UC San Diego
UC San Diego Previously Published Works

Title

Organ-level protein networks as a reference for the host effects of the microbiome

Permalink

Ihttps://escholarship.org/uc/item/7rh270f 1|

Journal

Genome Research, 30(2)

ISSN
1088-9051

Authors

Mills, Robert H
Wozniak, Jacob M

Vrbanac, Alison

Publication Date
2020-02-01

DOI
10.1101/gr.256875.119

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California


https://escholarship.org/uc/item/7rh270f1
https://escholarship.org/uc/item/7rh270f1#author
https://escholarship.org
http://www.cdlib.org/

Resource

Organ-level protein networks as a reference
for the host effects of the microbiome
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Pharmaceutical Sciences, University of California, San Diego, California 92093, USA; 3Department of Pediatrics, and Department of
Computer Science and Engineering, University of California, San Diego, California 92093, USA; “4Center for Microbiome Innovation,
University of California, San Diego, California 92093, USA; 3 Center for Inflammation, Immunity and Infection, Institute for
Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, USA; SNeuroscience Institute, Georgia State University,
Atlanta, Georgia 30303, USA; 7INSERM, U1016, 75014 Paris, France; 8Université de Paris, 75006 Paris, France

Connections between the microbiome and health are rapidly emerging in a wide range of diseases. However, a detailed
mechanistic understanding of how different microbial communities are influencing their hosts is often lacking. One method
researchers have used to understand these effects are germ-free (GF) mouse models. Differences found within the organ
systems of these model organisms may highlight generalizable mechanisms that microbiome dysbioses have throughout
the host. Here, we applied multiplexed, quantitative proteomics on the brains, spleens, hearts, small intestines, and colons
of conventionally raised and GF mice, identifying associations to colonization state in over 7000 proteins. Highly ranked
associations were constructed into protein—-protein interaction networks and visualized onto an interactive 3D mouse model
for user-guided exploration. These results act as a resource for microbiome researchers hoping to identify host effects of
microbiome colonization on a given organ of interest. Our results include validation of previously reported effects in xe-
nobiotic metabolism, the innate immune system, and glutamate-associated proteins while simultaneously providing organ-
ism-wide context. We highlight organism-wide differences in mitochondrial proteins including consistent increases in NNT,
a mitochondrial protein with essential roles in influencing levels of NADH and NADPH, in all analyzed organs of conven-
tional mice. Our networks also reveal new associations for further exploration, including protease responses in the spleen,
high-density lipoproteins in the heart, and glutamatergic signaling in the brain. In total, our study provides a resource for
microbiome researchers through detailed tables and visualization of the protein-level effects of microbial colonization on

several organ systems.
[Supplemental material is available for this article.]

The gut microbiome is emerging as a critical component of human
health. It has been shown that the microbial communities coloniz-
ing our bodies play important roles in the immune development
of infants (Milani et al. 2017) and the regulation of the innate im-
mune system (Thaiss et al. 2016). Further, a dysbiosis of the gut
microbiome has been correlated with many diseases including in-
flammatory bowel disease (IBD) (Sartor and Wu 2017), diabetes
(Tilg and Moschen 2014), obesity (Bouter et al. 2017), cardiovascu-
lar disease (Ahmadmehrabi and Tang 2017), and mental health
disorders (Nguyen et al. 2018). Microbial production or modifi-
cation of metabolites such as bile acids, choline derivatives,
vitamins, and lipids provide some insight into the underlying
host-microbe interactions in these diseases (Nicholson et al.
2012). However, many mechanisms mediating these disease states
remain unknown.

Germ-free (GF) mouse models, wherein a mouse is raised
without any exposure to microbes, have been an invaluable tool
for assessing causal effects in microbiome research (Bhattarai and
Kashyap 2016). GF models also provide an opportunity to under-
stand the fundamental effects of microbial colonization at an or-
ganismal scale. Systems level analyses of the tissues of GF mice
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have been performed, but these studies have generally highlighted
a select few organ tissues. Protein-level studies have shown varying
responses to colonization along different regions of the gastroin-
testinal (GI) tract (Lichtman et al. 2016), changes in drug metabo-
lizing proteins in livers and kidneys (Kuno et al. 2016), and
differences in circulating fatty acids from an analysis of serum
and livers (Kindt et al. 2018). They have also shown that microbial
colonization alters posttranslational modifications, including his-
tone acetylation and methylation in liver, colon, and adipose tis-
sue (Krautkramer et al. 2016), as well as lysine acetylation in the
gut and liver (Simon et al. 2012). An important transcriptomic
study revealed a strong connection between colonization and in-
creased Nnt, a mitochondrial protein that has functions in redox
homeostasis and biosynthetic pathways through the generation
of NADH and NADP* (Mardinoglu et al. 2015). The authors found
Nnttranscripts increased in several conventional mouse tissues, in-
cluding sections of the small intestine, colon, and liver, which cor-
related with significant alterations in host amino acid levels and
glutathione metabolism (Mardinoglu et al. 2015). Other related
studies found transcript differences in the brain (Diaz Heijtz
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Microbiome-impacted organ protein networks

et al. 2011) and further highlighted the
Gl-dependent transcript effects of micro-
bial colonization in Myd88-deficient
mice (Larsson et al. 2012).

Here, we sought to further detail the
protein effects of microbiota coloniza-
tion occurring both inside and outside
of the GI tract as a reference for micro-
biome researchers interested in a given
host protein, organ system, or protein
network. Associations of highly ranked
proteins were constructed into protein—
protein interaction networks for the
brain, spleen, heart, small intestine, and
colon, as well as a global network. While
the brains and gastrointestinal tract of GF
mice have been characterized in several
studies, other organs such as the heart
and spleen may be of interest given the
emerging roles of the microbiota in ath-
erosclerosis (Karlsson et al. 2012) and im-
mune development (Chung et al. 2012).
We hypothesized that applying methods
for improved accuracy in quantitative
proteomics (Ting et al. 2011) would fur-
ther define the influence of the micro-
biota in each of these organs. With this,
we hope to reveal microbiota-induced
changes that could underlie disease
states. Our results validate a body of liter-
ature in the field, provide visualization
tools for contextualizing the organism-
wide effects of microbial colonization,
and identify several new host-microbiota
associations for further investigation.

Results

Construction of protein—protein
interaction networks

To determine the protein-level conse-
quences of microbial colonization, three
biological replicates of five different tis-
sues (brain, small intestine, colon, spleen,
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Figure 1. Organ-specific protein networks modulated by microbial colonization. Proteins significantly
increased in either GF or conventional animals were analyzed for interactions through STRINGdb. Edges
in each node represent the combined score accounting for all interaction sources. The edges are sized by
the combined score, with the minimum threshold being 0.4 (of a maximum confidence 1). Nodes rep-
resent gene names of significant proteins with a minimum statistical cutoff of || > 1. Red indicates a sig-
nificantly higher presence in conventional mice and gray indicates the opposite. The nodes are sized by
the level of significance as assessed by n-score.

heart) were analyzed from conventionally raised or GF mice. sis (Fig. 2; Supplemental Table S2). To identify overlapping mech-
Multiplexed proteomic analysis of tissue homogenates resulted anisms occurring throughout all organs, we compiled all highly
in the quantification of 7752 proteins overall, of which 4663 ranked proteins within each organ (|n|>1) into a single protein
were quantified across all samples. These 4663 proteins were network (Fig. 3).
used for downstream analysis. A separate pilot study of the brain Colonization state of the mouse appeared to have larger im-
tissue resulted in the quantification of 6203 proteins. pacts on organs in direct contact with the gut microbiota, namely,
On a per-organ basis, we contrasted the protein abundances the small intestine and colon. The GI organs analyzed had an av-
of tissue collected from conventional mice against tissue from erage of 210 proteins associated with colonization state while the
GF mice. We ranked the association of each protein to coloniza- three organs outside of the GI tract averaged 52. The brain yielded
tion state by accounting for both significance level and fold- the lowest number of associated proteins with only 22. GI tract or-
change (Supplemental Table S1). Interaction networks were built gans also displayed a higher percentage of interconnectivity, with
in order to identify groups of proteins whose abundance was mod- an average of 71% of associated proteins within GI organs having a
ulated by microbial colonization. We first constructed organ-spe- moderate-confidence connection to another associated protein
cific protein interaction networks containing all the proteins within the organ, while organs outside the GI tract averaged
with a highly ranked (|r|>1) association with the colonization 39% (Fig. 1). We hypothesize that the interconnectivity and
state of a given organ (Fig. 1). Functional enrichments within these number of associations with colonization is related to the direct
organ networks were then assessed by gene-set enrichment analy- contact of GI organs with microbiota. However, it is possible
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Figure 2.

Functional enrichments associated with microbial colonization within each organ system. Proteins significantly increased in either GF or con-

ventional animals within each organ were analyzed for functional enrichments using DAVID. All proteins identified within the experiment were used as a
background. Displayed are bar plots showing the —Log o(adj. P-values) associated with selected functional groupings. Benjamini-Hochberg correction was
applied to account for multiple hypothesis testing. The bars are plotted in red if they are associated with the proteins enriched among conventional mice

and gray if they are associated with GF mice.

that including a higher portion of intestinal tissue may have influ-
enced these results.

Validation of protein networks through previously reported
associations

Our networks provided support for previously reported broad-scale
effects on Gl organs, as well as abundance shifts from specific tran-
scripts or proteins. As shown in a previous proteomic study
(Lichtman et al. 2016), the small intestine and colon displayed dis-
tinct changes as a result of microbial colonization. One example of

this was the larger portion of proteins associated with GF status
within the small intestine (66%) than in the colon (42%) (Fig. 1).

Other studies identified similar results at a pathway and indi-
vidual protein level. Aftera literature search for protein or transcript
differences within GF models, we identified seven publications
with related findings (Supplemental Table S3). In brief, changes
in xenobiotic metabolism were reported in the GI, liver, and
kidney, both at the transcriptional level (Fu et al. 2017) and
the protein level (Kuno et al. 2016). Our networks also highlighted
changes in glutamate-related proteins which were previously
reported at the transcriptional level (El Aidy et al. 2013). We also
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Figure 3. Combined organ protein networks modulated by mici
were analyzed for interactions through STRINGdb. Edges in each node represent the combined score accounting for all interaction sources. The edges are
sized by the combined score, with the minimum threshold being 0.8 (of a maximum confidence 1). Nodes represent gene names of proteins with a highly
ranked association (a minimum statistical cutoff of |x| > 1) within at least one organ. Nodes are sized by the number of organs with which the protein had a
strong association. The level of association of each node to a particular organ is colored according to the fraction of the total |r|-score each organ contrib-
utes. Below each node is a bar plot of the n-scores for each organ within the node. Putative functional groupings within the network are highlighted. Select
sections are highlighted in colored boxes and shown in 2x zoom.

robial colonization. Proteins significantly increased in either GF or conventional animals
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report the regulation of innate immune proteins including the an-
timicrobial peptide REG3G (Larsson et al. 2012) and the regulation
of NNT (Mardinoglu et al. 2015), which will be discussed further
below.

Organ-specific network results

Functional enrichment analysis of GI tract organs resulted in
stronger and more diverse associations with colonization status
than organs outside the GI tract. Several enrichments emerged
with potential links to redox shifts in the small intestine. These
included disulfide bonds, oxidoreductase activity, NADP, and
xenobiotic metabolism through cytochrome P450s (Figs. 2, 3).
Functional differences in the colon highlighted pancreatic secre-
tion, immunoglobulins, proteins of the heat shock protein 70 fam-
ily, digestion, and stress as the functions increased in conventional
mice (Figs. 2, 3). GF colons had enrichments for transporter activ-
ity, Calycin, fatty-acid binding, metalloproteases, and peroxisome
proliferator-activated receptor (PPAR) signaling (Fig. 2). Together,
these results may indicate stress response as an important factor
mediating host-microbiota interactions in the colon and redox
states influencing interactions of the small intestine.

Organs outside of the GI tract have been less studied in regard
to their regulatory responses to the microbiome. Within the
spleen, proteins increased in conventional mice were found to
be part of a highly connected functional protein network consist-
ing primarily of pancreatic digestive enzymes (CELA2A, CELA3B,
CELA1, CPA1, CPA2, CTRB1, CTRL, CTSE, TRYS, etc.), iron-bind-
ing proteins (FST1, TFRC, STEAP3, FECH, LTF, and HP) and innate
immune mediators (LCN2, S100A9, NGP, ITGAM, and CHIL3)
(Figs. 1, 3). Many of the digestive enzymes have roles in the GI tract
and were similarly associated to colonization state within the small
intestine and colon (Fig. 3). Iron-binding and immune proteins
were similarly regulated in other organs (Fig. 3), but the differential
regulation of LTF (Lactotransferrin) and FSLT1 (Follistatin-related
protein 1) were primarily restricted to the spleen. Given the biolog-
ical roles of the spleen, the influence of these proteins in mediating
immune processes may be of significant interest.

The networks associated with the brain and the heart dis-
played fewer interconnected proteins. Only 34% and 27% of pro-
teins had a connection within the heart network and brain
network, respectively. However, a group of primarily GF-associated
proteins that included APOA1 and APOE was found among the
heart proteins (Fig. 1). These results may suggest changes in lipid
profiles in the heart: increased high-density lipoproteins (HDL)
and chylomicrons in GF compared to conventional mice. The
brain showed limited functional enrichments (Supplemental
Table S2). However, both RASGRF1 and RASGRF2 were increased
among conventional mice. These proteins may be of interest given
implications in glutamatergic excitatory synaptic signaling and in
facilitating long-term potentiation leading to enhanced memory,
learning, and synaptic plasticity (Drake et al. 2011; Schwechter
et al. 2013).

Organism-wide network results

One prominent finding from our generalized network was a signif-
icant increase in NNT in all conventional tissues. This protein is a
key regulator of generalized biosynthetic processes and is related to
glutamate synthesis (Mardinoglu et al. 2015). Statistically, NNT
was among the strongest relationships found within all organs an-
alyzed (r=3.8, 4, 2.3, 7, and 3.7 for small intestine, colon, spleen,
heart, and brain, respectively). We also identified subnetworks re-

lated to mitochondrial glutamate metabolism and mitochondrial
respiratory chain NADH dehydrogenase, with most of the related
proteins down-regulated in the small intestine of conventional
mice (Fig. 3). In addition, proteins relating to the mitochondrial re-
duction of glutathione, GLUD1, and GLS had confirmed associa-
tions with previous transcriptomic analysis (Supplemental Table
S3). While this subnetwork was largely derived from small intes-
tine proteins, there was evidence that this system may also be af-
fected in the brain through AMT, which is involved in the
mitochondrial metabolism of glycine.

The protein networks identified generalized differences
among all organs related to the innate and adaptive immune sys-
tems. Proteins related to innate immunity tended to be increased
in conventional mice, while proteins associated with neutrophil
degranulation were associated with GF mice (Fig. 3). REG3G, a pro-
tein associated with toll-like receptor (TLR) signaling subsequent
to pathogen-associated molecular pattern (PAMP) activation in
Paneth cells, was increased among conventional mice. Additional-
ly, proteins related to antigen processing were moderately en-
riched in GF mice.

We next evaluated protein relationships to GF status at an or-
ganismal level by applying a compositionally aware multinomial
regression technique. This technique accounts for organ type to as-
sess organism-wide protein associations through ranks. Our top-
ranked protein associated with conventional status was NNT,
while the protein with the strongest association with GF status
was IGKV5-39, a protein involved in immune response and immu-
noglobulin production (Fig. 4A). As observed from the traditional
statistical approach, NNT was significantly higher in conventional
mice within all organs included in the regression (Fig. 4B). IGKVS-
39 was more strongly associated with the spleen, colon, and heart
than the small intestine (Fig. 4B).

Next, we assessed the 150 top- and bottom-ranked proteins
associated with GF status from the multinomial regression and cre-
ated a protein—protein interaction network (Fig. 4C). Of interest
was a cluster of proteins related to redox states in mitochondria.
Several proteins including ECSIT, NDUFS4, NUBPL, NDUFA11,
NDUFB6, NDUFAS, and ATPAF1 are all related to mitochondrial
complex 1 of the electron transport chain. Other evidence of
the organism-wide impact of microbial colonization on mitochon-
dria included shifts in mitochondrial ribosomal proteins (MRPS23,
MRPL50, MRPS17, MRPL49, and MRPL17) and proteins related to
mitochondrial heat shock response (HSPD1, HSPE1l, SOD2,
LONP1). The data presented here suggest that microbial coloni-
zation may have organismal-level impacts on mitochondrial
function.

Interactive 3D visualization of associations with colonization status

To encourage user interaction with our data, we created a web-
based display of our results projected onto a 3D model of a mouse.
This interactive display allows for user-guided exploration of the
protein and pathway-level associations with colonization status.
To access the model, users should access the ‘ili web server (https
://ili.embl.de/), then drag-and-drop the provided texturization
file (Supplemental File S1) and a supplemental table for either
the proteins (Supplemental Table S4) or pathways (Supplemental
Table S5) identified in this study. With this tool, users can search
for proteins and pathways of interest and project the association
scores onto all the organs analyzed in this study.

For the protein-level visualization, each protein is listed by
the protein name with any Gene Ontology (GO) molecular
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Figure 4. Organism-level protein networks modulated by the microbiome. A multinomial regression
controlling for organ and microbial colonization state of the mice was used to assess proteins associated
with colonization status. (A) Proteins ranked by regression coefficient; proteins with coefficients of the
greatest magnitude are most associated with colonization status. Proteins with positive coefficients are
more abundant in conventional mice, while proteins with negative coefficients are more abundant in
GF mice. (B) Log abundance of NNT or IGKV5-39 over the entire proteome in each organ. (C)
Protein—protein interaction networks from the top-ranked proteins from the multinomial regression as-

sociated with both conventional and GF status when

controlling for organ and mouse. The top 150 pro-

teins associated with both GF and conventional status were analyzed (300 proteins total), and proteins
with high confidence interactions (0.8) are shown. Nodes are sized by the absolute value of the regres-
sion coefficient and colored by association with GF (gray) or conventional (red) status. Putative functional

groupings are indicated.

the strong association with conventional
status for NNT within all organs.

The pathway-level visualizations
help to summarize and explore the gene
set enrichment analyses. On a per-organ
basis, an association with conventional
or GF status for each functional category
was calculated by comparing the statisti-
cal strength of gene set enrichments
(Supplemental Table S2). These asso-
ciation scores have been summarized in
an ‘ili-compatible file in Supplemental
Table S5. Pathway association scores
ranged from 12.90 (highly associated
with conventional status) to —7.25 (high-
ly associated with GF status). We demon-
strate the use of this tool to visualize the
associations with “Oxidoreductase” in
Figure 5B.

Discussion

Our multiorgan analysis was utilized to
generate protein interaction maps and
3D visualization tools that researchers
can use to understand organ-specific
and organism-wide changes that may un-
derlie host-microbiome interactions.
From our networks, we can identify com-
mon themes found from previous
analyses of GF tissue. For example, we
found changes in innate and adaptive im-
mune responses to microbial coloniza-
tion (Larsson et al. 2012), changes in the
glutamine and glutamate pathway (El
Aidy et al. 2013; Mardinoglu et al.
2015), and changes in xenobiotic degra-
dation pathways (Kuno et al. 2016; Fu
et al. 2017; Kindt et al. 2018). This study
contributes to the field by moving toward
an organism-wide understanding of host-
microbiome interactions. Here, we incor-
porate new statistical and visualization
tools for multiorgan analysis and include
understudied organs from outside of the
GI tract. As roles for the microbiome are
expanding into immunity (Thaiss et al.
2016), cardiovascular disease (Ahmad-
mehrabi and Tang 2017), and mental
health disorders (Nguyen et al. 2018), de-
fining the influence of the microbiome
on these tissues may be of importance.
Indeed, our networks provided several
putative organism-level roles for the
microbiome.

function terms associated with the protein. With this, users are
able to search for a protein of interest or identify proteins of inter-
est by molecular functions. The ‘ili-compatible table of association
scores (Supplemental Table S4) uses the n-statistic for convention-
al/GF status. These scores range from 6.98 (significantly increased
in conventional mice) to —5.11 (significantly increased in GF
mice). An example use case is displayed in Figure SA, which depicts

Our protein networks highlight the potential of organism-
wide redox state changes being linked to the microbiome. This is
perhaps best highlighted in the distal increases of NNT associated
with microbial colonization. NNT is a mitochondrial protein with
well-described roles in glutathione redox reactions through the
conversion of NADPH to NADP* (Ronchi et al. 2013).
Glutathione is interconverted with glutathione disulfide,
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Figure 5. |Interactive 3D visualization of associations with colonization
status. A 3D mouse model was generated for use on the web-based ‘ili plat-
form (https://ili.embl.de/). (A) An example use case for the protein-level as-
sociation visualizations shown through plotting the n-score enrichment for
conventional colonization status. (B) An example use case for the pathway
level association visualizations shown through highlighting the enrichment
scores for “Oxidoreductase.” Pathway association scores were generated
through —Log;o(Benjamini-Hochberg corrected P-values) of the conven-
tional organs minus the GF organs (from Supplemental Table S2).

collectively representing the most abundant redox pair in the body
(Circu and Aw 2011). Abundances of this redox pair are often used
as an indication of the general redox state (Circu and Aw 2011),
which is involved in a large variety of biological processes (Circu
and Aw 2011; Birben et al. 2012; Ray et al. 2012). Evidence of intes-
tinal redox differences in GF animals has been known since the
1970s (Koopman et al. 1975; Celesk et al. 1976), and evidence of
microbiota-dependent regulation of Nnt in the GI tract has been
previously described (Mardinoglu et al. 2015). Here, we find evi-
dence of increased NNT throughout the entire conventional
mouse. Additionally, both the traditional and multivariate statisti-
cal methods used for the identification of organism-wide effects
found networks of proteins related to mitochondria, including mi-
tochondrial complex 1 proteins. Mitochondrial complex 1 activity
might also be linked to redox states as complex 1 activity was
shown to be dependent on glutathione transport into the mito-
chondria (Kamga et al. 2010). In summary, many of our protein
networks may have been influenced by redox states, including
shifts in mitochondrial proteins, the innate immune processes
such as neutrophil degranulation, and degradation of xenobiotics
through cytochrome P450s (Kramer and Darley-Usmar 2015).
Though our strongest relationships to microbial colonization
were found within the GI tract, which was, unsurprisingly, the fo-
cus of most previous GF organ analyses (Larsson et al. 2012; El Aidy
etal. 2013; Mardinoglu et al. 2015; Lichtman et al. 2016), the anal-
yses of the brain, spleen, and heart did yield several interesting re-
sults. Within the heart, our analyses indicated a relationship to
HDL and the GF state. Our results within the heart may be of im-

portance given the increasing literature regarding microbiota reg-
ulation of lipids and lipoproteins including HDL (Nakaya and
Ikewaki 2018), as well as the microbial links to metabolites leading
to atherosclerosis (Wang et al. 2011b). Our findings may indicate a
mechanism in which microbiota influence the makeup of the
heart through changes in lipoproteins.

The data of the spleen proteomes revealed networks of prote-
ases with similar increases within the small intestine and colon in
the presence of the microbiota. These networks also suggested po-
tential links between the gut microbiota and pancreatic secretion.
Pancreatic secretion of enzymes is thought to be largely regulated
through circulating hormones (Singh and Webster 1978). The gut
microbiome has several potential links to pancreatitis and pancre-
atic cancer, which may be mediated through sensing of microbial
compounds such as lipopolysaccharide through TLR4 (Leal-Lopes
et al. 2015). Here, we have observed a link between microbial col-
onization and increased pancreatic secretion of digestive proteins,
which may be of interest for further investigation.

The organism-wide effects of microbial colonization illustrat-
ed in our networks may have implications in several disease states.
Dysregulation of complex 1 has been implicated in microbiome-
related diseases, including ulcerative colitis (Haberman et al.
2019), and there is accumulating evidence of mitochondrial dys-
function in Crohn’s disease (Mottawea et al. 2016). This associa-
tion between the microbiome and mitochondria are thought to
be mediated through three key microbiome metabolites: short-
chain fatty acids, the urolithins, and lactate (Franco-Obregén
and Gilbert 2017). While speculative, it is possible that the IBD
microbiota may influence these interactions. Glutamatergic sig-
naling has been suggested as a potential target for treating mood
disorders (Zarate et al. 2010). Our identification of proteins in
the brain related to glutamatergic signaling and glutamate (i.e.,
RASGREF proteins and NNT) may be of relevance to the discussions
surrounding utilization of the microbiome to treat mood disorders
(Mangiola et al. 2016).

There are likely many unknown mechanisms mediating host-
microbiota interactions. Our detailed maps and visualization tools
for understanding the organ-level impacts of microbial coloniza-
tion give insight into the unique and common protein-level
changes occurring throughout mice. These networks suggest
changes throughout the mice related to mitochondrial dysfunc-
tion and redox states. Though fewer changes were found in organs
apart from the GI tract, our protein networks of the spleen, brain,
and heart may provide insight for researchers establishing connec-
tions between the microbiota and diseases related to these organ
systems. We hope these networks and visualization tools may be
useful in the microbiome research community to help dissect
the specific effects that microbial communities have in a given or-
gan system, protein, or protein network of interest. In total, we
view our study as a step toward better understanding the role of
the microbiota in health and disease.

Methods

Gnotobiotic mice

Three male GF C57BL/6 mice were kept under GF conditions in a
Park Bioservices isolator in Georgia State University’s (GSU’s) GF
facility, and three male conventional C57BL/6 were kept in regular
housing at GSU’s animal facility. At 5 mo of age, mice were eutha-
nized and organs were collected followed by immediate snap-freez-
ing. All mice were bred and housed at Georgia State University,
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Atlanta, Georgia, USA, under institutionally approved protocols
(TACUC # A14033).

Protein digestion and TMT labeling

All organ proteome methods were performed as previously de-
scribed (Lapek et al. 2018). Snap-frozen organs (stored at —80°C
beforehand) were suspended in PBS and homogenized using a
Mini BeadBeater (Biospec). Our final analysis contained three
biological replicates of each colonization condition per organ,
and no technical replicates were collected given strong correlation
observed between biological replicates in our past work (Lapek
et al. 2018). Organ homogenates were lysed in 1 mL of buffer com-
posed of 75 mM NacCl (Sigma-Aldrich), 3% sodium dodecyl sulfate
(SDS, Thermo Fisher Scientific), 1 mM NaF (Sigma-Aldrich), 1 mM
beta-glycerophosphate (Sigma-Aldrich), 1 mM sodium ortho-
vanadate (Sigma-Aldrich), 10 mM sodium pyrophosphate
(Sigma-Aldrich), 1 mM phenylmethylsulfonyl fluoride (PMSF,
Sigma-Aldrich), and Complete Mini EDTA-free protease inhibitors
(1 tablet per 10 mL, Roche) in 50 mM HEPES (Sigma-Aldrich), pH
8.5 (Villén and Gygi 2008). To ensure full lysis, homogenates were
passed through a 21-gauge syringe 20 times. Insoluble debris was
then pelleted by centrifugation for 5 min at 14,000 rpm.
Supernatants were transferred to new tubes, and an equal volume
of 8 M urea in 50 mM HEPES, pH 8.5 was added to each sample.
Samples were then vortexed and further lysed through two 10-
sec intervals of probe sonication at 25% amplitude.

Proteins were reduced with dithiothreitol (DTT, Sigma-
Aldrich) and alkylated with iodoacetamide (IAA, Sigma-Aldrich)
(Haas et al. 2006). Proteins were next precipitated via methanol-
chloroform precipitation (Wessel and Fliigge 1984). Precipitated
proteins were resolubilized in 300 puL of 1 M urea (Thermo Fisher
Scientific) in 50 mM HEPES, pH 8.5. Proteins were digested in a
two-step digestion process. First, 3 ug of LysC (Wako) was added
to each sample, and samples were digested overnight at room tem-
perature. Next, 3 pug of trypsin was added, and samples were digest-
ed for 6 h at 37°C. Digests were acidified with Pierce Trifluoroacetic
Acid (TFA, Thermo Fisher Scientific) to quench the digestion reac-
tion. Peptides were desalted with C18 Sep-Paks (Waters) as previ-
ously described (Tolonen and Haas 2014). Concentration of
desalted peptides was determined using a Pierce Quantitative
Colorimetric Peptide Assay (Thermo Fisher Scientific), and pep-
tides were aliquoted into 50-pg portions. Aliquots were dried un-
der vacuum and stored at —80°C until they were labeled with
TMT reagents.

Peptides were labeled with 10-plex TMT reagents (Thermo
Fisher Scientific) (Thompson et al. 2003; McAlister et al. 2014) as
previously described (Wang et al. 2011a). TMT reagents were recon-
stituted in dry acetonitrile (Sigma-Aldrich) at 20 pg/pL. Dried pep-
tides were resuspended in 30% dry acetonitrile in 200 mM HEPES,
pH 8.5, and 7 pL of the appropriate TMT reagent was added to pep-
tides. Reagents 126 and 131 (Thermo Fisher Scientific) were used to
label peptide aliquots composed of an equal concentration of every
sample within all mass spectrometry (MS) runs. These composite
samples acted as a reference within all mass spectrometry runs
for data normalization purposes described later. Remaining re-
agents were used to label samples in random order with no bias re-
garding animal of origin, organ, or colonization status. This
randomization was performed to prevent known batch-effects in
mass spectrometry experiments (Brenes et al. 2019). The brain sam-
ples were analyzed as a pilot experiment before the other organs.
For brains, all procedures were performed as above, though the
TMT experiment was separate from other organs. Within the brain
TMT experiment, one channel, 129C, consisted of a 50-ug average
of all peptides from brain samples. Labeling was carried out for 1 h

at room temperature and was quenched by adding 8 pL of 5% hy-
droxylamine (Sigma-Aldrich). TMT-labeled peptides from each of
the organ samples were acidified by adding 50 uL of 1% TFA and
subsequently combined into a composite sample per TMT 10-
plex experiment. During the pilot experiment with the brains,
the pooled samples were desalted and fractionated using a Pierce
High pH Reversed-Phase Peptide Fractionation kit (Thermo Fisher
Scientific) per the manufacturer’s instructions. For the larger study,
samples were pooled per 10-plex experiment, desalted with C18
Sep-Paks, and further fractionated as described below.

Collection of LC-MS2/MS? spectra for protein identification
and quantification

Data acquisition methods were performed as previously described
(Lapek et al. 2018). Sample fractionation, excluding the brain ex-
periment, was performed by basic pH reverse-phase liquid chroma-
tography with concatenated fractions as previously described
(Wang et al. 2011a). Briefly, samples were resuspended in 5% for-
mic acid/5% acetonitrile and separated over a 4.6 mm x 250 mm
C18 column (Thermo Fisher Scientific) on an Ultimate 3000
HPLC fitted with a fraction collector, degasser, and variable wave-
length detector. The separation was performed over a 22% to 35%,
60-min linear gradient of acetonitrile in 10 mM ammonium bicar-
bonate (Thermo Fisher Scientific) at 0.5 mL/min. The resulting 96
fractions were combined as previously described (Wang et al.
2011a). All fractions were dried under vacuum and resuspended
in 5% formic acid/5% acetonitrile and analyzed by liquid chroma-
tography (LC)-MS?/MS? for identification and quantitation.

All LC-MS?*/MS? experiments were carried out on an Orbitrap
Fusion (Thermo Fisher Scientific) with an in-line Easy-nLC 1000
(Thermo Fisher Scientific) and chilled autosampler. Home-pulled,
home-packed columns (100 pum ID x 30 cm, 360 pm OD) were used
for analysis. Analytical columns were triple-packed with 5 pm C4
resin, 3 pm C18 resin, and 1.8 pm C18 resin (Sepax) to lengths
of 0.5, 0.5, and 30 cm, respectively. Peptides were loaded at 500
bar and eluted with a linear gradient of 11% to 30% acetonitrile
in 0.125% formic acid over 165 min at a flow rate of 300 nL/
min, with the column heated to 60°C. Nano-electrospray ioniza-
tion was performed by applying 2000 V through a stainless-steel
T-junction at the inlet of the microcapillary column.

The mass spectrometer was run in data-dependent mode,
where a survey scan was performed over 500-1200 m/z at a resolu-
tion of 60,000 in the Orbitrap. Automatic gain control (AGC) was
set to 2 x 10° for MS! with a maximum ion injection time of 100
ms. The S-lens RF was set to 60, and centroided data was collected.
Top-N mode was used to select the most abundant ions in the MS'
scan for MS? and MS® with N set to 10.

The decision tree option was used for MS? analysis, using
charge state and m/z range as qualifiers. Ions carrying two charges
were analyzed from the m/z range of 600-1200, and ions carrying
three and four charges were selected from the m/z range of 500-
1200. An ion intensity threshold of 5 x 10* was used. MS? spectra
were obtained using quadrupole isolation at a 0.5 Th window
and fragmented using Collision Induced Dissociation with a nor-
malized collision energy of 30%. Fragment ions were detected
and centroided data collected in the linear ion trap using rapid
scan rate with an AGC target of 1 x 10* and maximum ion injec-
tion time of 35 ms.

MS? analysis was performed using synchronous precursor se-
lection (SPS) enabled to maximize TMT quantitation sensitivity
(McAlister et al. 2014). A maximum of 10 MS? precursors was spec-
ified for the SPS setting, which were simultaneously isolated
and fragmented for MS® analysis. Higher-Energy Collisional
Dissociation fragmentation was used for MS® analysis with a
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normalized collision energy of 55%. Resultant fragment ions (MS®)
were detected in the Orbitrap at a resolution of 60,000 with a low
mass cut-off of 110 m/z. AGC for MS> spectra was set to 1x 10°
with a maximum ion injection time of 100 ms. Centroided data
were collected, and MS? ions between the range of 40 m/z below
and 15 m/z above the precursor m/z were excluded by SPS.

Data processing and normalization

Data were processed using Proteome Discover 2.1 (Thermo Fisher
Scientific). MS? data were searched against UniProt mouse databas-
es (downloaded 7/2/2018 and 5/11/2017 for the brain analysis and
other organs, respectively) using the SEQUEST algorithm (Eng
et al. 1994). A decoy search was also conducted with sequences
in reverse order (Peng et al. 2003; Elias et al. 2005; Elias and Gygi
2007). A precursor mass tolerance of 50 ppm (Beausoleil et al.
2006; Huttlin et al. 2010) was specified and 0.6 Da tolerance for
MS? fragments. Static modification of TMT 10-plex tags on lysine
and peptide n-termini (+229.162932 Da) and carbamidomethyla-
tion of cysteines (+57.02146 Da) were specified. Variable oxidation
of methionine (+15.99492 Da) was also included in search param-
eters. Data were filtered to 1% peptide and protein level false dis-
covery rates with the target-decoy strategy through Percolator
(Kall et al. 2007; Spivak et al. 2009).

TMT reporter ion intensities were extracted from MS® spectra
for quantitative analysis, and signal-to-noise values were used for
quantitation. Spectra were filtered and summed as previously de-
scribed (Lapek et al. 2017b). Data were normalized in a multistep
process, whereby they were first normalized to the pooled stan-
dards (TMT-126 and -131) for each protein and then to the median
signal across the pooled standards from all experiments (Lapek
et al. 2017a). An average of these normalizations was used for
the next step. As the brain samples did not contain a composite
bridge channel for normalization, raw signal/noise ratios were nor-
malized by the average signal of the given protein divided by the
median of all protein averages. To account for slight differences
in amounts of protein labeled, these values were then normalized
to the median of the entire data set and reported as final normal-
ized summed signal-to-noise ratios per protein per sample.

Statistical analysis

Bioinformatic analysis was performed in Python (version 3.5.1),
and records are available online in Jupyter Notebooks (https
://github.com/rhmills/Germ-free-organ-proteomics). To prevent
statistical artifacts generated due to the various methods of dealing
with missing values, only proteins with quantification in all sam-
ples were used. A Student’s t-test with unequal variance was per-
formed through the package, SciPy (https://www.scipy.org). For
ranking purposes, we evaluated associations with colonization
state through n-score, which accounts for both fold-change and
P-value (Xiao et al. 2014). A statistical cutoff of |z|>1 was chosen
based on previous work (Tran et al. 2019). This statistical measure
corresponds to a significance level of o ~ 0.05 and allowed for mod-
erate stringency while including an adequate number of proteins
for protein network construction and functional enrichment
analysis.

Protein—protein interaction networks were created through
STRINGdD (Szklarczyk et al. 2015). Associations between proteins
were determined through default settings, accounting for text
mining, experiments, databases, coexpression, neighborhood,
gene fusion, and co-occurrence. Connections were restricted to in-
teractions between proteins within the query list only. Networks
were subsequently visualized through Cytoscape (version 3.5.1)
(Shannon et al. 2003). Edges within protein networks were based

on the combined evidence scores, with thicker edges indicating
higher confidence. Per-organ networks were performed with a me-
dium minimum confidence (0.4) to visualize connectivity
through maximizing potential connections, while combined or-
gan networks utilized a high minimum confidence (0.8) to identi-
fy putative functional groupings.

Functional enrichment analysis was performed through the
DAVID server (Huang da et al. 2009a,b) to identify significant
groups of proteins per organ, split between GF and colonized
states. Parameters were set as previously described (Nicolay et al.
2015). Benjamini-Hochberg corrected P-values were reported for
the most significant groupings. Bar plots were visualized through
GraphPad Prism (version 7.0b).

Songbird (Morton et al. 2019) was used to implement the
multinomial regression analysis with organ, mouse, and coloniza-
tion status used in the regression formula. Model parameters were
as follows: 10,000 epochs, batch size of 5, differential prior of 1.0,
learning rate of 0.001, gradient clipping size of 10, and proteins
with >5 counts were included. As the brain tissue was processed
as an independent pilot study, we could not include this data as
part of the multinomial regression analysis given the independent
normalization used in each experiment.

3D mouse model

The 3D mouse model was generated as described previously
(Quinn et al. 2019). In brief, MRI images were acquired at the
UCSD Center for Functional MRI from a euthanized 8-wk-old
female C57BL/6 mouse with a Bruker 7T/20 MRI scanner using
a quadrature birdcage transceiver. MRI parameters were as
follows: 3D FLASH protocol with TE/TR=6 ms/15 ms and matrix
size 128 x 64 x 156, field of view prescribed to match the body
size. InVesalius (https://link.springer.com/chapter/10.1007/978-
3-319-27857-5_5) was used to trace individual organs in each
MRI slice to generate the 3D model. The model was then processed
with Blender (https://www.blender.org/) for smoothing.

Interactive display of associations can be done through the
following steps: (1) accessing the ‘ili-web browser (https://ili
.embl.de) (Protsyuk et al. 2018); (2) uploading the 3D mouse mod-
el visualization file (Supplemental File S1); (3) uploading either the
protein-based associations table (Supplemental Table S4) or the
pathway-based associations table (Supplemental Table S5).

Pathway-level association scores were determined by compar-
ing the —Log;o(Benjamini-Hochberg corrected P-values) for each
functional enrichment in Supplemental Table S2. The statistical
strength of the functional enrichment in GF tissue was subtracted
from the statistical strength of the functional enrichment in con-
ventional tissue. The following formula summarizes the calcula-
tion:

Association Score = ((—Log;,(Adj. P-value for conventional status))
— (— Log;((Adj. P-value for GF Status))).

Data access

The proteomic data generated in this study have been submitted
to the Mass Spectrometry Interactive Virtual Environment
(MassIVE) Repository (https://massive.ucsd.edu) under the study
ID MSV000083874. Code is available through GitHub (https://
github.com/rhmills/Germ-free-organ-proteomics) and as Supple-
mental Code.
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