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ABSTRACT OF THE DISSERTATION 

 
The role of dual-task experiments in working memory and arithmetic performance 

by 

Edward Harry Chen 

Doctor of Philosophy in Education 

University of California, Irvine, 2022 

Professor Drew H. Bailey, Co-chair 

Professor Susanne M. Jaeggi, Co-chair 

 

This dissertation looks across theories of working memory to evaluate the competing 

claims regarding its influence on mental arithmetic. I attempt to reconcile differences between 

correlational and experimental literatures to better understand the specific impacts of working 

memory on arithmetic through meta-analytic and experimental methods following a dual-task 

paradigm. In order to investigate whether working memory is causally linked to math, I 

conducted a meta-analysis on dual-task experiments, summarizing the effects of secondary task 

load on mental arithmetic performance (Chapter 1). In addition, I tested a number of relevant 

moderators, including the secondary task type, primary arithmetic task type, difficulty, and 

combinations of primary and secondary tasks. While results supported a robust causal effect of 

working memory, it was unclear if arithmetic performance was affected purely by the cognitive 

demands of the tasks or if they were affected by similarly shared resources with the secondary 

task. Thus, I conducted a registered report in which I probed whether arithmetic operations are 

differentially impacted by various types of working memory secondary tasks by replicating an 

influential dual-task experiment and testing other relevant factors that predicted differences in 

dual-task performance (Chapter 2). The within-subject experiment tested whether there was 

differential interference of verbal and visuospatial loads on multiplication and subtraction 

performance and whether it could be generalized to sub-populations and difficulty levels. Prior 

results from the influential experiment were not replicated, so I conducted further analyses 



 

ix 

 

including an additional task to test whether different theories of working memory could reliably 

predict any kind of interaction between working memory and arithmetic tasks (Chapter 3). I 

tested main effects and interactions between secondary task type, arithmetic operations, and 

difficulty and explored whether such task features are implicated in arithmetic strategy choice. I 

found strong evidence for main effects of the aforementioned factors on arithmetic but not 

interactions between them except in the case of an arithmetic-based secondary task load. Overall, 

this dissertation found more evidence to support domain-general models of the influence of 

working memory on arithmetic performance rather than domain-specific models discussed 

within many previous dual-task studies. Lastly, I discuss the implications of these results as well 

as an outlook for future research. 
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Overview of studies 

Working memory is a limited-capacity, mental workspace, involved in the temporary 

storage and active processing of relevant information to perform complex cognitive tasks, such 

as mathematical cognition (Baddeley, 1992). Mathematical cognition involves processing 

different types of mathematical content, such as arithmetic, algebra, and geometry. Often, 

problem solving within these domains involves temporarily holding onto partial information and 

processing new information to find a solution, which may require working memory resources. 

While it is well established that a relation between working memory and math exists (e.g., Peng, 

Namkung, & Barnes, 2016) and may contribute to our understanding of individual differences in 

mathematical development, a causal link between working memory and math has been much 

more difficult to establish from cognitive training studies (Sala & Gobet, 2017, 2020). More so, 

the exact nature of this causal relationship – how and in what ways does working memory 

influence mathematics – is not well understood either.  

An alternative experimental paradigm that allows researchers to test these specific effects 

is the dual-task experiment. By having participants complete a primary cognitive task (e.g., 

mental arithmetic) simultaneously with a secondary working memory task (e.g., recalling letters 

or numbers), researchers can examine how arithmetic performance varies by the cognitive 

demands of the working memory tasks. If the primary and secondary tasks are relying on the 

same pool of cognitive resources (i.e., working memory), then reaction times and accuracy are 

likely to suffer. What makes this paradigm particularly useful is that it allows researchers to 

isolate specific components of working memory (e.g., verbal and visuospatial memory) and test 

how each component differentially impacts primary task performance. However, there is some 

debate as to whether such differential effects can be attributed to having to difficulties in 
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processing semantically similar content simultaneously or to difficulties in maintaining 

attentional control on increasingly difficult cognitive loads (Pashler, 1994). Likely, both are true 

to some extent, but this divide circles back to the larger issue of determining the specific ways 

that working memory influences mathematical processing. Therefore, the goal of this dissertation 

is to reconcile the differences in the working memory and arithmetic literature by systematically 

reviewing and experimentally investigating the dual-task arithmetic literature. 

In Chapter 1, I investigated the proposed causal relationship between working memory 

and mathematics performance by meta-analyzing a sample of dual-tasking literature. Dual-task 

experiments have been used in math cognition research as a way to show how mental arithmetic 

taps into different pools of working memory resources, thereby providing a supplementary 

account of the link as opposed to a direct account from cognitive training literature. I tested 

whether dual-task studies showed a robust effect on arithmetic performance as well as 

investigated whether and how study design features contributed to the effects’ heterogeneity. 

Key moderators of interest included the type of secondary task load, type of arithmetic task, 

difficulty, and a proxy for primary and secondary task combinations using author predictions. 

Based on my meta-analysis of 400 effect sizes from 21 studies and 1,049 participants, I 

concluded that there was clear evidence for a causal effect of working memory on arithmetic 

performance. However, the type of working memory task strongly moderated arithmetic 

performance; specifically, tasks that were more cognitively demanding, requiring participants to 

mentally manipulate larger amounts of information, produced the largest effects. Finally, the 

effects of  author-hypothesized combinations of working memory and arithmetic tasks were 

surprisingly small (although not exactly 0) – suggesting that general cognitive resources may 

underlie the associations between working memory and math performance reported in previous 
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work. However, the results from the moderator analyses suggest that previously proposed models 

of working memory that focus on component-specific influences may not adequately explain 

dual-task performance, but rather models emphasizing more general, attentional control. Thus, 

questions remained as to whether arithmetic draws on content-specific working memory 

resources. 

In Chapter 2, I further probed the possibility of domain-specific cognitive influences like 

verbal and visuospatial memory on arithmetic performance by re-examining the robustness of 

possible interactions between combinations of primary and secondary tasks (sometimes called 

“crosstalk” effects) in a new experiment. Prior dual-task literature examined how different 

secondary task loads affected arithmetic operations to mixed effect. One previous study reported 

a large crosstalk interaction between specific components of working memory and arithmetic 

operation which had not been replicated (Lee & Kang, 2002; Imbo & LeFevre, 2010; Cavdaroglu 

& Knops, 2016). Using data from 100 participants in a within-subject experiment, I tested the 

robustness of an interaction between secondary task type and arithmetic operation. The 

experiment consisted of 3 within-subject factors: cognitive load difficulty (easy vs. hard); 

arithmetic operation (multiplication v s. subtraction); and working memory load type 

(phonological, visuospatial, and none/arithmetic without load). However, difficulty was only 

used for subsample analyses in this chapter. Using a combination of frequentist and Bayesian 

methods as well as numerous subsample analyses, I was able to produce main effects for 

secondary task type but no interaction between primary and secondary tasks was found for any 

of my analyses The results suggest that the original findings may have been specific to 

whichever methods and conditions the previous authors employed and that domain-specific 

influences may be much more elusive than previously thought.  
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The final chapter of the dissertation is an extension of the experiment in Chapter 2 that 

experimentally investigates theories of working memory within a dual-task paradigm. In Chapter 

3, I contrasted competing theories of working memory in dual-task performance which argue that 

performance is dictated by either shared cognitive resources, general task demands, or some 

integration of the two. In addition to using the same experimental design from Chapter 2, I 

included an addition secondary task in the analysis models and explored whether task features 

influenced arithmetic strategies. I then tested different sets of predictions following the general 

themes of a domain-specific model, domain-general model, and multiple integrated models of 

working memory using a similar combination of frequentist and Bayesian methods as Chapter 2. 

Results supported a domain-general model of working memory in dual-task arithmetic 

performance where task demands reliably worsened arithmetic performance. The inclusion of an 

addition task as a more direct line of domain-specificity did produce reliable effects above and 

beyond other secondary tasks, but its effects could be attributed to its overall difficulty rather 

than any content-dependent sharing of resources. Overall, while there is strong evidence for a 

domain-general model, there might still be selective effects of secondary tasks on arithmetic. 

However, these effects are likely much more difficult to predict and smaller than expected 

because of individual differences in participants’ dual-task arithmetic strategies and to some 

extent the high degree of specificity that may be needed to produce such effects between the 

primary and secondary tasks. 
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Study 1 

It is widely agreed that various aspects of arithmetic performance are dependent on working 

memory, but the strength of this relation and the degree to which different features of working 

memory contribute to this performance is difficult to study. Arithmetic procedures involve the 

temporary storage and manipulation of numerical elements across multiple steps (Hitch, 1978). 

For example, individuals solving multi-digit arithmetic problems, such as 23 × 16 or 256 + 169 

must encode the problem they are working with, perform a number of calculations, and maintain 

these intermediate values in order to form a coherent solution to the arithmetic problem (for a 

review, see Raghubar, Barnes, & Hecht, 2010). Arithmetical processing, therefore, appears to 

rely heavily on working memory. Consistent with this theory, working memory has been found 

to be reliably correlated with performance on mathematical tasks and has been found to 

statistically predict children’s mathematics outcomes (for reviews, see Friso-van den Bos, van 

der Ven, Kroesbergen, & van Luit, [2013] and Raghubar, Barnes, & Hecht, [2010]).  

However, some specific questions about the nature of working memory resources influencing 

arithmetic performance have been difficult to address. In particular, the specificity of these 

effects to particular facets load types of working memory (e.g. differential impact of the 

visuospatial system versus the phonological system on subtraction performance), types of 

arithmetic, and interactions among them, is limited by the use of correlational designs. Two more 

causally informative approaches are training studies, where participants learn to better utilize 

working memory resources, and the dual-task experimental design, whereby participants perform 

a primary cognitive task (e.g. multiplication) concurrently with another secondary task (e.g. 

pressing a left key when hearing a low tone through a headset or the right key when hearing a 

high tone). Dual-task experiments offer an alternative to correlational or training studies by 
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allowing the researcher to both experimentally manipulate working memory load and the overlap 

between features of the working memory task and the arithmetic task to investigate task overlap 

(Logie & Baddeley, 1987; Ashcraft, Donley, Halas, Vakali, 1992; for review, see Pashler, 1994). 

Our goal is to investigate the specificity of working memory functions in arithmetic through such 

a design and provide insight on the discrepancy between experimental and correlational findings. 

Thus, we review the literature on the role of working memory in arithmetic processing and 

provide meta-analytic evidence to characterize the causal relation between working memory and 

arithmetic as studied in dual-task experiments.  

Causal Effects of Working Memory on Arithmetic? 

Working memory has been conceptualized in a variety of ways. Some models suggest 

that it as distinct from executive functions while others argue that executive functions subsume 

working memory functions. Research on the cognitive processes that underlie arithmetical 

cognition has been largely influenced by the multicomponent model of working memory 

conceptualized by Baddeley and Hitch (1974). According to this model, working memory is a 

limited capacity system responsible for short-term storage and manipulation of elements within 

cognitive processes (Diamond, 2013; Miyake & Shah, 1999). The model has been refined over 

time but often separates working memory into three core subcomponents: the central executive 

(CE), phonological loop (PL), and visuospatial sketchpad (VSSP). Miyake’s and colleagues’ 

(2000) theory of executive functions proposes three aspects of executive functions: updating, 

shifting, inhibition. Updating involves the constantly monitoring and adding/deleting WM 

contents, shifting involves switching between tasks and mental sets, and inhibition involves the 

conscious overriding of predominant responses. Unlike the Baddeley model, there are no 

subcomponent systems (i.e. the visuospatial sketchpad and phonological loop), and WM is 
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viewed separately as a passive-storage system that relies on executive functions. Diamond’s 

model of EF is similar to Miyake’s in that it includes inhibition and views WM as a separate 

construct, but it differs by including cognitive flexibility which involves task switching 

(analogous to shifting). Dual-tasks have been thought to involve executive functions such as 

those found in Miyake and Baddeley’s models (specifically that of shifting), but no consensus 

has yet been found regarding the specificity of which executive function. Another perspective 

involves EFs as part of WM, that is, WM capacity is the ability to use attention to maintain or 

suppress information (Engle, 2002; Awh, Vogel, & Oh, 2006). Engle (2002) posits that a greater 

WM capacity is indicative of greater ability to control attention rather than a larger memory 

storage. While many alternative models to EF and WM have been proposed over the last few 

decades, the focus of this meta-analysis is on Baddeley’s multicomponent model. The primary 

reason for this is that dual-task research including arithmetic tasks is largely predicated on this 

model, specifically predictions concerning its subcomponents and variations in arithmetic tasks. 

Thus, arithmetic tasks are hypothesized to be subject to interference to the extent that they 

overlap with specific arithmetic processing on Baddeley’s subcomponents. More general 

processes, such as switching or inhibition, are likely required across most dual-task pairs, 

although perhaps in different amounts, with tasks hypothesized to require CE resources 

involving more switching and inhibition than tasks hypothesized to require only PL and VSSP. 

Thus, results can be interpreted with respect to all of these theories, but hypothesized examples 

of crosstalk pertain most directly to Baddeley’s.  

The central executive is the most important component of Baddeley’s model. It acts in a 

supervisory role between the other two subsystems by coordinating visual and verbal information 

and between working memory and long-term memory. Compared to the PL and VSSP whose 
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functions are more domain-specific and storage-based, the CE is amodal and facilitates 

processing. Beyond a supervisory position, the CE’s other main functions include selective 

attention, inhibiting or suppressing automatic responses, updating working memory with new 

information, and shifting between tasks. Within Baddeley’s model, the CE would appear to play 

a pivotal role across all types of single- and multi-digit arithmetic operations, because of the split 

in attentional resources and the necessity to maintain intermediate results (for reviews, see 

Raghubar, Barnes, & Hecht [2010] and DeStefano & LeFevre [2004]).  

The phonological loop aids in temporarily storing and rehearsing verbal information. In 

the context of arithmetic cognition, the phonological loop seems to be primarily involved in 

verbally mediating calculation strategies, such as decomposing, transforming, and counting 

up/down in multi-digit arithmetic (Furst & Hitch, 2000; Imbo & Vandierendonck, 2007a).  

The visuospatial sketchpad is responsible for the storage and processing of visual and 

spatial information of an element, such as its shape and position. The visuospatial sketchpad has 

been viewed as especially important to the development of mental arithmetic in young children 

whereby their use of the mental number line is reliant on visuospatial encoding (Hubbard et al. 

2005; McKenzie, Bull, & Gray, 2003). While the role of the VSSP is less understood in mental 

arithmetic, some have found evidence suggesting that it is involved in strategy use (though to a 

much lesser extent than the PL and CE because these more sophisticated strategies take time to 

develop) and more difficult arithmetic problems in both children and adults, such as those 

requiring carrying operations or the encoding of intermediate results (Rasmussen & Bisanz, 

2005; Xenidou-Dervou, van der Schoot & van Lieshot, 2015; Noël, Desert, Aubrun, & Seron, 

2001; Logie, Gilhooly, & Wynn, 1994; Hubber, Gilmore, & Cragg, 2014).  
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Another component, the episodic buffer, was later added to the Baddeley model to 

explain how the central executive interacts with the other subsystems; however, there is little 

discussion or experimental manipulation of the episodic buffer within the dual-task literature for 

arithmetic (Ketelsen & Welsh, 2010). 

The relations between working memory and arithmetic performance may also differ by 

participant age. The solving of simple arithmetic problems is often highly practiced in adults, but 

children solve problems more slowly and often use less sophisticated strategies (e.g., counting 

the smaller addend rather than retrieval) because they have yet to attain the same level of 

expertise (Ashcraft, 1992; Anderson, 1987, Siegler, 1988). Children tend to use more efficient 

strategies to solve arithmetic problems and rely less on working memory resources as they get 

older (Imbo & Vandierendonck, 2007b; McKenzie, Bull, & Gray, 2003, likely due to the 

acquisition of more efficient arithmetic strategies; Halford, Cowan, & Andrews, 2007).  

Working memory’s role in arithmetic processing has been studied using several different 

methodological approaches. We review these approaches, findings, and the costs and benefits 

associated with each approach. Here, we will examine correlational studies and two experimental 

approaches: working memory training and dual-task designs.  

Correlations 

Much of our understanding of the role of executive functions, specifically working 

memory, in mathematical and arithmetic performance comes from correlational designs. In 

general, all facets of working memory are known to be correlated with mathematical 

performance (Friso-van den Bos, van der Ven, Kroesbergen, & van Luit, 2013; Bull & Lee, 

2014), and arithmetic performance differences between children with and without mathematical 

difficulties are smaller after statistically controlling for differences in working memory capacity 
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(Geary, Hoard, Byrd-Craven, & DeSoto, 2004; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 

2007). However, while these correlational designs provide insight into the possible cognitive 

processes influencing mathematical development, these designs have had inconsistent success at 

demonstrating the specificity of working memory contributions. In one meta-analysis, the 

average correlations for working memory and mathematical tasks were quite similar across the 

phonological and visuospatial working memory tasks (r = .34 for visuospatial updating, r =.38 

for verbal updating, r =.34 for VSSP, and r =.31 for PL; Friso-van den Bos, van der Ven, 

Kroesbergen, & van Luit, 2013)1. Using a domain-specific model of working memory in which 

the domains are divided into verbal (mathematics tasks with verbal components like word 

problems), numerical (number related tasks like calculations), and visuospatial (mathematics 

tasks with visuospatial components like geometry) working memory, another meta-analysis of 

correlations between working memory and arithmetic tasks presented similar findings (r = .30 

for verbal working memory, r =.34 for numerical working memory, and r =.31 for visuospatial; 

Peng, Barnes, Namkung, & Sun, 2015). Thus, the correlational literature has not identified 

substantial differences in the correlations between arithmetic performance and different working 

memory task types.  

These findings imply that if there is specificity in the effects of different working 

memory components on arithmetic tasks, averaging correlations across studies does not reliably 

differentiate among them. Statistically controlling for facets of working memory simultaneously 

may not solve this problem, as the tasks used to measure each facet may differentially reflect 

 
1 Friso-van den Bos and colleagues (2013) used working memory components that were a combination of those 

posited by Baddeley and Hitch (1974 – the central executive, phonological loop, and visuospatial sketchpad) and 

Miyake et al. (2000 – updating, shifting, and inhibition). In our meta-analysis, we primarily use Baddeley and 

Hitch’s model. We concluded this model was more closely aligned with the dual task literature, because it more 

naturally makes a distinction between domains (verbal and spatial), it makes a distinction between remembering and 

manipulating information that applies to many of the working memory tasks used in the dual task literature, and 

because almost all of the secondary tasks would be categorized as updating under Miyake and colleagues’ model.  
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broader cognitive abilities (Schmidt, 2017). Taken together, this evidence is consistent with 

different aspects of working memory contributing similarly to arithmetic performance, but this 

method may also lack the required sensitivity to differentiate the contributions of different 

aspects of working memory to arithmetic performance.  

Interventions 

In order to better understand the unique contributions of working memory facets to 

arithmetic performance, we turn to evidence from experimental designs. One experimental 

approach to estimating the effects of working memory on mathematical cognition is cognitive 

training intervention. Typically, participants engage in an activity or game that targets either 

general or specific cognitive skills and are later measured on both cognitive abilities and school-

related achievement tests (Diamond & Lee, 2011; Jaeggi, Buschkuehl, Jonides, & Shah, 2012; 

Loosli, Buschkuehl, Perrig, & Jaeggi, 2012). For example, a recent study by Ramani et al. (2017) 

trained three different groups of kindergarteners using a working memory game condition, math 

game condition, and a no-contact control condition and found improvements in numerical 

processing for both intervention groups. In this particular study, the working memory game 

involved remembering the orientation and sequence of cartoon characters on a tablet screen. The 

number of characters required of the children to remember would increase with successful 

responses. 

This approach has produced a number of positive effects, and its design appears to be a 

straightforward approach for estimating causal links between working memory and arithmetic 

performance. However, a meta-analysis of training interventions by Melby-Lervåg and Hulme 

(2013) found short-term, near-transfer improvements in working memory ability, but 

inconsistent effects on substantively different cognitive tasks, including arithmetic. Subsequent 
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meta-analyses and a systematic review reported similar findings of strong near transfer effects of 

cognitive training, with limited evidence that these improvements transfer to a variety of 

cognitive tasks, including verbal ability, reading comprehension, and arithmetic (Sala & Gobet, 

2017; Simons et al., 2016; Melby-Lervåg, Redick, & Hulme, 2016). Notably, an evaluation of a 

school-based working memory training intervention in Australian first graders found persistent 

impacts on some working memory tasks at 6 and 12 months after training, but no evidence of 

transfer to math computation 12 or 24 months after training (Roberts et al., 2016).   

Unfortunately, such findings are ambiguous with respect to the influence of working 

memory on arithmetic performance, primarily because of debates about the breadth of the 

constructs being trained. Though WM training is expected to transfer across WM tasks, this often 

may not be the case (Colom et al. 2013). If training fails to generalize to even other WM tasks, it 

is not clear if general cognitive processes like WM have been improved at all, and by extension, 

the mechanism for transfer is not clear either. If training generalizes to arithmetic or other tasks, 

the possibility of effects via mechanisms other than working memory improvement (especially in 

studies including a passive control condition; Shipstead, Redick, & Engle, 2012) also calls into 

question simple interpretations of such effects as evidence for effects of working memory on 

arithmetic performance.  

Dual-Task Studies 

 Dual-task studies were developed and primarily used to investigate the role of WM and 

its components. In arithmetic cognition, dual-task experiments provide compelling evidence for 

some of the cognitive processes involved in a task, such as mental arithmetic, because they can 

be used to manipulate the roles of the different components of working memory across different 

arithmetic tasks (Logie & Baddeley, 1987). A dual-task design involves the completion of a 



 

 

14 

 

primary cognitive task (in this case mental arithmetic) while simultaneously completing a 

secondary distractor task (in this case working memory tasks). Participants’ accuracy and 

reaction time in a single-task condition are then compared to performance in various dual-task 

conditions.  

Dual-task experiments vary on the types of tasks required of the participant (for review, 

see Pashler, 1994). For example, a participant may be required to remember a string of letters (z, 

h, d) while simultaneously completing an addition task. The interference effect of a concurrent 

memory load on the speeded task is attributed to either a decrease in shared resource capacity 

within WM or more likely, rehearsing the memory load causes interference in the stimulus-

response mapping or preparation of the speeded task delays the retrieval process (Logan, 1978; 

1979). These designs generally produce small or null effects on performance across different task 

modalities (Baddeley, 1986).  

However, some studies have used secondary tasks with greater cognitive demands by 

instructing participants to randomly generate letters (Vreugdenburg, Bryan, & Kemps, 2003; 

Lemaire, 1996). As most commonly seen with central executive tasks, some designs have 

participants perform perceptual judgments concurrently with an arithmetic task. For example, a 

participant may perform an addition verification task (e.g., 5 + 6 = 11, indicating whether this is 

correct or not) while completing a task designed to load the central executive, such as pressing 

either a 1 or 2 key depending on whether they hear a high or low tone through a headset (e.g. 

Imbo & Vandierendonck, 2007a; Tronsky, McManus, & Anderson, 2008). With regards to dual-

task interference in arithmetic, adult participants may rely on a small number of strategies when 

performing arithmetic, with direct retrieval being the most common. Cognitive load induced by 

dual-task experiments may interfere with the efficiency of using such strategies in calculations, 



 

 

15 

 

especially those that require more steps (e.g. decomposition) or that rely on specific resources 

(Anderson, Reder, & Lebiere, 1996; Tronsky, 2005). 

Two competing general theories have been posited to explain why these interference 

effects occur in dual-task studies: serial processing and parallel processing. In serial processing, 

people are believed to have some sort of structural limitation or a central bottleneck, whereby the 

cognitive demands of the first cognitive process delay performance on the second (Ruthruff, 

Pashler, & Klaasen, 2001). Ruthruff, Pashler, and Klaasen (2001) and Ruthruff, Pashler, and 

Hazeltine (2003) provided experimental evidence that a structural limitation, rather than a 

voluntary postponement, underlies slowed performance in dual-task studies. Assuming there is a 

central bottleneck in processing, the memory load imposed by these secondary tasks (especially 

difficult ones) are likely due to interference in the preparation of the arithmetic task rather than 

the actual processing of arithmetic regardless of the modality.  

 Under the alternative graded capacity sharing model, cognitive processes are thought to 

be performed in parallel, but interference effects occur due to capacity limitations rather than 

with a bottleneck (Ruthruff, Pashler, & Hazeltine, 2003). A prediction specific to this model is 

referred to as crosstalk, wherein if memory’s limited capacity relies on different cognitive 

processes (e.g. visual and verbal processes), then completing two similar or within-modality 

tasks leads to a greater decrement in performance than completing two dissimilar tasks (Lien & 

Proctor, 2002; Miller, 2006; & Koch, 2009; Navon & Miller, 1987; Pashler, 1994). Crosstalk is a 

recurrent hypothesis in dual-task studies of arithmetic and working memory. For example, Lee 

and Kang (2002) hypothesized that arithmetic operations such as multiplication and subtraction 

relied on two separate encoding processes – verbal for multiplication and visuospatial for 

subtraction. Multiplication was more impaired by a verbal secondary task, while subtraction was 
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more impaired by a spatial secondary task, consistent with the hypothesis that separate facets of 

working memory were required for different arithmetic tasks.  While individuals may be able to 

encode stimuli from similar tasks simultaneously, crosstalk designs would predict that the 

processing of one of these tasks is harmful to the processing of the other (Treisman & Davies, 

1973). 

Although crosstalk is an influential hypothesis, specific findings have not always been 

reliably replicated. For example, the differential interference of PL and VSSP secondary tasks on 

multiplication and subtraction in the Lee and Kang (2002) study was partially replicated in 

another study in a Chinese, but not a Canadian sample (Imbo & LeFevre, 2010). Some of the 

apparently discrepant findings across studies may be related to confounding of working memory 

task type with the cognitive demands of the working memory task: A recent study found no 

selective interaction of working memory load type (PL and VSSP) with arithmetic conditions 

(subtraction and multiplication) once the task demands for arithmetic and working memory were 

matched on problem/set size and difficulty (Cavdaroglu & Knops, 2017). These findings do not 

falsify the crosstalk hypothesis, but they suggest that any such effects may be difficult to 

generalize across individuals and tasks. They also raise an alternative hypothesis: that the effects 

of hypothesized specific overlapping task demands on delays in performance may be small, 

especially in comparison to the general task demands inherent to the WM distractors themselves. 

Altogether, it is unclear exactly how specific mental arithmetic is in recruiting working memory 

resources among these dual-task designs.  

Current Study 

 The purpose of the current study is to test theories of arithmetic cognition and dual-task 

performance by meta-analyzing a body of research that has used the dual-task paradigm to study 
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the underlying cognitive processes involved in arithmetic. The aim of this meta-analysis is 

threefold. The first aim is to address the robustness of arithmetic performance’s reliance on 

working memory resources as predicted by dual-task studies by means of meta-analysis. The 

second aim is to address how the effects of working memory load on arithmetic performance 

might depend on factors typically manipulated in these dual-task studies: overlapping features 

characterized by the types of working memory load and arithmetic operations, task complexity 

characterized by the type of working memory task, level of expertise in arithmetic, as 

approximated by the age of participants, and author’s prediction about significant effects of WM 

load types as a proxy for the crosstalk hypothesis. The last aim is to in some way reconcile the 

discrepancy between previously reported correlational and experimental findings.  

Methods 

Inclusion criteria and screening  

A flow-chart of the identification and screening process can be found in Figure 1. 

Keyword searches were used in Google Scholar and ProQuest (databases used were ERIC (1966-

Current) and PsychINFO (1806-Current)) to obtain the sample of studies to be screened for this 

meta-analysis. The following search terms used included: ("working memory" OR WM OR 

"executive function" OR cognition OR visuospatial OR visu* OR spatial OR "phonological 

loop" OR "verbal" OR "slave system") AND (mathematics OR math OR arithmetic) AND ("dual 

task" OR paradigm OR interference OR suppression). In total, 1071 results were found from 

ProQuest and 5000 results were searched through Google Scholar. After removing duplicates, we 

were left with a total of n=4119 records. We then proceeded with pre-screening of titles and 

abstracts for relevance, which brought the number of records down to n=850 after title screening 

and then n=55 after abstract screening.  
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Studies were considered eligible for this meta-analysis if they met the following criteria. 

First, studies had to be of a dual-task design such as those described in Pashler (1994) and 

Ashcraft et al. (1992). Second, a primary arithmetic task must have been performed concurrently 

with a secondary working memory or cognitive load task such that accuracy or reaction time 

(RT) was measured. Third, the working memory or cognitive load task needed to be 

experimentally manipulated in either a within or randomized between subjects design, such that 

the same or comparable individuals also completed the math task under no (or different) 

cognitive load. Experimental manipulation of load allows for comparisons on arithmetic tasks 

with either participants’ baseline performance or the performance of a randomized control 

condition. Fourth, to be included in the database, studies had to report sufficient statistical 

information to enable the computation of an unstandardized effect size (i.e., group RT means). 

When information was not directly presented in a published manuscript, we asked authors whose 

papers were published within the last ten years for the data (n=5) – of which we received data 

from 2. Fifth, studies must only include participants who are children above the age of 5 or 

adults below the age of 65. Dual-task literature generally excludes pre-school-aged children as 

well as adults over the age of 65, because of the difficulty in obtaining reliable estimates within 

these age groups (most data are collected from undergraduate or middle-adult samples). Lastly, 

we excluded studies that used only participants who had been identified as having a learning 

disability or special need prior to participating in the study. 

The literature search yielded 55 records after abstract screening. Of these, 20 were excluded 

during the full text screening, because cognitive load was not experimentally manipulated. 

During final assessment for eligibility, 5 were excluded because studies included participants 

with either a math learning disability or autism spectrum disorder. Three studies were excluded 
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because the primary task was a working memory task rather than an arithmetic task. Six studies 

were excluded due to lack of available reaction time data. In total, 21 eligible papers containing 

400 effect sizes from 51 unique samples, obtained from 1,049 individuals, were included in these 

analyses.  

Coding  

The following variables were coded for the dataset. Study characteristics included: (a) 

whether the study design was within or between subjects, (b) a unique identifier for the 

experiment number, because some studies included multiple experiments with different samples 

or more than two conditions within the same experiment, (c) descriptions of the arithmetic and 

working memory tasks, (d) the arithmetic task type (i.e. exact addition, approximate addition, 

exact subtraction, exact multiplication, addition verification, and multiplication verification), (e) 

the number of items per condition, (f) the two conditions being compared (e.g. central executive 

cognitive load vs. control), (g) whether authors made a prediction about the significance of a 

certain condition, and (h) whether strategies were reported. Sample characteristics included (i) 

the mean age of the sample and (j) the type of sample (participants between the ages of 4 and 17 

were considered children and participants between the ages of 18 and 65 were considered 

adults). Coding for the WM distractor tasks can be found in the online supplemental materials, 

Table S3. Statistical characteristics included: (l) control and experimental sample sizes and (m) 

RT means and standard deviations to calculate effect sizes. While accuracy data were coded, 

they were not included in effect size analyses for 2 reasons: (1) mean accuracies were very high 

(around .90, as reported in Table 1) and (2) some studies (n=4) did not report accuracy data by 

condition, but every study included RT means. Analyses lacked sufficient statistical power to 

detect statistical interactions between every arithmetic type and every WM load type, so we used 
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author’s predictions as a proxy to measure the predicted non-additive effects of WM distractor 

and arithmetic types. Authors’ predictions were obtained by coding each of the 21 studies’ 

introduction and methods sections for statements hypothesizing the effect of WM distractor on 

arithmetic performance. For example, “Given these arguments, we predict that the CRT-R task 

will interfere more with both non-retrieval-based and retrieval-based subtraction problem solving 

than the SRT-R task because of its response selection component” (Tronsky, McManus, & 

Anderson, 2008, p. 194). These predictions were then dichotomously coded as having 

hypothesized effect of WM load or not. The passages justifying each coded prediction are 

included in the online supplementary materials, Table S2. 

Data Imputation and Transformations  

Reaction time is a commonly used dependent variable used to draw inferences about 

cognitive processing, but studies often do not account for residual processes involved with 

completing RT tasks, such as encoding the item and producing a response (Rouder, 2005). For 

example, Geary, Widaman, and Little (1986) estimated that encoding single digits in complex 

addition and multiplication problems required approximately 170 ms. To try to account for such 

residual processes, 200 ms was subtracted from all RT means prior to analyses. Missing standard 

deviations for reaction times that were in studies older than ten years or those which we could 

not obtain from the authors were imputed by regressing RT standard deviations on RT means 

and the square of RT means. Imputing the missing standard deviations was deemed appropriate 

because of the high predictability of standard deviations from a two predictor model:  

SDt = b0 + b1Meant + b2Meant
2 + et 

SDc = b0 + b1Meanc + b2Meanc
2 + ec 
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In these models, the subscript t indicates values from the experimental conditions across study, 

and the subscript c indicates values from the control conditions across studies. The regression 

equations for standard deviation used a second order polynomial term to account for the non-

linear association between means and standard deviations across effects. The models explained 

the vast majority of variance in both the control and experimental conditions (control: r2 = .92; 

experimental: r2 = .84). Scatterplots with best fitting lines and polynomials appear in the online 

supplementary materials, Figure S1. In all, 168 (84 in the experimental conditions and 84 in the 

control conditions) standard deviations (or 21%) were missing from the data. Only those 

standard deviations with an available mean RT (n = 164 standard deviations: 82 in the 

experimental conditions and 82 in the control conditions) were imputed, while the remaining 4 

standard deviations were left missing. Imputation led to a small number of predicted negative 

values of experimental standard deviations (n = 6). We set these values to the minimum observed 

(i.e., non-imputed) standard deviation of experimental conditions, which was 58.19 ms. As 

explained below, the meta-analysis was re-run with non-imputed values only to test the 

robustness of our main findings to these data processing decisions. Initial histograms revealed 

the RT data to be positively skewed (Figure S2). Further, there was a substantial relation 

between RT means and RT experimental effects (b = .090, se = .023, p < .001; Figure S5, left 

panel). In other words, secondary tasks resulted in more absolute slowing for arithmetic tasks 

that took longer to complete. In the dual-task arithmetic literature, we found little discussion of 

the functional relation between arithmetic speed and the presence of a secondary task. 

Specifically, did the secondary task slow each trial by a short but constant amount of time for 

participants to encode and rehearse the stimulus, or did the secondary task slow the rate of 

mental arithmetic proportionally, such that more difficult problems would be more slowed than 
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easier problems? In the former case, one parameter of interest is a constant, which represents the 

average amount of time that each trial is slowed. However, if arithmetic slowing is hypothesized 

to be proportional to the amount of time the arithmetic task takes to perform in the absence of a 

secondary task, a more useful parameter of interest is the percentage by which the average trial is 

slowed in the presence of a secondary task. Based on our reading of the literature, authors seem 

to have the latter case in mind, whereby keeping information from the secondary task in working 

memory slows performance on the arithmetic task. Therefore, we used a logarithmic 

transformation in our main specification to better capture the underlying cognitive effects of 

secondary tasks. In addition, we also report an analysis of untransformed RT means in an 

alternative specification (Table S1, No Log). We performed logarithmic transformations of the 

RT data using Method 1 from Higgins, White, and Azures-Cabrera (2008). This method assumes 

log-normal distributions with different standard deviations. The approximate transformations 

were then converted to log base 10 for interpretability in our analyses by dividing these means 

and SD by the constant, ln(10). Following the transformation, we again checked the distributions 

of RT means, which were substantially less skewed (Figure S4). Average RTs and effect sizes 

were no longer substantially associated (b = .020, se = .019, p = .30; Figure S5, right panel).  

Effect Size Calculation 

Following Method 1 from Higgins and colleagues (2008), we computed the raw and log 

mean differences in the experimental and control conditions. The equation for calculating the 

standard error of these differences is shown below for between-subjects designs: 

Between: SEdiff = √(SDc
2/nc + SDt

2/nt) 

However, 17 out of the 21 eligible studies were conducted within participants, requiring a 

measure of covariance between control and experimental scores to compute the standard error of 
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these effects. Because this information was not directly reported in most studies, we computed 

within-subjects standard errors under three different assumptions of correlated performance 

across conditions: r = .2, .5, and .8. These correlations were then each multiplied with the control 

and experimental RT standard deviations to create 3 measures of covariance, using the following 

equation: 

Within: SEdiff = √(SDc
2/n + SDt

2/n – 2*covtc/n) 

Analyses 

 The metafor package in R was used to conduct this meta-analysis (Viechtbauer, 2010). A 

multilevel random-effects meta-analysis of these data was used to estimate and account for the 

amount of heterogeneity between papers and between different samples included in the same 

paper. Effect sizes were modeled as nested within samples, which were nested within papers 

across all of these specifications. We performed several sensitivity analyses, including an 

alternative estimation strategy of robust variance estimation adjustment of the standard errors 

using the robumeta package in R (Park & Beretvas, 2018; Fisher & Tipton, 2015). All 

specifications included some of the same characteristics: Nine specifications (1 main, 3 

alternatives, 1 PEESE (precision-effect estimate with standard errors) adjustment, 4 robustness 

checks) were used in this analyses and are as follows: (1) Main=assumed within subject 

correlation=.5, (2) Alt 1=assumed within subject correlation=.2, (3) Alt 2=assumed within 

subject correlation=.8, (4) Alt 3=assumed within subject correlation=.5 and RT data restricted to 

≤ 5000 ms. Four other alternative specifications used for sensitivity analyses included: (6) 

Nonimputed=analyses without SD imputations, (7) RVE=standard errors adjusted using robust 

variance estimation with small sample correction, (8) Adult=analyses included only studies with 

adult participants, (9) No Log=same as Main model but without log transformations, and (10) 
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PEESE=PEESE adjusted model, assumed within subject correlation=.5.. Specifications Main, 

Alt 1, and Alt 2 reflected the three assumed correlations used to calculate the standard errors for 

within-subject studies. Alt 3 used a subset of the RT data, such that only RTs ≤ 5000 ms were 

included for analyses, because several child effect sizes had much larger RT means (Figure S4), 

and because of the possibility that cognitive processing lasting longer than 5000 ms could 

plausibly be differentially affected by a secondary task. We ran the latter 4 alternatives 

specifications using the assumed correlation structure of the Main model as robustness checks. 

The Nonimputed models used data without the SD imputations to examine any potential bias 

from these estimates. Robust variance estimation (RVE) models were used as an alternative to 

multilevel modeling to account for the non-independence of observations within samples and 

papers. Finally, Adult models that only contained adult participants were included, because of 

the small sample of child effect sizes (n=36) and some effect sizes with unreported participant 

age (n=7). 

 To address the second aim of this meta-analysis, 5 potential moderators of the overall 

effect were tested to determine differences between subgroups of samples. The first moderator 

examined was participant age (adult vs. child), as a proxy for expertise in arithmetic. The second 

moderator was working memory load type: central executive, verbal, visuospatial, or spatial. The 

third moderator was arithmetic problem type: addition verification, exact addition, approximate 

addition, exact multiplication, exact subtraction, or multiplication verification. The last 

moderator was the authors’ predictions of whether load had significant effects on arithmetic 

performance (given the very large number of possible interactions between arithmetic problem 

type and working memory load type, this was the method we chose for examining the strength of 

evidence for crosstalk). Although hypothesized cases of crosstalk make more complex 
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predictions, such as interactions among secondary task modality (e.g., visual vs. verbal), type of 

arithmetic (e.g., multiplication vs. subtraction), and presentation format (e.g., vertical vs. 

horizontal), a complex set of such instances was predicted by authors corresponding to a large 

number of parameters to test. Thus, we chose a broader definition of crosstalk captured through 

the authors’ predictions instead.  The moderators were examined across the nine specifications.  

Results 

Publication Bias 

A funnel plot of the distribution of effect sizes was used as a visual aid to detect 

publication bias (Figure 2) (Egger et al. 1997). Effect estimates from studies are plotted against a 

precision measure from those studies (e.g. standard error). Estimates of effects from smaller 

studies are more variable than those from larger studies leading to larger amount of scatter 

towards the base of the plot. In the absence of bias, a symmetrical funnel shape is observed. 

However, asymmetrical distribution of points around the average RT effect indicate possible 

publication bias.  The main specification (assuming a within subject correlation= .5) was used. 

The effect estimates (log difference in RT means) were plotted along the x-axis while the 

standard errors of the effect estimates were plotted along the y-axis. The vertical line in the 

middle of Figure 2 represents the location of the estimated effect of a working memory task on 

performance (b = .074). Examination of the dispersion of effect sizes in the funnel plot revealed 

some asymmetry – specifically, for smaller studies – suggesting the possibility of some 

publication bias. 

The PEESE test is a meta-analytic approach to detecting publication bias using 

metaregression. PEESE (precision effect estimate of standard error) uses a weighted-least-

squares regression model where the variance (squared standard errors) of each sample is used to 

predict the distribution of effect sizes (Stanley & Doucouliagos, 2014). Assuming a true effect, 
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publication bias is stronger for studies when the standard error is large and weaker when the 

standard error is small. The PEESE model revealed a smaller, non-significant effect of a working 

memory task on performance (b1 = .031 se = .017, p = .070), and a moderate degree of 

publication bias (QM = 24.11, p < .001) (Table S1, PEESE). 

Summary Effect Size 

The main model specification (assumed within subject correlation=.5) produced a 

summary effect of b = .074, z = 5.21, p < .001 across 400 comparisons, which suggests a .074 

difference in log RT. An effect of this size corresponds to an 18.7%2 slowing of performance for 

participants in experimental conditions where they are performing dual-tasks compared to 

control conditions where arithmetic was tested by itself. This effect remained stable across the 

six other specifications including the Nonimputed, RVE, and Adult models (Table 2). However, 

as described above the PEESE adjustment decreased the estimated effect to b = .031, z = 1.81, p 

= .070, which equates to a non-significant 7.3% decrease in speed. However, this model obscures 

important heterogeneity in the estimates, which was explored in the following moderation 

analyses. 

Moderators 

 Participant age, working memory task type, arithmetic task type, and authors’ prediction 

of whether load would be significant were entered separately as moderators in different models 

(Table 3). Results of sensitivity analyses for moderators can be found in the online 

supplementary materials (see Table S1). Across most specifications, working memory task type, 

arithmetic task type, and authors’ predictions statistically moderated differences in log reaction 

 
2 18.7% and subsequent percentage effects were calculated by taking 10b where b (e.g. .074) is 

the coefficient estimate. 



 

 

27 

 

times, suggesting that differences in RT performance are dependent on the type of working 

memory load (main specification: Q(2) = 796.04, p < .001), the type of arithmetic problem (main 

specification: Q(5) = 12.11, p = .033), and authors’ predictions (main specification: Q(1) = 

265.14, p < .001). Compared to other moderators, working memory load type explained the most 

heterogeneity (22% of the total heterogeneity) across effect sizes. This finding was largely robust 

across specifications.  

Furthermore, dual-tasks involving the central executive appear to have the most impact 

out of all load types (CE: b = .146, z = 12.35, p < .001, CI [0.123, 0.169]) (Table 3, Column 1, 

WM load type). Indeed, across all specifications working memory load reflected a strong effect 

of the central executive (a 40% decrease in speed) with much smaller effects for the other load 

types (Table 3, Column 1, WM load type). For example, verbal tasks generated an effect of b = -

.115, z = -27.64, p < .001, CI [-0.123, -0.107] in relation to the intercept (CE); meaning an effect 

of verbal distractors on performance of .031 or a 7.4% decrease in speed for dual-tasks with 

verbal distractors (Table 3, Column 1, WM load type). The strong effect of CE was robust, 

showing similar estimates across the sensitivity analyses.  

Of the various arithmetic problem types, addition and multiplication verification tasks 

had consistent effects on arithmetic performance across most specifications (reference task, 

addition verification: b = .077, z = 2.53, p = .011, CI [0.018, 0.137], with more slowing for 

multiplication verification: b = .046, z = 2.99, p = .003, CI[0.016, 0.076]) (Table 3, Column 1, 

Arithmetic problem type)3. On average, participants performing multiplication verification tasks 

were slowed 13.3% more than participants performing addition verification tasks. Although 

 
3 However, it should be noted that both verification tasks were statistically significant only after 

they were log-transformed (Table S1, Column 6, Arithmetic problem type). 
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these differences were smaller than the differences among working memory load types, the effect 

of arithmetic problem type was robust to the inclusion of controls for working memory load type 

(addition verification: b = .131, z = 5.50, p < .001, CI [0.084, 0.178], multiplication verification: 

b = .044, z = 2.99, p = .003, CI [0.015, 0.074]; Table 3, Column 1, WM load + arithtype). 

Another metaregression model was analyzed to test whether differences in RT 

performance were driven by authors’ predictions for significance, which measured the predicted 

non-additive effects of WM distractor and arithmetic types. This analysis revealed a highly 

significant effect of authors’ predictions across most specifications (b = .072, z = 16.28, p < .001, 

CI [.063, .081], Q(1) = 265.14; Table 3, Column 1, sig predict). On average, authors’ predictions 

predicted an 18.0% decrease in performance between experimental and control conditions in 

dual-task studies. To further test whether predicted effects were driven by main effects of WM 

load and arithmetic task types, another metaregression model was estimated using authors’ 

predictions while controlling for WM load and arithmetic task type. These analyses revealed a 

smaller but usually still significant effect of authors’ prediction of significance controlling for  

WM load type and arithmetic task type (b = .023, z = 4.58, p < .001, Q(8) = 820.41, p < .001; 

Table 3, Column 1, sig predict + WM + arithtype). Expressed differently, the authors’ 

predictions were associated with a 18.0% decrease in RT performance, but this dropped to 5.3% 

after controlling for WM and arithmetic task types, suggesting that authors’ predictions about the 

effect of load likely contribute somewhat to slower arithmetic performance, but this is somewhat 

confounded with the type of working memory and arithmetic tasks. Importantly, the effect of 

unpredicted effects of CE distractors on addition verification tasks (b = .107, z = 4.33, p < .001, 

CI [.058, .156]) was still significant and larger than the remaining effect of authors’ predictions 



 

 

29 

 

with a 27.9% slowing in arithmetic performance (Table 3, Column 1, sig predict + WM+ arith 

type).  

Discussion 

 We conducted a meta-analysis for the purpose of assessing how robust the speed of 

solving arithmetic problems is affected by changes in WM resources as predicted by dual-task 

studies. Consistent with our predictions, we found strong evidence for the influence of 

performing a secondary WM task on arithmetic performance. The main effect of WM distractors 

on arithmetic performance in dual-task studies was robust across all 9 of our specifications. 

These findings suggest that arithmetic performance relies heavily on WM, specifically central 

executive resources.  

Among the moderators, working memory load type was the most substantial moderator 

of performance decrements, followed by the type of arithmetic operation, and authors’ 

predictions. Tasks taxing the central executive specifically incurred greater decrements in 

performance than any other WM load type, indicating the importance of considering the general 

cognitive complexity of the secondary task when predicting its influence on primary task 

performance. This finding was consistent with previous literature citing the overall importance of 

the central executive/executive functions to working memory (Engle, 2002; Engle & Kane, 

2004). Assuming the central bottleneck theory to be correct, these more difficult cognitive loads 

may not be competing for shared WM resources but rather there is delay in preparation or switch 

to arithmetic processing. In comparison, the PL and VSSP tasks showed much smaller impacts 

than CE tasks. Consequently, the parallel processing theory is not entirely ruled out, as the 

impact of PL and VSSP tasks would imply processing interference within-modality. Of course, 

the larger effects of CE tasks may also be indicative of a cognitive bottleneck. The null effect of 

age was somewhat surprising given its prevalence in the literature. However, it should be noted 
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that the number of child participants was quite small compared to adults (see Table 1). 

Furthermore, both distractor and arithmetic tasks did vary in the number of observations across 

our models which led some categories to have higher standard errors (see Table 3), so these 

estimates are less precise. Variability in precision across estimates would imply that greater 

scrutiny is required for the categories with fewer observations. For example, VSSP secondary 

tasks had been used in fewer studies, and therefore estimates are less precise for this category. 

However, despite a higher standard error in our analyses, the VSSP load estimate was still 2 

standard errors below the estimate for CE load (Table 3, Column 1, WM load type). 

Importantly, this meta-analysis’s finding that CE tasks have a much greater impact on 

arithmetic processing than other WM load types appears to contrast with findings from prior 

meta-analyses based on correlations between working memory and math tasks. These prior meta-

analyses reported very similar correlations across working memory facets (Friso-van den Bos, 

van der Ven, Kroesbergen, & van Luit, 2013; Peng, Barnes, Namkung, & Sun, 2015).A possible 

explanation for this discrepancy is that factors common to working memory tasks, such as 

maintaining a constant memory of a single element (number or letter) or an element’s position in 

space (carrying values or grids) inflate the correlations between arithmetic performance and 

visuospatial and phonological working memory. It may also be possible that the specific 

encoding behind similar modality tasks, especially subcomponent WM tasks, are being 

suppressed by their relation to the central executive. For example, performance on a subtraction 

task following a VSSP matrix task may be impacted by need to switch between tasks in addition 

to requiring similar resources. Dual-task measures can be viewed as forms of inhibition or 

shifting tasks, which may indicate that the CE is being used in addition to the PL or VSSP.  

Future work might apply methods that attempt to make the magnitudes of effects from 
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correlational and experimental studies more directly comparable by using regression-adjusted 

estimates and intervention effect sizes (e.g., Bailey, Duncan, Watts, Clements, & Sarama, 2018) 

to studies of working memory and arithmetic to test this prediction directly.  

We attempted to estimate crosstalk or the non-additive effects of WM distractors on 

arithmetic performance by coding ’ predictions of the effect of specific WM secondary tasks on 

arithmetic performance. The effects of these predictions were nonzero, but after accounting for 

the main effects of WM and arithmetic load type, the author-predicted effects were not 

substantially larger than the non-predicted effects. Even these may be somewhat over-estimated, 

because almost all studies were conducted before study preregistration was encouraged in 

psychology. Thus, it is possible that these predictions could have been changed over the course 

of data-collection or through pilot testing, inflating the estimated effect of crosstalk when 

operationalized as authors’ predictions. We realize that research teams with more specific 

hypotheses about crosstalk may prefer to code predicted effects in a different way. Our hope is 

that, by publishing the meta-analytic database, this will allow others to test these hypotheses in 

future work. Taken together, while having to process similar modalities in mental arithmetic may 

explain some of the underlying processes behind mental arithmetic, general structural limitations 

brought on by the general demands of each distracting task may deserve additional scrutiny, 

relative to the crosstalk effects often predicted in this literature.  

 Notably, our preliminary analyses indicated that the detrimental effects of secondary WM 

tasks on performance were strongly associated with the average RT on the arithmetic task. In 

other words, RT in arithmetic tasks increased more under more difficult secondary WM tasks. 

This finding mirrors Salthouse’s (1988) findings that aging-related performance deficits are 

higher on more complex cognitive tasks. Our findings also provide convergent evidence for 
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Salthouse’s theory that changes in general cognitive resources exert the largest effects on 

complex cognitive tasks. Specifically, in this meta-analysis, for participants of the same age 

taking the same tests on the same day, the proportionality of WM demands is larger for more 

complex arithmetic tasks when using an experimental research design. 

Limitations & Future Directions 

 One of the key limitations was that our analyses lacked sufficient statistical power to 

detect smaller effects of the interactions between arithmetic and WM load types, prompting us to 

use authors’ predictions as a proxy for crosstalk. This may hide important heterogeneity in 

crosstalk effects, with some being substantial and others null. Further, as noted, a moderate 

degree of publication bias was present in the eligible studies; this may have inflated the apparent 

effect of authors’ predictions.  

  As stated previously, accuracy data were not always available and mean accuracy scores 

were consistently high leading us to solely use reaction time data in our analyses. We recognize 

that there is a speed-accuracy trade-off meaning participants will sacrifice time in order to 

correctly answer questions or vice-versa. For example, Kalaman & LeFevre (2007) reported 

more errors in two-digit plus two-digit addition with carrying vs. no carrying but found no 

significant differences in speed. These findings suggest that such speed-accuracy trade-offs in 

dual-task studies could potentially reduce an estimated effect of working memory on mental 

arithmetic based on RT data alone. 

We recognize that Baddeley’s multicomponent model of WM is one of several models 

used to describe the relations between memory processes. This model is commonly used in the 

arithmetic dual-task literature; thus, we chose to use similar terminology as it more closely 

aligned with those designs. However, more recent research (Friso-van den Bos, van der Ven, 
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Kroesbergen, & van Luit, 2013; Christophel et al., 2017) as well as our own findings suggest that 

the use of this model in the dual-task literature lacks appropriate discussion of the central 

executive’s role interacting with the more specialized domains. Moreover, other models of WM 

have proposed promising alternative perspectives on the role of WM and executive functioning 

(see Miyake et al., 2000; Diamond & Lee, 2011; Engle, 2002). These models were introduced 

previously and most if not all would point to the strong influence of general cognitive ability 

within EF or central executive functions driving dual-task performance rather than specific 

modalities highlighted in Baddeley’s model. Indeed, most would argue that dual-tasks involve 

quickly switching between mental tasks. Results are also consistent with Engle’s (2002) model 

which posits attention rather than capacity as the limiting factor in performance. This model 

would predict dual-task performance to be reliant on more domain-general processes rather than 

domain-specific components. Altogether, many other perspectives of EF and working memory 

are in line with our conclusions about the importance of central executive functions in mental 

arithmetic. 

Most of the studies in our sample did not report data on participant strategy use. 

Aggregating reaction time data across different arithmetic strategies obscures information about 

the cognitive processes underlying performance (Siegler, 1987). Because both the frequency and 

efficiency of arithmetic strategy use are correlated with working memory capacity (Bailey, 

Littlefield, & Geary, 2012; Geary et al., 2004, 2007), understanding whether working memory 

distractors influence performance via strategy changes or slowing within strategies would be 

theoretically useful. 

Because identical tasks were generally not used across age groups, our analyses may have 

been unable to detect a moderating effect of age, despite the strong support for this prediction in 
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the literature. Larger dual-task studies with child participants will be required to test for 

hypothesized developmental differences in the nature of working memory effects on arithmetic 

performance (Meyer, Salimpoor, Wu, Geary, & Menon, 2010; for review, see Anderson, 1987).  

Because cognitive load was not matched across primary arithmetic or secondary WM 

tasks types, the moderating effects of these task types may reflect some combination of the kinds 

of demands and the magnitudes of demands of different tasks. Based on descriptions of the 

different WM tasks, we suspect the CE tasks differed in their magnitudes of general cognitive 

demands, but future work that experimentally manipulates the magnitude of demands in the 

secondary tasks would be useful for testing the importance of this construct directly. For 

example, a recently used approach of systematically equating demands of WM and arithmetic 

tasks through the use of an adaptive psychophysical staircase to determine appropriate span sizes 

per individual (Cavdaroglu & Knops, 2017) is a useful model for separating the effects of 

crosstalk from general task demands. 

Finally, like the previous correlational work on arithmetic and WM, the exact constructs 

being measured or manipulated in the dual-task literature are not wholly clear and warrant 

further attention. For example, it is not clear whether variations in working memory task type or 

complexity within individuals are qualitatively similar approximations of between-individual 

differences in working memory capacity. Fully reconciling these two literatures would require 

more precise models of the processes and parameters underlying both the correlations and dual-

task effects. 

Conclusion 

 Our meta-analysis indicates that the dual-task literature provides strong evidence that 

mental arithmetic relies on working memory resources. We hope that further work will attempt 
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to build on these findings by both attempting to quantify the underlying domain-specific and 

domain-general effects of working memory on arithmetic and by building quantitative models 

that will reconcile the discrepancy between correlational and experimental literature.
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Appendix 

Table 1. Descriptive statistics of analysis variables 

  N Count 

Age  400   
   Adult   359  
   Child   36  
   NA1   7  
Within vs. Between Subjects 400   
   Within   328  
   Between   72  

Working Memory task type 400   

   CE   169  

   Verbal   178  

   VSSP   53  
Arithmetic task type 400   
   Add verification  83  
   Approximate addition  8  
   Exact addition  211  
   Exact multiplication  22  
   Exact subtraction  22  
   Mult verification  48  
   NA   6  

  mean sd 

Sample Size 20.8 13.1 

Accuracy    

   Experimental  .89 .10 

   Control  .94 .05 

RT   
   Experimental  3014 2894 

   Control  2360 2657 

RT SD   
   Experimental  2038 2261 

   Control  1263 1577 

Log RT   
   Experimental  3.28 0.32 

   Control  3.19 0.31 

Log RT SD   

   Experimental  0.19 0.08 

   Control  0.17 0.06 

Number of observations N=400   
Note. N is number of effects. Frequencies calculated from non-

missing RT data. 1 One study did not report age of participants 
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Table 2. Main effects by specifications 

 k b 10b Q QE QM 

Main 400 .074*** 1.187 3847.37***   

  (.014)     

Nonimputed 318 .073*** 1.183 3586.29***   

  (.016)     

RVE 400 .091*** 1.232    

  (.006)     

Adult  357 .077*** 1.193 3425.04***   

  (.014)     

Alt1 400 .074*** 1.187 2544.01***   

  (.014)     

Alt2 400 .074*** 1.185 8667.91***   

  (.015)     

Alt3(subset) 339 .077*** 1.193 2809.28***   

  (0.013)     

No Log 400 318.609***  2909.20***   

  (74.451)     

PEESE 400 .031 1.073  3606.48*** 24.11*** 

  (0.017)     

Note. SE in parentheses. QE = test for residual heterogeneity. QM = test of 

moderator. Main: assumes within subject correlation = .5, Nonimputed: Without SD 

imputations, assumes within subject correlation= .5, RVE: Robust Variance 

Estimation for small samples (used with Main specification), Adult: subset of data 

that excludes child and no age data, Alt1: assumes within subject correlation = .2, 

Alt2: assumes within subject correlation = .8, Alt3: Subset of data where only RT’s 

<=5000 ms are kept, PEESE: corrects for publication bias, assumes within subject 

correlation = 0.5. No Log: Analyses conducted without log transformation, assumes 

within subject correlation =.5 * p<.05 ** p<.01 *** p<.001 
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Table 3. Moderator analyses of working memory and arithmetic performance 

Main model  Alt 1  Alt 2  Alt 3  

 

k/  

Qm b 

k/ 

Qm b 

k/ 

Qm b 

k/ 

Qm b 

Age 393  393  393  339  

   Intercept(adult) 0.38 .076*** 0.34 .076*** 0.51 .077*** 2.89 .071*** 

  (.016)  (.016)  (.016)  (.012) 

   child  -.027  -.026  -.031  .085 

  (.044)  (.044)  (.048)  (.050) 

WM load type 400  400  400  339  

   Intercept(ce) 796.04*** .146*** 528.81*** .146*** 1775.14*** .145*** 586.04*** .140*** 

  (.012)  (.012)  (.012)  (.012) 

   verbal  -.115***  -.116***  -.113***  -.102*** 

  (.004)  (.005)  (.003)  (.004) 

   vssp  -.128***  -.129***  -.127***  -.122*** 

  (.007)  (0.008)  (.004)  (.007) 

Arithmetic problem type 394  394  394  333  

   Intercept(add verification) 12.11* .077* 11.31* .077* 14.61* .077* 13.18* .074** 

  (.031)  (.030)  (.031)  (.023) 

   approx addition  -.041  -.038  -.049  N/A 

  (.080)  (.078)  (.086)  N/A 

   exact addition  -.001  -.001  -.002  -.012 

  (.037)  (.036)  (.037)  (.029) 

   exact multiplication -.027  -.028  -.026  -.038 

  (.043)  (.043)  (.044)  (.034) 

   exact subtraction -.010  -.010  -.011  -.022 
 

 (.043)  (.042)  (.044)  (.034) 

   multiplication verification .046**  .046***  .046***  .045** 
 

 (.015)  (.015)  (.015)  (.015) 

WM+arith type 394  394  394  333  

Intercept(ce+add ver) 802.31*** .131*** 533.95*** .131*** 1783.45*** .130*** 592.49*** .125*** 

  (.024)  (.024)  (.024)  (.023) 

   verbal  -.115***  -.116***  -.113***  -.102*** 

  (.004)  (.005)  (.003)  (.004) 

   vssp  -.129***  -.129***  -.128***  -.125*** 

  (.007)  (.009)  (.005)  (.008) 

   approx addition  .013  .016  .005  N/A 

  (.053)  (.051)  (.059)  N/A 

   exact addition  .024  .026  .022  .029 

  (.029)  (.029)  (.029)  (.029) 

   exact multiplication  -.010  -.013  -.007  -.012 

  (.033)  (.033)  (.033)  (.032) 

   exact subtraction  .006  .004  .008  .004 
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  (.032)  (.032)  (.033)  (.031) 

   multiplication verification .044**  .044**  .046**  .044** 

  (.015)  (.015)  (.015)  (.015) 

Sig Predict 400  400  400  339  

   Intercept(no) 265.14*** .021 170.10*** .021 611.36*** .022 152.63*** .013* 

  (.014)  (.014)  (.014)  (.013) 

   yes  .072***  .072***  .071***  .061*** 

  (.004)  (.006)  (.003)  (.005) 

Sig + WM + arith type 394  394  394  333  

   Intercept (no+ce+add ver) 
820.41*** 

 .107*** 

542.70*** 

 .108*** 

1838.28*** 

 .104*** 

596.10*** 

 .112*** 

  (.025)  (.025)  (.025)  (.024) 

   sig(yes)  .023***  .021***  .024***  .012* 

  (.005)  (.006)  (.003)  (.005) 

   verbal  -.106***  -.108***  -.104***  -.097*** 

  (.005)  (.006)  (.003)  (.005) 

    vssp  -.117***  -.118***  -.114***  -.118*** 

  (.008)  (.009)  (.005)  (.008) 

   approx addition  .013  .017  .006  N/A 

  (.056)  (.053)  (.062)  N/A 

   exact addition  .026  .028  .024  .030 

  (.029)  (.029)  (.030)  (.029) 

   exact multiplication  -.007  -.010  -.004  -.010 

  (.033)  (.033)  (.034)  (.032) 

   exact subtraction  .009  .007  .011  .005 

  (.033)  (.033)  (.034)  (.031) 

   multiplication verification .045**  .044**  .046**  .044** 

  (.015)  (.015)  (.015)  (.015) 

Note. Model names are bolded. The variable names following each model name are the moderators included in that model. The first row of each model represents the 

estimated effect at the reference group, which is given in parentheses after Intercept, for each model. Standard errors are in parentheses. k = number of effect sizes included in 

the model; Qm = Q test for heterogeneity explained by the predictors (total heterogeneity for each specification appears in Table 2), ce=central executive, vssp=visuospatial 

sketchpad, approx=approximate, add ver=addition verification, sig(yes)=author made a prediction on significance. Main: assumes within subject correlation = 0.5; Alt1: 

assumes within subject correlation = 0.2; Alt2: assumes within subject correlation = 0.8; Alt3: Subset of data where only RT’s <=5000ms are kept, assumes within subject 

correlation=.5 
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Figure 1. Flowchart of Literature Search and Screening Process.

  



 

41 

 

Figure 2. Funnel Plot of Log RT Differences. 

 
 

 

Note: Standard errors were calculated using the assumptions from the main specification, 

assuming a within subject correlatio
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Differential influences of visuospatial and phonological resources on mental arithmetic 

Evidence from cognitive psychology and neuroscience suggests domain-specific 

components of working memory may contribute to differences in mental arithmetic performance, 

but several important questions remain unanswered. A number of imaging and lesion studies 

suggest the parietal regions are heavily involved with the process of mental arithmetic, 

specifically addition and subtraction as well as with visuospatial processes (Dehaene & Cohen, 

1997; Dehaene et al., 2003; Prado et al., 2011). Meanwhile, additional evidence suggests that 

another arithmetic operation, namely multiplication, relies on different neural substrates found 

within the perisylvian areas which have been found to modulate phonological and language 

processes (Dehaene & Cohen, 1997; Dehaene et al., 2003; Kawashima et al., 2004, Prado et al., 

2011). These would suggest that visuospatial processes are involved with subtraction while 

phonological resources are involved in multiplication; however, behavioral experiments do not 

paint this exact picture.  

The current study will review these approaches and their findings and describe our 

current approach to investigate the unique contributions of working memory within mental 

arithmetic. An influential study by Lee & Kang (2002) investigated a differential effect of 

working memory resources on arithmetic operation type. In their study, participants were given 

single-digit multiplication and subtraction trials where answers were typed in using a number 

pad. Participants performed arithmetic in three conditions: with no secondary task, while 

repeating a non-word string (phonological (PL) load), or while remembering the shape and 

position of an object (visuospatial (VSSP) load). They reported very large effects indicating that 

Korean undergraduates’ multiplication performance was worse than subtraction under 
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phonological load (Cohen’s d = 2.394; Table 1). A similarly large but opposite effect was 

reported where subtraction performance was worse than multiplication under visuospatial load (d 

= 3.35). Interestingly, the effect of PL load on subtraction relative to subtraction alone was 

almost 0, as was the effect of VSSP load on multiplication relative to multiplication alone. They 

predicted arithmetic operations to be facilitated through specific modular representations; that is, 

multiplication is enacted through an auditory-phonological encoding while subtraction is enacted 

through an analog magnitude system like a mental number line. This line of reasoning is 

consistent with parallel processing theories of dual-task performance which ascribe differences 

in reaction time and accuracy performance to domain-specific resources competing for space 

within the working memory (Navon & Miller, 1987; Pashler, 1994). In other words, the more 

similar two tasks appear with regards to the overlap between the demands of the primary task 

and the modality imposed demands of the secondary task, such as a visuospatial span task with a 

visual imagery task, the more interference we should observe.  

Several studies have used similar methods; although some have replicated the direction of 

these effects, none have produced the pattern of opposite effects with magnitudes approaching 

the size in the original Lee & Kang (2002) study. Strikingly, while there is variation in the kinds 

of tasks and samples among others, the original study does not seem to be sufficiently different 

in its design that would lead to the discrepancy in effect sizes (Table 1). Neither of the two 

partial replications used an entirely within-subject design like Lee & Kang (2002), which could 

have potentially led to the discrepancy in effect sizes. The current paper will go beyond Lee & 

 
4 Cohen’s d was calculated by hand. RT means were taken from reported values within Lee & Kang while SD were 

calculated from reported standard errors (SD = SE*√𝑛). Thus, we used the following values: multiplication under 

phonological load (M = 1169.5, SD = 82.85); subtraction under phonological load (M = 993, SD = 63.56). Values 

were then input into the classic Cohen’s d formula: d = 
𝑀1−𝑀2

𝜎
 , where 𝜎 is the pooled standard deviation of the two 

means: pooled SD = √
𝑆𝐷1

2+𝑆𝐷2
2

2
 . The same method was used to calculate the effect size for visuospatial load. 
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Kang (2002) and the previous replication attempts by using an entirely within-subjects design 

and by using a larger sample size than any of the previous studies. Imbo & LeFevre (2010) 

attempted to replicate the findings using a mix of native Chinese and Canadian participants to 

perform arithmetic problems under load (see Table 1 for details). They found differential impacts 

of phonological and visuospatial loads in Chinese students attending a Canadian university but 

not in other Canadian students. However, the interaction was only found in multiplication errors 

such that multiplication was less accurate in the Chinese students compared to Canadian students 

when under phonological cognitive load. While the effect of visuospatial load was not found in 

subtraction, Chinese students exhibited decreased performance compared to Canadian students 

on the secondary visuospatial task when arithmetic was presented vertically. While 

multiplication was affected by PL load, subtraction should have been impaired by VSSP load 

due to students having abacus training. Differences in performance were attributed to cultural 

differences in education, such as the use of the rhyming song many Chinese students use to learn 

multiplication which requires phonological resources (Imbo & LeFevre, 2010, p. 183). 

Meanwhile, authors hypothesized that learning addition and subtraction on an abacus, a more 

common practice in China than Canada, causes students to use strategies that require greater 

visuospatial resources. 

Considering the variation in design features, the inconsistent results from previous 

attempts to replicate Lee & Kang (2002) have been attributed to a number of possible reasons. 

First, a lack of balancing the cognitive demands of the working memory and arithmetic tasks 

within and across participants raises uncertainty over whether it was the difficulty or specific 

modality of secondary tasks that led to the interaction reported in Lee & Kang (2002). The use of 

different multiplication and subtraction tasks as well as WM tasks mask the extent to which 
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modality effects are separate from the inherent demands of the tasks themselves. Cavdaroglu & 

Knops (2016) attempted to resolve this issue by having German participants perform arithmetic 

under similar load conditions to Lee & Kang (2002). Importantly, they created two difficulty 

conditions that were individually determined through psychometric functions to ensure 

participants were performing symmetrically difficult secondary tasks. In addition, their 

calculation tasks attempted to minimize central executive resources by controlling for problem 

size and difficulty. Under these conditions, their results yielded no differential impact of working 

memory resources on multiplication and subtraction. Despite claims that the most prominent 

dissociations exist between multiplication and subtraction (see Lee & Kang, 2002; Lee 2000), 

these results suggest the validity of the domain-specific working memory influences on mental 

arithmetic is not as clear. However, difficulty alone may not fully explain the disparity in effect 

sizes. These previous replication attempts have used different working memory tasks to load the 

PL and VSSP, so it is not clear either whether the tasks in Lee & Kang (2002) happened to load 

the WM components more than the replication attempts. Third, the original study included 

Korean participants, whose math education differs from U.S. and Canadian samples. As evident 

from Imbo & LeFevre (2010), the Chinese participants who share similarities with Koreans in 

number system and arithmetic education (e.g., favoring rote memorization through drilling and 

songs and some mental-abacus training) were the only population that saw a selective interaction 

effect while the Canadian participants did not. The automaticity gained through extensive 

practice using specific representational strategies (i.e. phonologically-based rhyming songs and 

visuospatially-based mental-abacus) in Chinese students was believed to cause a stronger 

connection between arithmetic operations and specific working memory components. In 

comparison, Imbo & LeFevre (2010) argued that western math education caused students to use 
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more variable strategies suggesting a weaker link between specific components and arithmetic 

but a stronger link to executive resources.  

Moreover, current meta-analytic evidence of dual-task experiments also suggest that the 

influence of specific working memory components on arithmetic performance may not be as 

robust as other findings related to dual-task performance, such as the effect of domain-general 

demands of the secondary task on performance (Chen & Bailey, 2021). Specifically, it appears 

that larger effect sizes between different combinations of WM load and arithmetic may be partly 

driven by researchers predicting larger effects for more demanding secondary tasks (e.g., those 

that require more central executive processing). Given that there are several ways to probe 

potential interactions in dual task arithmetic experiments, the robustness of these findings 

warrants further testing. In summary, it is unclear whether the results from replication attempts 

reflected important insights regarding arithmetic cognition or if they reflected idiosyncratic 

aspects of Lee & Kang’s (2002) study, specific to a combination of the tasks and sample. Thus, it 

is imperative to establish better practice towards registering planned analyses in the future. 

Current Study 

 While Cavdaroglu & Knops (2016) improved upon the original design of Lee & Kang 

(2002), some remaining issues need to be experimentally investigated. The current design will go 

beyond Cavdaroglu & Knops (2016) in a number of ways. First, the arithmetic condition will be 

a within- rather than between-subject factor design. It should be noted that this is only fully true 

when there are no differential sequence effects to be expected, thus we have carefully 

randomized and counterbalanced the order of conditions and will perform additional analyses to 

follow-up our main analysis. Specifically, we tested for the key interaction (i.e. load type × 

arithmetic operation) for the first arithmetic under load condition within each participant. 
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Second, it was unclear from Imbo & LeFevre (2010) whether cultural differences in arithmetic 

performance were confounded by the particular tasks used, so this study will re-examine cultural 

differences in arithmetic cognition by recruiting students who received their primary math 

education in China as well as participants who received their primary math education in the U.S.  

In the current study, a dual-task paradigm was used to test the involvement of 

phonological and visuospatial resources within mental subtraction and multiplication. The aim of 

this study is to test whether the findings reported in Lee & Kang (2002) can be replicated using 

similar procedures and tasks as used by Cavdaroglu & Knops (2016). Participants solved either 

multiplication or subtraction problems under phonological (i.e. remembering a string of letters or 

numbers) and visuospatial load (i.e. remembering the positions of dots in an array). The 

interaction between these memory load types and operation types was most prominent in Lee & 

Kang (2002). However, attempts to replicate this large dissociation since have not been wholly 

successful (see Table 1). Task difficulty (i.e. span size) was balanced and varied within and 

across participants through an adaptive staircase procedure. Two different difficulty thresholds 

(80% and 99%) were determined in blocks at the beginning of the experiment in session 1. These 

difficulty thresholds were used to investigate how task difficulty affects performance. 

Altogether, this study will attempt to reconcile debates over the differential contributions of 

working memory in mental arithmetic and provide insight with respect to potential underlying 

mechanisms related to mathematical cognition. 

Methods 

Participants 

Power analysis  
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We used the software program G*Power to conduct an a priori power analysis (Faul et al., 2009). 

F statistics or ηp
2 values for the interaction between WM load and arithmetic operation could not 

be derived from Lee & Kang (2002) nor Cavdaroglu & Knops (2016). However, other 2- and 3- 

way interactions were provided from Imbo & LeFevre (2010) (e.g. culture × problem difficulty; 

culture × problem difficulty × presentation format) to approximate values for the power analysis. 

Our goal was to obtain .90 power to detect a partial eta-squared (ηp
2) of .07 for a 3-way 

interaction at alpha = .05. We used the ηp
2 reported for the 3-way interaction between culture x 

problem difficulty x presentation format in Imbo & LeFevre experiment 2 (2010), as this was the 

most conservative effect size reported relating to arithmetic performance. For the statistical test, 

we chose “ANOVA: Repeated measures, within-between interaction” because the interaction 

from Imbo & LeFevre (2010) contained within factors (problem difficulty & and presentation 

format) and a between factor (culture). We inputted the reported ηp
2 = .07 after clicking 

“Determine =>”. Calculating this provided an effect size of 0.27. The assumed correlation 

between repeated measures was left at the default of 0.5 because we had no other underlying 

assumptions about the repeated measures. In addition, we specified that there were 2 groups 

(Chinese and U.S. math educated students) and 16 measurements (i.e. 2 arithmetic operation × 2 

difficulty × 4 WM load types). While four factors are present in our design, our main focus was 

the 2-way interaction between operation and WM load. The additional factors used in the 

G*Power analysis helped derive a more conservative estimate for the number of participants 

needed and will be used in subgroup analyses explained further below. Following these 

specifications, a minimum of 14 participants was required to be powered to detect an interaction 

similar to that in Imbo & LeFevre (2010) and our design had an estimated power of 0.94. Prior 

meta-analytic data also suggests the average sample size among dual-task arithmetic experiments 
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(containing both within and between designs) consists of around 20 participants with a range 

from 10-60. Following prior literature and our power analyses, we planned on collecting data 

from a sample larger than any other study before. As such, we determined that 100 participants 

would be sufficiently powered to detect our key interaction within our main model and 

secondary analyses.  

 Following this plan, we recruited and ran 100 total participants from the University of 

California, Irvine (Female = 64, age range = 18 – 25 years old, mean = 20.1 (SD = 1.3). 22 of the 

final analysis sample received the majority of math education in China prior to entering 

university studies in the US. All participants had normal or corrected-to-normal vision. All 

research was performed in accordance with the ethical standards of the Institutional Review 

Board. Written informed consent was obtained from all participants and were given course credit 

through the Human Subjects Lab Pool or were reimbursed $30 for their participation. 

Stimuli 

All tasks used in these experiments were created through PsychoPy 3 (Peirce et al., 

2019). Performance on the span tasks and arithmetic will be measured by reaction time (RTs in 

ms) and accuracy (ACCs in percentage correct). For examples, see Figure 1. Arithmetic 

problems used in this experiment are the same as in Cavdaroglu & Knops (2016). Working 

memory staircase tasks are based on the descriptions used in Cavadaroglu & Knops (2016). 

Strategy report is a one-item survey question asking about strategy use. All materials including 

experimental tasks and protocol used will be available online as supplementary materials 

(https://doi.org/10.23668/psycharchives.6881). 

Subtraction 

 Subtraction problems were presented using a 2-alternative forced choice (2AFC) 

paradigm. Participants were presented with simple two-digit – two-digit problems for 2 s. There 

https://doi.org/10.23668/psycharchives.6881
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were no borrowing or crossing of decade boundaries to minimize central executive involvement. 

Participants then chose from two answer choices which were displayed for 3 s or until 

participants respond. Three different sets of subtraction problems were used across three rounds 

(round 1: subtraction only; round 2: subtraction under phonological load; round 3: subtraction 

under visuospatial load) with easy and hard working memory loads split across 2 blocks. The 

order of the three sets as well as the difficulty blocks were counterbalanced across participants. 

Each set contained 28 different subtraction problems where each was displayed twice in total 

with a different answer pair each time. The order of the three sets was counterbalanced across all 

participants. In half of the answer pairs, the correct and alternative answers had a distance of 2; 

whereas the other half had a distance of 10. This was done in order to encourage participants to 

take into account both decades and units and to discourage the strategy of paying attention only 

to the units or decades. Distance from correct response were either in the positive or negative 

direction. For example, for the problem 36-14, the two answer pairs were 22 vs. 20 (difference = 

-2) or 12 vs. 22 (difference = +10). Problems with a decade in one of the operands or in the result 

were excluded. Eleven was not used as an operand. 

Multiplication 

Multiplication problems were presented using a 2AFC paradigm. Participants were 

presented with simple one-digit by one-digit and two-digit by one-digit multiplication problems. 

Participants then chose from two answer alternatives which were displayed for 3 s or until 

participants responded. Three different sets of multiplication problems were used across three 

rounds of tasks (round 1: multiplication only; round 2: multiplication under phonological load; 

round 3: multiplication under visuospatial load) with easy and hard working memory loads split 

across 2 blocks. The order of the three sets as well as the difficulty blocks was counterbalanced 
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across participants. Each set contained 28 different subtraction problems where each was 

displayed four times in total with a different answer pair each time. Among the four answer 

pairs, one contained a response alternative from the multiplication table of the first operand, 

another contained an alternative from the multiplication table of the second operand (table-

related response alternatives) and the other two pairs contained response alternatives that were 

not from either operand’s multiplication table (non-table-related response alternatives). For 

example, for the problem 12 × 7, the four different answer pairs were 84 vs 98 (98 from 7’s 

table), 84 vs 72 (72 from 12’s table), 84 vs 64, and 84 vs 94. Half of the problems were two-digit 

by one-digit and the other half were one-digit multiplication. In one-digit multiplication trials, 

the smaller operand preceded the larger operand. In two-digit by one-digit trials, the two-digit 

operand preceded the one-digit. The two-digit number was smaller than twenty. The one-digit 

number was larger than two. Tie problems (e.g. 6 × 6) and problems with a decade in the 

operand or result were excluded. Products were all below 100 to restrict responses to be two-

digits at most like in the subtraction task. 

Phonological staircase 

 Following the same task designs as those outlined in Cavdaroglu & Knops (2016), 

participants’ phonological processing span was measured using an adaptive staircase procedure 

of letter sequences. Participants were instructed to keep a sequence of letters – in original order – 

in mind and decide whether a second set of letters (shown 7s after onset of the first sequence) 

contained the exact same order of letters or not. Letter sequences were displayed for a duration 

of 0.4 s * n – n indicating number of letters – followed by 3 s on a fixation screen before 

participants are given 4 s to respond. Participants were presented upper case letters in the first 

sequence and tested using lowercase letters (B C D vs. b c d) in order to encourage participants 
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to use their phonological rather than visual memory. In half of the trials, the test sequence had 

the same letters in the exact order as the first sequence (e.g., ‘B C D’ and ‘b c d’); whereas in the 

other half of the trials the position of two letters were swapped (e.g., ‘B C D’ and ‘b d c’). The 

‘F’ and ‘J’ keys were used for responding to allow for natural hand placement on the keyboard. 

The task will start with 3 letters and reach a maximum of 9 letters and a minimum of 1 letter. 

After three correct responses in a row, the difficulty of the task  increased by 1 letter otherwise, if 

there were three consecutive incorrect responses, the difficulty of task decreased by 1 letter until 

the minimum number of letters are reached or until a correct response is given. 30 trials were 

conducted to measure phonological span. In addition, a Weibull function was fit on the data 

where the inverse of the Weibull function was used to determine the number of letters 

corresponding to 80 and 99% accuracy. The two threshold levels were chosen to examine the 

effect of task difficulty (low vs high) on arithmetic performance in both single- and dual-task 

conditions. In each trial, the string of letters was randomly chosen from this set of 10 consonants 

[B, C, D, F, G, H, J, K, L, M]. Vowels were excluded to prevent use of semantic strategies and 

other consonants were excluded to maintain the same number of digits to letters. In total, the 

staircase contained 30 trials. 

Visuospatial staircase 

 The visuospatial span task also followed similar procedures to those used in Cavdaroglu 

& Knops (2016), where span was measured using an adaptive staircase procedure on dot-

matrices. Participants were instructed to keep the locations of dots within a 5×5 grid in mind and 

decide if a second grid (shown 7s after onset of the first grid) contained the exact same locations 

of dots. Dot-arrays were displayed for a duration of 0.4 s * n – n indicating number of dots – 

followed by 3 s on a fixation screen before participants are given 4 s to respond. In half of the 
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trials, the positions of the test dots were in the same position; whereas in the other half of the 

trials, the positions of two dots were replaced somewhere else on the grid. The ‘F’ and ‘J’ keys 

were used for responding. The task started with 3 dots and reached a maximum of 9 dots and a 

minimum of 1 dot. After three correct responses in a row, the difficulty of the task  increased by 

1 dot otherwise, if there were three consecutive incorrect responses, the difficulty of the task 

decreased by 1 dot until the minimum number of dots was reached or until a correct response 

was given. 30 trials were conducted to measure visuospatial span. Finally, a Weibull function 

was used to determine the 80 and 99% accuracy thresholds for the dual-task condition.  

Procedure 

 The study used a 2×3 factorial design using within-subject factors. The within-subject 

factors were arithmetic operation type (subtraction or multiplication) and WM load type (no 

load, PL load, and VSSP load). No-load (i.e. arithmetic alone) conditions served as controls 

against dual-task conditions. While culture and difficulty were part of the analysis, these were 

only considered in the subgroup analyses and not for additional interactions, because our main 

focus was on the operation × load interaction. The entire experiment was conducted online 

through video conferencing in which an experimenter guided the participant in downloading the 

required materials and protocol for completing experimental tasks. The experiment was 

administered within two sessions that were scheduled to be around the same time and spread 

apart by one week. Participants were also instructed to abstain from taking any alcohol or drugs 

prior to either session. Participants completed the experiment using their own devices. To ensure 

that reactions times were sufficiently accurate and consistent across different devices and 

operating systems, participants were instructed to use either a home desktop or laptop rather than 

a tablet or mobile phone. No information related to the participants’ devices, such as IP address, 
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were maintained except for the operating system (e.g. Windows 10, Mac-OS) in order to ensure 

proper installation of PsychoPy and the experiment itself. Recordings were also not taken to 

respect the privacy of the participants.  

In session 1, participants were given a brief questionnaire to capture their demographic 

information and math education background before being introduced to the PsychoPy 

environment and to downloading the experimental tasks. These questions included asking about 

their current major and the number of math courses they have taken since entering university. In 

addition, we asked specific math background questions including, “Prior to coming to university, 

in which country did you receive the majority of your math education?”, “If you were taught 

how to use an abacus or mental abacus strategy for doing math, how often have you used it? 

(Never taught; Never used; Rarely; Sometimes; Often; Very often)”, and “Do you consider 

yourself an A, B, C, D, or F student compared to your peers?”. Altogether, these questions 

allowed us to potentially examine differences in math proficiency among our sample, especially 

in our comparison between the Chinese-educated student group and the non-Chinese-educated 

student group. From here, participants were given the adaptive phonological and visuospatial 

staircase tasks. Prior to the staircase, 10 practice trials were administered to familiarize the 

participant with the stimuli and testing environment. Discounting the practice trials, there were 

30 trials per staircase for a total of 60 trials to determine difficulty thresholds. The order of these 

tasks were randomized and counterbalanced for all participants. Staircase performance from 

session 1 were used to determine easy and hard span levels for the dual-task conditions used in 

session 2. In total, the first session took approximately 60 minutes. 

In session 2, participants started the dual-task experiment. Participants downloaded their 

PsychoPy tasks that were modified to fit the appropriate difficulty levels as determined in session 
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1. Participants then completed arithmetic alone and under load over 4 experimental blocks 

(multiplication-easy load, multiplication-hard load, subtraction-easy load, subtraction-hard load). 

The order of these tasks followed a block-randomization wherein the single-arithmetic task was 

always administered first in the block followed by either the visuospatial or phonological loads. 

Half of the participants received the visuospatial load before the phonological load, while the 

other half received the phonological load first. The order of the four blocks was also randomized 

and counterbalanced for each participant such that each of the possible sequences as well as their 

reverse orders appeared an equal number of times. 10 practice trials were given before the start 

of the first block to familiarize participants with the dual-task procedure. Participants then 

completed each block which contained 28 arithmetic problems for each condition (arithmetic 

alone, with PL load, with VSSP load) for a total of 336 trials. The order of conditions was also 

randomized and counterbalanced. At the end of each block, participants were be given up to a 5-

minute break. Participants finished after completing the 4th block. In total, the second session 

took no more than 2 hours to complete.  

Analysis plan 

In this experiment, we focused on the key interaction predicted by Lee & Kang (2002). 

Specifically, we tested the following hypotheses: 

Hypothesis 1: As predicted by Lee & Kang (2002), we expected an interaction between 

arithmetic operation type and WM load type; specifically: 

Hypothesis 1a: Multiplication performance is slower and less accurate under PL load compared 

to VSSP load 

Hypothesis 1b: Subtraction performance is slower and less accurate under VSSP load compared 

to PL load.  
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In addition to these, we tested secondary hypotheses regarding the differences between single-

task arithmetic conditions vs each of the dual-task conditions as they were reported in Lee & 

Kang (2002) such that: 

Hypothesis 1c: Multiplication performance alone is significantly faster than under PL load but 

not VSSP load. 

Hypothesis 1d: Subtraction performance alone is significantly faster than under VSSP load but 

not PL load. 

According to Imbo & LeFevre (2010), the crossover effect may be found within Chinese-

educated samples; but not US-educated samples, thus we tested the following hypotheses: 

Hypothesis 2: Receiving primary math education from China but not the US is associated with 

differences in load type by arithmetic operation performance, specifically: 

Hypothesis 2a: Multiplication performance is slower and less accurate under PL load compared 

to VSSP load only in Chinese-educated samples. 

Hypothesis 2b: Subtraction performance is slower and less accurate under VSSP load compared 

to PL load only in Chinese-educated samples.  

Hypothesis 2c: Multiplication performance alone is significantly faster than under PL load but 

not VSSP load only in Chinese-educated samples. 

Hypothesis 2d: Subtraction performance alone is significantly faster than under VSSP load but 

not PL load only in Chinese-educated samples. 

In order to test hypotheses 1a-1d, we conducted multiple 2 × 2 ANOVAs under four 

model specifications (for summary of planned analyses, see Table 2). The first model included 

all participants and both difficulty levels. We then tested the robustness of this interaction effect 

by restricting the data in the following three ANOVA models: easy load condition trials only, 
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hard load condition trials only, and first block trials only. The first block model tested whether 

the crossover interaction was observed for the first presented arithmetic operation under load 

(Table 2: last column), for which performance was assumed to be less prone to order effects. To 

test hypotheses 2a-2d, we restricted the sample to only those students who reported having 

received the majority of their math education in China prior to entering university. We conducted 

both a 2 × 2 ANOVA of the restricted sample and compared the Chinese-educated students to the 

rest of our sample using a 2 × 2 × 2 ANOVA with country of primary math education as a 

between subject factor. While we investigated this possible group difference, the crossover 

interaction was our main interest. Given the unequal sample sizes in the Chinese vs non-Chinese 

model, we ran a Tukey-Kramer test as a post-hoc adjustment. If any of the above models 

produced a significant interaction effect, we conducted post hoc analyses to test whether results 

aligned with hypotheses 1a -2d.  

 Even though we acknowledge that testing these multiple hypotheses inflates the 

probability of type-1 errors, we chose not to adjust error levels for each statistical test, because a 

statistically significant interaction does not guarantee any of the more specific hypotheses to be 

supported. Instead, we reported on the level of support for the theorized crossover effect and 

predicted simple effects based on how closely our reported findings aligned with our predictions.  

For hypotheses 1a-1d, we concluded that there was strong support for the underlying theory if we 

detected an interaction and main load effects in directions consistent with Lee & Kang (2002) 

within our main specifications containing all participants. We concluded there was mixed 

evidence for the crossover effect if only one of the main load effects was consistent with 

predictions within the main model (i.e., a) if VSSP affects subtraction but not multiplication or b) 

PL affects multiplication but not subtraction, but not both a and b) or if we only found the 
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interaction in one or more of the subgroup analyses; for example, if the crossover effect was only 

present in the Chinese-educated sample but not the US sample or only in hard but not easy load 

conditions. If results were fully null, we concluded that we were unable to find evidence for an 

interaction. Results of analyses will be reported regardless of whether our hypotheses were 

supported or not. 

As a complement to the frequentist analyses of the interaction effect, we also report a 

Bayesian analysis for the main model (whole group) to examine the relative support for both our 

hypotheses of interest and the null hypothesis. We conducted a Bayesian repeated measures 

ANOVA, dependent on the 2 × 2 factors in the main model. Following Morey & Rouder (2011), 

we set a non-informative Jeffreys prior width of 0.5 to correspond to a small effect. Such 

analyses result in a Bayes factor (BF10), which can be interpreted as the likelihood ratio for the 

alternative hypothesis over the null. Given that the Bayes factor (BF10) is a ratio of the likelihood 

for the alternative hypothesis over the null hypothesis, the inverse of the Bayes factor (BF01) can 

be interpreted as the likelihood ratio for evidence of the null hypothesis over the alternative 

hypothesis. Following Jeffreys (1961) we used the following designations to interpret the 

strength of the Bayes factors: 0–3 offer anecdotal support for H1, 3–10 moderate support for the 

H1, 10–30 strong support for H1, 30–100 very strong evidence for H1, and values greater than 

100 offer decisive evidence for H1. Conversely, we use the inverse of these ranges to interpret 

support for the null hypothesis (BF01 anecdotal 0.33–0, moderate 0.10–0.33, strong 0.10–0.03, 

very strong 0.03–0.01). 

Data were analyzed primarily in JASP using its frequentist and Bayesian repeated 

measures ANOVA and paired-sample t-test functions (JASP Team, 2020). Data were organized 

for JASP usingRStudio (RStudio Team, 2020), specifically tidyverse for data visualization and 



 

60 

 

formatting (Wickham et al., 2019). The RMarkdown is available as supplementary material to 

reproduce data created for JASP (https://doi.org/10.23668/psycharchives.6880). Where 

appropriate, Holm-Bonferroni correction was used to correct for multiple comparisons in post-

hoc testing (Holm, 1979). Huynh–Feldt correction was used when sphericity was violated. 

Bayesian analyses were conducted using the Bayesian repeated measures ANOVA function in 

JASP (JASP Team, 2020). All reaction time (RT) analyses were based on correct trials only. 

Accuracy or response times outside the range of a participant’s mean ± 3 SDs were discarded 

from further analyses. Responses faster than 200 ms were also discarded. Based on that criterion, 

1.02 % of trials in single arithmetic blocks and 3.56 % of the trials in dual-task blocks were 

eliminated. In addition, 3 participants were excluded from data analyses for not responding in a 

majority of trials during the second session. All data are publicly available in PsychArchives 

(https://doi.org/10.23668/psycharchives.6882). Of note, even though our participants were tested 

at home on their own devices, average reaction times per WM load condition within our study 

were comparable to those found in Lee & Kang (2002) and Cavdaroglu & Knops (2016) (Table 

1). 

Deviations in pre-registration analyses 

The following analyses were either changed or added from the pre-registration. Full 

documentation of all deviations can be found in a document within the supplementary files 

(https://doi.org/10.23668/psycharchives.6881). The 2 × 2 × 2 ANOVA investigating the 

differential effect of WM load on arithmetic operation between the samples receiving education 

from the US and China was included in the pre-registration, but we also included the 2 × 2 

ANOVA analyses which only looked at the Chinese-educated subsample as an additional 

robustness test. We also conducted additional Bayesian paired samples t-tests in addition to the 

https://doi.org/10.23668/psycharchives.6880
https://doi.org/10.23668/psycharchives.6882
https://doi.org/10.23668/psycharchives.6881
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Bayesian repeated measures ANOVA to investigate post-hoc differences in reaction time and 

accuracy for hypotheses 1a, 1b, 2a, & 2b. Conclusions did not vary across methods. 

Results 

Hypothesis 1a: Multiplication performance is slower and less accurate under PL load compared 

to VSSP load 

In contrast to our hypothesis, in the full sample, multiplication performance was not 

significantly slower (Figure 2) nor was it less accurate (Figure 3) under PL load compared to 

VSSP load. ANOVA results from Tables 4 and 5 yielded no significant difference in 

multiplication reaction time [RT: F(1, 96) = 1.20, p = 0.28, ηp² = 0.01] nor accuracy [ACC: F(1, 

96) = 0.49, p = 0.49, ηp² = 0.01] between verbal and visuospatial dual-task load. We ran 

complementary Bayesian t-tests of WM load on multiplication RT and ACC for the full sample. 

We found stronger evidence for the null hypothesis than for Hypothesis 1a such that there was no 

difference in multiplication RT and ACC by WM load type [RT: BF01: 4.99; ACC: BF01: 7.03]. 

Higher BF01 indicate greater support for the null hypothesis over the alternative. In addition to 

our Bayesian t-tests, we also ran a Bayesian repeated measures ANOVA of all of the full sample 

focusing on the 2 (verbal and visuospatial WM load) × 2 (multiplication and subtraction) 

interaction. Comparison of model Bayes factors (BF10) can be found in Tables 8 and 9. While the 

tables use the null model as a reference, it is more useful to compare Bayes factor between an 

additive model (WM task + arithmetic) and the interaction-included model (WM task + 

arithmetic + WM task × arithmetic). Comparing model fit between the two can be accomplished 

by taking the ratio of the Bayes factor of the additive model to the interaction-included model. 

The inverse of the ratio would provide a Bayes factor of the interaction alone compared to the 

null. The Bayesian ANOVA indicated anecdotal to moderate support for the additive model over 
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the interaction-included model. The Bayesian ANOVA indicated that Bayes factors for additive 

model of WM task and arithmetic fit both reaction time and accuracy data better across the 

whole sample than with the additive and WM task × arithmetic operation interaction term 

included [RT BF10 ratio: 6.29; ACC BF10 ratio: 3.69]. Higher BF10 ratios indicate greater support 

for the additive model over the interaction model. 

As a preregistered robustness check, we estimated the same models for three subsamples 

of the data: easier secondary task blocks, more difficult secondary task blocks, and the first 

arithmetic block under cognitive load only. Similar patterns of results for both frequentist and 

Bayesian analyses can be found in our secondary analyses of the easier load, harder load, and 

first block conditions (Figure 2 & 3, Tables S1, S2, S5, & S6 in the Appendix); nearly all 

Bayesian estimates provide support for the null hypothesis. Only in the harder difficulty load 

condition5 was there an effect on reaction time consistent with Hypothesis 1a [F(1, 96) = 6.57, p  

< 0.05, ηp² = 0.07]. A post-hoc pairwise t-test of the hard load condition revealed a small but 

significant slowing in multiplication RT of 39 ms when under verbal load compared to 

visuospatial load [t(96) = 2.67, p = 0.017, d = 0.16, Holm-Bonferroni corrected]. 

Hypothesis 1b: Subtraction performance is slower and less accurate under VSSP load compared 

to PL load.  

Again, in contrast to our hypothesis, in the full sample, subtraction performance was not 

significantly slower (Figure 2) nor was it was less accurate (Figure 3) under VSSP load 

compared to PL load. The ANOVA results shown in Tables 4 yielded no significant difference in 

 
5 The staircase procedure used during the first session of each experiment to estimate each participant’s subjective 

80th and 99th percentile threshold for their verbal and visuospatial cognitive loads provided reasonable estimates. On 

average, the 99th percentile (easy load) threshold for participants was 5.52 (sd = 1.28) for their verbal WM load and 

6.52 (sd = 0.95) for their visuospatial WM load. For the 80th percentile (hard load), the threshold for participants’ 

verbal WM load was 7.52 (sd = 1.28) and 8.52 (sd = 0.95) for their visuospatial WM load. 
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subtraction reaction time [RT: F(1, 96) = 0.15, p = 0.70 ηp² = 0.002]. Results shown in Table 5 

yielded a significant difference in accuracy [ACC: F(1, 96) = 6.31, p = 0.01, ηp² = 0.06] between 

verbal and visuospatial dual-task load. However, this effect was in the opposite direction as 

predicted: Post-hoc pairwise t-test of the whole sample yielded a statistically significant decrease 

in subtraction accuracy of about 2 percentage points when under verbal load compared to 

visuospatial load [Whole: t(96) = 2.57, p = 0.04, d = 0.19, Holm-Bonferroni corrected]. Bayesian 

t-tests of WM load on subtraction RT and ACC found stronger evidence for the null hypothesis 

than for Hypothesis 1b such that there was no difference in subtraction RT by WM load type [RT 

BF01: 8.29], but there was a difference in accuracy in favor of verbal load [ACC BF01: 0.46]. 

BF01 > 1 indicate more support for the null than the alternative while 0 ≤ BF01 ≤ 1 indicate 

greater support for the alternative. Our Bayesian repeated measures ANOVA from the previous 

section included subtraction in the model, thus they can be applied here as well (also see Tables 

8 and 9). 

As a preregistered robustness check, we estimated the same models for the easy, hard, 

and first-arithmetic block under load subsamples of the data. Similar patterns of reaction time 

results for both frequentist and Bayesian analyses can be found in our secondary analyses of the 

easier load, harder load and first block conditions (Figures 2 & 3, Tables S1, S2, S5, & S6 in the 

Appendix). In accuracy, we found a significant effect of WM load type within the easy load and 

first cognitive load block [F(1, 96) = 7.44 & 5.77, p = 0.01 & 0.02, ηp² = 0.07 & 0.06, 

respectively]. However, this effect was consistent with what was found for the whole group, such 

that verbal load lowered accuracy more than visuospatial load [Easy: t(96) = 2.73, p = 0.01, d = 

0.23, Holm-Bonferroni corrected; First: t(96) = 2.40, p = .02, d = 0.22, Holm-Bonferroni 

corrected], opposite of theoretical predictions.  
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Secondary hypotheses: 

Hypothesis 1c: Multiplication performance alone is significantly faster than under PL load but 

not VSSP load. 

To test Hypothesis 1c we included the single multiplication task condition into the 2-way 

ANOVA and performed pairwise t-test comparisons with Holm-Bonferroni corrections as 

needed. We did not find support for Hypothesis 1c: multiplication performance under no load 

was significantly faster (Figure 2) and more accurate (Figure 3) than both load conditions across 

most subsamples. There was a significant main effect of load vs. no load on multiplication 

reaction time for the whole sample[F(1, 96) = 74.90p < .001, ηp² = 0.44]. WM load yielded an 

average slowing of 143 ms or 18% [d = 0.64] in the whole sample. Mean comparisons and post-

hoc pairwise t-test results are shown in Tables 6. Reaction times under both verbal and 

visuospatial load were significantly slower than multiplication alone [RT: both t(96) > 9.70, p < 

0.001, d = [vs Verbal: 0.68; vs Visuospatial: 0.60]]. There was also a significant effect of load on 

multiplication accuracy for the whole sample [F(1, 96) = 12.92p < 0.001, ηp² = 0.12] with 

accuracy being reduced by about 3 % [d = 0.30]. Mean comparisons and post-hoc pairwise t-test 

results are shown in Tables 7. Accuracy comparisons were significant for the whole sample 

[ACC: both t(96) > 3.99, p < 0.001, d = [vs Verbal: 0.32; vs Visuospatial: 0.28]]. We included 

the no load level into our Bayesian repeated measures ANOVA. Our Bayesian ANOVA 

indicated moderate to strong support for the additive model over the interaction-included model. 

Tables 10 and 11 of our Bayesian ANOVA indicated that even with the inclusion of single task 

arithmetic, the combination of WM task and arithmetic operation fit both reaction time and 

accuracy data better across the whole sample than with the inclusion of the WM task × arithmetic 
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operation interaction term [RT BF10 ratio: 19.12, ACC BF10 ratio: 13.90]. Higher BF10 ratios 

indicate greater support for the additive model over the interaction model. 

For our preregistered robustness check, we estimated the same models for the easy, hard, 

and first-arithmetic block under load subsamples of the data. Our frequentist and Bayesian 

analyses for our subsample analyses yielded similar patterns of results to our whole sample 

analyses (Tables S3, S4, S7, & S8 in the Appendix). Only in the easier load condition was there 

no significant difference in accuracy between single multiplication and multiplication under 

visuospatial load, p = 0.62. 

Hypothesis 1d: Subtraction performance alone is significantly faster than under VSSP load but 

not PL load. 

We found no support for Hypothesis 1d either. Subtraction performance under no load 

was significantly faster than either load condition (Figure 2) and more accurate than either load 

condition (Figure 3) across all subsamples. There was a significant main effect of load vs. no 

load on subtraction reaction time for the whole sample[F(1, 96) = 62.28, p < .001, ηp² = 0.39]. 

WM load yielded an average slowing of 139 ms or 19% [d = 0.59] in the whole sample. Mean 

comparisons and post-hoc pairwise t-test results are shown in Tables 6. Reaction times under 

both verbal and visuospatial load were significantly slower than subtraction alone[RT: both t(96) 

> 9.76, p < 0.001, d = [vs Verbal: 0.61; vs Visuospatial: 0.57]]. There was a significant effect of 

WM load on accuracy as well [ACC: F(1, 96) = 13.54, p < 0.001, ηp² = 0.12] with about a 3 % [d 

= 0.31] reduction in accuracy under load in the whole sample. Mean comparisons and post-hoc 

pairwise t-test results are shown in Tables 7. Subtraction accuracy was weaker under verbal load 

compared to no load [t(96) = 5.23, p < 0.001, d = 0.37] but not between no load and visuospatial 
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load [p = 0.07]. Our Bayesian repeated measures ANOVA results are the same as reported for 

Hypothesis 1c.  

For our preregistered robustness check, we estimated the same models for the easy, hard, 

and first-arithmetic block under load subsamples of the data. Both frequentist and Bayesian 

analyses for the subsample analyses yielded similar patterns of results to our whole sample 

analyses (Tables S3, S4, S7, & S8 in the Appendix).  

Comparing US- v Chinese-educated participants: Hypotheses 2a-2d 

To test whether the differential influence of working memory depends on where students 

received their primary math education, we computed a 2 (country; US- vs. Chinese-educated) × 2 

(WM load) × 2 (arithmetic) ANOVA in order to test whether the differential impact of WM load 

type on arithmetic operation is dependent on where participants received the majority of their 

math education. The 3-way ANOVA did not yield a significant main effect for country [F(1, 91) 

= 0.56, p = 0.46, ηp² = 0.01], but it did yield a significant main effect for arithmetic operation 

[F(1, 91) = 8.31, p = .005, ηp² = 0.08]. Furthermore, the ANOVA did not yield a significant 3-

way interaction for country × WM task × arithmetic [F(1, 91) = 1.57, p = 0.21, ηp² = 0.02] nor 2-

way interactions for WM task × country [F(1,91) = 0.27, p = 0.60, ηp² = 0.003] or WM task × 

arithmetic [F(1, 91) = 2.73, p = 0.10, ηp² = 0.03]. However, there was a significant 2-way 

interaction for and country × arithmetic [F(1, 91) = 4.25, p = 0.04, ηp² = 0.05]. Post-hoc pairwise 

t-test comparisons revealed that the US-educated participants were generally slower in 

multiplication than in subtraction by about 100 ms [t(91) = 5.08, p < .001, d = 0.43, Holm-

Bonferroni corrected] while no such difference in reaction times were present in the Chinese-

educated participants.  
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In accuracy, there were no significant effects for country [F(1, 91) = 3.30, p = 0.07, ηp² = 

0.04], or any 3-way or 2-way interactions. The 3-way ANOVA yielded only main effects for 

WM task [F(1, 91) = 6.38, p = 0.01, ηp² = 0.07] and arithmetic [F(1, 91) = 4.29, p = 0.04, ηp² = 

0.05]. Taken together, these findings provide some support for the validity of two of the sources 

of variation in our population: First, the WM load manipulations were sufficiently difficult to 

impair arithmetic performance. Second, Chinese-educated students showed a different pattern of 

performance on arithmetic tasks, being approximately equally fast and accurate at multiplication 

and subtraction, relative to the US-educated participants, which were consistently faster and 

more accurate at subtraction than multiplication.  

Hypothesis 2a: Multiplication performance is slower and less accurate under PL load compared 

to VSSP load only in Chinese-educated participants. 

Following the lack of a 3-way interaction, we examined the Chinese-educated subgroup 

directly. Overall, we did not find evidence to support Hypothesis 2a. While there appeared to be 

a moderate effect of verbal vs visuospatial load on multiplication reaction times (see Table 1, 

row 5, column 5), this effect was not statistically significant, d = 0.28, p = 0.51. Our ANOVA 

results in Tables 4 and 5 also suggest that WM load type did not differentially impact 

multiplication performance [RT: F(1, 21) = 1.69, p = 0.21, ηp² = 0.07; ACC: F(1, 21) = 3.59, p = 

0.07, ηp² = 0.15]. Bayesian pairwise t-tests for reaction times and accuracy produced BF01 = 2.14 

and 0.99, respectively, suggesting anecdotal evidence in favor of the null hypothesis. BF01 > 1 

indicate more support for the null than the alternative while BF01 approaching 1 suggest no 

evidence for either null or alternative. Bayesian repeated measures ANOVA models in Tables 8 

and 9 indicated a better fit for the additive (WM load type + arithmetic operation) model over the 
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additive + interaction model as well [RT BF10 ratio = 2.48; ACC BF10 ratio = 3.27]. Higher BF10 

ratios indicate greater support for the additive model over the interaction model. 

Hypothesis 2b: Subtraction performance is slower and less accurate under VSSP load compared 

to PL load only in Chinese-educated participants.  

Overall, we did not find evidence to support Hypothesis 2b. The effect of visuospatial 

load on subtraction reaction times had a much smaller effect size than in Lee & Kang (2002), 

(see Table 1, row 5, column 6), but was not statistically significant either, d = -0.09, p = 0.98. 

Our ANOVA results in Tables 4 and 5 also suggest that WM load type did not differentially 

impact subtraction performance [RT: F(1, 21) = 0.17, p = 0.67, ηp² = 0.01; ACC: F(1, 21) = 3.41, 

p = 0.08, ηp² = 0.14]. Bayesian pairwise t-tests for reaction time and accuracy produced BF01 = 

4.15 and 1.06, suggesting anecdotal evidence in favor of the null hypothesis. BF01 > 1 indicate 

more support for the null over the alternative. Similarly, our Bayesian repeated measures 

ANOVA models in Tables 8 and 9 found better fit for the additive (WM load type + arithmetic 

operation) model over the additive + interaction model as well [RT BF10 ratio = 2; ACC BF10 

ratio = 3.27].  

Hypothesis 2c: Multiplication performance alone is significantly faster than under PL load but 

not VSSP load only in Chinese-educated participants. 

We did not find evidence to support Hypothesis 2c. Multiplication performance under no 

load was significantly faster than both load conditions (Figure 2 & 3). There was a significant 

main effect of load on multiplication reaction time but not accuracy for the Chinese-educated 

participants [RT: F(2, 42) = 13.41, p < 0.001, ηp² = 0.39; ACC: F(2, 42) = 2.84, p = 0.07, ηp² = 

0.12]. Mean comparisons and post-hoc pairwise t-test results are shown in Tables 6 and 7. 

Overall, multiplication reaction time was impacted by both load types [RT: vs. Verbal: d = 0.79, 
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BF10 = 417; vs. Visuospatial: d = 0.67, BF10 = 31]. BF10 > 1 indicate greater support for the 

alternative that there was a difference in performance between no load and either secondary task 

load. The Bayesian repeated measures ANOVA reported similar patterns of results as those from 

Hypothesis 2a and 2b with the additive (WM load type + arithmetic operation) model fitting the 

data better than the additive + interaction model [RT BF10 ratio = 4.71; ACC BF10 ratio = 4.4] 

(Tables 10 & 11). 

Hypothesis 2d: Subtraction performance alone is significantly faster than under VSSP load but 

not PL load only in Chinese-educated samples. 

We did not find evidence to support Hypothesis 2d. Subtraction performance under no 

load was significantly faster than both load conditions (Figure 2 & 3). There was a significant 

main effect of load on multiplication reaction time but not accuracy for the Chinese-educated 

sample [RT: F(2, 42) = 5.02, p = 0.01, ηp² = 0.19; ACC: F(2, 42) = 0.97, p = 0.39, ηp² = 0.04]. 

Mean comparisons and post-hoc pairwise t-test results are shown in Tables 6 and 7. Overall, 

subtraction reaction time was impacted by both load types [RT: vs. Verbal: d = 0.36, BF10 = 

1.36; vs. Visuospatial: d = 0.41, BF10 = 7.19]. BF10 > 1 indicate greater support for the 

alternative that there was a difference in performance between no load and either secondary task 

load. The Bayesian repeated measures ANOVA from Tables 10 & 11 are the same as those 

reported for Hypothesis 2c. 

Discussion 

In this registered report, we tested several pre-registered predictions based on previous 

findings from the dual-task literature with respect to the differential effects of secondary WM 

task load on arithmetic performance. That is, we tested whether verbal secondary tasks reduce 

multiplication performance but not subtraction performance, whether visuospatial secondary 
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tasks reduce subtraction performance but not multiplication performance, if these differential 

effects can be observed relative to each other or a no load control. These predictions have 

implications for theories of mathematical cognition and working memory, along with dual-task 

performance specifically. Building upon previous work in the field, we identified potential 

moderators that could explain contradictory findings from the literature  - specifically, secondary 

task difficulty and having learned mathematics primarily in China – and tested whether 

hypothesized effects emerge under these conditions.  

 Consistent with all previous literature, we found arithmetic performance to be generally 

slower and less accurate under cognitive load. However, contrary to our pre-registered 

predictions, we found no evidence for the moderating effect of secondary WM task load on 

arithmetic operations performance across the whole sample (Hypotheses 1a-1d) or any of our 

preregistered subgroup analyses, nor did we find evidence for these effects in the Chinese-

educated participants (Hypotheses 2a-2d). In our follow-up Bayesian analyses, our results 

generally provided support for the null hypothesis that there was no moderation by secondary 

WM load on arithmetic operation over the additive effects of secondary WM task and arithmetic 

operation. However, the majority of Bayes factors suggested only anecdotal evidence for the null 

over the alternative, suggesting that these differential effects could still be real but that our 

current experiment was unable to find sufficient evidence otherwise. At best, we found anecdotal 

evidence of a verbal WM load effect on subtraction accuracy across some of our subsample 

analyses; however, the direction of this effect was the opposite of what was predicted by 

previous work. In sum, we did not find any evidence for the large strong crossover interaction 

reported by Lee & Kang (2002). 



 

71 

 

 Interactions between secondary task types and arithmetic play a prominent role in the 

dual-task literature. These interactions have been interpreted as providing evidence that domain-

specific pathways, such as verbal or visuospatial pathways have differential effects on numerical 

cognition (e.g. Ashcraft, 1992; Dehaene 1992; Dehaene & Cohen, 1995, 1997; see Chen and 

Bailey, 2021, for review). However, we argue that there are strong theoretical and empirical 

reasons to reexamine the robustness of these interactions. Several theoretical accounts of 

working memory argue against multiple domain-specific influences in favor of a more 

centralized executive processing system (Barrouillet & Camos, 2001; Cowan, 1999; Engle, 2002; 

Oberauer, 2009). Further, two other studies since Lee & Kang (2002) were also unable to 

replicate the key crossover interaction reported in the original paper (Cavdaroglu & Knops, 

2016; Imbo & LeFevre, 2010). Imbo & LeFevre (2010) reported a differential effect in accuracy 

among Chinese students, such that there were more multiplication errors under verbal load 

compared to visuospatial load, but no differential effects of visuospatial vs. verbal load on 

subtraction performance. Both prior studies used a mix of within and between subject factors in 

their design. In comparison, our fully within-subjects study did not find any differential effects of 

WM load in our Chinese-educated participants nor across difficulty levels. To our knowledge, 

Lee & Kang (2002) remain the only study to have reported this crossover effect. Given the small 

sample size of the previous study (n = 10) and lack of subsequent replication, we propose that the 

field should consider the possibility that such crosstalk effects may be idiosyncratic to particular 

combinations of primary and secondary tasks and/or the particular population – irrespective of 

where they received their primary math education. Thus, crosstalk effects may be difficult to 

predict a priori. This view could certainly be replaced by a theory that can 1) account for when 
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crossover interactions occur or not in the previous literature, and 2) make predictions about 

replicable effects in future work.  

 Additionally, our results conflict with parallel processing models of dual-task theory that 

attribute differences in dual-task performance to the amount of overlap in cognitive resources 

between two tasks (Navon & Miller, 2002; Tombu & Jolicœur, 2003; Wickens, 2008). While 

Pashler (1994) notes that crossover effects are still possible in the absence of parallel processing 

and may explain similar effects seen in sequential processing theories, the reasons for this may 

be specific to the combination of primary and secondary tasks and difficult to predict a priori (for 

another review see, Fischer & Plessow, 2015). For example, Hubber, Gilmore, & Cragg (2014) 

had participants complete addition tasks alone and with a visuospatial task (i.e. remembering 

patterns of colored blocks) and initially found that visuospatial memory moderated the types of 

strategies used in addition. The visuospatial task included an n-back component in which they 

had to remember if the target block was the same as the one presented before the previous block, 

so a follow up experiment was done in which a more static visuospatial task was used (i.e. 

without n-back component) and a separate central executive task was used (i.e. random letter 

generation). The follow-up found no difference in arithmetic performance or strategy selection 

between the single task condition and the dual-task with visuospatial load, but a major difference 

between the single task and dual-task with central executive load, suggesting that evidence of a 

parallel processing effect was confounded by the complexity of the secondary task. If dual-task 

performance relies on sequential processing, the current study still provides evidence for the 

effect of working memory on arithmetic performance, but the cost of performance caused by a 

potential cognitive bottleneck is likely more domain-general in nature than what is commonly 

assumed in the literature (for review see, Doherty et al., 2018). 
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 To conclude, the current study investigated the differential effect of WM task loads 

(verbal and visuospatial) on arithmetic operations (multiplication and subtraction). Consistent 

with prior meta-analytic work on correlations between WM tasks and arithmetic performance 

and the dual-task literature on WM and arithmetic performance, the current study found 

consistent effects on arithmetic performance when under load of more complex secondary tasks, 

but no clear pattern for domain-specific interference. Despite investigating whether the crossover 

effect would emerge under conditions previously hypothesized to moderate the effect (difficulty 

and the system in which participants were educated), we did not find evidence for the predicted 

interaction in any of our analyses. Although multiplication and subtraction seemed to operate 

exclusively through verbal and visuospatial pathways, respectively, in the original study, this 

interaction has not been subsequently observed. We interpret these findings as evidence for a 

more domain-general pathway for WM secondary tasks’ influence on numerical cognition, 

although we encourage future work that continues to carefully consider how theories of working 

memory and dual-task performance could explain previous domain-specific effects within 

numerical cognition. 
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Appendix 

Table 1. Studies that tested arithmetic operation × WM load type interaction  

 

 

Author 

sample 

size WM tasks Arithmetic tasks 

Multiplication 

effect (PL vs VSSP) 

d 

Subtraction effect 

(PL vs VSSP)  

d 

PL vs VSSP in 

Multiplication; 

Subtraction (ms) 

Lee, K. M., & 

Kang, S. Y. (2002) 
10 

Repeat nonword 

string (PL), Matching 

abstract shapes and 

location (VSSP) 

exact subtraction, exact multiplication 2.42   -3.31  
1170 vs 996 

993 vs 1271 

Imbo, I., & 

LeFevre, J.A. 

(2010) – Canadian 

sample 

57 

Repeat nonword 

string (PL), 4×4 grid 

location task (VSSP) 

two-digit subtraction, one × two-digit 

multiplication 
0.04  0.04  

5103 vs 5018 

4823 vs 4738 

Imbo, I., & 

LeFevre, J.A. 

(2010) – Chinese 

sample 

73 

Repeat nonword 

string (PL), 4×4 grid 

location task (VSSP) 

two-digit subtraction, one × two-digit 

multiplication 
-0.02  0.07  

3015 vs 3038 

3068 vs 2998 

Cavdaroglu, S., & 

Knops, A. (2016) 
32 

Letter span (PL), 5×5 

grid location task 

(VSSP) 

2AFC multiplication (one × one; two 

× one digit),  

2 AFC subtraction (two – one digit) 

0.10  0.00  
1015 vs 989 

864 vs 863 

Chen, E.H., Jaeggi, 

S.M., & Bailey, 

D.H. – Chinese-

educated sample 

22 

Letter span (PL), 5×5 

grid location task 

(VSSP) 

2AFC multiplication (one × one; two 

× one digit),  

2 AFC subtraction (two – one digit) 

0.28 

 

-0.09 

 

883 vs 841 

840 vs 851 

Chen, E.H., Jaeggi, 

S.M., & Bailey, 

D.H. – other-

educated sample 

71 

Letter span (PL), 5×5 

grid location task 

(VSSP) 

2AFC multiplication (one × one; two 

× one digit),  

2 AFC subtraction (two – one digit) 

0.05 

 

-0.02 

 

946 vs 939 

841 vs 842 

Note. Cohen’s d were calculated for the columns 5 and 6. Cohen’s d represents effect size between multiplication and subtraction RT performance under PL 

or VSSP load, respectively. PL – Phonological/Verbal. VSSP – Visuospatial. Reaction times rounded to nearest ms. 
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Table 2. Means and standard deviations for reaction time and accuracy as a function of WM task 

× arithmetic operation 

WM task  Arithmetic  RT Mean SD ACC Mean SD N 

No load  Multiplication   787  222 93% 11% 97 

   Subtraction   713  213 95% 10% 97 

Verbal  Multiplication   938  221 90% 11% 97 

   Subtraction   850  234 91% 8% 97 

Visuospatial  Multiplication   923  231 90% 9% 97 

   Subtraction   854  276 93% 8% 97 

Note. WM: working memory. Reaction times (RT) in nearest ms and accuracy (ACC) in nearest 

percentage 
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Table 3. Demographic information 

Variable n=97 M(SD) % 

Gender    

   Male 33  66 

   Female 64  34 

Age  20.1(1.3)  
Country of primary math education 

   US 71  73.2 

   China 22  22.7 

   Other 4  4.1 

Math grade compared to peer 

   A 35  36.08 

   B 49  50.52 

   C 12  12.37 

   D 1  1.03 

   F 0  0 

Abacus use   

   Never Taught  69  71.13 

   Never Used  16  16.49 

   Rarely  11  11.34 

   Sometimes  1  1.03 
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Table 4. Planned ANOVA on arithmetic reaction time by model specification 

 Whole sample Chinese-educated 

Factor  F df p ηp² F df p ηp² 

PL vs VSSP × 

Multiplication 1.20 (1, 96) .28 .01 1.69 (1, 21) .21 .07 

PL vs VSSP × 

Subtraction .15 (1, 96) .70 .002 .17 (1, 21) .67 .01 

Note.  PL – Phonological/Verbal load, VSSP – Visuospatial load. Whole sample – no 

restriction on participants, Chinese-educated – only participants that reported their primary 

math education came from China.  
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Table 5. Planned ANOVA on arithmetic accuracy by model specification  

 Whole sample Chinese-educated 

Factor  F df p ηp² F df p ηp² 

PL vs VSSP × 

Multiplication .49 (1, 96) .49 .01 3.59 (1, 21) .07 .15 

PL vs VSSP × 

Subtraction 6.31* (1, 96) .01 .06 3.41 (1, 21) .08 .14 

Note. PL – Phonological/Verbal load, VSSP – Visuospatial load. Whole sample – no 

restriction on participants, Chinese-educated – only participants that reported their primary 

math education came from China. * p < 0.05 
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Table 6. Comparison of reaction time with no load arithmetic 

Model   

Mean 

difference SE t df pholm 

Multiplication Whole Verbal 151 13.98 10.77 96 < .001 

  Visuospatial 136 13.98 9.71 96 < .001 

 Chinese Verbal 160 34.45 4.65 21 < .001 

  Visuospatial 118 34.45 3.42 21 0.014 

Subtraction Whole Verbal 137 13.98 9.77 96 < .001 

  Visuospatial 141 13.98 10.12 96 < .001 

 Chinese Verbal 94 34.45 2.74 21 < .001 

  Visuospatial 106 34.45 3.07 21 < .001 

Note. Mean difference is reaction time in nearest ms. pholm – p value after Holm-Bonferroni 

correction 
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Table 7. Comparison of accuracy with no load arithmetic 

Model   

Mean 

difference SE t df pholm 

Multiplication Whole Verbal -3% 1 -4.68 96 < .001 
  Visuospatial -3% 1 -3.99 96 < .001 
 Chinese Verbal -4% 2 -2.67 21 0.14 
  Visuospatial -2% 2 -1.39 21 1 

Subtraction Whole Verbal -4% 1 -5.23 96 < .001 
  Visuospatial -2% 1 -2.64 96 0.07 
 Chinese Verbal -2% 2 -1.22 21 1 
  Visuospatial 0% 2 0.22 21 1 

Note. Mean difference is accuracy in nearest percentage. pholm – p value after Holm-

Bonferroni correction 
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Table 8. Bayesian model comparisons of 2 × 2 ANOVA on reaction time 

 Whole Chinese 

Models  BF10  error %  BF10  error %  

Arithmetic  3.80e +6  0.91 0.25 1.33 

WM task + Arithmetic  4.50e +5 1.78 0.06 1.42 

WM task + Arithmetic + WM task  ✻  Arithmetic  9.60e +4 4.67 0.03 2.38 

WM task  0.12 0.79 0.26 1.92 

Note. All models include subject. Null model is used as reference. 
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Table 9. Bayesian model comparisons of 2 × 2 ANOVA on accuracy 

 Whole Chinese 

Models  BF10  error %  BF10  error %  

Arithmetic  159.70 1.11 0.31 0.85 

WM task + Arithmetic  106.89 3.19 0.49 1.73 

WM task + Arithmetic + WM task  ✻  Arithmetic  28.05 2.00 0.15 2.86 

WM task  0.59 0.90 1.58 1.68 

Note. All models include subject. Null model is used as reference. 
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Table 10. Bayesian model comparisons of 3 × 2 ANOVA on reaction time 

 Whole Chinese 

Models  BF10  error %  BF10  error %  

WM task 4.0e +26 0.87 808.66 0.81 

Arithmetic 4.19e  +7 0.73 0.19 2.02 

WM task + Arithmetic 1.3e +37 1.02 153.86 2.02 

WM task + Arithmetic + WM task  ✻  Arithmetic 6.8e +35 3.51 32.60 3.00 

Note. All models include subject. Null model is used as reference. 
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Table 11. Bayesian model comparisons of 3 × 2 ANOVA on accuracy 

 Whole Chinese 

Models  BF10  error %  BF10  error %  

WM task 1.61e +5 0.92 1.21 0.86 

Arithmetic 1868.54 1.21 0.18 1.26 

WM task + Arithmetic 6.13e +8 2.00 0.22 1.34 

WM task + Arithmetic + WM task  ✻  Arithmetic 4.41e +7 0.90 0.05 2.12 

Note. All models include subject. Null model is used as reference. 
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Figure 1. Single multiplication task (A & C). Dual-task multiplication with phonological letter WM load (B) and visuospatial WM 

load (D). 
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Figure 2. Comparison of dual-task effects in reaction times across subsample analyses. A = 

Whole group, B = Received majority of math education in China, C = Easy load conditions 

only, D = Hard load conditions only, E = First under cognitive load conditions only. Error bars 

represent standard errors of the mean. 
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Figure 3. Comparison of dual-task effects in accuracy across subsample analyses. A = Whole 

group, B = Received majority of math education in China, C = Easy load conditions only, D = 

Hard load conditions only, E = First under cognitive load conditions only. Error bars represent 

standard errors of the mean. 
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Domain-general or domain-specific? Working memory influences in a dual-task arithmetic 

experiment 
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Domain-general or domain-specific? Working memory influences in a dual-task arithmetic 

experiment 

An important question within cognitive psychology concerns how cognitive processes are 

employed to carry out multiple tasks simultaneously. Extensive research finds that performance 

under multiple tasks declines in a range of seemingly easy laboratory tasks compared to when 

tasks are performed alone (e.g. Pashler, Johnston, & Ruthruff, 2001). Two competing hypotheses 

have been raised in discussion of how our cognitive architecture is utilized in these dual-task 

situations. The more widespread and well-accepted cognitive bottleneck model (Pashler, 1984, 

1994; Welford 1952) assumes that only information from one task can be processed at a time. 

Thus, while Task 1 is processing, Task 2 must wait until space is available. Others have 

suggested a parallel processing model in which different tasks require the same limited resource, 

which can be shared between tasks to allow for parallel – but less efficient – processing (Navon 

& Miller, 2002; Tombu & Jolicoeur, 2003). A central argument of this hypothesis is that content-

dependent characteristics of Task 2 can influence performance in Task 1; although others have 

suggested that interference effects on Task 1 can also be explained through a cognitive 

bottleneck (Strobach, Schütz, & Schubert, 2015). In addition, while performance is often 

hypothesized to slow down in dual-task designs, some cases in which pairs of primary and 

secondary tasks may also reduce the interference effect by removing task-switching costs (Park, 

Kim, & Chun, 2007). 

While both models have intuitive arguments to explain how working memory resources 

are used to complete cognitive tasks, research on working memory and arithmetic has used the 

paradigm as a method for testing test specific hypotheses about variation in the cognitive 

demands of different arithmetic tasks, with less focus on the implications of these findings for 
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theories of human cognition more broadly. These hypotheses largely rely on the latter parallel 

processing hypothesis, and specifically the assumption that when primary and secondary tasks 

require the same specific cognitive demands (e.g., verbal or visuospatial working memory 

capacity), arithmetic performance will be impaired above and beyond what would be expected 

based on the general cognitive demands of the secondary task.  

Domain-specific theories in dual-tasks 

The dual-task arithmetic literature has been largely predicated on the influence of 

domain-specific storage systems within working memory models, such as a visuospatial and 

verbal memory storage (Baddeley & Hitch, 1974; Baddeley, 2000; Logie, 2016). These 

multicomponent or “modular” models have contributed to specific predictions regarding the use 

of content-dependent memory stores within various arithmetic operations (e.g., Dehaene & 

Cohen, 1997). Principal of these predictions is that characteristics from one task (namely a 

working memory task) may influence performance on another (e.g. mental arithmetic) through 

interference in encoding and processing stages of retrieval. Specifically, this has been referred to 

as a crosstalk effect, wherein cognitive tasks that share similar features impede performance on 

dual-task measures more compared to tasks that are more dissimilar or require different encoding 

mechanisms (Pashler, 1994). Conversely, there should also be conditions where storage and 

processing can run in parallel, with little conflict between the content demands. In support of this 

hypothesis are studies which find no significant conflict between storage and processing tasks. 

For example, phonological secondary tasks have been found to not impair performance on 

single-digit multiplication problems, particularly for easy multiplication problems (i.e., both 

operands less than five) (De Rammelaere et al., 2001; Seitz & Schumann-Hengsteler, 2000, 

2002), which has been interpreted as evidence that access to permanent information in long-term 
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memory does not require intervention by the working memory subsystems. However, 

phonological load has been found to interfere with the performance of single-digit multiplication 

in Korean speaking university students (Lee & Kang, 2002), who may rely on phonological 

codes when storing and accessing multiplication facts compared to individuals taught in other 

languages (e.g. English and German) in which the counting systems vary significantly from 

some Asian languages (DeStefano & LeFevre, 2004). Related research suggests that Chinese-

speaking individuals store and access multiplication facts using phonological codes of their math 

education’s strong emphasis on rote memorization and verbal repetition (Imbo & LeFevre, 2010; 

LeFevre, Lei, Smith-Chant, & Mullins, 2001; LeFevre & Liu, 1997). 

According to this position, an important condition for minimizing the conflict between 

storage and processing is that the working memory capacity of the components should not be 

overloaded. As suggested by Logie (2011), a reduction in dual-task performance compared with 

single-task performance may be observed when domain specific components are pushed beyond 

their capacity. However, a domain-general executive or attentional system may support the 

performance of domain-specific resources leading interference effects to be interpreted as 

stemming from the central executive resources rather than the subcomponents of working 

memory. Therefore, when assessing the overlap of storage and processing in working memory, it 

is important to ensure that individual task demand is controlled (Doherty & Logie, 2016; 

Cavdaroglu & Knops, 2017).  

General capacity theories in dual-tasks 

 Juxtaposed with the influence of subsystems within domain-specific theories of working 

memory are explanations that focus on domain-general influences of completing a secondary 

task on primary task performance. These explanations have been a major focus within the dual-
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task literature generally, but interestingly not in dual-task arithmetic literature specifically. When 

considering dual-task performance, executive functioning or embedded models of working 

memory place more emphasis on domain-general processes, such as inhibition and task-

switching over the influence of any one or multiple content-dependent storage system (Miyake et 

al., 2000; Engle, 2002; Cowan, 1999; Barrouillet & Camos, 2020; Oberauer, 2009). That is, 

storage and processing functions of working memory rely in part on a shared, general purpose, 

limited capacity attentional resource. Dual-task performance is thus constrained by a bottleneck 

in which cognitive operations take place one at a time. Processing is therefore limited by 

attention more so than cognitive overlap, and in some cases, may help explain why individual 

influences of domain-specific storage components on arithmetic may be small. Indeed, it may be 

the case that these crosstalk effects are much more idiosyncratic to the design of the experiment 

than previously thought. A replication attempt at a previously large crosstalk effect was unable to 

detect any differential effects of phonological and visuospatial memory on multiplication and 

subtraction across a number of different analytical methods (Chen, Jaeggi, Bailey, 2022). 

There is a substantial dual-task literature separate from the dual-task arithmetic literature 

that focuses on domain-general focused predictions and explanations within dual-task 

performance, especially the roles of attention and task demand. For example, when attention is 

occupied by processing, it is no longer available for maintaining memory traces and so these 

traces suffer from temporal decay and interference. However, decayed memory traces may be 

restored through attentional refreshing when attention is available during pauses in processing. 

While temporary verbal memory can be bolstered by subvocal rehearsal in a phonological loop, 

performance is highly dependent on access to attention. A number of empirical observations 

have demonstrated how the demand of a secondary processing task is inversely correlated with 
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memory performance in a dual-task complex span paradigm (Barrouillet et al., 2015; Uittenhove 

et al., 2019). This secondary task demand or “cognitive load” might be measured as the 

proportion of time the processing task captures attention and therefore diverts the focus away 

from maintenance of temporary memory traces. Further, dual-task studies of arithmetic have 

consistently found the central executive crucial to the ability to perform mental arithmetic (Chen 

& Bailey, 2020; Imbo, Vandierendonck, & De Rammelaere, 2007; Seitz & Schumann-

Hengsteler, 2000; 2002).  

 Attentional refreshing, the specific process that is interrupted by high cognitive load 

tasks, distinguishes itself from phonological rehearsal in one major aspect; it is dependent on 

central executive resources and therefore amodal (Camos, Lagner, & Barrouillet, 2009; Camos, 

Lagner, & Loaiza, 2017). That is, while phonological rehearsal relies on verbal resources, 

refreshing can be done with any form of information. The serial processing model further states 

that refreshing can either be actively or passively engaged depending on whether subvocal 

rehearsal is available or more effective - given task parameters - or indeed whether participants 

are instructed to rehearse or refresh (Camos, Mora, & Oberauer, 2011). In the same way as 

processing prevents refreshing, refreshing activities postpone processing, as observed in 

Vergauwe, Camos, and Barrouillet (2014) when the slowing of processing task responses 

increased with memory loads. It is important to note that this effect occurs only when the 

phonological loop is unavailable or when its capacity is exceeded. The same study by Vergauwe 

et al. (2014) provided evidence contrary to the existence of a storage system for visuospatial 

information where visuospatial information was not maintained by any domain-specific storage 

system and so its maintenance relied entirely on attention (Morey & Bieler, 2013; Morey, 

Morey, van der Reijden, & Holweg, 2013). It should be noted, however, that participants are 
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likely to employ different strategies across cognitive tasks, such as with the use of the attentional 

refreshing for letters and digits rather than subvocal rehearsal (Logie, 2018).  

Given these findings, secondary WM tasks may not interfere with arithmetic performance 

via some content-dependent pathway, but rather through an attentional pathway, especially when 

the cognitive demands of the secondary task are large and take up “too much space” or too many 

cognitive resources in working memory. In such cases where cognitive demands from both tasks 

are high, we are unlikely to see any kind of selective interference in arithmetic by domain-

specific storage systems. That is to say that there is no evidence to suggest domain-specific 

systems do not influence arithmetic but that their influence may not be as strong as domain-

general resources in much of the of dual-task arithmetic literature.  

Strategy choice in arithmetic 

 Working memory is believed to influence arithmetic solving via the selection and 

execution of solving strategies (Hecht, 2002; Hubber, Gilmore, & Cragg, 2014; Imbo & 

Vandierendonck, 2007). There are a number of ways in which the solution to an arithmetic 

problem can be reached. For example, if given the problem 5 + 7 = ?, an individual could select 

from several different strategies including a) directly retrieve the answer from long-term memory 

(retrieval), b) decompose the problem into a series of simpler problems, e.g. 5 + 5 = 10, 10 + 2 = 

12 (decomposition) or c) count on seven times from 5 (counting) (Geary, Hoard, Byrd-Craven, & 

DeSoto, 2004; Siegler & Shrager, 1998). The latter two strategies are termed as procedural 

strategies. Working memory is likely to be required to a greater extent for procedural as 

compared to retrieval strategies. This characterizes procedural strategies for arithmetic as a way 

for individuals to store interim solutions or the number of count steps performed so far, while 
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carrying out other procedural steps. This is not required for retrieval strategies, which only 

involve the single step of retrieving the solution from long-term memory. 

 Drawing on the Baddeley & Hitch multicomponent model, dual-task experiments have 

investigated the extent to which domain-general (i.e. central executive) and domain-specific (i.e. 

PL and VSSP) resources contribute to strategy choice and execution in adults and children 

(Cragg et al., 2017; Hecht, 2002; Hubber, Gilmore, & Cragg, 2014; Imbo & Vandierendonck, 

2007). Across these studies, loads from domain-general resources via central executive 

secondary tasks are consistently involved in strategy choice and execution, particularly in the use 

of procedural strategies. On the other hand, while some studies suggest phonological and 

visuospatial resources may contribute to strategy use (Hubber, Cragg, & Gilmore 2014; Imbo & 

Vandierendonck, 2007), these may be confounded by executive resources. Thus, it remains an 

open question about whether the effect of a secondary task on strategy choice and execution in 

arithmetic operations are a function of secondary task general demands only or also primary and 

secondary task similarity.  

Current Study 

 The current study is part of a larger experiment that includes a registered report 

examining differential dual-task interference effects on arithmetic operations, and thus includes 

language and details from the registered report. Empirical evidence may not fit either parallel 

processing or cognitive bottleneck predictions perfectly, so the purpose of this study was to 

reconcile the findings from Chen & Bailey (2021) and prior findings of a differential working 

memory effect on arithmetic operations. We do this by investigating the combined effects of task 

demands and task similarity in a controlled experiment using span tasks assessing the 

phonological loop, visuospatial sketchpad, and direct arithmetic processing to influence the 
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performance of simple multiplication and subtraction. Each of the proposed theoretical models 

previously discussed predict different dual-task performance, so these are broken down as 

follows: (1) parallel processing (crosstalk) effects (2) cognitive bottlenecking effects and (3) 

integrated interaction effects (i.e. task similarity and task demands) (for summary see, Table S1 

in the Appendix). In a second exploratory analysis, we investigated the role of working memory 

loads on strategy choice. Specifically, we will explore which strategies young adults select for 

simple arithmetic when under varying kinds of cognitive loads and difficulties.  

Predictions following from domain-specific theories 

Previous research has hypothesized separate domain-specific encoding processes – one 

verbal and one visuospatial – for multiplication and subtraction, respectively (Lee & Kang, 2002; 

Dehaene et al. 2003). In order to understand the extent to which crosstalk affects arithmetic 

performance, this study will also test arithmetic procedures as secondary tasks. Specifically, we 

include a repeated addition task that is likely to negatively affect the performance of both 

multiplication and subtraction due to the nature of the task sharing similar arithmetic processing. 

Following the crosstalk hypothesis, multiplication performance should be negatively affected by 

the storage and processing of phonological secondary tasks with no effect of visuospatial 

secondary tasks. Contrastingly, subtraction performance will be negatively affected by 

visuospatial secondary tasks but not letter span tasks. With the inclusion of the repeated addition 

task, we predict greater dual-task interference in multiplication than subtraction, because the 

repeated addition task constrains a phonological component, and repeated addition is commonly 

employed as a subroutine of multiplication. Thus, we predict the following for the 

domain-specific model:  
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Multiplication and subtraction are differentially affected by crosstalk from tasks that share 

similar cognitive resources.  

Specific model prediction A: Multiplication performance is most impacted by the repeated 

addition task followed by the PL task and then the VSSP task. 

Specific model prediction B: Subtraction is impacted most by the repeated addition and VSSP 

tasks than the PL task with there being no difference between the repeated addition and VSSP 

tasks. 

Predictions following from domain-general theories 

Compared to the hypothesis that only domain-specific overlap results in reduced primary 

task performance, general capacity theories predict that multiplication and subtraction will not be 

differentially affected by the type of secondary memory task; rather, performance on both 

arithmetic types decreases as the difficulty (cognitive load) of the secondary task increases. We 

will include two different performance conditions in which participants perform arithmetic under 

an easy and hard cognitive load. When task difficulty is equated across conditions, we should 

expect no difference in arithmetic performance across the different secondary tasks. However, 

when the required span increases in size, we should expect decreased performance in the harder 

span trials than in the easier span trials independent of any overlapping resources. Importantly, 

the easier span conditions will still incur deficits in performance but not as much as the hard 

conditions. Thus, we predict the following for the domain-general model:  

Multiplication and subtraction performance will not be differentially affected by the type of 

secondary memory task; rather, performance on both arithmetic types decreases as the difficulty 

(cognitive load) of the secondary task increases. 
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General model prediction A: Multiplication and subtraction under difficult loads lead to worse 

performance compared to arithmetic under easy loads. 

General model prediction B: The interactions between PL, Repeated addition, and VSSP dual-

task loads with arithmetic type (multiplication or subtraction) are null. 

Predictions from an integrated model 

 Both domain-general and domain-specific models draw from diametrically separate 

working memory structures leading to conflicting predictions. In the former case, working 

memory is viewed amodally with little to no influence of subsystem involvement (e.g. Engle, 

2002 or Cowan, 1999). In the contrast, the latter proposes a more modular account of working 

memory with greater emphasis to the influence of subsystems (e.g. Logie, 2016). Both accounts 

may fit the data to the extent that there is some influence of cognitive overlap as well as general 

task demands derived from working memory tasks that influence arithmetic operations. To this 

end, we predict a more integrated model for dual-task interference where the influence of task 

demands and cognitive overlap is additive. The interaction between task demands and cognitive 

overlap are still in line with the modular, domain-specific model proposed by Baddeley & Hitch 

(1974) in which the central executive largely controls the processing of information between 

subsystems. Thus, we predict the following for the Integrated 1 model:  

Integrated 1 model prediction A: Multiplication is impacted most by the hard repeated addition 

task, because the secondary task is difficult and the cognitive demands of the tasks overlap; 

followed next by easy repeated addition and hard PL tasks, because the repeated addition task 

overlaps more than the PL task despite its difficulty; easy PL and hard VSSP because the VSSP 

task is difficult but is not predicted to overlap with multiplication; and least impacted by the easy 
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VSSP task because it is neither as difficult as other tasks nor does it share any overlap in 

resources. 

Integrated 1 model prediction B: subtraction is impacted most by hard repeated addition and hard 

VSSP because the secondary task is difficult and the cognitive demands of the tasks overlap; 

followed by easy repeated addition, easy VSSP, and hard PL because the PL task is difficult but 

is not predicted to overlap with subtraction as much as the other secondary tasks; and least 

impacted by the easy PL task because it is neither as difficult as other tasks nor does it share any 

overlap in resources. 

Alternatively, perhaps the effects of secondary tasks depend on interplay between the 

difficulty of the secondary task and the overlapping cognitive demands between the primary and 

secondary tasks. Specifically, perhaps difficulty effects are more pronounced when there is also 

cognitive overlap. For example, easy verbal load may not differentially influence multiplication 

and subtraction problems but multiplication may be much slower than subtraction under hard 

verbal load. Thus, we predict the following for the Integrated 2 model:  

Integrated 2 model prediction A: multiplication is most impacted by hard repeated addition 

because this secondary task has the most overlap under difficult conditions; followed by hard PL 

and then by hard VSSP because PL tasks have more overlap than VSSP with multiplication; and 

least impacted by easy PL, easy repeated addition, and easy VSSP because the easier tasks are 

not producing a large enough cognitive load to see meaningful differences. 

Integrated 2 model prediction B: subtraction is most impacted by hard repeated addition and hard 

VSSP because these secondary tasks have the most overlap under difficult conditions; followed 

by hard PL because PL tasks have less overlap with subtraction; and least impacted by easy 
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because the easier tasks are not producing a large enough cognitive load to see meaningful 

differences. 

The stronger influence of central executive loads over phonological and visuospatial 

loads found by Chen & Bailey (2021) suggests another set of alternative predictions where the 

effect of working memory load types may only be present when load difficulty does not overly 

constrain executive resources. Perhaps interplay between difficulty and cognitive overlap affects 

performance in the opposite way, such that crosstalk effects are more pronounced at lower 

difficulty levels, because higher difficulties constrain central executive resources instead of 

domain-specific resources. Higher difficulty tasks will more negatively affect performance than 

easy secondary tasks, but crosstalk effects are only visible under easier loads. That is, an effect 

of visuospatial load on subtraction over multiplication may only be present in easy load 

conditions, whereas the effect of specific working memory loads disappear in hard loads due to a 

shift in using more executive functioning resources. Thus, we predict the following for the 

Integrated 3 model:  

Integrated model 3 prediction A: multiplication performance is impacted more by easy PL and 

easy repeated addition compared to VSSP load because these secondary tasks share more overlap 

with multiplication, but all are negatively impacted similarly by harder secondary tasks because 

the secondary task load is too high to see meaningful differences. 

Integrated model 3 prediction B: subtraction performance is impacted more by easy VSSP 

compared to both easy PL and easy repeated addition because the VSSP task shares more 

overlap with subtraction, but all are negatively impacted similarly by harder secondary tasks 

because the secondary task load is too high to see meaningful differences. 
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Methods 

Participants 

Power analysis  

We used the software program G*Power to conduct an a priori power analysis (Faul et 

al., 2007, 2009). The outline for the power analysis can be found in the Supplementary Files. 

Following our power analysis, we recruited and ran 100 total undergraduate participants from a 

large Western university (Female = 64, age range = 18 – 25 years old, mean = 20.1 (SD = 1.3). 

22 participants in the final analysis sample reported receiving the majority of their math 

education in China prior to enrolling in a US university. All participants had normal or corrected-

to-normal vision. All research was performed in accordance with the ethical standards of the 

Institutional Review Board. Written informed consent was obtained from all participants and 

were given course credit through the Human Subjects Lab Pool or were reimbursed $30 for their 

participation. Participants from this study are the same as those from Chen, Jaeggi, & Bailey 

(2022). To our knowledge, this is the largest study with a fully within-subjects design of a dual -

task arithmetic experiment. 

Stimuli 

All tasks used in these experiments were created through PsychoPy 3 (Peirce et al., 

2019). Performance on the span tasks and arithmetic were measured by reaction time (RTs in 

ms) and accuracy (ACCs in percentage correct). For examples, see Figures 1 & 2. Arithmetic 

problems used in this experiment are the same as in Cavdaroglu & Knops (2016) and Chen, 

Jaeggi, & Bailey (2022). Phonological and visuospatial secondary tasks were based on the 

descriptions used in Cavadaroglu & Knops (2016). Strategy reports were measured with a one-
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item survey question at the end of each block. All materials including experimental tasks and 

protocol used are available online as supplementary materials. 

Arithmetic 

 Multiplication and subtraction problems were the same as those used in Chen, Jaeggi, & 

Bailey (2022). Technical details for tasks can be found in the supplementary materials. 

General staircase procedure 

Each working memory task (i.e., phonological, visuospatial, numeric) followed a similar 

staircase procedure. After three correct responses in a row, the difficulty of the task increased by 

1 letter/dot/addend; otherwise, if there were three consecutive incorrect responses, the difficulty 

of task decreased by 1 letter/dot/addend until the minimum number of stimuli were reached or 

until a correct response was given. 30 trials were conducted to measure each working memory 

task’s span. In addition, a Weibull function was fit to the data where the inverse of the Weibull 

function was used to determine the number of letters corresponding to 80% and 99% accuracy. 

The two threshold levels were chosen to examine the effect of task difficulty (low vs high) on 

arithmetic performance in both single- and dual-task conditions. In total, each staircase contained 

30 trials for a total of 90 trials. The phonological and visuospatial tasks were the same as those in 

Chen, Jaeggi, & Bailey (2022), so their technical details were moved to the supplementary 

materials. 

Repeated addition staircase 

 We created a repeated addition task to measure the crosstalk effects of a secondary 

arithmetic task on the primary arithmetic operations (i.e. multiplication and subtraction). 

Participants’ repeated addition ability was measured using an adaptive staircase procedure of 

addition problems. Following a 2AFC choice design like our primary measures, participants 
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were shown a short addition problem and then later instructed to choose between two answer 

choices (shown 7s after onset of problem). Problems were displayed for a duration of 0.4 s × n – 

n indicating number of addends – followed by 3 s on a fixation screen before participants are 

given 4 s to respond. No response trials were counted as incorrect. In half of the trials, the correct 

response was on the left and on the right in the other half. The ‘F’ and ‘J’ keys were used for 

responding. The task started with 3 addends and reach a maximum of 9  and minimum of 2. The 

adaptive staircase procedures were the same as those in the previous two tasks. In order to 

minimize extraneous cognitive load, the possible addends were kept between numbers 1-5 (e.g. 2 

+ 2 + 3 + 1; 5 + 2 + 1 + 1 + 4). Alternative answers were randomized to be between 1-5 units 

away from the answer to maintain a consistent distance effect (e.g. 8 vs 

[3,4,5,6,7,9,10,11,12,13]). Trials in which only a single number is repeated were removed to 

avoid multiplication strategies.  

Strategy reports 

 The strategy report was a one-item survey asking participants to select from four strategy 

choices (Retrieval, Counting, Decomposition, Mixed/Other). The question included a description 

of each strategy as well as an example. It is presented at the end of each block. Participants who 

select Mixed/Other are given an opportunity to type a description of their strategy. Although it is 

not ideal to ask participants to reflect on their strategies after having completed several problems 

instead of immediately after a particular problem, our interest in the effects on strategy use were 

secondary, and we wanted to avoid the possibility of strategy reports influencing task difficulty.  

Procedure 

 The study used a 2 × 2 × 4 factorial design using within-subject factors. The within-

subject factors were  arithmetic operation type (subtraction or multiplication), load difficulty 
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(easy or hard), and WM load type (no load, PL load, VSSP load, repeated addition load). No load 

(i.e. arithmetic alone) conditions served as controls against dual-task conditions. The entire 

experiment was conducted online through video conferencing in which an experimenter guided 

the participant in downloading the requisite materials and protocol for completing experimental 

tasks. The experiment was administered within two sessions that were scheduled to be around 

the same time and spread apart by 1 week. In session 1, participants completed the staircase trials 

to determine difficulty levels for dual-task conditions and answered demographic questions. In 

session 2, participants completed the full dual-task experiment including strategy reports at the 

end of each block. Each block consisted of a combination of single and dual-task conditions 

(e.g., multiplication-no load, multiplication-easy phonological load, subtraction-easy 

phonological load, etc.). Additional details for procedures can be found in the supplementary 

materials.  

Analysis Plan 

In order to test each set of models and their respective hypotheses against each other, we 

computed the difference between dual-task and single-task performance for both multiplication 

and subtraction under each load and difficulty condition using a 2 × 4 × 2  repeated-measures 

ANOVA with all factors within-subjects. As a complement to the frequentist analyses and to 

address our testing of a null hypothesis, we also reported Bayesian analyses of our repeated 

measures ANOVA to examine the relative support for both the different model predictions 

against the null hypothesis. Details for our Bayesian analyses can be found in the supplementary 

materials. For the manipulation check: Single arithmetic performance was compared to 

arithmetic under load using a one-tailed paired-samples t-test. It is expected that primary 
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arithmetic task performance (multiplication and subtraction) is negatively impacted while under 

cognitive load of a secondary task compared to performing arithmetic alone. 

The domain-general model argues that differences in dual-task performance come from 

the demands of the secondary tasks rather than overlapping resources. If both hypotheses from 

this model are supported by our frequentist and Bayesian analyses instead of any other model 

(i.e. Domain-specific, Integrated 12,3), there would be strong support for the domain-general 

model. That is, if ANOVA model only yields significant main effects for task features (i.e., 

difficulty, arithmetic, and/or secondary task) but contained no 2- or 3-way interactions, our 

findings would support a domain-general model.  If only one or parts of the model’s hypotheses 

are supported by our findings, we could only conclude that there is mixed support for this model. 

If none of the hypotheses are supported in any way, we would conclude that there is little to no 

support for the domain-general model in dual-task arithmetic experiments.   

On the other hand, the domain-specific model predicts slower, less accurate arithmetic 

performance under cognitive loads from secondary tasks that share similar cognitive resources. If 

both hypotheses from this model are supported by our frequentist and Bayesian analyses instead 

of any hypotheses from the other models, there would be strong support for the domain-specific 

model. That is, if the ANOVA model detected a significant 2-way interaction specifically 

between secondary task types and arithmetic operation but no 3-way interaction with difficulty, 

our findings would support a domain-specific model. If only one or parts of the model’s 

hypotheses are supported by our findings, we could only conclude that there is mixed support for 

this model. If none of the hypotheses are supported in any way, we would conclude that there is 

little to no support for the domain-specific model in dual-task arithmetic experiments.     
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The integrated models predict interactions between task demands and task similarity. 

However, each set of predictions are distinct from one another. The Integrated 1 model implies 

an additive effect of difficulty and crosstalk. The Integrated 2 model suggests a moderation 

effect wherein difficulty matters only when there is also crosstalk. Finally, the Integrated 3 

model suggests performance at higher difficulties are more constrained by task demands while 

crosstalk is more likely in lower difficulties. The same interpretations used for the domain-

general and domain-specific models apply for the three integrated models as well. That is, if 

there was a significant 3-way interaction between secondary tasks, arithmetic operation, and 

difficulty in addition to significant main and 2-way effects, our findings would suggest evidence 

for one of the integrated models. If only one or parts of an integrated model’s hypotheses are 

supported by our findings, we could only conclude that there is mixed support for that model. If 

none of the hypotheses are supported in any way, we would conclude that there is little to no 

support for an integrated model in dual-task arithmetic experiments. 

Data handling 

Data were analyzed primarily in JASP using its frequentist and Bayesian repeated 

measures ANOVA and paired-sample t-test functions (JASP Team, 2020). Data were organized 

for JASP using RStudio (RStudio Team, 2020), specifically tidyverse for data visualization and 

formatting (Wickham et al., 2019). The RMarkdown is available as supplementary material to 

reproduce data created for JASP. Where appropriate, Holm-Bonferroni correction was used to 

correct for multiple comparisons in post-hoc testing (Holm, 1979). Huynh–Feldt correction was 

used when sphericity was violated. Bayesian analyses were conducted using the Bayesian 

repeated measures ANOVA function in JASP (JASP Team, 2020). Following Morey & Rouder 

(2011), we will set a non-informative Jeffreys prior width of 0.5 to correspond to a small effect. 
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All reaction time (RT) analyses were based on correct trials only. Accuracy or response 

times outside the range of a participant’s mean ± 3 SDs were discarded from further analyses. 

Responses faster than 200 ms were also discarded. Based on that criterion, 1.02 % of trials in 

single arithmetic blocks and 3.56 % of the trials in dual-task blocks were eliminated. In addition, 

3 participants were excluded from data analyses for not responding in a majority of trials during 

the second session. 2 more participants were excluded from our primary and secondary analyses 

because they were missing data for one of the load conditions. Demographic information can be 

found in Table 1. All data are publicly available on the OSF page (https://osf.io/6egt5/).  

Results 

 In order to test each model’s predictions against each other, we evaluated the overall 2 × 

4 × 2 repeated measures ANOVA on the basis of whether main effects and/or interactions were 

present. If the ANOVA model only yielded significant main effects for difficulty, arithmetic, 

and/or secondary task but contained no 2- or 3-way interactions, our findings would support a 

domain-general model. If the ANOVA model detected a significant 2-way interaction 

specifically between secondary task types and arithmetic operation but no main effects or 3-way 

interaction with difficulty, our findings would support a domain-specific model. Finally, if there 

was a significant 3-way interaction between secondary tasks, arithmetic operation, and difficulty, 

our findings would suggest evidence for one of the integrated models.  

Overall, we found strong support for a domain-general model for reaction times and a bit 

more mixed support for accuracies such that performance was generally worse under all dual-

task conditions compared to single-task arithmetic (Figure 1 & Table 2). In addition to the main 

effect of secondary task load [RT: F = 111.36, p < .001, ηp² = 0.54; ACC: F = 66.34, p < .001, ηp² 

= 0.41], the ANOVA yielded significant main effects for arithmetic operation [RT: F = 18.72 p < 
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.001, ηp² = 0.17; ACC: F = 4.07, p = .047, ηp² = 0.04] and difficulty for reaction times but not 

accuracy [RT: F = 4.94, p = .03, ηp² = 0.05; ACC: F = 2.99, p = .09, ηp² = 0.03].  

Arithmetic performance was generally slower and less accurate under greater secondary 

load conditions or when paired with addition as a secondary task compared to arithmetic alone 

(Table 3). No significant 2- or 3-way interactions [i.e., WM × Arithmetic Operation; WM × 

Difficulty; Difficulty × Arithmetic Operation; WM × Arithmetic Operation × Difficulty] were 

detected for reaction times [p-values range: .06 - .89]. However, a significant 2-way interaction 

for WM × Arithmetic Operation was found in accuracies only [F = 5.37, p = .002, ηp² = 0.05] but 

no other 2-way nor the 3-way interaction was significant [p-values range: .13 - .48; see Table S3 

in the Appendix for post-hoc analyses]. Despite the 2-way interaction being found, main effects 

were still significant for accuracies and post hoc comparisons were mainly driven by the addition 

secondary task, which did not provide strong support for the domain-specific or any of the 

integrated models we described a priori. 

We compared the fit of different regression models that included different combinations 

of main effects and interactions. We started with a full model including the 2- and 3-way 

interactions and subsequently dropped each interaction term to test whether a simpler model fit 

the data better than the more complex one. Reaction times overall were best explained by a 

model that only included the main effects of working memory task load, arithmetic, and 

difficulty (Table S4). Our Bayesian repeated measures ANOVA yielded results consistent with 

our frequentist model comparisons (Table S5). Models including interactions along with the 

main effects (e.g. WM + Arithmetic + Difficulty + WM × Arithmetic; WM + Arithmetic + 

Difficulty + WM × Arithmetic + WM × Difficulty) yielded Bayes factors (B10) < .001, 

suggesting strong evidence against the interaction terms. The added complexity did not explain 



 

109 

 

our data more than the simpler additive model with main effects only. The simpler models 

tended to fit the data better than the more complex model, but not always (Tables S6 & S7). The 

Bayesian repeated measures ANOVA suggested the best fitting model for accuracy was one with 

WM + Arithmetic + WM × Arithmetic which appears to be primarily driven by the addition 

secondary task as can be seen in Table S3. We investigated these potential interactions further in 

our exploratory analyses.  

Exploratory analysis 1: Probing interactions  

 Thus far, our results suggest stronger evidence for a domain-general model over a 

domain-specific or any of the specific integrated models we considered a priori. However, such 

results do not necessarily discount the other two models entirely. Therefore, we further probed 

whether there were changes in arithmetic performance specific to different combinations of 

factors often hypothesized to moderate performance (i.e., different working memory secondary 

tasks, receiving math education from a different country, and difficulty). We performed 

exploratory analyses by subjecting the data to multiple 2 × 2 (Secondary task load × Arithmetic 

operation) ANOVAs to identify if and where interactions could occur and compiled their F-

values into a F-curve distribution (Figure 2). Overall, we detected 12 statistically significant 

interaction effects out of the 48 comparisons6 all driven by the addition task compared to all 

other secondary tasks (Table S8). Across all significant interaction effects, the addition 

secondary task slowed and/or induced more errors than any other secondary task load with no 

other combination of factors (e.g., verbal/visuospatial × multiplication/subtraction) producing a 

significant interaction, suggesting that main effects alone may not accurately describe this 

 
6 6 load comparisons (add/no load; add/verbal; add/visuospatial; verbal/no load; verbal/visuospatial; visuospatial no 

load) × 2 outcomes (RT/ACC) × 4 models (whole sample, Chinese-educated sample, easy load condition only, hard 

load condition only 
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pattern of performance. Addition secondary tasks produced interaction effects across the 

subgroup analyses, sometimes on reaction time but not accuracy and sometimes vice-versa (see 

F-value columns in Table S8).  

These exploratory analyses suggest that chance alone could not adequately explain the 

interactions that were detected, but these effects may be somewhat idiosyncratic to the 

experiment’s design. Importantly, none of the theoretical models described in the introduction 

reliably predicted the pattern of response across these interactions. Rather, the 2-way interactions 

here can be entirely attributed to the addition secondary task. Furthermore, subtraction 

performance was impacted more under addition than multiplication, contrary to our hypotheses. 

A possible reason for this pattern of results could be that participants are retrieving and 

processing repeated addition facts in both the addition and subtraction task. While retrieving 

facts would also suggest phonological involvement similar to multiplication, there may be 

greater switching costs between subtraction and addition. This account is speculative, however.  

Exploratory analysis 2: Strategy use 

 In addition, we explored how strategy selection was related to performance and whether 

task features would impact strategy selection overall. Overall, strategy choice was not very 

informative in understanding the impact of task features or explaining our pattern of null results. 

Descriptive information on strategy selection can be found in Table S2. Participants favored 

retrieval based strategies (i.e., retrieval and decomposition) over procedural ones (i.e., counting 

and mixed/other) (58% vs 42%). Consequently, procedural strategies was associated with a 

significant slowing of about 66 ms (se = 21.8, p = .002) but no significant association with 

arithmetic accuracy. Task features (i.e., working memory tasks, arithmetic operation, difficulty) 
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did not predict strategy choice outside of participants preferring retrieval based strategies (Table 

S9 Appendix). 

Discussion 

 In this study, we tested several pre-registered predictions on dual-task performance in 

mental arithmetic with respect to several types of working memory models. That is, we tested 

whether the effects of different secondary tasks and difficulty on arithmetic could be attributed to 

three general categories of theories linking cognition to dual task performance:  

1. A domain-general model whereby dual-task effects can be primarily attributed to task 

complexity or difficulty such that there is little to no influence of cognitive overlap 

between tasks; 

2. A domain-specific model whereby dual-task effects can be primarily attributed to 

cognitive overlap such that tasks sharing similar cognitive resources cause more 

interference than tasks that do not share resources; 

3. Integrated models whereby task complexity and cognitive overlap could have either an 

additive effect or that there is some level of interplay between them such that dual-task 

effects depend on both how complex and how much overlap a secondary task had with 

the arithmetic. 

Overall, we found multiplication and subtraction performance to be slower and less 

accurate under dual-task conditions. Specifically, our results were largely in favor of a domain-

general model of working memory (General model predictions A & B) such that a majority of 

our statistical models supported the main effects of task complexity via difficulty and the effect 

of the repeated addition task. Contrary to previous studies in the past that found different 

interactions between different types of secondary tasks and arithmetic operations (e.g., Lee & 
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Kang, 2002; Imbo & LeFevre, 2010), we were unable to reproduce any similar interactions that 

would support either a domain-specific or integrated model. We did not find differential effects 

of verbal and visuospatial secondary tasks on multiplication and subtraction nor did we find the 

addition task reducing multiplication performance more than subtraction. Instead, we found the 

addition secondary task to impair performance more than any other secondary task especially 

with subtraction. While our initial prediction that multiplication performance would be impaired 

from its reliance on repeated addition processes, the more prominent effect in subtraction may 

imply a greater amount of similarity between the inverse operations or that task switching 

between inverse operations may be particularly cognitively demanding.  

Despite a major focus on domain-specific interactions in the arithmetic dual task 

literature, this study’s results are more consistent with a number of non-arithmetic dual-task 

studies, which have found that slowing effects of secondary tasks primarily rely on domain-

general or attentional control resources over domain-specific resources (Barrouillet et al., 2015; 

Uittenhove et al., 2019). A latent variable approach also suggests that while short-term memory 

span tasks alone could measure the domain-specific effects of constructs like verbal or 

visuospatial working memory, complex span tasks that reflect the design of a dual-task 

arithmetic experiment largely reflect a domain-general factor instead (Kane et al., 2004).  

Taken together, the largely null interactions between primary and secondary tasks, with 

the exception of the larger slowing effect of the addition secondary task on subtraction 

performance arithmetic, raise the possibility that interactions may be real but elusive and 

idiosyncratic to highly specific task demands. If so, then perhaps broad conclusions about human 

cognition should not be drawn from interactions between primary and secondary task types in the 
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absence of replications across versions of the primary and secondary tasks that vary surface 

features but hold constant the hypothesized core features hypothesized to overlap between them.  

In conclusion, our results mostly supported the domain-general influence of working 

memory in dual-task arithmetic. However, to say our results discount any domain-specific or 

integrated models would be an oversimplification. In particular, we found evidence for a specific 

effect of a secondary addition task on subtraction (compared to multiplication) performance. 

Still, this is a different kind of specific effect than typically hypothesized in dual task arithmetic 

experiments. Unfortunately, we were unable to reach meaningful conclusions with our use of 

strategy reports. This may be due to the retrospective nature of reporting strategy at the end of 

each experimental block. To our knowledge, dual-task arithmetic studies have only looked at 

strategy reports but have not experimentally manipulated strategy choice, so future work may 

want to control this factor to limit the effects of individual differences in dual-task arithmetic 

performance. 

We conclude that selective effects of secondary tasks on performance on different 

primary tasks may be real but difficult to predict in dual-task experiments and generally smaller 

than the effects on performance via domain-general pathways. There are likely specific ways that 

working memory can affect dual-task arithmetic performance, such as through individual 

differences in strategy choice for arithmetic or dual-task performance. We encourage future work 

that attempts to build and test theories of arithmetic performance under cognitive load that can 

make predictions across a variety of primary-secondary task combinations. 
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Appendix 

 

Table 1. Demographic information 

Variable n=97 M(SD) % 

Gender    

   Male 33  66 

   Female 64  34 

Age  20.1(1.3)  
Country of primary math education 

   US 71  73.2 

   China 22  22.7 

   Other 4  4.1 

Math grade compared to peer 

   A 35  36.08 

   B 49  50.52 

   C 12  12.37 

   D 1  1.03 

   F 0  0 

Abacus use   

   Never Taught  69  71.13 

   Never Used  16  16.49 

   Rarely  11  11.34 

   Sometimes  1  1.03 
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Table 2. Means and standard deviations for reaction time and accuracy as a function of WM task 

× arithmetic operation × difficulty 

WM Arithmetic Difficulty RT Mean SD ACC Mean SD N 

No load Multiplication 789 236 0.93 0.09 95 

 Subtraction 716 231 0.95 0.10 95 

Verbal Multiplication Hard 973 246 0.90 0.11 95 

  Easy 910 227 0.89 0.13 95 

 Subtraction Hard 864 252 0.91 0.11 95 

  Easy 843 243 0.91 0.11 95 

Visuospatial Multiplication Hard 934 256 0.89 0.13 95 

  Easy 921 236 0.91 0.11 95 

 Subtraction Hard 857 284 0.92 0.08 95 

  Easy 860 299 0.94 0.08 95 

Repeated Add Multiplication Hard 982 220 0.86 0.12 95 

  Easy 975 242 0.87 0.13 95 

 Subtraction Hard 963 296 0.85 0.14 95 

  Easy 913 251 0.86 0.14 95 

Note. WM: working memory. Reaction times (RT) in nearest ms and accuracy (ACC) in nearest 

percentage 
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Table 3. Effect Size Comparisons between Difficulty x Load vs No load by Arithmetic 

  Verbal  Addition  Visuospatial 

 Arithmetic easy hard easy hard easy hard 

RT multiplication 0.52 0.76 0.78 0.85 0.56 0.59 

 subtraction 0.53 0.61 0.82 0.93 0.54 0.54 

 
       

ACC multiplication -0.31 -0.30 -0.49 -0.66 -0.20 -0.29 

 subtraction -0.32 -0.37 -0.71 -0.80 -0.11 -0.28 
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Figure 1. Comparison of dual-task effects in reaction times and accuracies. A and B (top row) represent reaction time. C and D 

(bottom row) represent accuracy. Error bars represent standard errors of the mean. 
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Figure 2. Distribution of F-test values comparing secondary task type by arithmetic operations 

interactions. 
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Figure 3. Single multiplication task (left). Dual-task multiplication with verbal letter WM load 

(right) 
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General Discussion 

 The aim of the present dissertation was to investigate whether and how working memory 

influences mental arithmetic performance within dual-task situations. More broadly, I sought to 

reconcile differences across the math cognition literature in which developmental research 

pointed to a consistent relation between working memory and math where experimental research 

had not. To this end, I approached this problem in two ways: a meta-analysis of dual-task 

experiments (Study 1) and a within-subject dual-task experiment testing the predictions of 

different working memory theories on arithmetic operations using a variety of secondary 

distractor tasks (Studies 2 and 3).  

In Study 1, I conducted a meta-analysis of dual-task experiments to test the extent to 

which mental arithmetic performance relied on working memory resources and to what extent 

features of the dual-task design moderated performance. Through the meta-analysis, I found 

robust evidence in support of a causal relationship between working memory and arithmetic. 

More so, the type of working memory task – namely demanding domain-general tasks – 

contributed the most to the overall change in performance between single and dual-task 

conditions. Evidence for more specific secondary and primary task combinations was much more 

limited in comparison, suggesting a few explanations. One would be that – in and of itself – the 

dual-task paradigm is a complex cognitive task that draws on domain-general processes like task 

switching or inhibition, thereby reducing the overall impacts of domain-specific working 

memory resources drawn from secondary tasks. That is, the general demands of a secondary task 

outweigh any domain-specific effects from similarly coded tasks. Alternatively, the domain-

specific effects themselves may be smaller than what has been predicted by the literature and 

have less of an impact than previously thought as well. 
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In Study 2, I probed possible domain-specific effects of working memory in mental 

arithmetic further in a large within-subject experiment. In addition, I attempted to replicate one 

such interaction between secondary task type (verbal and visuospatial memory) × arithmetic 

operation (subtraction and multiplication) and compared the extent to which the interaction effect 

in my experiment aligned with prior research. Despite testing for the interaction within numerous 

analytical models based on prior results from the dual-task previous studies, I was unable to 

replicate the interaction. These types of primary and secondary task interactions are often 

interpreted as evidence for domain-specific pathways of working memory influence, but these 

findings along with those of Study 1 would otherwise suggest a greater role of domain-general 

influence in dual-task arithmetic. Dual-task arithmetic literature has often focused on these 

domain-specific effects following predictions based on the multicomponent model of working 

memory from Baddeley & Hitch (1974). However, other theoretical accounts which emphasize 

domain-general influences that focus more on attentional control may be more useful in making 

predictions for future dual-task experiments (Barrouillet & Camos, 2001; Cowan, 1999; Engle, 

2002; Oberauer, 2009). That is not to say domain-specific effects do not exist, just that instances 

in which these effects can be reliably predicted a priori and tested upon may require highly 

specific combinations of primary and secondary tasks.  

Finally in Study 3, I compared predictions from domain-general, domain-specific, and 

integrated theories of dual-task performance between working memory and arithmetic. I used 

data from the same experiment as Study 2 but with the inclusion of difficulty as a third factor and 

an addition task as another secondary task. Similar to Study 2, I found consistent main effects of 

dual-task load suggesting arithmetic performance was primarily driven by difficulty and domain-

general resources rather than domain-specific or some combination of general and specific 
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influences. Again, domain-specific effects may still exist as I found a larger effect of the addition 

secondary task on both multiplication and subtraction compared to both verbal and visuospatial 

load. Moreover, the effect was larger for subtraction compared to multiplication – opposite of 

what I predicted. These findings raise concerns regarding the design of dual-task experiments. 

First, that in order to detect a selective interference effect, the primary and secondary tasks must 

share more semantically similar resources than what has been previously used in the dual-task 

arithmetic literature. Second, addition and subtraction being semantically similar but opposite in 

operations poses a significant switching cost within a dual-task situation. Taken together, this 

would suggest the use of simple-span tasks involving the storage and rehearsal of letters or 

spatial positions as secondary tasks are unlikely to produce those elusive selective interference or 

“crosstalk” effects. Indeed, the nature of dual-task experiments themselves lend more to being 

able to measure the effect of domain-general resources than domain-specific. 

 Overall, it is clear that working memory plays a pivotal role in the processing of mental 

arithmetic as evidenced from Study 1’s meta-analysis of dual-task experiments as well as my 

own dual-task experiment in Studies 2 and 3. However, the results of my experiments in Studies 

2 and 3 were not consistent with predictions of arithmetic performance under cognitive load that 

follow multiple component accounts of working memory (i.e., Baddeley & Hitch, 1994; Logie 

2016). Rather, my findings were consistent with more general, attention-based theories that 

suggest a broader effect from managing the amount of available cognitive resources (e.g., 

Cowan, 1999, Oberauer, 2009; Barrouillet & Camos, 2020). While I was unable to find domain-

specific effects of verbal or visuospatial memory across multiplication and subtraction, I found 

the addition secondary task to have large differential effects across arithmetic operations. This 

novel finding presents two possibilities. The first is that working memory operates primarily 
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through an attention-based system where secondary tasks generate varying levels of activation 

that limit capacity rather than semantically or content related information pathways competing 

for similar resources (Oberauer, 2009, 2010). The addition task placed too high of a demand on 

the limited working memory capacity leading to worse performance. However, this account does 

not entirely explain why addition load was much larger than either verbal or visuospatial load 

because difficulty was individualized for each participant. This could mean that, controlling for 

difficulty, there are real selective interference effects but only when the primary and secondary 

tasks are highly similar to one another. Thus, the second account posits that task features do 

matter but to a much lesser extent than do general task demands. The other secondary working 

memory tasks may not have shared enough similarity or overlap (e.g., dots vs numbers, letters vs 

numbers, numbers vs numbers) with the primary arithmetic tasks to have reliably produced 

differential effects, but an addition task did. Assuming the second account is true, future work 

would need to identify what features are most important between tasks to better understand the 

role working memory plays within dual-task performance.    

 For example, one key distinction between the arithmetic tasks used in many dual-task 

experiments is the selected operator (i.e., addition, subtraction, multiplication, division). 

Neuropsychological studies suggest these operations share more common networks with each 

other than with other working memory tasks from the literature (Arsalidou & Taylor, 2011; 

Dehaene, 1992, Dehaene & Cohen, 1995, Dehaene & Cohen, 1997). As such, it may no longer 

be the case that the working memory tasks typically used in dual-task arithmetic experiments can 

be as useful for identifying pathways of working memory influence in mental arithmetic, which 

may explain why differential suppression effects are so difficult to find. Hence for cognitive 

overlap to create significant interference above and beyond general dual-task costs, it would 
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require the overlap to be highly specific – possibly involving similar operations, problem size, no 

individual differences in strategy use, or by maintaining similar modalities in presentation 

formats and responses (e.g., auditory presentation and oral response vs visual presentation and 

key response). In any case, it is still not clear a priori when and how cognitive overlap could 

matter in these arithmetic studies. Potentially, the demands of the dual-task design itself must not 

outweigh the cognitive overlap between the primary and secondary tasks, so that domain-general 

influences in switching costs have less of an impact on performance. This is possible given that 

individuals can be trained to improve dual-task performance (Strobach, 2020) though total 

elimination of dual-task costs may not be possible (Strobach & Schubert, 2017).   

From the literature and my own work, many different manipulations to examine these 

domain-specific effects have been tested to varying degrees of success. Careful manipulations of 

future dual-task experiments can be useful in identifying key factors underlying individual 

differences in these mental arithmetic tasks, but if my interpretation about the difficulties in 

finding these effects are true, it would mean that the experimental rigor would come at the cost 

of any practical significance for the field of math cognition. Research is clear on the relation 

between working memory and math, though not necessarily the pathways by which working 

memory influences mathematical processing, especially when it comes to domain-specific 

influences of visuospatial or verbal memory. Overall, the current studies support the notion that 

working memory has strong domain-general influences on arithmetic performance but no current 

model of working memory is able to accurately and reliably predict dual-task arithmetic 

performance. 

Limitations 

 One of the key limitations from the meta-analysis was a lack of statistical power in 

detecting interactions between primary and secondary task combinations, which I tried to address 
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in the Studies 2 and 3 with the large within-subject design. Still, despite being sufficiently 

powered to detect a small effect size in experiment, I was unable to do so. That is not to say there 

are no domain-specific effects, but the combinations of tasks and particular design used in my 

experiment may not have led to the correct circumstances to detect them. Individual differences 

in strategy use also limited our findings in all three studies. Efficiency in arithmetic strategy use 

is highly correlated with working memory capacity (Bailey, Littlefield, & Geary, 2012; Geary et 

al., 2004, 2007), but I could test this directly in the meta-analysis nor the experiment. Strategy 

use has been measured in dual-task arithmetic before (e.g., Tronksky, 2005; Tronsky et al., 

2008), but to my knowledge, strategy use has not been directly manipulated. Future work would 

benefit from trying to control for strategy use to mitigate individual differences in dual-task 

arithmetic performance. I also broadly discussed different theories of working memory to create 

predictions for Study 3 rather than explicating exactly how each theory differed from one 

another, thereby creating more general hypotheses. Some adversarial collaboration work between 

different labs has already been done to compare how different working memory theories predict 

general dual-task performance (see Doherty et al., 2019), so there is precedence both here and in 

the collaboration for work to be extended towards dual-task arithmetic. 

Conclusion 

 Throughout the process of this dissertation, I have attempted to reconcile conflicting 

findings on how working memory is implicated in mathematical processing. I investigated the 

effects of working memory on mental arithmetic performance in dual-task experiments both 

meta-analytically and experimentally and was able to find a robust causal link between them. 

However, even with a strong experimental design, I was unable to infer clear answers towards 

the nature of working memory in arithmetic processing. Working memory has wide-reaching, 

domain-general effects on arithmetic processing, but it also has subtle, domain-specific effects as 
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well that are difficult to predict and test for. No single theory of working memory thus far has 

been able to explain all of the subtle differences in dual-task arithmetic performance, but 

determining that is beyond the scope of this project. The goal of this work is to provide a better 

understanding of how working memory may influence arithmetic as well as new avenues of 

future research to build from. 
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