragmatic behavior.
We use a particularly prominent model of pragmatics, the Ra-
tional Speech Act (RSA) model (Frank & Goodman, 2012). It
treats communication as a recursive process in which speaker
and listener reason about each other’s mental states to com-
plement the literal meanings of utterances. The RSA frame-
work has successfully modeled various pragmatic phenom-
ena (e.g., Scontras, Tessler, & Franke, 2018), among others
the ME bias. For example, Frank, Goodman, and Tenenbaum
(2009) showed how RSA-like pragmatics leads to an ME bias
in cross-situational word learning. Their architecture was ex-
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tended to evaluate the pragmatic account and the lexical con-
straint account as two competing explanations of the bias,
with the result that either mechanism is sufficient (M. Lewis
& Frank, 2013). Smith, Goodman, and Frank (2013) applied
the RSA model to iterated pragmatic inference games in a
language learning setting, for which they demonstrate an ME
bias, as well as a language emergence setting. In the afore-
mentioned models, which we will group together as proba-
bilistic pragmatic word learning models, the agents infer the
most likely lexicon via Bayesian inference, given a history of
observed state-message pairs. This line of work demonstrates
the successful formalization of the ME bias in word learning
with RSA-like models.

We present a new model of learning in pragmatic agents
and show how the ME bias arises naturally within this frame-
work. The model is a straightforward adaptation of the RSA
model to gradient-based learning settings. We train pragmatic
agents’ mental lexica with reinforcement learning in a single
agent word learning setting and in a two agent language emer-
gence setting, using an explicit representation of the lexicon
in the form of a matrix. Due to pragmatic reasoning about
alternatives, agents utilize the entire lexicon when producing
and interpreting an utterance, which leads to gradient-based
updates of all state-message mappings for a single input ex-
ample. These lateral effects can be inhibitory as well as facil-
itating, in sum leading to the emergence of an ME bias.

This setup allows us to make several contributions. 1)
While the probabilistic pragmatic word learning models es-
timate the entire lexicon based on a history of collected evi-
dence, using gradient-based learning as in our model makes
it unnecessary to track past observations. The successive up-
dates of particular associations based on individual samples
are arguably more natural and can more easily be used in AI
applications. 2) We show that the ME bias can arise from ei-
ther, a lexical ME bias caused by pragmatic inference during
training, or pragmatic inference at test time. The former sug-
gests that a pragmatic approach can in principle accommo-
date the lexical constraint account. 3) We demonstrate that
the ME bias leads to faster learning with an even stronger ef-
fect when the probability over meanings to be communicated
is more naturally distributed. 4) We extend these analyses to
a language emergence setting.

Model
Agents and training were implemented with Tensorflow 2.0
(Abadi et al., 2015). The project is entirely open-source and
accessible via GitHub.1

Pragmatic Agents
The agents in our model feature two main components: 1) ex-
plicit lexical representations and 2) rules of pragmatic behav-
ior telling them how to use these representations to produce
and interpret messages. The lexicon is a matrix providing a

1https://github.com/XeniaOhmer/pragmatic agents me
bias

mapping between states and messages. If there are N states
and messages, the lexicon BA of agent A is an N×N matrix.
Each matrix entry B(si,m j)∈R+ is an unnormalized value of
how appropriate (in a semantic sense) message j is for state
i. The matrix entries are the only trainable parameters of the
model. For modeling the pragmatic rules the vanilla RSA
model is used. In the RSA model conditional probabilities
describe how speakers produce and listeners interpret utter-
ances, recursively taking into account each other’s reasoning
process. It can be formalized as

LL(s | m) ∝ JmK(s)×P(s) , (1a)

PS(m | s) ∝ exp
(
α× [logLL(s | m)−C(m)]

)
, (2a)

PL(s | m) ∝ PS(m | s)×P(s) . (3a)

At the basis of the recursive reasoning process is a literal lis-
tener (1a) who maps a message onto any state for which it
is true, at the same time considering the prior probability of
that state. In Equation (1a), JmK(s) is the denotation function
returning the truth value of message m for state s. A prag-
matic speaker (2a) chooses its messages such that the prob-
ability of being understood correctly by a literal listener is
maximized while production cost, C(m), stays low. The pa-
rameter α ∈R+ regulates the speaker’s optimality. The prag-
matic listener (3a) in turn interprets a message as if coming
from a pragmatic speaker, also taking into account the prior
probability of states.

We adapt the vanilla model to our purpose in several ways.
The standard RSA model assumes that all agents have access
to the same lexicon which is a truth table of messages across
states. In our case every agent learns the (real-valued) en-
tries of its own lexicon which it also uses for reasoning about
other agents. We assume a flat prior over states, zero costs
for every utterance, and set α = 5. This leads to the following
formalization:

LL(s | m,BLL) ∝ BLL(s,m) , (1b)

PS(m | s,BPS) ∝ LL(s | m,BPS)
5 , (2b)

PL(s | m,BPL) ∝ PS(m | s,BPL) . (3b)

In addition, we include a literal speaker defined analogously
to the literal listener in (1b). Generic versions of listener and
speaker with either reasoning ability are denoted by L and S.

Communication Game
We investigate the performance of pragmatic and literal
agents in a signaling game. Specifically, we have chosen
the Lewis game (D. Lewis, 1969) which is used to study
the emergence of meaningful language from initially random
messages. There are N states and N messages and two agents,
a speaker and a listener. One round of the game proceeds
as follows. The world state (target) is sampled from a state
prior —which we assume to be uniform unless otherwise
mentioned— and observed by the speaker, who then selects a
message to convey this world state to the listener. The listener
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Figure 1: Example of one training step for a literal and a pragmatic listener. The agents receive an input message for which
a policy is calculated dependent on their literal or pragmatic interpretation. In contrast to the policy of the literal listener the
policy of the pragmatic listener depends on the entire lexicon, which is also why they are different despite identical input and
lexicon. This difference also leads to different reinforcement effects (thick red arrows).

in turn selects a world state based on this message. If selec-
tion and target are the same both players receive a positive
reward, otherwise they receive zero reward.

We look at two different versions of the game, a single
agent setting and a two agent setting. The single agent set-
ting is essentially a supervised learning setting. There is a
predetermined state-message mapping which is known to the
speaker. The listener is trained to map the speaker’s message
to the correct state. The two agent setting corresponds to the
classical Lewis game where the state-message mapping is not
predetermined but emerges during game play. The two set-
tings allow us to verify the benefits of pragmatic reasoning in
different language learning contexts, one where an existing
language is learned and one where a new one is created.

Reinforcement Learning
Based on lexicon and reasoning abilities, the speaker maps
an input state to a probability distribution over messages,
S(m | s,BS), and the listener maps an input message onto a
probability distribution over states, L(s | m,BL). These dis-
tributions define the agents’ policies. The agents minimize a
loss function defined as the negative expected reward (R):

L(BS,BL) =−E[R] .

The matrix entries are updated with REINFORCE (Williams,
1992), which belongs to the family of policy gradient algo-
rithms. Figure 1 illustrates a training step for a literal (left)
and a pragmatic (right) listener. Here, both agents receive
the same input message and have the same lexicon. Given
an input message, the literal listener only takes into account
the semantic meaning and thus normalizes across the corre-
sponding column to obtain a selection policy. Accordingly, if
there is a positive feedback from the environment, the entries
in that column are updated. The pragmatic listener, in con-
trast, calculates for each state which message the pragmatic
speaker would have used to refer to that state, to determine
its selection policy given the actual message. Due to this con-
sideration of alternatives all lexicon entries are updated upon
positive feedback. The thick red arrows show how updates

based on the pragmatic policy calculation automatically re-
inforce a bijective mapping between the correctly identified
state-message pair and at the same time strengthen all associ-
ations between the other states and messages. By this mech-
anism associations between unseen states and messages are
reinforced, leading to the ME bias.

Experiment 1: Mutual Exclusivity Bias
In the first experiment we ran different simulations to es-
tablish whether literal or pragmatic agents evolve an ME
bias, how this bias develops over the course of training, and
whether the bias is due to pragmatic inference at training time
(by changing the lexicon) or test time.

Methods
We looked at N ∈ {3,10} states and messages. Importantly,
K ∈{1,2}messages (single agent setting) or states (two agent
setting) were withheld from training and reserved for test-
ing the agents’ behavior on novel inputs. For each of the
four combinations the agents were trained on the remain-
ing N − K inputs. The lexica were initialized randomly
with bi, j ∼ N (0.5,0.01) and updated using the Adam opti-
mizer (Kingma & Ba, 2015). In every epoch the agents saw
the same 1000 random instances of the N −K training in-
puts. The last or the last two states or messages (by index)
were withheld from training. For every game and hyperpa-
rameter setup we trained 100 listeners or speaker-listener-
combinations.

The emergence of an ME bias was evaluated by calculating
the listener’s average probability of selecting any novel state
—that was not part of the training— when presenting the K
test examples to the system. We formalize this idea in terms
of an ME index:

IME =
p(new state selected | new input)− p(new input)

p(old input)
.

If the probability of selecting a novel state given a novel input
is at chance level the ME index is equal to zero and if the
entire conditional probability mass is on the new states it is
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equal to one. With M =N−K+1 the ME index for the single
agent setting is

IME(BL) =
1
K ∑

N
i=M ∑

N
j=M L(si | m j,BL)− K

N
N−K

N

,

and for the two agent setting it is

IME(BL,BS) =
1
K ∑

N
i=M ∑

N
j=M ∑

N
q=1 L(si | mq,BL)S(mq | s j,BS)− K

N
N−K

N

.

Single Agent Setting In the single agent setting we com-
pare literal and pragmatic listeners in a supervised learning
setting. The correct state-message mappings are predeter-
mined such that every state is associated with the message of
the same index {(s1,m1),(s2,m2), . . . ,(sN ,mN)}. For N = 3
we trained for 50 and for N = 10 for 100 epochs.

Two Agent Setting In the two agent setting we compare
a literal speaker and listener with a pragmatic speaker and
listener playing a full Lewis game together. Here, the state-
message mapping is not predetermined but emerges during
game play. During training the agents continuously adapt to
each other’s behavior which makes longer training necessary.
For N = 3 we trained for 100 and for N = 10 for 1000 epochs.

Ablation Test We run an ablation test to disentangle the ef-
fects of pragmatic reasoning at training and test time on the
ME bias. For the single agent setting we take the lexica ac-
quired by the literal listeners and evaluate pragmatic listen-
ers with these lexica, and vice versa. In analogy, in the two
agent setting the pragmatic reasoning ability of both agents is
switched.

Results
Single Agent Lewis Game In the single agent setting all
agents converged to maximum performance. Figure 2 shows
the average lexica of the agents as well as their average prob-
ability of selecting the different states when presented with
the test data. First, we will analyze the literal listener (left).
Looking at the average lexicon we see that the probability
of matching a learned message to the correct state is close to
one (diagonal) whereas all possible errors (off-diagonal) have
values close to zero. When presented with a test message the
selection probability is equally high for all states with almost
no variance between individual agents. The flat probability
distribution of states for new messages demonstrates the ab-
sence of an ME bias in this simple system. Let us now turn
to the pragmatic listener (right). Also here the learned one-
to-one mapping is clearly visible in the average lexicon. In
contrast to the literal listeners, the pragmatic listeners have a
high probability of selecting a new state when presented with
a new input message. If two messages are excluded from
training, the two states are selected with equal probability ir-
respective of the test message. This can be concluded from
the equal means and small standard deviations. Table 1 (top)
summarizes the results for the single agent setting in terms of
ME indices. The literal listener’s ME index is equal to zero in

all cases which means that selection of new states is at chance
level and there is no ME bias. The pragmatic listener’s ME
index is equal to one in all cases which means that the entire
conditional selection probability mass is on the new states and
the ME bias is maximal.

Table 1: ME indices (µ(±σ)) for Experiment 1.

N×K Literal Pragmatic

1
ag

en
t 3×1 0.00(±0.01) 1.00(±0.00)

3×2 0.00(±0.01) 1.00(±0.00)
10×1 0.00(±0.00) 1.00(±0.01)
10×2 0.00(±0.00) 1.00(±0.00)

2
ag

en
t 3×1 −0.5(±0.00) 0.99(±0.00)

3×2 −2.00(±0.00) 0.96(±0.12)
10×1 −0.11(±0.00) 0.84(±0.26)
10×2 −0.25(±0.00) 0.84(±0.18)

Two Agent Lewis Game In the two agent Lewis game, for
N = 3 all agents converged to optimal performance while for
N = 10, 84% and 88% of the literal agents and 88% and 91%
of the pragmatic agents converged to optimal performance,
for K = 1 and K = 2 respectively. Given that state-message
mappings are arbitrary we do not plot the average lexica but
look directly at the ME indices at the bottom part of Table 1.
When a literal speaker plays with a literal listener, the ME in-
dex becomes negative. So when the speaker is presented with
a previously unseen state and generates a message the lis-
tener will select one of the novel states with less than chance
probability. This means that an anti-ME bias emerges exactly
as in standard neural networks. This is different for the prag-
matic speaker-listener combination. When presented with the
test states the probability of selecting a novel state is clearly
higher than chance with ME indices between 0.84 and 0.99.
In conclusion the pragmatic, but not the literal agents, de-
velop an ME bias in the supervised as well as the unsuper-
vised communication game.

ME Bias Development Over Time Investigating how the
ME bias develops over time reveals whether it can be ex-
ploited early during training or emerges first when the train-
ing examples are already consolidated. Figure 3 shows the
average reward and ME index over the course of training
for both game settings and system sizes, always for the case
where one example was excluded from training (K = 1). In
the single agent setting the literal agents have a constant ME
bias of zero because the relevant lexicon entries are not up-
dated during training. For the pragmatic agents the ME index
starts to increase with training onset and converges to one at
approximately the same time as the reward. In the two agent
setting the ME index of the literal agents quickly converges
to a negative value. The agents unlearn selecting states that
are not in the training data as this never yields a reward. For
the pragmatic agents the ME index starts increasing imme-
diately with the rewards but does so more slowly than in the
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Figure 2: Average lexica and state selection probabilities given new input messages for literal (left) and pragmatic (right)
listeners. N is the total number of states and messages, K the number of messages that were excluded from training. A) shows
the results for N = 10 and K = 1, the other combinations are shown in B). The average lexicon is standardized such that the
maximum value is 1. The bar plots depict the average selection probabilities, with standard deviations, for new input messages.
Novel states are marked by a gray background. For K = 2 the probabilities are presented for both new input messages separately.

single agent setting. In summary, in both types of games prag-
matic agents can exploit the ME bias from training onset and
the bias grows stronger with an increasing certainty about the
correct state-message mappings.

Figure 3: Average ME indices and rewards during training
for literal and pragmatic agents. Shown are the simulations
where one example was excluded from training in single and
two agent setting (rows) with three or ten states (columns).
While the rewards correspond to the performance on the train-
ing examples, the ME indices reflect the performance on the
novel examples at test time.

Pragmatic Reasoning at Training Versus Test Time
Here, we look at the results from the ablation test, where
agents have pragmatic reasoning abilities only at training or
test time. We report the mean ME indices of the four dif-
ferent training conditions as in Table 1 for a direct compari-

son. Starting with the single agent setting, the ME bias is very
strong when using pragmatic inference at test time, regardless
of the type of lexicon (mean ME indices between 0.99 and
1.00). Interestingly, with the lexicon of a pragmatic speaker,
now also literal agents feature an ME bias (mean ME indices
between 0.42 and 0.54). In short, in the single agent setting
pragmatic reasoning at either training or test time leads to an
ME bias. In the two agent setting the lexica of pragmatic
speakers and listeners also allow their literal counterparts to
display a small ME bias at test time (mean ME indices be-
tween 0.11 and 0.26). However, using the lexica of the literal
agents never leads to an ME bias, regardless of the type of
reasoning at test time. The literal listeners learn a lexicon
where the rows of the missing states only have zero entries,
which prevents the selection of novel states. Accordingly,
in the two agent setting pragmatic reasoning during training
always leads to an ME bias, whereas training literal agents
makes an ME bias impossible.

Tracking the ME indices over the course of training (not
shown here) further reveals that the ME bias always emerges
at training onset, regardless of whether it is caused by lexi-
cal constraints or online inference. In general, using the bias
strength to determine whether the effect of pragmatic reason-
ing at training or test time is more influential is not straight-
forward, as we found the quantitative results to depend on the
optimality parameter α. We leave a detailed analysis of the
role of α to future work and conclude with the main finding:
pragmatic inference can lead to an early emerging ME bias
in single agent word learning both by its effect on the lexi-
con during learning and by its effect on the online reasoning
process.
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Experiment 2: Convergence Time Scales
The pragmatic agents, in contrast to the literal agents, update
all model weights with each training example they encounter.
Here, we investigated whether this mechanism, aside from
leading to an ME bias, also results in faster learning.

Methods
In a first step we compared the learning time scales of prag-
matic and literal agents in the single and the two agent set-
ting of a Lewis game. The update of additional state-message
mappings by the pragmatic agents should be particularly ef-
fective for rare examples, where they can leverage the ME
bias. Hence, in a second step we tested whether the prag-
matic advantage is more pronounced if the frequency of in-
put classes does not follow a uniform distribution but is
rather inversely related to their frequency rank as suggested
by Zipf’s law, which corresponds to a more realistic setting
(Zipf, 1949).

Uniform Input Distribution We trained 50 listeners (sin-
gle agent setting) and 50 speaker-listener combinations (two
agent setting) on N = 10 states and messages. The data set
size was again 1000 and the agents’ lexica were initialized
randomly with bi, j ∼ N (0.1,0.01)2. The Adam optimizer
can update weights based on previous training steps even
though their gradient in the current training step is zero. To
remove this confounding effect we trained the agents with
vanilla stochastic gradient descent (SGD). In the single agent
setting the agents were trained for 100 epochs and in the two
agent setting for 300 epochs.

Zipfian Input Distribution Let N be the number of states
and i the frequency rank of state si, then the occurrence prob-
ability of si is given by P(si) ∝ 1/i. The Zipfian input distri-
bution for messages is analogous to the one for states. We
ran the exact same simulations as for the uniform distribution
except that training was extended to 500 epochs in the two
agent setting.

Results
Figure 4 shows the rewards over time for the different game
settings and input distributions. The pragmatic agents con-
verge faster than the literal agents in all situations. The literal
agents learn more slowly when the input data follows a Zip-
fian distribution than when it follows a uniform distribution
while the pragmatic agents converge approximately equally
fast independent of the input statistics. In short, the pragmatic
agents learn faster than the literal agents and this advantage
is stronger for data that follows a more natural distribution.

Discussion
The main contribution of this work is the development of
a framework in which explicit mental representations of se-

2In the second experiment we used smaller initialization values,
which speeds up the training (as most values converge to zero). Ad-
ditional tests showed that swapping initializations in the two experi-
ments affects the training duration but none of the qualitative results.

Figure 4: Average reward over time for literal and pragmatic
agents trained in the single or two agent setting (rows) and
with a uniform or Zipfian input distribution (columns). The
shaded areas range from minimum to maximum reward.

mantic meaning evolve through reinforcement learning under
pragmatic policies. Working with an explicit lexicon not only
has the advantage that pragmatic agents can make very effi-
cient updates but also makes the agents’ behavior fully ex-
plainable as their knowledge is stored in a structured and ac-
cessible way. Yet, the matrix representation also imposes lim-
itations: in some tasks it might be difficult to define states and
messages to begin with. Moreover, for systems with a large
number of states computational cost increases significantly.
In contrast to other approaches applying RSA in gradient-
based learning systems (e.g., Andreas & Klein, 2016; Monroe
& Potts, 2015) we do not address the challenge of working
with more flexible representations. Still, we think our frame-
work is useful for language evolution and language-related
AI research. For instance, future work could use the division
of labor between semantics and pragmatics as an approach to
transfer learning as the same representations can be learned
and applied in different tasks.

Within our framework pragmatic agents develop an ME
bias in word learning as well as language emergence. Impor-
tantly, this bias emerges at learning onset and can be exploited
during the entire training process. At the same time pragmatic
reasoning causes an acceleration of learning. We also estab-
lish that the positive effect on learning is stronger when word
occurrence frequencies follow real-world statistics —a phe-
nomenon that can be explained by mutual exclusivity. So far,
we mainly evaluate the ME bias. In future work we would
like to more closely investigate the role of ME in the actual
learning process. So, while more functional details should be
examined, a principled way of building artificial agents with
an ME bias has been established.

Interestingly, both pragmatic reasoning during learning and
during online inference can effect the ME bias. During learn-
ing the reasoning about alternatives causes lateral effects in
the matrix updates, such that a lexical ME bias arises. Note,
that such lateral effects used to be hard-coded in early models
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of language emergence (e.g., Steels, 1995). The early emer-
gence of a lexical bias sheds new light on the debate whether
the ME bias arises from lexical constraints or online prag-
matic inference: we propose that both mechanisms can stem
from the same principle of pragmatic reasoning.

Our work is an important step towards solving the chal-
lenge of integrating an ME bias into neural networks. Just
like literal agents, neural networks have an anti-ME bias with
negative effects on learning. Note that our system is imple-
mented with modern deep learning algorithms and can easily
be integrated with neural network modules. However, a prob-
lem arises if a neural network is used to classify input stimuli
as certain types of states or messages which then serve as
inputs to a pragmatic agent. If the network encounters stim-
uli that are not part of any training class it will fail to map
them onto a new input type, preventing the agents from us-
ing the ME bias. A promising approach to this problem are
methods for performing out-of-distribution recognition by ex-
tracting confidence estimates from neural networks (e.g., De-
Vries & Taylor, 2018; Liang, Li, & Srikant, 2018). Applied to
our problem the network could then identify a novel stimulus
class and map it onto a novel label, leaving the ME bias in-
tact. In summary, we created gradient-based learning agents
which develop an ME bias and with some additional work
this idea may be integrated with neural networks.
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