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Behavioral/Cognitive

Anxiety and the Neurobiology of Temporally Uncertain
Threat Anticipation

Juyoen Hur,1* Jason F. Smith,2* Kathryn A. DeYoung,2,3* Allegra S. Anderson,6 Jinyi Kuang,7

Hyung Cho Kim,2,4 Rachael M. Tillman,2 Manuel Kuhn,8 Andrew S. Fox,9,10 and Alexander J. Shackman2,4,5
1Department of Psychology, Yonsei University, Seoul, 03722, Republic of Korea, Departments of 2Psychology, 3Family Science, 4Neuroscience and
Cognitive Science Program, 5Maryland Neuroimaging Center, University of Maryland, College Park, Maryland 20742, 6Department of Psychological
Sciences, Vanderbilt University, Nashville, Tennessee 37240, 7Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
19104, 8Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478,
9Department of Psychology, and 10California National Primate Research Center, University of California, Davis, California 95616

When extreme, anxiety—a state of distress and arousal prototypically evoked by uncertain danger—can be debilitating.
Uncertain anticipation is a shared feature of situations that elicit signs and symptoms of anxiety across psychiatric disorders,
species, and assays. Despite the profound significance of anxiety for human health and wellbeing, the neurobiology of uncer-
tain-threat anticipation remains unsettled. Leveraging a paradigm adapted from animal research and optimized for fMRI sig-
nal decomposition, we examined the neural circuits engaged during the anticipation of temporally uncertain and certain
threat in 99 men and women. Results revealed that the neural systems recruited by uncertain and certain threat anticipation
are anatomically colocalized in frontocortical regions, extended amygdala, and periaqueductal gray. Comparison of the threat
conditions demonstrated that this circuitry can be fractionated, with frontocortical regions showing relatively stronger
engagement during the anticipation of uncertain threat, and the extended amygdala showing the reverse pattern. Although
there is widespread agreement that the bed nucleus of the stria terminalis and dorsal amygdala—the two major subdivisions
of the extended amygdala—play a critical role in orchestrating adaptive responses to potential danger, their precise contribu-
tions to human anxiety have remained contentious. Follow-up analyses demonstrated that these regions show statistically
indistinguishable responses to temporally uncertain and certain threat anticipation. These observations provide a framework
for conceptualizing anxiety and fear, for understanding the functional neuroanatomy of threat anticipation in humans, and
for accelerating the development of more effective intervention strategies for pathological anxiety.

Key words: affective neuroscience; anxiety and fear; bed nucleus of the stria terminalis; emotion; extended amygdala;
Research Domain Criteria (RDoC)

Significance Statement

Anxiety—an emotion prototypically associated with the anticipation of uncertain harm—has profound significance for public
health, yet the underlying neurobiology remains unclear. Leveraging a novel neuroimaging paradigm in a relatively large sam-
ple, we identify a core circuit responsive to both uncertain and certain threat anticipation, and show that this circuitry can be
fractionated into subdivisions with a bias for one kind of threat or the other. The extended amygdala occupies center stage in
neuropsychiatric models of anxiety, but its functional architecture has remained contentious. Here we demonstrate that its
major subdivisions show statistically indistinguishable responses to temporally uncertain and certain threat. Collectively,
these observations indicate the need to revise how we think about the neurobiology of anxiety and fear.
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Introduction
Anxiety is widely conceptualized as a state of distress and arousal
elicited by the anticipation of uncertain danger (Davis et al.,
2010; Grupe and Nitschke, 2013). Anxiety lies on a continuum
and, when extreme, can be debilitating (Salomon et al., 2015;
Conway et al., 2019). Anxiety disorders are the most common
family of psychiatric illnesses, and existing treatments are incon-
sistently effective or associated with significant adverse effects,
underscoring the urgency of developing a clearer understanding
of the underlying neurobiology (Griebel and Holmes, 2013;
Global Burden of Disease Collaborators, 2016; Craske et al.,
2017).

Perturbation and recording studies in mice have begun to
reveal the specific molecules and cellular ensembles that underlie
defensive responses to uncertain threat (Fadok et al., 2018; Fox
and Shackman, 2019), but the relevance of these tantalizing dis-
coveries to the complexities of human anxiety is unclear.
Humans and mice diverged ;75 MYA, leading to marked be-
havioral, genetic, and neurobiological differences between the
two species (Van Essen et al., 2019). The role of frontocortical
regions that are especially well-developed in humans—including
the midcingulate cortex (MCC), anterior insula (AI), and
dlPFC—remains particularly opaque, reflecting equivocal or
absent anatomic homologies and the use of disparate paradigms
across species (Vogt and Paxinos, 2014; Shackman et al., 2016;
Carlén, 2017; Roberts, 2020).

Beneath the neocortex, the role of the central extended amyg-
dala—including the dorsal amygdala in the region of the central
nucleus (Ce) and the bed nucleus of the stria terminalis (BST)—
remains particularly contentious (Fox and Shackman, 2019).
Inspired by an earlier generation of lesion studies in rodents
(Davis, 2006), it is widely believed that these regions are function-
ally dissociable, with the amygdala mediating phasic responses to
clear-and-immediate danger (“acute threat”) and the BSTmediating
sustained responses to uncertain-or-remote danger (“potential
threat”) (e.g., Sylvers et al., 2011; Somerville et al., 2013; Avery et al.,
2016; LeDoux and Pine, 2016; Klumpers et al., 2017; Watson et al.,
2017). This “strict-segregation” hypothesis has even been enshrined
in the National Institute of Mental Health’s Research Domain
Criteria framework (National Institute of Mental Health, 2011,
2020a,b). Yet a growing body of optogenetic, chemogenetic, and
electrophysiological work in rodents demonstrates that defensive
responses elicited by the anticipation of uncertain threat (e.g., ele-
vated-plus maze) are assembled by microcircuits encompassing
both regions (Gungor and Paré, 2016; Lange et al., 2017; Ahrens et
al., 2018; Griessner et al., 2018; Pomrenze et al., 2019a,b; Ressler et
al., 2020), motivating the competing hypothesis that the dorsal
amygdala and BST are both important substrates for human anxiety
(Shackman and Fox, 2016; Fox and Shackman, 2019).

To address these fundamental questions, we combined fMRI
with a novel threat-anticipation task in 99 adults. Advanced data
acquisition and processing techniques enhanced our ability to
resolve small subcortical regions. Building on earlier work (e.g.,
Somerville et al., 2013; Grupe et al., 2016), the Maryland Threat
Countdown (MTC) paradigm is an fMRI-optimized variant of
assays that have been validated using fear-potentiated startle and
acute pharmacological manipulations in rodents (Miles et al.,
2011; Daldrup et al., 2015), and humans (Hefner et al., 2013),
maximizing translational relevance. It takes the form of a 2
(Valence: Threat/Safety)� 2 (Temporal Certainty: Uncertain/
Certain) randomized event-related design (Fig. 1). On Certain

Threat trials, subjects saw a descending stream of integers for
18.75 s, sufficiently long to enable the dissection of onset-evoked
from sustained hemodynamic responses. To ensure robust emo-
tion, this anticipatory epoch (“countdown”) always culminated
with the delivery of a multimodal reinforcer (aversive shock,
photograph, and audio clip). Uncertain Threat trials were simi-
lar, but the integer stream was randomized and presented for an
uncertain and variable duration (mean =18.75 s, range = 8.75-
30.00 s). Here, subjects knew the threat was coming, but they did
not know when it would occur. Safety trials were similar but ter-
minated in benign reinforcers. Comparison of the well-matched
anticipatory epochs enabled us to rigorously isolate circuits
recruited during uncertain-threat anticipation.

Materials and Methods
Subjects
As part of an ongoing prospective-longitudinal study focused on the
emergence of anxiety disorders and depression, we used well-established
measures of dispositional negativity (often termed neuroticism or nega-
tive emotionality) (Shackman et al., 2018; Hur et al., 2019a, 2019b) to
screen 6594 young adults (57.1% female; 59.0% White, 19.0% Asian,
9.9% African American, 6.3% Hispanic, 5.8% Multiracial/Other; mean
= 19.2 years, SD = 1.1 years). Screening data were stratified into quartiles
(top quartile, middle quartiles, bottom quartile) separately for men and
women. Individuals who met preliminary inclusion criteria were inde-
pendently recruited from each of the resulting six strata. Given the focus
of the larger study, approximately half the subjects were recruited from
the top quartile, with the remainder split between the middle and bottom
quartiles (i.e., 50% high, 25% medium, and 25% low), enabling us to
sample a wide range of risk for the development of internalizing disor-
ders. A total of 121 subjects were recruited. Of these, 2 withdrew during
the imaging assessment because of excess distress. Of the 119 subjects
who completed the imaging assessment, a total of 20 were excluded
from analyses because of incidental neurological findings (n= 4), scan-
ner problems (n= 2), insufficient fMRI data (,2 usable scans, n=1), ex-
cessive global motion artifact (see below; n= 3), or excessive task-
correlated motion (see below, n= 10). This yielded a final sample of 99
subjects (52 females; 65.7%White, 17.2% Asian, 8.1% African American,
3.0% Hispanic, 6.1% Multiracial/Other; mean = 18.8 years, SD =
0.4 years), providing substantially greater power to detect medium-sized
(0.5 , Cohen’s d, 0.8) statistical effects (Geuter et al., 2018) compared
with typical fMRI studies of uncertain threat anticipation (median
N=29; range = 15-108) (Chavanne and Robinson, 2020). All subjects
had normal or corrected-to-normal color vision; and reported the ab-
sence of lifetime neurologic symptoms, pervasive developmental disor-
der, very premature birth, medical conditions that would contraindicate
MRI, and prior experience with noxious electrical stimulation. All sub-
jects were free from a lifetime history of psychotic and bipolar disorders;
a current diagnosis of a mood, anxiety, or trauma disorder (past
2months); severe substance abuse; active suicidality; and ongoing psy-
chiatric treatment as determined by an experienced masters-level diag-
nostician using the Structured Clinical Interview for DSM-5 (First et al.,
2015). Subjects provided informed written consent, and all procedures
were approved by the Institutional Review Board at the University of
Maryland, College Park.

MTC fMRI paradigm
Paradigm structure and design considerations. Building on earlier

imaging work (Somerville et al., 2013; Grupe et al., 2016; Pedersen et al.,
2019), the MTC paradigm is an fMRI-optimized version of temporally
uncertain-threat assays that have been validated using fear-potentiated
startle and acute anxiolytic administration (e.g., benzodiazepine) in mice
(Daldrup et al., 2015; Lange et al., 2017), rats (Miles et al., 2011), and
humans (Hefner et al., 2013), enhancing its translational relevance. The
MTC paradigm takes the form of a 2 (Valence: Threat/Safety)� 2
(Temporal Certainty: Uncertain/Certain) randomized event-related
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Figure 1. MTC paradigm. As shown schematically in a, the MTC paradigm takes the form of a 2 (Valence: Threat/Safety)� 2 (Temporal Certainty: Uncertain/Certain) repeated-measures
design (for details, see Materials and Methods). Subjects provided ratings of anticipatory fear/anxiety for each trial type during each scan. Skin conductance was continuously acquired during
scanning. Simulations were used to optimize the detection and deconvolution of task-related hemodynamic signals (variance inflation factors ,1.54). Middle panels, Structure of each trial
type. Trial valence was continuously signaled during the anticipatory epoch by the background color of the display. Safety trials were similar but terminated with the delivery of benign stimuli
(e.g., just-perceptible electrical stimulation). Trial certainty was signaled by the nature of the integer stream. Certain trials always began with the presentation of 30. On Uncertain trials, inte-
gers were randomly drawn from a uniform distribution ranging from 1 to 45 to reinforce the belief that uncertain trials could be much longer than certain ones. To mitigate potential confusion
and eliminate mnemonic demands, a lowercase ‘c’ or ‘u’ was presented at the lower edge of the display throughout the anticipatory epoch (not depicted). As shown in b and c, threat anticipa-
tion robustly increased subjective symptoms (in-scanner ratings) and objective signs (skin conductance) of anxiety, and this was particularly evident when the timing of aversive stimulation
was uncertain (Valence� Certainty, p values, 0.001; Uncertain Threat. Certain Threat, p values, 0.001). b, c, Data (black points; individual participants), density distribution (bean plots),
Bayesian 95% highest density interval (colored bands), and mean (black bars) for each condition. Highest density intervals permit population-generalizable visual inferences about mean differ-
ences and were estimated using 1000 samples from a posterior Gaussian distribution. TR, the time required to collect a single volume of fMRI data.
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design (3 scans; 6 trials/condition/scan). Simulations were used to opti-
mize the detection and deconvolution of task-related hemodynamic sig-
nals (variance inflation factors ,1.54). Stimulus presentation and
ratings acquisition were controlled using Presentation software (version
19.0, Neurobehavioral Systems).

On Certain Threat trials, subjects saw a descending stream of inte-
gers (countdown; e.g., 30, 29, 28 . . . 3, 2, 1) for 18.75 s. To ensure robust
emotion, this anticipatory epoch always culminated with the delivery of
a noxious electric shock, unpleasant photographic image (e.g., mutilated
body), and thematically related audio clip (e.g., scream, gunshot).
Uncertain Threat trials were similar, but the integer stream was random-
ized and presented for an uncertain and variable duration (8.75–30.00 s;
mean = 18.75 s). Here, subjects knew that something aversive was going
to occur, but they had no way of knowing precisely when it would occur.
Consistent with recent recommendations (Shackman and Fox, 2016),
the average duration of the anticipatory epoch was identical across con-
ditions, ensuring an equal number of measurements (TRs/condition).
Mean duration was chosen to enhance detection of task-related differen-
ces in the BOLD signal (Henson, 2007), and to enable dissection of onset
from genuinely sustained responses. Safety trials were similar but termi-
nated with the delivery of benign reinforcers (see below). Valence was
continuously signaled during the anticipatory epoch by the background
color of the display. Temporal certainty was signaled by the nature of the
integer stream. Certain trials always began with the presentation of the
number 30 (Fig. 1). On uncertain trials, integers were randomly drawn
from a near-uniform distribution ranging from 1 to 45 to reinforce the
impression that Uncertain trials could be much longer than Certain ones
and to minimize incidental temporal learning (time-keeping). To miti-
gate potential confusion and eliminate mnemonic demands, a lowercase
‘c’ or ‘u’ was presented at the lower edge of the display throughout the
anticipatory epoch. White-noise visual masks (3.2 s) were presented
between trials to minimize persistence of the visual reinforcers in iconic
memory. Subjects provided ratings of anticipatory fear/anxiety for each
trial type during each scan using an MRI-compatible response pad
(MRA; Fig. 1). Subjects were instructed to rate the intensity of the fear/
anxiety experienced during the prior anticipatory (countdown) epoch
using a 1 (minimal) to 4 (maximal) scale. Subjects were prompted to rate
each trial type once per scan. A total of 6 additional EPI volumes were
acquired at the beginning and end of each scan (see below).

Procedures. Before scanning, subjects practiced an abbreviated ver-
sion of the paradigm, without electrical stimulation, until they indicated
and staff confirmed that they understood the task. Benign and aversive
electrical stimulation levels were individually titrated. Benign stimula-
tion: Subjects were asked whether they could “reliably detect” a 20 V
stimulus and whether it was “at all unpleasant.” If the subject could not
detect the stimulus, the voltage was increased by 4 V and the process
repeated. If the subject indicated that the stimulus was unpleasant, the
voltage was reduced by 4 V and the process repeated. The final level cho-
sen served as the benign electrical stimulation during the imaging assess-
ment (mean= 20.67, SD= 6.23). Aversive stimulation: Subjects received
a 100 V stimulus and were asked whether it was “as unpleasant as you
are willing to tolerate.” If the subject indicated that they were willing to
tolerate more intense stimulation, the voltage was increased by 10 V and
the process repeated. If the subject indicated that the stimulus was too
intense, the voltage was reduced by 5 V and the process repeated. The
final level chosen served as the aversive electrical stimulation during the
imaging assessment (mean= 115.21, SD= 25.05). Following each scan of
the MTC paradigm, we reassessed whether stimulation was sufficiently
intense and recalibrated as necessary. In total, 32.3% of subjects adjusted
the level of benign or aversive stimulation at least once during the imag-
ing assessment.

Electrical stimuli. Electrical stimuli (100ms; 2ms pulses every 10ms)
were generated using an MRI-compatible constant-voltage stimulator
system (STMEPM-MRI; Biopac Systems). Stimuli were delivered using
MRI-compatible, disposable carbon electrodes (Biopac) attached to the
fourth and fifth phalanges of the non-dominant hand.

Visual stimuli. Visual stimuli (1.8 s) were digitally back-projected
(Powerlite Pro G5550, Epson America) onto a semi-opaque screen
mounted at the head-end of the scanner bore and viewed using a mirror

mounted on the head-coil. A total of 72 photographs were selected from
the International Affective Picture System (IAPS identification num-
bers), Benign: 1670, 2026, 2038, 2102, 2190, 2381, 2393, 2397, 2411,
2850, 2870, 2890, 5390, 5471, 5510, 5740, 7000, 7003, 7004, 7014, 7020,
7026, 7032, 7035, 7050, 7059, 7080, 7090, 7100, 7140, 7187, 7217, 7233,
7235, 7300, 7950. Aversive: 1300, 3000, 3001, 3010, 3015, 3030, 3051,
3053, 3061, 3062, 3063, 3069, 3100, 3102, 3150, 3168, 3170, 3213, 3400,
3500, 6022, 6250, 6312, 6540, 8230, 9042, 9140, 9253, 9300, 9405, 9410,
9414, 9490, 9570, 9584, 9590 (Lang et al., 2008). Based on normative rat-
ings, the aversive images were significantly more negative and arousing
than the benign images, t(70) . 24.3, p, 0.001. On a 1 (negative/low-
arousal) to 9 (positive/high-arousal) scale, the mean valence and arousal
scores were 2.2 (SD=0.6) and 6.3 (SD=0.6) for the aversive images, and
5.2 (SD= 0.4) and 2.8 (SD = 0.3) for the benign images.

Auditory stimuli. Auditory stimuli (0.80 s) were delivered using an
amplifier (PA-1 Whirlwind) with inline noise-reducing filters and ear
buds (S14; Sensimetrics) fitted with noise-reducing ear plugs (Hearing
Components). A total of 72 auditory stimuli (half aversive, half benign)
were adapted from open-access online sources.

Peripheral physiology data acquisition
Peripheral physiology was continuously acquired during each fMRI scan
using a Biopac system (MP-150). Skin conductance (250Hz; 0.05Hz
high-pass) was measured using MRI-compatible disposable electrodes
(EL507) attached to the second and third phalanges of the nondominant
hand. For imaging analyses, measures of respiration and breathing were
also acquired using a respiration belt and photo-plethysmograph placed
on the first phalange of the non-dominant hand.

MRI data acquisition
MRI data were acquired using a Siemens Magnetom TIM Trio 3 Tesla
scanner (32-channel head-coil). Foam inserts were used to immobilize
the participant’s head within the head-coil and mitigate potential motion
artifact. Subjects were continuously monitored from the control room
using an MRI-compatible eye-tracker (Eyelink 1000; SR Research). Head
motion was monitored using the AFNI real-time plugin (Cox, 1996).
Sagittal T1-weighted anatomic images were acquired using a MPRAGE
sequence (TR=2400ms; TE=2.01ms; inversion time= 1060ms; flip
angle = 8°; sagittal slice thickness = 0.8 mm; in-plane = 0.8� 0.8 mm;
matrix = 300� 320; FOV=240� 256). A T2-weighted image was col-
lected coplanar to the T1-weighted image (TR=3200ms; TE= 564ms;
flip angle = 120°). To enhance resolution, a multiband sequence was
used to collect oblique-axial EPI volumes (multiband acceleration= 6;
TR= 1250ms; TE=39.4ms; flip angle = 36.4°; slice thickness = 2.2 mm,
number of slices = 60; in-plane resolution= 2.1875� 2.1875 mm; matrix
= 96� 96). Images were collected in the oblique axial plane (;�20° rela-
tive to the AC-PC plane) to minimize potential susceptibility artifacts.
Three 478-volume EPI scans were acquired. The scanner automatically
discarded 7 volumes before the first recorded volume. To enable field-
map correction, two oblique-axial spin echo (SE) images were collected
in each of two opposing phase-encoding directions (rostral-to-caudal
and caudal-to-rostral) at the same location and resolution as the func-
tional volumes (i.e., coplanar; TR= 7220ms; TE=73ms). Following the
last scan, subjects were removed from the scanner, debriefed, compen-
sated, and discharged.

Skin conductance data pipeline
Skin conductance data were processed using PsPM (version 4.0.2) and
in-house MATLAB code (Bach and Friston, 2013; Bach et al., 2018).
Data from each scan were bandpass filtered (0.01-0.25Hz), resampled to
match the TR used for fMRI data acquisition (1.25 s), and z-trans-
formed. Using standard MATLAB functions, SCR data were modeled in
a manner that approximated that used for the fMRI data. A GLM was
used to estimate skin conductance levels during the anticipatory epoch
of each condition of the MTC paradigm (see above) for each subject
(Bach et al., 2009, 2013; Bach, 2014). Predictors from the first-level fMRI
model (see below) were convolved with a canonical skin conductance
response function (Bach et al., 2010; Gerster et al., 2018), bandpass fil-
tered to match the data, and z-transformed.
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MRI data pipeline
Methods were optimized to minimize spatial normalization error and
other potential sources of noise. Structural MRI and fMRI data were vis-
ually inspected before and after processing for quality assurance.

Anatomical data processing
Methods were similar to those described in other recent reports by our
group (Hur et al., 2018; Smith et al., 2018; Tillman et al., 2018). T1-
weighted images were inhomogeneity-corrected using N4 (Tustison et
al., 2010) and filtered using the denoise function in ANTS (Avants et al.,
2011). The brain was then extracted using a variant of the BEaST algo-
rithm (Eskildsen et al., 2012) with brain-extracted and normalized refer-
ence brains from the IXI database (https://brain-development.org/
ixi-dataset). Brain-extracted T1 images were normalized to a version of
the brain-extracted 1 mm T1-weighted MNI152 (version 6) template
(Grabner et al., 2006), modified to remove extracerebral tissue. This was
motivated by evidence that brain-extracted T1 images and a brain-
extracted template enhance the quality of spatial normalization (Fein et
al., 2006; Acosta-Cabronero et al., 2008; Fischmeister et al., 2013).
Normalization was performed using the diffeomorphic approach imple-
mented in SyN (version 1.9.x0.2017-09.11; Klein et al., 2009; Avants et
al., 2011). T2-weighted images were rigidly coregistered with the corre-
sponding T1 before normalization, and the brain extraction mask from
the T1 was applied. Tissue priors (Lorio et al., 2016) were unwarped to
the native space of each T1 using the inverse of the diffeomorphic trans-
formation. Brain-extracted T1 and T2 images were simultaneously seg-
mented using native-space priors generated using FAST (FSL version
5.0.9) (Zhang et al., 2001) for use in T1-EPI coregistration (see below).

Fieldmap data processing
SE images were used to create a fieldmap in topup (Andersson et al.,
2003; Smith et al., 2004; Graham et al., 2017). Fieldmaps were converted
to radians, median filtered, and smoothed (2 mm). The average of the
distortion-corrected SE images was inhomogeneity-corrected using N4,
and brain-masked using 3dSkullStrip in AFNI (version 17.2.10) (Cox,
1996). The resulting mask was minimally eroded to further exclude ex-
tracerebral voxels.

Functional data processing
EPI files were despiked using 3dDespike and slice-time-corrected (to the
center of the TR) using 3dTshift, inhomogeneity corrected using N4,
and motion-corrected to the first volume using a 12-parameter affine
transformation implemented in ANTs. Recent work indicates that des-
piking is more effective than “scrubbing” for attenuating motion-related
artifacts (Jo et al., 2013; Siegel et al., 2014; Power et al., 2015).
Transformations were saved in ITK-compatible format for subsequent
use. The first volume was extracted for EPI-T1 coregistration. The refer-
ence EPI volume was simultaneously coregistered with the correspond-
ing T1-weighted image in native space and corrected for geometric
distortions using boundary-based registration (Greve and Fischl, 2009).
This step incorporated the previously created fieldmap, undistorted SE,
T1, white matter image, and masks. The spatial transformations neces-
sary to transform each EPI volume from native space to the reference
EPI, from the reference EPI to the T1, and from the T1 to the template
were concatenated and applied to the processed (despiked and slice-
time-corrected) EPI data in a single step to minimize incidental spatial
blurring. Normalized EPI data were resampled to 2 mm isotopic voxels
using fifth-order b-splines and smoothed (6 mm FWHM) using
3DblurInMask.

Data exclusions
To assess residual motion artifact, we computed the number of times the
brain showed a volume-to-volume displacement .0.5 mm using the
motion-corrected data. Scans with excess artifact (�7.5%) were dis-
carded. Three subjects with insufficient usable data (,2 scans) were
excluded from analyses, while 6 subjects with 2 usable scans were
retained. To assess task-correlated motion, we computed correlations
between the design matrix and the motion estimates (see above). Scans
showing extreme correlations (.2 SD) were discarded. On this basis, 10

subjects with insufficient usable data (,2 scans) were excluded from
analyses, while 19 subjects with 2 usable scans were retained.

Canonical first-level fMRI modeling
Modeling was performed using SPM12 (version 6678; https://www.fil.
ion.ucl.ac.uk/spm). Bandpass was set to the HRF and 128 s for low and
high pass, respectively. The MTC paradigm was modeled using variable-
duration rectangular (boxcar) regressors time-locked to the anticipatory
epochs of the Uncertain Threat, Certain Threat, and Uncertain Safety
trials. Certain Safety trials were treated as an unmodeled (implicit) high-
level baseline. EPI volumes collected before the first trial, during inter-
trial intervals, and following the final trial were also unmodeled, and
contributed to the baseline estimate. Regressors were convolved with a
canonical HRF and its temporal derivative. The periods corresponding
to the delivery of the four reinforcers and rating trials were modeled
using a similar approach (Fig. 1). Volume-to-volume displacement and
motion parameters (including 1- and 2-volume lagged versions) were
also included, similar to other recent work (Reddan et al., 2018). To fur-
ther attenuate potential noise, CSF time-series, instantaneous pulse and
respiration rates, and their estimated effect on the BOLD time-series
were also included as nuisance variates. ICA-AROMA (Pruim et al.,
2015) was used to model several other potential sources of noise (brain-
edge, CSF-edge, white matter). These and the single ICA component
showing the strongest correlation with motion estimates were included
as additional nuisance variates. EPI volumes with excessive volume-to-
volume displacement (.0.25 mm), as well as those during and immedi-
ately following the delivery of aversive reinforcers, were censored.

Decomposing canonical effects using finite impulse response (FIR)
modeling
The canonical modeling approach estimates the amplitude of anticipa-
tory activity under the assumption that it approximates a boxcar-like
square-wave function. This makes it tempting to conclude that regions
showing significant activation represent sustained responses. Yet there is
ample evidence that a variety of other signals are plausible (e.g.,
Gonzalez-Castillo et al., 2015; Gungor and Paré, 2016; Sreenivasan and
D’Esposito, 2019) and, importantly, can yield similarly strong statistical
effects (Fig. 2). Addressing this ambiguity necessitates a finer decompo-
sition of the signal underlying significant “omnibus” effects revealed by
canonical modeling, a surprisingly rare approach in the neuroimaging
literature. To do so, we identified the most extreme peak (e.g., BST) in
each of the major regions identified in our canonical analyses. These
peak locations were then interrogated using a FIR analysis, which pro-
vides an estimate of the magnitude and shape of anticipatory activity
(Glover, 1999; Ollinger et al., 2001; for a similar approach by our group,
see Guller et al., 2012). To perform the FIR modeling, variance related to
reinforcer delivery, ratings, and the nuisance variables was removed
from the preprocessed data using the canonical approach described
above. Residualized data were bandpass filtered (0.007813-0.2667Hz)
and normalized to the SD of the Certain Safety trials (i.e., the implicit
baseline in the canonical HRF GLM). We then estimated the mean
response at each TR of the anticipatory epoch for each condition of the
MTC paradigm for each subject.

Experimental design and statistical analyses
Overview. Study design is described in MTC fMRI paradigm. The

number of usable datasets, data exclusions, and power considerations
are detailed in Subjects.

In-scanner fear/anxiety ratings and skin conductance. Data were an-
alyzed using standard repeated-measures GLM approaches with Huynh-
Feldt correction for potential nonsphericity implemented in SPSS
(version 24; IBM). Significant interactions were decomposed using sim-
ple effects. Figures were created using R Studio (http://www.rstudio.
com) and yarrr (version 0.1.5) for R (version 3.6.1.; https://www.
R-project.org).

Canonical second-level GLM. Standard whole-brain voxelwise GLMs
(random effects) were used to compare anticipatory hemodynamic activ-
ity elicited by each threat-anticipation condition and its corresponding
control condition (e.g., Uncertain Threat vs Uncertain Safety). Sig-
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nificance was assessed using FDR q, 0.05, whole-brain-corrected. As in
prior work by our group (Shackman et al., 2013; Shackman et al., 2017),
a minimum conjunction (logical “AND”) was used to identify voxels
sensitive to both temporally certain and temporally uncertain threat
anticipation (Nichols et al., 2005). We also directly examined potential
differences in anticipatory activity between the two threat conditions
(Certain Threat vs Uncertain Threat). We did not examine hemody-
namic responses to reinforcer delivery given the possibility of artifact.
Some figures were created using MRIcron (http://people.cas.sc.edu/
rorden/mricron). Clusters and local maxima were labeled using a combi-
nation of the Allen Institute, Harvard-Oxford, and Mai atlases (Frazier
et al., 2005; Desikan et al., 2006; Makris et al., 2006; Hawrylycz et al.,
2012; Mai et al., 2015) and a recently established consensus nomencla-
ture (ten Donkelaar et al., 2018).

Descriptive decomposition of canonical effects using FIR modeling
To decompose the signal underlying significant canonical effects, we
identified the most extreme peak in each of the major regions (e.g.,
amygdala) identified in our canonical analyses (indicated by a black-
and-white asterisk in the accompanying figures). These peaks were then
descriptively interrogated using FIR models. As shown in Figure 1, the
duration of anticipatory epoch differed between certain (18.75 s) and
uncertain trials (8.75-32.5 s; mean = 18.75 s), necessitating slightly differ-
ent procedures for specific contrasts. For the comparison of Certain
Threat to Certain Safety, responses were modeled for 15 TRs (1.25 s TR;
total = 18.125 s). Given the temporal resolution and autocorrelation of
the BOLD signal, data were averaged for 3 windows (TR-1 to TR-5, TR-
6 to TR-10, TR-11 to TR-15). For the comparison of Uncertain Threat
to Uncertain Safety, responses were modeled for 24 TRs (total = 30.00 s)
and averaged for four windows, the first three corresponding to those
used for certain trials and a fourth spanning TR-16 to TR-24. This choice
was partially motivated by the modest number of trials with the longest
anticipatory epoch (Fig. 1). For the comparison of the two threat

conditions, responses were modeled for 15 TRs and averaged across
three windows, as above. “Sustained” activity was operationally defined
as greater mean activity across two consecutive windows. Using this cri-
terion, descriptive tests indicated nominally significant (p, 0.05) evi-
dence of sustained responses for most of the key regions for most of
the contrasts (e.g., Uncertain Threat vs Uncertain Safety). Exceptions
were the periaqueductal gray (PAG) for the Certain Threat vs Certain
Safety contrast, and the PAG and BST for the Certain Threat versus
Uncertain Threat contrast. Because this approach yields optimistically
biased effect-size estimates (Kriegeskorte et al., 2010; Davenport and
Nichols, 2020), we refrain from reporting exact p values, and instead
provide the SEM as a descriptive guide to the size of observed effects.
Naturally, any inferences drawn from inspection of the standard
errors only apply to the peak voxels depicted in the accompanying fig-
ures (black-and-white asterisks) and not necessarily to the entire par-
ent region (e.g., amygdala).

Testing whether the BST and amygdala show different responses to
threat
To test hypothesized regional differences in threat sensitivity (see the
Introduction), we used a combination of anatomic and functional crite-
ria to independently identify BST and amygdala voxels that were most
sensitive to each kind of threat. As shown in Figure 3, each region was
anatomically defined using a priori probabilistic ROIs (Frazier et al.,
2005; Desikan et al., 2006; Theiss et al., 2017). Next, we extracted and
averaged standardized regression coefficients for voxels showing signifi-
cant (FDR q, 0.05, whole-brain-corrected) activation for each of the
relevant contrasts, separately for each region: Uncertain Threat .
Uncertain Safety, Certain Threat . Certain Safety, and Certain Threat .
Uncertain Threat. Potential regional differences (i.e., Region � Condition
interactions) were then assessed using standard repeated-measures
GLM approaches implemented in SPSS. Nonparametric tests (Wilcoxon
signed rank) yielded identical conclusions (not reported). Inferences
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necessarily apply only to the subset of BST or amygdala voxels that proved
sensitive to one or more of the threat contrasts, not the entire region.

Testing whether the BST and amygdala show equivalent responses to
threat
Consistent with prior work by our group (McMenamin et al., 2009,
2010), we used the well-established two one-sided tests (TOST) proce-
dure for formally testing whether the BST and amygdala show statisti-
cally equivalent activity during threat anticipation. While it is not
possible to definitively show that the true difference in regional activity
is zero, TOST provides a well-established and widely used framework
for testing whether mean differences are small enough to be considered
equivalent (Lakens, 2017; Lakens et al., 2018). Regression coefficients
were extracted and averaged using the approach detailed in the prior sec-
tion. For present purposes, we considered regional differences smaller
than a “medium” standardized effect for dependent means (Cohen’s dz =
0.35) to be equivalent (Lakens, 2017). TOST procedures were performed
using the TOSTER package (version 0.3.4) for R.

Results
Temporally uncertain threat anticipation elicits robust
symptoms and signs of anxiety
As shown in Figure 1, threat anticipation markedly increased
subjective symptoms (in-scanner ratings) and objective signs
(skin conductance) of anxiety, and this was particularly evident
when the timing of aversive stimulation was uncertain. Anticipatory
feelings: Subjects reported experiencing more intense fear/anxiety
when anticipating aversive outcomes (F(1,98) = 543.27, p, 0.001),
and when anticipating outcomes with uncertain timing (F(1,98) =
85.46, p, 0.001). The impact of threat on fear/anxiety ratings
was potentiated by temporal uncertainty (Valence � Uncertainty:
F(1,98) = 13.08, p, 0.001; Uncertain Threat . Certain Threat:
t(98) = 7.58, p, 0.001; Uncertain Safety . Certain Safety: t(98) =
4.90, p, 0.001; Uncertain Threat. Uncertain Safety: t(98) = 21.98,
p, 0.001; Certain Threat . Certain Safety: t(98) = 20.36, p ,
0.001), consistent with prior work (Grillon et al., 2006; Nelson and
Shankman, 2011; Somerville et al., 2013; Bennett et al., 2018).
Anticipatory arousal: Subjects showed elevated skin conductance
levels when anticipating aversive outcomes (F(1,98) = 345.31,
p, 0.001), and when anticipating outcomes with uncertain timing
(F(1,98) = 85.86, p, 0.001). The impact of threat on skin conduct-
ance was potentiated by temporal uncertainty (Valence �

Uncertainty: F(1,98) = 93.63, p, 0.001; Uncertain Threat . Certain
Threat: t(98) =11.53, p, 0.001; Uncertain Safety . Certain Safety:
t(98) = �3.99, p, 0.001; Uncertain Threat . Uncertain Safety:
t(98) = 25.59, p, 0.001; Certain Threat . Certain Safety: t(98) =
9.84, p, 0.001). Together, these results confirm the validity of the
MTC paradigm for understanding the neural circuits underpinning
human anxiety.

Temporally uncertain threat anticipation recruits a
distributed network of subcortical and cortical regions
Next, a voxelwise GLM was used to identify brain regions
recruited during the anticipation of temporally Uncertain Threat
(Uncertain Threat . Uncertain Safety; FDR q, 0.05, whole-
brain-corrected). As shown in Figure 4, this highlighted a widely
distributed network of regions previously implicated in the
expression and regulation of human fear and anxiety (Fullana et
al., 2016; Qi et al., 2018; Fox and Shackman, 2019; Chavanne and
Robinson, 2020), including the MCC; AI extending into the
frontal operculum (FrO); dlPFC extending to the frontal pole
(FP); brainstem encompassing the PAG; basal forebrain, in the
region of the BST; and dorsal amygdala, in the region of the cen-
tral and medial nuclei. Heightened activity during the anticipa-
tion of Uncertain Threat was also evident in the orbitofrontal
cortex, basal ganglia, hippocampus, and ventrolateral amygdala
in the region of the lateral nucleus (Extended Data Fig. 4-1).
Consistent with prior work (Choi et al., 2012; Grupe et al., 2016),
Uncertain Threat anticipation was associated with reduced activ-
ity in a set of midline regions that resembled the default mode
network (e.g., anterior rostral sulcus/ventromedial PFC, postcen-
tral gyrus, and precuneus), as well as the posterior insula and
parahippocampal gyrus (Extended Data Fig. 4-2). Reduced activ-
ity was also observed in the most rostral tip of the amygdala,
underscoring the functional heterogeneity of this complex
structure.

Temporally uncertain threat anticipation elicits sustained
hemodynamic activity
Anxiety is widely conceptualized as a sustained state (Davis et al.,
2010; Tye et al., 2011; LeDoux and Pine, 2016; Mobbs, 2018),
and it is tempting to interpret clusters of enhanced activity (e.g.,
Fig. 4) through this lens. But do we actually see evidence of sus-
tained responses during the anticipation of temporally Uncertain
Threat? Although a wide variety of other signals are physiologi-
cally plausible (Fig. 2), the vast majority of fMRI studies never
address this question; they simply assume the shape of the hemo-
dynamic response and focus on estimates of response magnitude
(“activation”). To address this ambiguity, we used an FIR
approach to estimate responses elicited by the anticipation of
Uncertain Threat and Uncertain Safety on a finer time-scale.
Descriptively, this revealed sustained activity (see Materials and
Methods) across key cortical (MCC, AI/FrO, dlPFC/FP) and
subcortical (PAG, BST, dorsal amygdala) regions (Uncertain
Threat. Uncertain Safety; 6.25-30 s; Fig. 5).

Temporally certain threat anticipation recruits an
anatomically and functionally similar network
Having identified a distributed neural circuit sensitive to
Uncertain Threat, we used a parallel approach to identify regions
recruited during the anticipation of temporally Certain Threat
(Certain Threat . Certain Safety; FDR q, 0.05, whole-brain-
corrected). As shown in Figure 4, results were similar to those
found for Uncertain Threat (Extended Data Figs. 4-3, 4-4). In
fact, a minimum conjunction analysis (Logical “AND”) (Nichols

BST
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Amygdala

y = -7

Figure 3. Amygdala and BST ROIs. BST: The probabilistic BST ROI (green) was described
by Theiss et al. (2017) and was thresholded at 0%. The seed mostly encompasses the supra-
commissural BST, given the difficulty of reliably discriminating the borders of regions below
the anterior commissure using T1-weighted images (Kruger et al., 2015). Amygdala: The
Harvard-Oxford probabilistic amygdala (cyan) was described by Frazier et al. (2005) and
Desikan et al. (2006) and conservatively thresholded at 50%. Analyses used ROIs decimated
to the 2 mm resolution of the EPI data. For illustrative purposes, 1 mm ROIs are shown.
Single-subject data were visually inspected to ensure that the ROIs were correctly aligned to
the spatially normalized T1-weighted images.
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et al., 2005) revealed voxelwise colocalization in every key corti-
cal and subcortical region, including the BST and dorsal amyg-
dala in the region of the central and medial nuclei (Fig. 4;
Extended Data Fig. 4-5). FIR results also suggested functional
convergence across conditions, with all but one of these key

regions (PAG) showing sustained levels of heightened hemody-
namic activity during the anticipation of Certain Threat (see
Materials and Methods; Fig. 6). Together, these results suggest that
this network of subcortical and cortical regions is sensitive to multi-
ple kinds of threat anticipation, both certain and uncertain.
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Figure 4. The anticipation of temporally Uncertain and Certain Threat recruits broadly similar neural systems. Key regions (cyan arrowheads) showing significantly elevated activity during
the anticipation of Uncertain Threat (left column) and Certain Threat (middle column) compared with their respective control conditions. Right column, Voxels showing significantly increased
activity in both contrasts. BST and dorsal amygdala images are masked to highlight significant voxels in extended amygdala (green). Coronal insets, The thresholded statistical parametric maps
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The threat anticipation network can be fractionated into
subdivisions
To determine whether regions recruited during threat anticipa-
tion are sensitive to temporal uncertainty, we directly compared
the Uncertain and Certain Threat conditions (FDR q, 0.05,

whole-brain-corrected). This indicated
that the threat anticipation network can
be fractionated into subdivisions. As
shown in Figure 7, key cortical regions
(MCC, AI/FrO, and dlPFC/FP) showed a
further increase in activity during the
anticipation of Uncertain Threat (Ext-
ended Data Fig. 7-1). In contrast, the BST
and dorsal amygdala (adjacent to the Ce,
in the region of the cortical nucleus and
amygdala-hippocampal transition area)
showed the reverse pattern, with relatively
greater activity during the anticipation of
Certain Threat (Extended Data Fig. 7-2).
The PAG did not discriminate the two
threat conditions. FIR results suggest a
similar conclusion (Fig. 7).

The anticipation of temporally
uncertain and certain threat elicits
statistically indistinguishable responses
in the extended amygdala
Our results indicate that the BST and dor-
sal amygdala—the two major subdivisions
of the extended amygdala—respond simi-
larly to threat anticipation. Both regions
show signs of elevated activity during
threat anticipation, and this is evident
whether or not the timing of aversive
stimulation is uncertain (Fig. 4). Fur-
thermore, both regions showed parallel
increases in activity during the anticipa-
tion of Certain Threat (Figs. 6, 7). Yet it
remains possible that the BST and the
amygdala exhibit subtler differences in
threat sensitivity. To rigorously test this,
we directly compared regional responses
for each of the threat contrasts (e.g.,
Uncertain Threat vs Uncertain Safety),
equivalent to testing the Region �
Condition interactions. As shown in
Figure 8, mean differences were small to
very small (dZ , 0.17) and all nonsignifi-
cant (Extended Data Fig. 8-1). Likewise,
the proportion of subjects showing
numerically greater activity in one region
or the other never exceeded 55% (Fig. 8).
Naturally, these results do not license
strong claims of regional equivalence.
While it is impossible to demonstrate that
the true difference in regional activity is
zero, the TOST procedure provides a
well-established and widely used frame-
work for testing whether mean differen-
ces—here, in regional activity—are small
enough to be considered statistically
equivalent (Lakens, 2017; Lakens et al.,
2018). For present purposes, we consid-
ered differences smaller than a “medium”

standardized effect (Cohen’s dz = 0.35) to be statistically equiva-
lent. Using the voxels that were most sensitive to each threat con-
trast (see Materials and Methods), our results revealed significant
equivalence for all three contrasts (p values = 0.001-0.03; Fig. 8;
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Extended Data Fig. 8-1). Although these statistical findings do
not demonstrate that the amygdala and the BST are functionally
interchangeable (“the same”), they do enable us to decisively
reject claims of strict functional segregation (i.e., that the BST is
sensitive to uncertain danger, whereas the amygdala is not) for
the subset of these regions engaged by the MTC paradigm.

Discussion
Uncertain-threat anticipation is the prototypical trigger of anxi-
ety, a core theme that cuts across psychiatric disorders, species,
and assays, including novelty, darkness, and other “diffuse”
threats. Despite the immense significance of anxiety for public
health, the neural systems recruited by uncertain threat have
remained unclear. Leveraging a translationally relevant paradigm
optimized for fMRI signal decomposition (Fig. 1), our results
reveal that the anticipation of temporally uncertain aversive
stimulation recruits a distributed network of frontocortical
(MCC, AI/FrO, and dlPFC/FP) and subcortical (PAG, BST, and
dorsal amygdala) regions (Fig. 4), mirroring robust changes in
experience and psychophysiology (Fig. 1). Closer inspection of
signal dynamics in these regions provided descriptive support
for sustained activity during the anticipation of Uncertain Threat
(Fig. 5). Analyses focused on the anticipation of temporally
Certain Threat revealed a similar pattern, with voxels sensitive to
both kinds of threat evident in key cortical and subcortical
regions (Fig. 4), suggesting that this circuitry is sensitive to both
certain and uncertain threat. Direct comparison of the two threat
conditions demonstrated that this network can be fractionated:
cortical regions showed relatively greater activity during the
anticipation of Uncertain Threat, whereas the extended amyg-
dala showed relatively greater activity during the anticipation of
Certain Threat (Fig. 7). While there is consensus that the BST
and dorsal amygdala play a critical role in orchestrating adaptive
responses to danger, their precise contributions to human anxi-
ety have remained contentious. Our results suggest that these
regions respond similarly to different kinds of threat anticipa-
tion. Indeed, we show that the BST and dorsal amygdala exhibit
statistically indistinguishable responses to threat anticipation
across a variety of comparisons (Fig. 8), reinforcing the possibil-
ity that they make broadly similar contributions to human anxi-
ety (Gungor and Paré, 2016; Fox and Shackman, 2019).

Since the time of Freud (Freud, 1920), the distinction between
certain (“fear”) and uncertain (“anxiety”) danger has been a key
feature of neuropsychiatric models of emotion (Davis et al.,
2010; LeDoux and Pine, 2016; Mobbs, 2018). Our findings show
that the regions recruited during the anticipation of Certain and
Uncertain Threat are colocalized in several key regions (Fig. 4).
This common threat anticipation network encompasses subcort-
ical regions that are critical for assembling defensive responses to
uncertain threat in animals (Fox and Shackman, 2019). But it
also includes frontocortical regions—such as the MCC, AI/FrO,
and dlPFC/FP—that have received less empirical attention and
are challenging to study in rodents (e.g., Carlén, 2017). These
regions have traditionally been associated with the controlled
processing and regulation of emotion and cognition (Shackman
et al., 2011; Morawetz et al., 2017, 2020; Langner et al., 2018;
Kroes et al., 2019; Picó-Pérez et al., 2019) and more recently
implicated in the conscious experience of emotion (LeDoux,
2020). As shown in Figure 9, the present results are well aligned
with recent meta-analyses of neuroimaging studies of “fear”
(Fullana et al., 2016) and “anxiety” (Chavanne and Robinson,
2020). Across studies encompassing tens of studies and hundreds
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of subjects, this work demonstrates that the anticipation of cer-
tain-threat (Pavlovian threat cues; the prototypical “fear” stimu-
lus in laboratory studies) and uncertain-threat (instructed
“threat-of-shock”) recruit an overlapping network of core
regions, including the BST (but not the Ce; see below). This simi-
larity cannot be dismissed as an artifact of neuroimagers’ pench-
ant for partial-reinforcement Pavlovian paradigms, which render
“certain” threat uncertain (Fullana et al., 2016; median threat
probability = 63%; Picó-Pérez et al., 2019; median threat proba-
bility = 62%). In fact, the same general pattern—including
elevated activity in the region of the BST—is evident in large-

scale studies of certain-threat (Sjouwerman et al., 2020)
(Study 2, n=113, threat probability = 100%; https://neurovault.
org/collections/6031) and uncertain-threat anticipation (Klumpers
et al., 2017) (Sample 1: n= 108, threat probability = 33%), con-
sistent with our results.

Our observations provide insight into the functional architec-
ture of the threat anticipation network, demonstrating that fron-
tocortical regions prefer Uncertain over Certain Threat, whereas
the BST and dorsal amygdala show the reverse preference—a dif-
ference in degree, not in kind. Trivial differences cannot account
for this nuance; the two threat conditions were pseudo-randomly
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intermixed and nearly identical in terms of their perceptual,
nociceptive, motor, and statistical features (Fig. 1). What might
explain the observed regional preferences? Aside from temporal
certainty, the most conspicuous difference between the condi-
tions is the degree of cognitive scaffolding. On Certain Threat tri-
als, the descending stream of integers provided a precise and
predictable index of momentary changes in threat imminence,
encouraging a reactive, stimulus-bound cognitive mode. On
Uncertain Threat trials, this support was absent, necessitating
greater reliance on the kinds of sustained, endogenous represen-
tations that are the hallmark of frontocortical regions (Badre and
Nee, 2018). A second notable difference between the two threat
conditions is the intensity of anxiety. Uncertain-Threat anticipa-
tion was associated with greater distress and arousal (Fig. 1). The
observed increase in frontocortical activity could reflect either
heightened anxiety or compensatory processes aimed at downre-
gulating distress and arousal. Testing these nonexclusive hypoth-
eses will require a multipronged approach that encompasses
carefully optimized tasks, mechanistic interventions, and a
broader assessment of the nomological network. Multivoxel clas-
sifier approaches are likely to be useful for linking specific facets
of anxiety (e.g., feelings) to particular elements of the threat
anticipation network, and determining whether this reflects ex-
pressive or regulatory processes (Chang et al., 2015).

The present results add to a growing body of evidence indi-
cating that the BST and dorsal amygdala, while certainly not
interchangeable, are more alike than different (Fox and
Shackman, 2019). The BST and dorsal amygdala are character-
ized by broadly similar patterns of anatomical connectivity, cellu-
lar composition, neurochemistry, and gene expression (Fox et
al., 2015), although some differences in functional connectivity
have been identified (Gorka et al., 2018). Both regions are poised
to trigger defensive responses via dense projections to down-
stream effectors (Fox et al., 2015). Neuroimaging studies have
documented similar responses in the two regions to a range of
anxiety-eliciting stimuli (Fox and Shackman, 2019; Hudson et
al., 2020) (https://neurovault.org/collections/6237), and mecha-
nistic work in rodents reinforces the hypothesis that the BST and
dorsal amygdala (Ce) are crucial substrates for human anxiety
(Fox and Shackman, 2019). Indeed, work using a variant of the
present paradigm in mice shows that Ce-BST projections are
necessary for mounting defensive responses during the anticipa-
tion of temporally uncertain shock (Lange et al., 2017), consist-
ent with our general conclusions. While our understanding
remains far from complete, this body of observations under-
scores the need to revise models of anxiety that imply a strict seg-
regation of certain and uncertain threat processing in the
extended amygdala. The present results imply that the magni-
tude of regional differences in hemodynamic sensitivity to
threat-uncertainty is modest (,dz= 0.35); conditional on percep-
tual confounds, collinearities, or other moderators; or simply
nonexistent. An important challenge for the future will be to
determine whether the type of threat uncertainty (e.g., temporal
vs likelihood) is a crucial determinant of regional differences in
function.

Our results indicate that the amygdala’s response to threat
anticipation is sparse, at least when compared to widely used
emotional face and scene paradigms. This was not unexpected.
The amygdala is a heterogeneous collection of at least 13 nuclei
and cortical areas—not “a thing” (Swanson and Petrovich, 1998;
Yilmazer-Hanke, 2012)—and converging lines of mechanistic
and imaging evidence point to the special importance of the dor-
sal amygdala in the region of the Ce (Davis et al., 2010; Fox and
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Shackman, 2019; Hur et al., 2019a). In humans, Ce represents
;3% of total amygdala volume (Wegiel et al., 2014; Avino et al.,
2018). The dorsal amygdala clusters that we observed extend
beyond the Ce to encompass neighboring dorsocaudal aspects of
the medial, lateral, and cortical nuclei, and amygdala-hippocam-
pal transition area. While meta-analyses of small-sample neuroi-
maging studies have failed to detect significant amygdala
responses to threat anticipation (Fullana et al., 2016, median
n= 16; Chavanne and Robinson, 2020, median n= 29), the
location and extent of the dorsal amygdala clusters reported
here align with more recent large-sample studies of certain-
(Sjouwerman et al., 2020) and uncertain-threat anticipation
(Reddan et al., 2018) (n= 68, threat probability = 33%). In short,

our results are broadly aligned with amygdala anatomy, prior
theory, and emerging neuroimaging evidence.

In conclusion, the neural circuits recruited by temporally
uncertain and certain threat are not categorically different, at
least when viewed through the macroscopic lens of fMRI. We see
evidence of anatomic colocalization—not segregation—in a
number of key regions, in broad accord with animal models and
recent imaging meta-analyses. This shared threat-anticipation
system can be fractionated, with frontocortical regions showing
relatively stronger engagement during the anticipation of tempo-
rally uncertain threat, and the BST and dorsal amygdala showing
the reverse pattern. In direct comparisons, the BST and dorsal
amygdala exhibited statistically indistinguishable responses,
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reinforcing the possibility that they make similar contributions
to human anxiety. These observations provide a framework for
conceptualizing fear and anxiety and for guiding mechanistic
work aimed at developing more effective intervention strategies
for pathologic anxiety. A large sample, well-controlled task, and
advanced techniques for data acquisition and processing enhance
confidence in the robustness and translational relevance of these
results.
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