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A B S T R A C T

To accelerate the solution of large eigenvalue problems arising from many-body calculations in nuclear physics
on distributed-memory parallel systems equipped with general-purpose Graphic Processing Units (GPUs), we
modified a previously developed hybrid MPI/OpenMP implementation of an eigensolver written in Fortran
90 by using an OpenACC directives based programming model. Such an approach requires making minimal
changes to the original code and enables a smooth migration of large-scale nuclear structure simulations from
a distributed-memory many-core CPU system to a distributed GPU system. However, in order to make the
OpenACC based eigensolver run efficiently on GPUs, we need to take into account the architectural differences
between a many-core CPU and a GPU device. Consequently, the optimal way to insert OpenACC directives
may be different from the original way of inserting OpenMP directives. We point out these differences in
the implementation of sparse matrix–vector multiplications with multiple vectors, which constitutes the main
cost of the eigensolver, as well as other differences in the preconditioning step and dense linear algebra
operations. We compare the performance of the OpenACC based implementation executed on multiple GPUs
with the performance on distributed-memory many-core CPUs, and demonstrate significant speedup achieved
on GPUs compared to the on-node performance of a many-core CPU. We also show that the overall performance
improvement of the eigensolver on multiple GPUs is more modest due to the communication overhead among
different MPI ranks.
1. Introduction

One of the most challenging problems in the computational study of
the structure of atomic nuclei is the solution of a large-scale eigenvalue
problem

𝐻𝜓 = 𝜆𝜓, (1)

where 𝐻 is an approximation to the many-body Hamiltonian associated
with a target nucleus, 𝜆 is an eigenvalue of 𝐻 and 𝜓 is the corre-
sponding eigenvector [1–3]. When 𝐻 is approximated in a subspace
spanned by Slater determinants of some single-particle basis functions,
the finite-dimensional eigenvalue problem defined in (1) is often called
a Configuration Interaction (CI) approximation, and the matrix 𝐻 is
often referred to as a CI Hamiltonian.

Due to the many-body nature of the eigenvalue problem, the di-
mension of the CI Hamiltonian 𝐻 , which is a function of the number
of nucleons and a basis truncation parameter, can become extremely

∗ Corresponding author.
E-mail addresses: pmaris@iastate.edu (P. Maris), cyang@lbl.gov (C. Yang), doryspaye@bnl.gov (D. Oryspayev), bgcook@lbl.gov (B. Cook).

large. However, 𝐻 is generally very sparse. Therefore, iterative meth-
ods that can take advantage of an efficient implementation of a Sparse
Matrix–Vector multiplication (SpMV) procedure are often preferred, es-
pecially when only a limited number of eigenpairs of 𝐻 are needed [4,
5].

In nuclear physics, one is often interested in a few (five to ten)
low-lying eigenpairs of 𝐻 . In recent work [6], we have shown that
these eigenvalues can be computed efficiently by using the Locally Op-
timal Block Preconditioned Conjugate Gradient (LOBPCG) method [7].
The advantages of the LOBPCG algorithm, which we will describe
with some detail in the next section, over the widely used Lanczos
algorithm [8], are

• The algorithm is a block method that allows us to multiply 𝐻
with several vectors simultaneously. That is, instead of an SpMV,
one performs an Sparse Matrix–Matrix multiplication (SpMM) of
vailable online 14 January 2022
877-7503/© 2022 The Authors. Published by Elsevier B.V. This

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jocs.2021.101554
Received 22 June 2021; Received in revised form 24 October 2021; Accepted 28 D
is an open access article under the CC BY-NC-ND license

ecember 2021

http://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
mailto:pmaris@iastate.edu
mailto:cyang@lbl.gov
mailto:doryspaye@bnl.gov
mailto:bgcook@lbl.gov
https://doi.org/10.1016/j.jocs.2021.101554
https://doi.org/10.1016/j.jocs.2021.101554
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2021.101554&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Computational Science 59 (2022) 101554P. Maris et al.

W
c
(
t
m
K
C

e
i
w
e
F
a
b
B
t
a
1
C
c
t
t
c
a
a
d
d
t

t
M
r
c
e
a
F
W
i
b
S

2

a
i

a sparse square matrix on a tall skinny matrix at every itera-
tion, which introduces an additional level of concurrency in the
computation and enables us to exploit data locality better.

• The algorithm allows us to make effective use of approximations
to several eigenvectors.

• The algorithm allows us to take advantage of a preconditioner
that can be used to accelerate convergence.

e have implemented the LOBPCG algorithm in a nuclear structure
omputation software called Many-body Fermion Dynamics for nuclei
MFDn). The implementation uses a hybrid MPI/OpenMP paralleliza-
ion scheme, and has been optimized [9] to achieve scalable perfor-
ance for distributed-memory many-core systems such as the Cori
NL [10] system maintained at the National Energy Research Scientific
omputing (NERSC) Center.

The increased availability of high performance computing platforms
quipped with general purpose GPUs has motivated us to consider mod-
fying the many-core CPU implementation of the LOBPCG algorithm,
hich is written in Fortran 90, to enable it to run efficiently on accel-
rator based systems. Instead of rewriting the code using, e.g., CUDA
ortran [11] or OpenCL [12] programming models, which would take
substantial amount of work, we decided to use the OpenACC directive
ased programming model, with cuBLAS and cuSOLVER instead of
LAS and LAPACK, in combination with CUDA-aware MPI [13,14],
o modify the original code which is based on MPI+OpenMP. This
pproach has been used successfully in several other applications [15–
9]. In this paper, we will show how to incorporate OpenACC and
uBLAS/CuSolver in the LOBPCG eigensolver. We will discuss the
hanges needed in order to achieve good performance on GPUs in
he context of the LOBPCG algorithm. In particular, we will focus on
he efficiency of the OpenACC implementation of the SpMM, which
onstitutes a significant portion of the overall computation, as well
s the performance of the preconditioning step and other dense linear
lgebra operations required in the LOBPCG algorithm. Although our
iscussions focus on the LOBPCG algorithm, the same techniques we
eveloped are applicable to other block-iterative eigensolvers such as
he Davidson method [20] and the block-Lanczos algorithm [21].

The paper is organized as follows. In Section 2, we briefly review
he main components of the LOBPCG algorithm. We discuss the hybrid
PI/OpenMP implementation of MFDn, and its key components with

egard to the LOBPCG algorithm in Section 3. The modification of the
ode using OpenACC directives is presented in Section 4. Numerical
xamples that demonstrate the performance improvement on the GPUs
chieved by using OpenACC directives are presented in Section 5.
urther improvement of the existing approach is discussed in Section 6.
e use the terminology GPU and device, as well as CPU and host,

nterchangeably throughout this manuscript. Preliminary results have
een presented at the 2020 OpenACC Summit [22] and at the 2021
IAM CSE conference [23].

. The LOBPCG algorithm

We denote the eigenvalues of the 𝑛 × 𝑛 nuclear CI Hamiltonian
𝐻 arranged in an increasing order by 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛. Their
corresponding eigenvectors are denoted by 𝑥1, 𝑥2, . . . , 𝑥𝑛. The first
𝑘 ≤ 𝑛 eigenvectors and eigenvalues are given by 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑘]
and 𝛬 = diag

{

𝜆1, 𝜆2,… , 𝜆𝑘
}

, respectively, satisfying 𝐻𝑋 = 𝑋𝛬. It is
well known that 𝑋 is the solution to the trace minimization problem

min
𝑋𝑇𝑋=𝐼

trace(𝑋𝑇𝐻𝑋). (2)

The LOBPCG algorithm developed by Knyazev [7] seeks to solve (2)
by using the updating formula

(𝑖+1) (𝑖) (𝑖+1) (𝑖) (𝑖+1) (𝑖−1) (𝑖+1)
2

𝑋 = 𝑋 𝐶1 +𝑊 𝐶2 + 𝑃 𝐶3 , (3)
Algorithm 1: The basic LOBPCG algorithm
Input: The sparse matrix 𝐻 , an initial guess to the 𝑘 desired

eigenvectors 𝑋(0) ∈ R𝑛×𝑘, convergence tolerance (𝑡𝑜𝑙)
and maximum number of iteration allowed (𝑚𝑎𝑥𝑖𝑡𝑒𝑟);

Output: (𝛬,𝑋), where 𝛬 is a 𝑘 × 𝑘 diagonal matrix containing
the desired eigenvalues, and 𝑋 ∈ R𝑛×𝑘 contains the
corresponding eigenvector approximations;

1 [𝐶 (1), 𝛩(1)] = RayleighRitz(𝐻,𝑋(0));
2 𝑋(1) = 𝑋(0)𝐶 (1);
3 𝑅(1) = 𝐻𝑋(1) −𝑋(1)𝛩(1);
4 𝑃 (0) = ∅;
5 do 𝑖 = 1, 2,… , maxiter
6 𝑊 (𝑖) = 𝐾−1𝑅(𝑖);
7 𝑆(𝑖) =

[

𝑋(𝑖),𝑊 (𝑖), 𝑃 (𝑖−1)];
8 [𝐶 (𝑖+1), 𝛩(𝑖+1)] = RayleighRitz(𝐻,𝑆(𝑖));
9 𝑋(𝑖+1) = 𝑆(𝑖)𝐶 (𝑖+1);
10 𝑅(𝑖+1) = 𝐻𝑋(𝑖+1) −𝑋(𝑖+1)𝛩(𝑖+1);
11 𝑃 (𝑖) = 𝑊 (𝑖)𝐶 (𝑖+1)

2 + 𝑃 (𝑖−1)𝐶 (𝑖+1)
3 ;

12 Determine number of converged eigenpairs 𝑛𝑐 by checking
the relative norm of each column of 𝑅(𝑖+1) using the
convergence tolerance 𝑡𝑜𝑙;

13 exit if 𝑛𝑐 ≥ 𝑘;
14 𝛬 ← 𝛩(𝑖); 𝑋 ← 𝑋(𝑖);

to approximate the eigenvector corresponding to the 𝑘 leftmost eigen-
values of 𝐻 , where 𝑊 (𝑖) ∈ R𝑛×𝑘 is the preconditioned gradient of the
Lagrangian

ℒ (𝑋,𝛬) = 1
2
trace(𝑋𝑇𝐻𝑋) − 1

2
trace

[

(𝑋𝑇𝑋 − 𝐼)𝛬
]

(4)

ssociated with (2) at 𝑋(𝑖), and 𝑃 (𝑖−1) is the search direction obtained
n the (𝑖 − 1)st iterate of the optimization procedure, and 𝐶 (𝑖+1)

1 , 𝐶 (𝑖+1)
2 ,

𝐶 (𝑖+1)
3 are a set of coefficient matrices of matching dimensions that are

obtained by minimizing (4) within the subspace 𝑆(𝑖) spanned by

𝑆(𝑖) ≡
(

𝑋(𝑖) 𝑊 (𝑖) 𝑃 (𝑖−1)) . (5)

The preconditioned gradient 𝑊 (𝑖) can be computed as

𝑊 (𝑖) = 𝐾−1(𝐻𝑋(𝑖) −𝑋(𝑖)𝛩(𝑖))

where 𝛩(𝑖) = 𝑋(𝑖)𝑇𝐻𝑋(𝑖), and 𝐾 is a preconditioner that approximates
𝐻 in some way. The subspace minimization problem that yields the
coefficient matrix 𝐶 (𝑖+1)

1 , 𝐶 (𝑖+1)
2 , 𝐶 (𝑖+1)

3 , which are three block rows of a
3𝑘×𝑘 matrix 𝐶 (𝑖+1), can be solved as a generalized eigenvalue problem

(

𝑆(𝑖)𝑇𝐻𝑆(𝑖))𝐶 (𝑖+1) =
(

𝑆(𝑖)𝑇𝑆(𝑖))𝐶 (𝑖+1)𝐷(𝑖+1), (6)

where 𝐷(𝑖+1) is a 𝑘×𝑘 diagonal matrix containing 𝑘 leftmost eigenvalues
of the projected matrix pencil

(

𝑆(𝑖)𝑇𝐻𝑆(𝑖), 𝑆(𝑖)𝑇𝑆(𝑖)). The procedure that
forms the projected matrices 𝑆(𝑖)𝑇𝐻𝑆(𝑖) and 𝑆(𝑖)𝑇𝑆(𝑖) and solves the pro-
jected eigenvalue problem (6) is often referred to as the Rayleigh–Ritz
procedure [24].

Note that the summation of the last two terms in (3) represents the
search direction followed in the 𝑖th iteration, i.e.,

𝑃 (𝑖+1) = 𝑊 (𝑖)𝐶 (𝑖+1)
2 + 𝑃 (𝑖−1)𝐶 (𝑖+1)

3 . (7)

Algorithm 1 outlines the main steps of the basic LOBPCG algorithm.
The most computationally costly step of Algorithm 1 is the multiplica-
tion of 𝐻 with a set of vectors. Although it may appear that we need
to perform such calculations in steps 8 (where the projected matrix
𝑆(𝑖)𝑇𝐻𝑆(𝑖) is formed) and 10, the multiplication of 𝐻 with 𝑋(𝑖), 𝑋(𝑖+1)

and 𝑃 (𝑖) can be avoided because 𝐻𝑋(𝑖+1) and 𝐻𝑃 (𝑖) satisfy the following
recurrence relationships

𝐻𝑋(𝑖+1) = 𝐻𝑋(𝑖)𝐶 (𝑖+1) +𝐻𝑊 (𝑖)𝐶 (𝑖+1) +𝐻𝑃 (𝑖−1)𝐶 (𝑖+1), (8)
1 2 3
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Fig. 1. The partition of 𝐻 into 5 × 5 sub-matrices (left) and the distribution of 𝐻 as well as the partition and distribution of a vector 𝑊 among 15 processors (right). The integer
label in the right panel represents the rank of the processes in the world communicator on which the vector segment is stored. Segments distributed among processes within the
same column process group are drawn with the same color.
𝐻𝑃 (𝑖) = 𝐻𝑊 (𝑖)𝐶 (𝑖+1)
2 +𝐻𝑃 (𝑖−1)𝐶 (𝑖+1)

3 . (9)

Therefore, the only SpMM we need to perform is 𝐻𝑊 (𝑖). For the nuclear
CI calculations of interest, the dimension 𝑛 of the sparse symmetric
matrix 𝐻 can be several billion, whereas 𝑊 (𝑖) is a tall skinny 𝑛 × 𝑘
matrix with 𝑘 typically of the order of 8 to 16.

3. Distributed-memory many-core CPU implementation

3.1. Data distribution

Because the dimension of the sparse matrix 𝐻 for a nuclear CI
calculation can be extremely large, it is partitioned and distributed
among multiple processes [5]. Furthermore, in MFDn, we only store
half of the symmetric matrix 𝐻 using a special data distribution scheme
described below.

We partition the rows and columns of 𝐻 into 𝑛𝑑 × 𝑛𝑑 sub-matrices,
where 𝑛𝑑 is an odd integer. We then map the 𝑛𝑑 (𝑛𝑑 + 1)∕2 sub-
matrices to 𝑛𝑑 (𝑛𝑑 + 1)∕2 MPI processes using a column major mapping
scheme developed in [25], see Fig. 1. These processes are grouped into
(sub)communicators based on the row and column indices of the sub-
matrix they hold. There are 𝑛𝑑 row communicators as well as 𝑛𝑑 column
communicators, each containing (𝑛𝑑 + 1)∕2 MPI ranks.

Fig. 1 shows how 𝐻 is partitioned into 5 × 5 sub-matrices and how
the partitioned matrix is mapped to 15 processes labeled by rank 1
through 15. All sub-matrices with the same column (row) index belong
to the same column (row) processor group, which is conveniently
organized as a column (row) of the partitioned matrix as shown in the
right panel of Fig. 1. Note that the 𝐻1,4, 𝐻1,5 and 𝐻2,5 sub-matrices in
the upper triangular part of 𝐻 are the transposes of the 𝐻4,1, 𝐻5,1 and
𝐻5,2 sub-matrices in the lower triangular part of 𝐻 respectively. Storing
and working with these sub-matrices instead of their lower triangular
counterpart makes the mapping of the sub-matrices to MPI processes,
and the corresponding column and row communicator groups, well
load-balanced.

In addition to distributing the matrix 𝐻 , we also distribute the
vectors that will be multiplied by 𝐻 . Each vector 𝑥 is first partitioned
into 𝑛𝑑 sub-vectors conformal with the partitioning of 𝐻 . Each of these
sub-vectors is then further partitioned into (𝑛𝑑 + 1)∕2 segments and
distributed among the (𝑛𝑑 + 1)∕2 processes within each column group.
This partitioning of the vectors is illustrated in right panel of Fig. 1. A
vector is drawn on top of the matrix to illustrate how sub-vectors are
aligned with the sub-matrices of 𝐻 . Each sub-vector is drawn with a
distinct color, and further partitioned into 3 segments in the column
group.
3

3.2. Parallel SpMM

A customized SpMM multiplication procedure has been developed
to accommodate this particular data distribution scheme in the mul-
tiplication of the distributed 𝐻 with a block of vectors 𝑊 . In the
following, we denote the 𝑖th block of sub-vectors of 𝑊 by 𝑊𝑖. The
distributed-memory parallel multiplication of 𝐻 and 𝑊 is carried out
in MFDn as follows:

1. The segments of the sub-vector 𝑊𝑖, which are distributed among
(𝑛𝑑 + 1)∕2 processes within the 𝑖th column communicator, are
gathered onto each process of that communicator using a call to
MPI_AllGatherV.

2. The 𝑗th diagonal process broadcasts the gathered sub-vector
𝑊𝑗 = 𝑊𝑖 across the 𝑗th row communicator in preparation for the
distributed transpose SpMM computations, overlapping with the
local SpMM using the local sub-matrix 𝐻𝑗,𝑖, that is, 𝑈𝑗 = 𝐻𝑗,𝑖𝑊𝑖
(see the top section of the code snippet in Fig. 2).

3. The output sub-vectors 𝑈𝑗 are reduced along the 𝑗th row com-
municator onto the 𝑗th diagonal process, overlapping with the
local transpose SpMM on the sub-vector 𝑊𝑗 , that is, 𝑈𝑖 = 𝐻𝑖,𝑗𝑊𝑗
(see the bottom section of the code snippet in Fig. 2).

4. The (reduced) output sub-vector 𝑈𝑗 is added to the local output
sub-vector 𝑈𝑖 on the diagonal processes.

5. Finally, the sub-vectors 𝑈𝑖 are reduced and scattered into (𝑛𝑑 +
1)∕2 segments among the processors within the 𝑖th column com-
municator using a call to MPI_ReduceScatter.

Note that we separate the multiplication of 𝐻𝑖,𝑗𝑊𝑗 and 𝐻𝑇
𝑖,𝑗𝑊𝑖 into

two separate subroutines. This was done for two reasons: Firstly, in or-
der to avoid race conditions (or private arrays with a reduction clause)
for the OpenMP implementation of a combined local SpMM and trans-
pose SpMM computation; and secondly, to overlap the communication
along the row communicators with the local SpMM computations.
This technique was proposed in [25] and has been shown to be very
effective in both the OpenMP performance and in hiding most of the
communication overhead. Furthermore, we use dynamic scheduling for
the two OpenMP loops so that thread 0 can join the other threads once
the MPI calls are completed, and to alleviate any load imbalance in the
distribution of the nonzero matrix elements within an MPI rank. (The
distribution of nonzero matrix elements among MPI ranks is very well
balanced.) We will not elaborate on this technique in this paper since
our focus is on the on-device parallelization of SpMM using OpenACC.
However, in order to continue to be able to overlap communication
and data transfers with local computation, we do keep this separation
of the SpMM and the transpose SpMM.
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Fig. 2. Communication skeleton code for overlapping the MPI Bcast and Reduce calls with local SpMV computation on a CPU using OpenMP. See Section 3.3 and Fig. 3 below
for more details on the local SpMM operations.
i
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3.3. Local sparse SpMM

On the process that holds the submatrix 𝐻𝑖,𝑗 , we multiply the
istributed local Hamiltonian sub-matrix 𝐻𝑖,𝑗 and its transpose with
wo blocks of sub-vectors 𝑊𝑗 and 𝑊𝑖. A special sparse matrix storage
cheme called Compressed Sparse Block with coordinate (CSB_Coo)
ormat [26,27] is used to make it easy to perform these two multi-
lications. The compressed sparse block storage is used to store the
tarting address of each nonzero block within 𝐻𝑖,𝑗 . Each nonzero matrix
lement within a nonzero block of 𝐻𝑖,𝑗 is represented by its local row
nd column indices (coordinates) as well as its numerical value. By
imiting the block sizes to 32,000 (though in practice, block sizes of
he order of 4000 to 8000 are used), we can store these local indices as
-byte integers, and achieve almost the same memory footprint as with
he more conventional Compressed Sparse Row (or Column) format for
parse matrices.
Algorithm 2: Local SpMM

Input: Matrix 𝐻𝑖,𝑗 in CSB_Coo format, a block of 𝑛vec vectors
𝑊𝑗 ;

Output: 𝑈𝑖 = 𝐻𝑖,𝑗𝑊𝑗 ;
1 do 𝑖𝑏 = 1, 2,… , 𝑛𝑏row
2 do 𝑗𝑏 = 1, 𝑛𝑏col
3 if 𝐻𝑖𝑏 ,𝑗𝑏 ≠ ∅ then
4 for each nonzero element 𝑣 of 𝐻𝑖𝑏 ,𝑗𝑏 do
5 get the row and column indices (𝑖𝑟, 𝑖𝑐 ) of 𝑣;
6 do k = 1, 𝑛vec
7 𝑈𝑖(𝑖𝑟, 𝑘) ← 𝑈𝑖(𝑖𝑟, 𝑘) + 𝑣 ⋅𝑊𝑗 (𝑖𝑐 , 𝑘);
4

F

The multiplication of 𝐻𝑖,𝑗 with a vector 𝑊𝑗 can be described by
the procedure given in Algorithm 2. Although the multiplication of
𝐻𝑇
𝑖,𝑗 = 𝐻𝑗,𝑖 with 𝑊𝑖 can be carried out in the same inner loop above, we

implement the multiplication in a separate loop to allow for the local
SpMM computation to be overlapped with the communication required
to fetch 𝑊𝑖 as we indicated earlier.

On a multi-core processor running with multiple threads, Algo-
rithm 2 can be further parallelized by assigning each outer loop iterate
(indexed by 𝑖𝑏) a single thread. This can be done by adding an OpenMP
directive immediately before the first do loop. Fig. 3 shows the code
snippet used in MFDn for performing the local SpMM with OpenMP.
The input and output blocks of vectors are stored in the arrays amp
and Hamp respectively. For the transpose SpMM using the same data
layout, the two outermost loops are simply interchanged, as well as the
arguments (𝑟 + 𝑖𝑖) and (𝑐 + 𝑖𝑖) in the innermost loop, thus avoiding any
race conditions, and obtaining similar performance for the SpMM and
transpose SpMM.

In addition to the OpenMP directive placed before the outermost
loop to introduce thread-level concurrency, we also use the OpenMP
SIMD directive before the innermost loop to vectorize the multipli-
cation of 𝐻𝑖,𝑗 with several vectors. To facilitate the gather and
scatter of these blocks of vectors among different processes within
the same column communicator, multiple vectors are stored in row
major order, i.e., the elements in the first row of all vectors in the block
are stored contiguously, followed by the elements in the second row etc.
Such a storage scheme also enhances the data locality of the SpMM.

Finally, note that 𝐻𝑖,𝑗 is a block sparse matrix, but each block
tself is also sparse. Within each nonzero block, an additional level
f blocking partitions each block into zero and nonzero tiles; and
t the finest level, the nonzero tiles themselves are sparse as well.

ig. 4 illustrates the block and tile structure of a generic off-diagonal
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Fig. 3. Code snippet for local SpMM with OpenMP parallelization.
Fig. 4. The nonzero block and tile structure of a generic off-diagonal submatrix 𝐻𝑖,𝑗 .
Each blue rectangle (with blue border lines) represents a nonzero tile, which is a
sparse matrix. A larger rectangle with thick and black border lines represents a block.
A nonzero block contains several nonzero tiles. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

submatrix 𝐻𝑖,𝑗 . Each blue rectangle (with blue border lines) represents
a nonzero tile contained in a nonzero block, which is a larger rectangle
with thick and black border lines. Note that 𝐻𝑖,𝑗 may contain many
zero blocks that are not stored. Within each nonzero block, the zero
tiles are not stored. For a diagonal submatrix 𝐻𝑖,𝑖, all diagonal blocks
are nonzero. Within a diagonal block, all diagonal tiles are nonzero
(and within a diagonal tile, all diagonal matrix elements are nonzero).
These diagonal tiles are used in a preconditioner to be discussed next.

3.4. Preconditioner

MFDn uses a block diagonal preconditioner to accelerate the con-
vergence of LOBPCG, i.e., the preconditioner 𝐾 that appears in line 7
of Algorithm 1 is a block diagonal matrix of the form

𝐾 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐾1
𝐾2

⋱
𝐾𝑏

⎞

⎟

⎟

⎟

⎟

⎠

. (10)

For 𝐾𝑗 , we use the shifted diagonal tiles (introduced in the previous
section) of the Hamiltonian, and 𝑏 is the total number of diagonal tiles.
The shift used in each diagonal tile is close to the approximation to one
of the desired eigenvalue.

The shifted diagonal tiles 𝐾𝑗 are distributed among all processes
(not just the diagonal processes). Each process holds several diagonal
tiles. The total number of rows in the diagonal tiles a process holds
matches with the number of rows of the vector segment distributed
to that process. We use the Formal Orthogonal Method (FOM) [28] to
perform the preconditioning step in line 7 of Algorithm 1 by solving
5

𝑏 indefinite linear systems with multiple right hand sides contained
in 𝑅(𝑖). The FOM algorithm constructs multiple Krylov subspaces as-
sociated with 𝐾𝑗 and different columns of the corresponding 𝑅(𝑖) block
simultaneously, from which approximations to the corresponding block
of 𝐾−1𝑅(𝑖) can be extracted. Typically, three to five iterations of FOM
is sufficient to achieve convergence acceleration. It is possible to use
the minimal residual (MINRES) [29] algorithms to solve these linear
systems also. Since only a few iterations are performed, there is not
much difference between FOM and MINRES. Because both 𝐾𝑗 and 𝑅(𝑖)

are distributed on all processes, the preconditioning step is carried out
on all processes with no communication. Since each process contains a
number of diagonal tiles 𝐾𝑗 ’s that are independent, blocks of 𝐾−1𝑅(𝑖)

can be computed simultaneously by multiple threads. Within each tile,
OpenMP SIMD directives are used to enable vectorization in the SpMMs
within each FOM iteration.

3.5. Dense linear algebra operations

In addition to SpMM, which constitutes the largest computational
and communication work load of the LOBPCG algorithm, there are
several dense linear algebra operations that need to be implemented
efficiently. The Rayleigh–Ritz procedure performed in Steps 2 and 9 of
Algorithm 1 requires the following dense matrix–matrix multiplications

𝐺 = (𝑋(0))𝑇𝐴𝑋(0),

and

𝐺(𝑖) = (𝑆(𝑖))𝑇𝐴𝑆(𝑖), 𝑂(𝑖) = (𝑆(𝑖))𝑇𝑆(𝑖), (11)

to be performed, where 𝐴𝑋(0), 𝐴𝑆(𝑖) are assumed to have been com-
puted and stored. In MFDn, the multiplication used to produce 𝐺(𝑖) in
(11) is split into six separate multiplications

𝐺(𝑖) =
⎛

⎜

⎜

⎝

(𝑋(𝑖))𝑇𝐴𝑋(𝑖)

(𝑊 (𝑖))𝑇𝐴𝑋(𝑖) (𝑊 (𝑖))𝑇𝐴𝑊 (𝑖−1)

(𝑃 (𝑖−1))𝑇𝐴𝑋(𝑖) (𝑃 (𝑖−1))𝑇𝐴𝑊 (𝑖) (𝑃 (𝑖−1))𝑇𝐴𝑃 (𝑖−1)

⎞

⎟

⎟

⎠

(12)

shown as submatrices in the lower triangular part of 𝐺(𝑖) in (12). The
subblocks in the upper triangular part of 𝐺(𝑖) (which are not shown
above) are simply transposes of the corresponding subblocks in the
lower triangular part. A similar split is used to obtain the overlap matrix
𝑂(𝑖).

Because 𝑋(𝑖), 𝑊 (𝑖), 𝑆(𝑖−1), 𝐴𝑋(𝑖), 𝐴𝑊 (𝑖), 𝐴𝑆(𝑖−1) are all distributed
among different processes as shown in the right panel of Fig. 1, the
multiplications performed above are carried out locally on each process
using the portion of the vectors distributed to that process. The local
dense matrix–matrix multiplication can be carried out using optimized
BLAS subroutine GEMM. A global reduction and broadcast (through the
use of MPI_AllReduce) allows us to obtain and replicate 𝐺(𝑖) and 𝑂(𝑖)

on all processes.
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A similar dense matrix–matrix multiplication is performed in the
Cholesky QR procedure used to orthonormalize columns within a ma-
trix block 𝑊 . A Cholesky QR consists of the following sequence of
operations.

𝐵 = 𝑊 𝑇𝑊 (Matrix–matrix multiplication)
𝐵 = 𝑅𝑇𝑅 (Cholesky factorization)

← 𝑊𝑅−1 (Triangular back substitution)

We use the LAPACK library function dsygv to solve the generalized
igenvalue problem (6), and the function dpotrf to perform the
holesky factorization of 𝐵. These computations can be replicated on
ll processes. The BLAS triangular solve function trsm is used to
pdate 𝑊 locally on all processes.

The eigenvectors in 𝐶 (𝑖+1) obtained from Step 8 of Algorithm 1
re used to update the approximate eigenvector 𝑋(𝑖) and the search
irection 𝑃 (𝑖−1) according to (3) and (7) respectively. These updates
an be performed by using optimized GEMM also. All these GEMMs can
e performed locally with no MPI communication because 𝐶 (𝑖+1) is
eplicated on all processes.

. GPU implementation of LOBPCG using OpenACC

.1. GPU and OpenACC

GPUs are throughput optimized processors with a Single Instruction,
ultiple Thread (SIMT) programming model. These devices support
assive parallelism and feature high on-device memory bandwidth
aking them ideal for certain data parallel workloads without complex

ontrol flow requirements. Additionally, in the low-conflict regime,
erformance of atomic operations is high compared to CPUs - a key
eature to enable the sparse linear algebra kernels in MFDn.

MFDn is written in standard Fortran 90 which admits several op-
ions for a GPU implementation: Fortran with CUDA C/C++, CUDA
ortran, OpenCL, OpenMP target offload or OpenACC. OpenACC is an
ttractive choice for an initial port since it is a descriptive directives
ased approach with stable production support in major compilers. The
irective approach preserves the flexibility of running on multi-core
PUs and avoids vendor specific language lock-in.

We use !$acc declare create in combination with !$acc
pdate for all explicit data movement of (large) arrays. For the
ommunication, we use CUDA-aware MPI [13,14], which implicitly
andles any necessary data movement between device and host for
he MPI communication. We adopt a descriptive approach to the use
f directives for computation and exercise minimal control in order to
llow the compiler and run time freedom to choose the best options.
n practice, this means most loops are annotated only with !$acc
arallel, !$acc loop gang and !$acc loop vector directives
ith few additional clauses.

.2. SpMM

We assume a one-to-one mapping of MPI processes to GPUs and
hat each distributed local sparse Hamiltonian 𝐻𝑖,𝑗 and all other needed
ata fits in device memory. CUDA-aware MPI is used to facilitate
ommunication among devices so that we do not need to explicitly
ove data back and forth between hosts (where MPI communication

s performed) and devices (where a majority of the computation is
erformed).

The easiest way to enable the local SpMM to be executed in parallel
n a GPU is to replace the OpenMP parallel directives shown in the code
nippets in Fig. 3 with the OpenACC parallel loop directive for the
uter loop, and the OpenACC loop vector directive for the inner
oop, as shown in Fig. 5. However, this naive port does not take full
dvantage of the much higher levels of thread concurrency on a GPU
6

evice. On a CPU, the number of threads on a processor is typically of w
Fig. 5. Code snippet of a naive OpenACC port of the local SpMM.

the order of ten to a hundred. As a result, coarse grained concurrency
achieved by decorating the outermost loop with an OpenMP parallel
directive often works well. Thread overhead, which is higher on CPUs,
can be minimized in this coarse grained approach. On devices, tens of
thousands of lightweight threads can be simultaneously executed on
multiple streaming multiprocessors (SMs) of a device. As a result, it
is preferred to adopt a more fine-grained parallelization approach by
generating many small tasks. Furthermore, on GPUs, one needs a larger
vector length than on current CPUs to take full advantage of the device.

Creating more smaller tasks can easily be realized by fusing the two
outermost loops by using the OpenACC collapse(2) clause. In this
approach, the multiplication of each nonzero block of a local Hamil-
tonian with a block of subvectors can be executed simultaneously.
However, unlike the naive OpenACC port in which the update of the
output vectors does not suffer from any write conflict, the accumulation
of all products of local Hamiltonian blocks with distributed vector
blocks may result in a race condition in which the same output vector
block is being updated simultaneously with multiple blocked matrix–
matrix products. To avoid this race condition, an OpenACC atomic
update clause is added around the code segment in which Hamp is
pdated. Because the overhead associated with atomic updates on a
PU device is much lower than the OpenMP atomic updates performed
n a CPU, having this type of synchronization does not lead to a
ignificant increase in the total wall clock time, as we will show in the
ext section.

In addition to fusing the two outermost loops, we also fuse the two
nnermost loops to expose more parallelism at the inner loop level.
he use of the OpenACC loop vector directive is similar in spirit
o decorating the innermost loop in the OpenMP version of the local
pMM with the simd clause. However, the number of vectors we work
ith in the inner most loop is typically 4, 8 or 16, which is significantly

ess than the minimum number of vector threads on current GPUs, and
e cannot take maximum advantage of coalesced memory access on the
evice. By vectorizing the two fused innermost loops, we expose more
arallelism at the innermost loop level and create more opportunities
or simultaneous access to multiple memory banks. The atomic updates
ntroduced to avoid potential race conditions when we fused the two
utermost loops also serve to avoid potential race conditions due to
using the two innermost loops.

The code snippet that includes the use of loop fusion, atomic up-
ates and vectorization in the local SpMM is shown in Fig. 6. As we
ill show in the next section, these slight modifications of the original
penACC port of the local SpMM procedure results in significant
erformance improvement on GPUs.

Further improvement in the performance of the local SpMM proce-
ure can be made by introducing an additional level of cache blocking

ithin each nonzero block of the local Hamiltonian. This type of
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Fig. 6. A modified OpenACC parallelization of the local SpMM that fuses two outermost
loops and two inner most loops. Atomic update is used to avoid write conflicts.

blocking can further improve data locality and memory access patterns.
Fig. 7 shows how this additional level of blocking is implemented. The
‘‘do k = ... ’’ loop in Fig. 6 is replaced with two nested loops in Fig. 7.
The outer loop goes through a fixed number (defined by the variable
CacheSize set at compile time) of nonzero matrix elements at a
time. The multiplication of these nonzero elements with the matching
segment of the vector blocks are implemented in the two inner most
loops that are fused and vectorized. Also, the row and column indices
as well as the nonzero elements of each chunk of size CacheSize
are retrieved in advance and stored in gang-private arrays of length
CacheSize. When the size of gang private arrays is known at compile
time, the NVIDIA compiler will attempt to place those variables in
CUDA shared memory — high performance memory shared by threads
within a threadblock on NVIDIA GPUs. We note that it is possible to
additionally specify this behavior through use of the cached directive
if required. Placing these arrays in CUDA shared memory also confers
an additional advantage — since multiple threads are reading the
same values, these requests can be combined into a single broadcast
transaction on recent NVIDIA GPUs.

Finally, we show in Fig. 8 how we use the OpenACC async clause
to overlap the communication between MPI ranks with computation on
the GPUs. We launch the local SpMM on the GPU with an async(1)
clause, and continue on the host to perform an MPI_Bcast in prepa-
ration for the transpose SpMM. Once that MPI_Bcast is completed,
we launch the transpose SpMM on the GPU with an async(2) clause.
The MPI_Reduce operation on the output vector of the SpMM can
e performed once the SpMM is completed, as indication by the Ope-
ACC directive $acc wait(1) before the call to MPI_Reduce; and

once that is completed, we have to wait until the transpose SpMM
is completed as well, as indicated by the OpenACC directive $acc
wait(2).

In addition, there is also an MPI_AllGatherV before the main
oop of the SpMM, which can be overlapped with local computation in
similar fashion; however, the final MPI_ReduceScatter cannot be
verlapped. Furthermore, the actual summation of local output vectors
s currently done on the host, and most likely by a single thread; on
any-core CPUs we have implemented a user-defined multithreaded

eduction operator which has the potential to significantly improve the
erformance of MPI_Reduce on large arrays. Looking ahead, we may
eed to implement something similar for use on GPUs.

.3. Preconditioning

The parallelization of the preconditioning step of the LOBPCG al-
orithm on a GPU device is similar to the OpenMP parallelization
7

f this step on a CPU. On each device, we loop over the diagonal
Fig. 7. Further optimized version the OpenACC parallel local SpMM that introduces
an additional level of blocking.

tiles generated on that device, and solve a linear system of equations
with multiple right-hand sides by calling the subroutine FOM_thread.
This loop is decorated with the OpenACC parallel loop clause,
s is shown in the code snippet in Fig. 9. The amount of work per-
ormed in each loop iterate may be different because the size of
hese diagonal tiles vary from 1 to several thousand. Therefore, the
oncurrency achieved in this loop is a gang level concurrency that uses
group of workers to perform each task (defined by in the subroutine
OM_thread).

Within the subroutine FOM_thread, we use OpenACC loop vec-
tor clauses to solve each linear system with multiple right-hand sides
iteratively using many vector threads. The main computation in each
iterative FOM solver is the multiplication of a sparse matrix (diagonal
tile) with a number of vectors. Because these tiles are often small, there
is limited amount of concurrency we can explore in the multiplication
of each (sparse) diagonal tile matrix with a block of vectors of length
at most a few thousand. However, because these diagonal tiles are
independent from each other, the multiplications of different diagonal
tiles with different vectors can be executed simultaneously.

4.4. Other linear algebra operations

As we pointed out in Section 3.5, the LOBPCG algorithm contains a
number of dense linear algebra operations. The GEMM operations re-
quired in the Rayleigh–Ritz procedure (lines 2 and 8–11 of Algorithm 1
or Eqs. (3)) can be performed on the device by using cuBLAS GEMM
calls. In OpenACC, such calls can be made easily by simply including
the cublas module and using the same arguments in, for example,
cublasdgemm, as those used in a standard dgemm subroutine called
on a CPU.

The dense Cholesky factorization and the solution of a dense gen-
eralized symmetric eigenvalue problem can be performed on the de-
vice by using cuSOLVER subroutines cuSolverDndpotrf and cu-
olverDnDsygvd. Before calling these subroutines, one has to create
uSolver handles. A separate call to estimate buffer space required
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Fig. 8. Communication skeleton code for overlapping the MPI Bcast and Reduce calls with local SpMM computation on the device using OpenACC async clauses.
Fig. 9. OpenACC parallelization of the preconditioner.

n each of these cuSOLVER subroutines needs to be made as well. For
xample, the following calls

cus_status_ = cusolverDnCreate(cus_handle_)
!$acc host_data use_device(pamat,eigvals)
cus_status_ = cusolverDnDsygvd_bufferSize

(cus_handle_, &
CUSOLVER_EIG_TYPE_1, CUSOLVER_EIG_MODE_VECTOR,
CUBLAS_FILL_MODE_LOWER, &
width, pamat, width, pamat(1+psize), width,
eigvals, liwork)

!$acc end host_data

reates a handle cus_status_ and returns the estimated work space
equirement in liwork. Once the work space array rwork is properly
llocated, we make the following call
8

cus_status_ = cusolverDnDsygvd
( cus_handle_, &
CUSOLVER_EIG_TYPE_1, CUSOLVER_EIG_MODE_VECTOR,
CUBLAS_FILL_MODE_LOWER, &
width, pamat, width, pamat(1+psize), width,
eigvals, rwork, liwork, cus_info_(1))

to compute eigenvalues and eigenvectors of the matrices stored in
pmat.

Note that, because the cuSOLVER subroutine will be called in every
iteration of the LOBPCG algorithm and the work space required in each
call does not change from one iteration to another, one can place the
calls to create the handle and the work space once, before the main
LOBPCG iteration loop starts. This significantly improves the perfor-
mance by avoiding repeated calls to create and destroy handles, and
repeated device memory allocation and deallocation at the appropriate
work space size.

Finally, some of the LAPACK subroutines such as dgelqf and
dormlq required to perform an LQ factorization of a non-square matrix
𝑋 = 𝐿𝑄, where 𝐿 is lower triangular and 𝑄 has orthonormal rows are
not available in the cuSOLVER library. To overcome this difficulty, we
modified the algorithm by replacing the LQ factorization of 𝑋 by a QR
factorization of 𝑋𝑇 = (𝐿𝑄)𝑇 = 𝑄𝑇𝐿𝑇 = 𝑄𝑇𝑅, where 𝑅 = 𝐿𝑇 is upper
triangular. This factorization can be performed by calling the subrou-
tines cusolverDnDgeqrf and cusolverDnDormqr available in
the cuSOLVER library.

5. Performance

In this section, we report the performance of the LOBPCG eigen-

solver in MFDn when it is executed on multiple GPUs and compare
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Table 1
System specifications of Cori GPU.
Node CPU 2 × Intel Xeon (Skylake)
CPU Cores 20 @ 2.40 GHz
GPU 8 × 16 GB NVIDIA V100
CPU–GPU Interconnect PCIe 3.0
Interconnect 4 dual-port Mellanox EDR

Table 2
The dimensions of sparse matrices used in the performance test and number of nonzero
matrix elements in each matrix.

Test case 1 2 3 4 5 6

Matrix dimension (×106) 2.9 10.1 16.9 51.9 68.1 122.4
# of nonzero elements (nnz) (×109) 1.1 4.9 13.0 42.9 59.1 110.3

the GPU performance with the performance of the code on distributed
memory many-core CPUs. Our experiments are carried out on the Cori
GPU system [30] at the National Energy Research Scientific Computing
(NERSC) Center. Each Cori GPU compute node consists of two Intel
Skylake Xeon processors with 20 cores per processor, and 8 NVIDIA
V100 GPUs. Table 1 gives detailed hardware and system specifications
of the Cori GPU system.

We compare the performance of the OpenACC implementation of
the LOBPCGsolver on the GPUs with the same implementation and
same compiler on the CPUs. Specifically, we use the NVIDIA HPC SDK
20.11 compiler for both the CPU and GPU targets, with the following
compiler options

• common flags: -cpp -fast -mp=numa -Mlarge_arrays
-Mipa -tp=skylake

• flags for GPUs: -acc -ta=tesla:cc70 -Mcuda
-Mcudalib=cublas,cusolver

• flags for CPUs: -acc=multicore -Mmkl

Note that for the GPUs we link with cuBLAS and cuSOLVER, whereas
for the CPUs we link with the Intel Math Kernel Library (MKL) for the
BLAS and LAPACK calls.

5.1. Test problems

We use several test problems that correspond to realistic Hamilto-
nian matrices of different nuclei (with up to 9 protons and neutrons)
represented in different configuration interaction spaces. The dimen-
sions of these matrices as well as the number of nonzero matrix
elements (nnz) in half of each of these symmetric matrices are listed
in Table 2. As we see from this table the matrix dimension of the test
problems ranges from 2.9 × 106 to 122.4 × 106.

The smallest problem (Test 1) can fit within one GPU on a single
node of Cori GPU. As the problem size becomes larger, we need
to distribute the Hamiltonian matrix on multiple GPUs and perform
distributed-memory parallel computation on multiple MPI ranks. We
use one GPU device per MPI process. Because each GPU on Cori GPU
has 16 GB high bandwidth memory, we need to use a sufficient number
of GPUs (and an appropriate number of nodes) to solve the larger
problems. Table 3 shows the number of MPI processes used to solve
each one of the six test problems in the following experiments. Note
that the number of nonzero matrix elements per MPI process is kept
approximately fixed at about 1 × 109 for each of the test problems, and
thus the local compute load during the distributed SpMM should be
approximately the same for each of them. For completeness we also
list the actual amount of memory required to store the distributed
Hamiltonian on each GPU device or MPI process in the CSB_Coo format
described in Section 3.3.

We compute 5 eigenpairs for each test problem and set the number
of vectors in 𝑋(𝑖) (and 𝑊 (𝑖) as well as 𝑃 (𝑖)) to 8, which is slightly larger
than the number of desired eigenpairs. This is a common practice for
9

Table 3
The number of MPI processes and Cori GPU nodes used to solve each test problem,
and the amount of memory required to hold the distributed Hamiltonian matrix per
MPI process.

Test case 1 2 3 4 5 6

# of MPI processes 1 6 15 45 66 120
# of nodes 1 1 2 6 9 15
Max. # of nnz. per MPI process (×109) 1.04 1.07 1.03 1.05 0.97 0.98
Max. memory per MPI process (GB) 8.7 8.7 8.4 8.5 7.8 7.8

Fig. 10. A on-device performance comparison among three versions of the OpenACC
implementation of the SpMM subroutine used in LOBPCG.

improving the convergence rate of the LOBPCG algorithm as discussed
in [6].

For each test problem, we use the same number of Cori GPU nodes
(and MPI processes) to run both the CPU and GPU versions of the
code, even though there are more CPU cores on each Cori GPU node
than V100 GPU devices. In the CPU runs, we use 10 threads per
MPI process, that is, we do use hyper-threading on the CPUs. The
CPU performance of the OpenACC implementation is similar to that
of the original OpenMP implementation when we use the (default)
static scheduling policy. However, when we add the scheduling clause
schedule(dynamic, 1) to the OpenMP do loops in the SpMM (see
Fig. 2), the performance improves by a factor of 1.8 to 2.3 for these six
test cases. Unfortunately, there is no equivalent clause in OpenACC.

5.2. SpMM performance

Since SpMM constitutes the dominant cost of the LOBPCG solver,
we first examine the performance of this computational kernel.

In Fig. 10, we first compare the three versions of the OpenACC
implementation of the SpMM described in Section 4 on the device. Re-
call that, in the first version, which we label by OpenACC1, we simply
replace the OpenMP directives in the CPU version by an OpenACC par-
allel loop directive on the outermost loop, and an OpenACC loop vector
directive on the innermost loop, shown in Fig. 5. In the second version
(labeled as OpenACC2), we fuse the two outer loops of the SpMM
algorithm to create more tasks, and use the gang-level concurrency
to launch groups of tasks. Furthermore, we move the vector clause
from the innermost loop to the two fused inner loops that performs a
SpMM of a sparse matrix block with a block of subvectors to increase
the level of vectorization and to create more fine-grained tasks, see
Fig. 6. The atomic update clause is placed inside the innermost loop
to ensure asynchronous updates are performed correctly. In the third
version (labeled as OpenACC3), we create a level of cache blocking
within the fused inner loops to optimize memory access patterns; the
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Fig. 11. Left panel: A Comparison of the SM and high bandwidth memory utilization among three versions of OpenACC implementation of the local SpMM algorithm. The blue
bars correspond to the naive implementation shown in Fig. 5. The red bars correspond to the improved version shown in Fig. 6. The yellow bars correspond to the further improved
version shown in Fig. 7. Right panel: The variation of SpMM OpenACC3 device wallclock time with respect to vectorization length and cache size shown as a heat map for test
case 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
size of the additional private arrays is controlled by a parameter named
CacheSize and we also set the vector length at compile time for the
vectorization of these fused innermost loops, see Fig. 7. The timing
comparison reported in Fig. 10 is for time per iteration spent on local
SpMM computations on the device only. It excludes any host/device
data transfer time as well as the MPI communication time.

We observe that by fusing the two outermost (row and column
block) loops and moving the vector clause up from the innermost
loop to the loop that goes through the matrix elements within each
sparse block, and fuse it with the innermost loop, we can significantly
improve the performance of SpMM in version 2. Furthermore, placing
the atomic update clause within the fused innermost loops does
not appear to incur a significant overhead. The low overhead in the
OpenACC atomic update on GPUs is in sharp contrast to the high
overhead in either OpenMP or OpenACC atomic update on CPUs.

Finally, by introducing an additional level of blocking within each
sparse block, using the CacheSize parameter to control the inner
block size, and tuning the vector length in that loop, we can gain
additional efficiency. We report the speedup factor defined as the
ratio of OpenACC1 wall clock time over OpenACC3 wall clock time
over the top of the blue bar (OpenACC1 wall clock time.) The overall
improvement in version 3 over version 1 can be as large as a speedup
factor of 57 for the smallest test case and more than a speedup factor
of 17 for the largest test case.

The advantage of the second and third versions of OpenACC par-
allelization of the SpMM algorithm for a GPU device can also be
seen from a performance profile collected from the NVIDIA Nsight
Compute [31] applied to analyze the on-device performance of the
SpMM subroutine. In Fig. 11(a), we show the GPU utilization data
on one representative MPI process for test problem 3, running on
15 GPUs on two nodes. Here we see that version 1 of the OpenACC
implementation of the SpMM utilizes only ∼25% of the streaming
multiprocessors (SM) and ∼35% of the high bandwidth memory. The
percentages of SM and high bandwidth memory utilization increase
to over 40% and 65% respectively after fusing the two outer loops,
as well as fusing the two inner loops, as implemented in version 2
of the OpenACC implementation. Adding an additional level of cache
blocking and controlling the vector length in the inner loop, as done
in version 3 of the OpenACC implementation, further increases the SM
utilization to close to 50%, and high bandwidth memory utilization to
over 75%. A typical measured arithmetic intensity, the ratio of floating
point instructions to global memory accesses, for version 3 the SpMM
subroutine is 0.32. Comparing this to the peak memory bandwidth
available on the device suggests the possibility of a further factor of two
increase in performance. However, two factors limit further increases
in performance. First, both the SpMM operation and the transpose
operation are needed, which limits the amount of locality that can be
expressed in either routine without the introduction of an additional
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sorting or ordering step. Second, the use of atomics does introduce some
overhead to memory accesses, the number of which could potentially
be reduced but not eliminated by employing some techniques such as
those used in Ref. [32].

The performance of the OpenACC3 implementation is sensitive to
the choice of maximum block size and the vector length specified in
the OpenACC directives. Fig. 11(b) shows variation of on device SpMM
wall clock time with respect to these parameters as a heat map. We
observed that best timing in this case is achieved when both the block
size and the vector length are set to 256. We use these values in all
tests with OpenACC3 unless otherwise noted.

In Fig. 12, we compare the GPU performance of the OpenACC3
implementation of the SpMM with the CPU performance on the host
using the OpenACC1 implementation without the need for atomics
(which gives the best performance on the host, similar to the original
OpenMP implementation). In the left panel we compare the compute
time only, excluding all MPI related costs. We observe that the speedup
we achieved on a GPU device ranges from about 15 for the smallest
problem to more than 21 on the larger problems.

However, when the cost associated with implicit data device–host
transfers and MPI communication are included in the comparison, the
speedup of the GPU version is much less spectacular, as can be seen
from the right panel of Fig. 12. Nonetheless we still achieve at least
a factor of 2 speedup for the six test cases we are considering here.
When the larger problems are distributed over many MPI processes,
communication overhead starts to dominate the SpMM runtime and cut
into the on-device gains achieved by GPUs. Indeed, including the time
for data transfers and MPI communication the wall clock time for the
largest of our test cases is approximately a factor of 10 larger than the
local SpMM compute wall clock time on the device.

5.3. Preconditioner performance

The left panel of Fig. 13 shows how the GPU performance of the
preconditioner compares with that of CPU’s. As we indicated earlier,
the main computation in the preconditioning step is the multiplication
of a block diagonal matrix with a block of vectors. Each diagonal block
is referred to as a diagonal tile. Both the diagonal tiles and vector blocks
are distributed over all MPI processes. No communication is involved
in this SpMM, but there is some MPI communication in the distributed
dense linear algebra operations of the FOM algorithm — this is included
in the time reported in Fig. 13. We observe speedup factors between 2.1
and 4.6 in the GPU version of the preconditioner. These speedup factors
are typically less than those observed for the entire Hamiltonian SpMM
(except for the larger cases). We attribute the lower speedup factors to
the relative small size of many diagonal tiles and the variation in the
tile sizes. Fig. 14 shows a histogram of the sizes of the diagonal tiles in
the Hamiltonian of the first test problem. A majority of the tiles have
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Fig. 12. Comparison between the performance of GPU/OpenACC3 implementation of the SpMM subroutine with CPU/OpenACC1 implementation (a) excluding and (b) including
data transfers and MPI communication.
Fig. 13. Comparison between the performance of (a) the preconditioner and (b) the dense linear algebra on the GPU with that on the CPU.
Fig. 14. A histogram of the sizes of the diagonal tiles of 𝐻 in test problem 1.

sizes less than a few hundreds. The size of the largest tile is ∼ 6000.
The small sizes of many of these diagonal tiles limit the amount of
concurrency OpenACC can expose in the multiplication of a single tile
with a block of 8 vectors.

5.4. Dense linear algebra performance

The right panel of Fig. 13 shows the speedup we achieved in the
dense linear algebra operations in LOBPCG on GPU compared to CPU
performance. On GPUs, we rely on cuBLAS and cuSOLVER to perform
these operation. The multi-threaded MKL library is used for dense linear
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algebra computations on the CPUs. Overall we observe more than 11×
speedup in all dense linear algebra subroutines used in the LOBPCG
algorithm (excluding those used in the preconditioner).

5.5. Overall performance

In Fig. 15, we show how the overall performance of the LOBPCG
eigensolver on GPUs compares with that on CPUs for all test prob-
lems, including all data transfers and MPI communication time in the
iterative solver. For the comparison on the CPUs we use both the
original OpenMP production version, and the OpenACC port compiled
for multicore on the CPUs. In addition to comparing the total wall
clock time spent in each LOBPCG iteration, we also show a break-
down of timing for three main components of the LOBPCG algorithm,
i.e., SpMM, preconditioning, and dense linear algebra (again, including
data transfer and MPI communication time). We observe that on GPUs,
the amount of time spent in dense linear algebra is nearly negligible,
whereas on CPUs, the dense linear algebra time is significant, both in
the OpenMP and in the OpenACC implementation. On the other hand,
the performance of the preconditioner is significantly better with the
OpenMP implementation than with the OpenACC implementation. This
is mostly due to the large variation in the tile size already discussed
in Section 5.3 and shown in Fig. 14; in the OpenMP implementation
we use the clause schedule(guided) for the main do loop in the
preconditioner in order to deal with any load imbalance in that loop.
In fact, the OpenMP implementation outperforms the GPU performance
slightly for half these test cases — this is likely because of the large
number of very small tiles used in the preconditioner.

Nevertheless, on both CPUs and GPUs, the wall clock time is dom-
inated by time spent in SpMM for all except the smallest (single MPI
rank) test case. Therefore, the overall speedup of the LOBPCG on GPUs
is limited by the speedup of the SpMM calculation. For the OpenACC
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Fig. 15. Comparison between the overall performance of a LOBPCG iteration on GPUs (right bars), on CPUs using the OpenACC implementation developed for the GPUs (center
bars), on CPUs using the original OpenMP implementation (left bars). The numbers above the left and center bars are the speedup achieved on the GPUs for each of the 6 test
cases.
version, the speedup factor we observe ranges from 2.4 for the largest
problem running on 120 MPI processes to 7.6 for the smallest problem
running on a single MPI process; compared to the original OpenMP
implementation, these speedup factors are between 1.3 for the largest
case to 3.5 for the second-smallest case. Indeed, the difference in
speedup between the OpenMP and the OpenACC implementations on
the CPU is roughly a factor of two, coming from the difference in the
SpMM implementation with the clause schedule(dynamic, 1) in
the OpenMP version. Note that the increase of the wall clock time
for the SpMM with the problem size is largely due to the increase in
MPI communication and data transfer time indicating that reducing
communication overhead will be crucial for large-scale computations
utilizing thousands of GPUs. Of course, the MPI performance will also
depend on the system; all our performance tests reported here were
performed on the Cori GPU system, which is a small system intended
for development of GPU-enabled codes, and not configured for optimal
inter-node MPI communication.

6. Conclusion

In this paper, we showed how OpenACC can be used effectively
to modify a previously developed MPI/OpenMP hybrid parallel itera-
tive LOBPCG eigensolver for studying nuclear structure. The OpenACC
directive-based modification enabled the solver to run efficiently on
a distributed memory multi-GPU system. The use of OpenACC sig-
nificantly reduces the amount of development effort for porting the
existing eigensolver to an NVIDIA GPU system. However, due to the
architecture difference between a general purpose GPU and a many-
core CPU, care is needed to take advantage of the higher level of
concurrency provided by SMs on a GPU, and high memory bandwidth
of the device memory. In particular, we use loop fusion to reduce
the granularity of the concurrency and increase the number of tasks
that can be executed simultaneously. Although this approach leads
to potential write conflicts, the extremely efficient atomic update in
OpenACC on GPUs allows us to address this difficulty without much
overhead.

We examined the parallelization of the SpMM operations which
dominates the overall cost of the eigensolver, the preconditioning step,
as well as some dense linear algebra operations required in the LOBPCG
eigensolver. We demonstrated that significant speedup in SpMM can be
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achieved on a GPU device by using OpenACC. However, for large prob-
lems that must be distributed among hundreds of GPUs, the speedup
factors are limited by data communication among different GPUs.

We found that the speedup in the preconditioning step, which con-
sists of performing the multiplications of many small sparse matrices
with several dense vectors (viewed as a dense matrix), is also somewhat
limited. This limited speedup is likely due to the small dimensions of
the matrices being multiplied. In future work we will investigate better
strategies to improve the performance of the preconditioning step on
GPUs.

With the OpenACC port described in this work, and implemen-
tations of the matrix initialization and of the evaluation of physical
observables based on Ref. [33], we have an initial GPU-enabled port
of our application MFDn for calculations of atomic nuclei on GPUs.
Although the initial performance looks promising, further integration
of the different parts of the code is needed in order to minimize data
transfers, and to overlap data transfers, IO, and computation as much
as possible. It remains to be seen what the performance will be of
the fully ported code on a system like Perlmutter at NERSC [34],
utilizing hundreds or even thousands of GPUs; at the moment we
anticipate that MPI communication will become the bottleneck for
runs at scale [35]. Assuming we can overcome this bottleneck, we
envision that a GPU-enabled code for nuclear structure calculations
will allow us to push the boundaries of our understanding of atomic
nuclei utilizing the computing power of GPUs on current and future
HPC platforms. Furthermore, we anticipate that the described LOBPCG
solver implemented on GPUs will also be useful for other applications
based on iterative sparse eigensolvers.
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