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A Paradox in Time Preference

Manel Baucells¤ Rakesh K. Sariny

Los Angeles, October 9, 1999

Abstract

For decisions whose consequences accrue over time, several techniques are
possible to compute total utility. One is to discount utilities of future conse-
quences at some appropriate rate. The second is to discount per-period cer-
tainty equivalents. And the third is to compute net present value of various
possible streams and then apply utility function to these net present values.
When consequences are income streams, our main result shows that for a strict
concave utility function, discounting utilities of incomes or discounting per-
period certainty equivalents can result in a paradoxical preference for receiving
more money later to more money now. For income streams, the correct ap-
proach is to …rst compute net present values of various possible income streams
and then take the utility of such net present value. The discounted utility
model is appropriate for consumption streams, provided that the time intervals
between periods are su¢ciently large. Otherwise, we have the unrealistic sit-
uation where a short delay in consumption produces a discontinuous jump in
the utility evaluation.
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1 Introduction

Consider the decision problem of an MBA student who is faced with the decision of

selecting a job from a set of alternative job o¤ers that he has received. The student

evaluates these jobs on the criteria of …rst year salary and future salary (salary three

years from now), along with other criteria such as location of the job, functional

area, travel requirements, etc. For simplicity, we assume that attributes other than

the monetary attributes (…rst year salary and future salary) are …xed at a reference

level and a pricing out procedure (see Kenney and Rai¤a 1976, Chapter 4) is used to

reduce all jobs in terms of equivalent …rst year salary, x1, and future salary, x2. Thus,

all jobs have identical values on non-monetary attributes and di¤er with one another

only on equivalent …rst year and future salary. Further, suppose that x1 and x2 may

be uncertain; for example, a part of the salary may be dependent on the performance

of the company.

Keeney and Rai¤a (1976, Chapter 9, Page 477) note that several techniques are

suggested in practice to evaluate alternatives when consequences accrue over time.

The …rst approach is to take expected utilities at each point in time and discount

these expected utilities. The second approach is to take certainty equivalents at each

point in time and discount these certainty equivalents. The third approach is to

discount the various possible certain streams, then assess a utility for such present

values, and then weight these utilities by the respective probabilities of the streams.

We will de…ne these approaches precisely in the ensuing sections. Our aim is to

evaluate these three approaches from a prescriptive/normative standpoint.

For simplicity, we assume that there are only two time periods and (x1; x2) denotes

the stream where a consequence x1 occurs in period 1 (now) and x2 occurs in period

2 (later). We consider two cases. In the …rst case, consequences represent income

streams (cash ‡ows, earnings or lottery winnings). In this case it is reasonable to

assert that money today is preferred to money tomorrow. Sections 2 ¡ 4 deal with

this case. In the second case, consequences represent consumption. In this case an

incremental consumption today may not be preferred to an incremental consumption

tomorrow as a decision maker may consider it desirable to smooth consumption over

time. This case is considered in Section 5.

In Section 2 we examine the normative appropriateness of the discounted util-

ity model to evaluate income streams. Section 3 examines an alternative model that

discounts the per-period certainty equivalents. We show that both models are norma-
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tively inappropriate. These models result in a paradoxical preference for more money

later to more money now. Instead of discounting utilities or certainty equivalents, one

should …rst discount the cash ‡ows and then take the utility of these discounted cash

‡ows. In Section 4 we show that the model using utility of net present value has the

desired normative properties. In Section 5 we discuss the discounted utility model for

consumption streams. We argue that the model may yield undesirable results if the

time interval between periods is small. Finally, conclusions are provided in Section 6.

2 Discounting Utility of Income

Consider the decision problem where the consequence accrue over time. For simplicity,

assume that there are only two periods and let (x1; x2) denote the stream where a

consequence x1 occurs in period 1 (now) and x2 occurs in period 2 (later). Two

consequences x1 and x2 could be uncertain. One approach for evaluating such time

streams is the utility discount:

V (x1; x2) = u(x1) + ¯u(x2), 0 < ¯ � 1; (1)

where V is the multi-period utility function, u is the single-period utility function,

and ¯ is the discount factor. In our formulation, it is assumed that the time at which

x2 is received, t, is a variable, and that ¯ is continuously decreasing in t, tending to

one as t tends to zero; and tending to zero as t tends to in…nity. When x1 and x2
are uncertain, u(x1) and u(x2) represent expected utilities of these uncertain payo¤s.

Formula (1) is imposed on all ¯ and t ¸ 0. Typically, the relation between ¯ and t

will take the form ¯ = e¡rt, where r is the relevant (continuous time) discount rate.

In a multiattribute analysis, the discounted utility model (1) may be subsumed

within a more general multiattribute utility model. For example, in the job selection

problem described in Keeney and Rai¤a (1976, Section 7:7:4), immediate and future

compensation are treated as two attributes along with other attributes such as loca-

tion, travel requirements, and nature of work. An additive value function or utility

function over these multiple attributes that includes immediate and future compensa-

tion as two separate attributes with a higher weight on immediate compensation and

a lower weight on future compensation is essentially a model where the total utility

of a job is computed as sum of the discounted utility of monetary compensation and

the utilities derived from other attributes.

We make the following assumptions about the preferences of a decision-maker.
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A1 The single-period utility function, u, is monotonically increasing and strictly

concave.

A2 A shift of payo¤ from period 2 (later) to period 1 (now) is preferred, i.e.,

(x1 + ¢; x2 ¡¢) Â (x1; x2), for all x1;x2, and ¢ > 0:

Assumption 2 is equivalent to (x1 + ¢; x2) Â (x1; x2 + ¢), ¢ > 0, and implies

(x; 0) Â (0; x), for all x > 0. The appeal of this assumption comes from the ob-

servation that money today is preferred to money tomorrow. For income streams

this assumption should be normatively acceptable, provided that the decision-maker

has access to a competitive market for borrowing and lending money. In descrip-

tive settings people who lack self-control may violate it (see Thaler 1992, Page 93).

Assumption 2 requires, for example, that a lottery winner should opt to receive all

of $50; 000 now rather than receiving $25; 000 now and $25; 000 a year from now.

This assumption should not be confused with consumption where indeed a level of

consumption may be more desirable than enormous immediate consumption now and

subsistence level consumption later. In Section 5, we discuss the case where conse-

quences are consumption streams rather than income streams. Throughout Sections

2¡ 4, consequences are assumed to be income streams.

We now state our …rst result, which shows that for any increasing, concave utility

function u there is a discount factor ¯ < 1 such that equation (1) and assumption

A2 cannot be simultaneously satis…ed.

Proposition 1 Model (1), A1, and A2 are incompatible.

Proof. Consider two payo¤ streams (x; 0) and (x=2; x=2). Set u(0) = 0 and

u(x) = 1. For an increasing, strictly concave u, u(x=2) = 1=2 + ±, for some 0 < ± <

1=2. As the time interval t between period 1 and 2 decreases, ¯ increases approaching

1 as t ! 0. Now it is easy to see that for ¯ > (1=2¡±)=(1=2+±), (1+¯)u(x=2) > u(x)
and V (x=2; x=2) > V (x; 0) thus violating assumption 2.

Our observation that the discounting of utilities and risk aversion cannot coexist

without violation of Assumption 2 is not an artifact of some extreme case analysis

that obtains when t ! 0. For a mildly risk averse person, a violation of assumption

A2 will appear for a reasonable time interval t. Consider a case where 0 � x � 1

and t = 1 year. Further, assume that a decision-maker is endowed with the well

known exponential utility function u(x) = ¡e¡�x. In this case, ¯ > e¡�=2 will lead
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to a preference of (:5; :5) over (1; 0). If ¯ = e¡rt, then t < �=2r will produce such a

reversal. Similarly for the utility function u(x) = x°, 0 < ° < 1, ¯ > 2° ¡ 1 will lead

to the preference of (:5; :5) over (1; 0). In the latter case, ¯ = :9 (present value of

$1 received a year from now is 90 cents) and ° < :9261 (modest risk aversion) yields

V (:5; :5) > V (1; 0). A °-value less than :9261 implies that the certainty equivalent of

a 50 ¡ 50 lottery between $0 and $1000 is less than $473. Since ° and ¯ are chosen

independently, the inconsistency noted above cannot be avoided. Consequently, a

decision-maker that has a reasonable discount factor and a reasonable degree of risk

aversion may be prescribed a plan that yields more money later compared to a plan

that yields more money now. We note that if the additive form of model (1) is replaced

with a multiplicative form (see Keeney and Rai¤a 1976), the paradox remains.

If the function u is di¤erentiable, then we can compute the intertemporal marginal

rate of substitution. We recall that an intertemporal marginal rate of substitution

bigger than one implies that the decision-maker prefers to reduce a bit today’s income

in order to increase a bit tomorrow’s income, in violation of A2. In Model (1),

ITMRS =
@V=@x2
@V=@x1

= ¯
u0(x2)
u0(x1)

:

The concavity of u readily implies that for x1 > x2, u0(x2)=u0(x1) > 1. Thus, we can

always obtain ITMRS > 1 by letting ¯ approach 1.

3 Discounting Certainty Equivalents

We now examine the following model. Begin by computing the expected utility for

each period, then calculate the certainty equivalent for each period, and, …nally,

discount the certainty equivalents. We recall that if X denotes a random payo¤, then

the certainty equivalent e(X) is the given by

e(X) = u¡1(E [u(X)]):

The appeal of this model comes from thinking that the per-period certainty equivalent

is the amount of money for which the decision-maker is willing to sell the uncertainty

of that given period. The model is then

V (X1; X2) = e(X1) + ¯e(X2), 0 < ¯ � 1; (2)

where V (X1; X2) is the discounted certainty equivalent. We have that
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Proposition 2 Model (2), A1, and A2 are incompatible.

Proof. Consider alternatives A and B. In alternative A the decision-maker

receives a deterministic payo¤ stream of (x=2; x=2). In alternative B, on the contrary,

the payo¤s are uncertain: with probability 1=2 the decision-maker receives a payo¤

stream of (x; 0), and with probability 1=2 he receives a payo¤ stream of (x=2; x=2).

Clearly, B dominates A in that with probability 1=2 the decision maker receives the

entirety of x in period 1, as opposed to receiving x=2 now and x=2 later otherwise. By

A2, B should always be preferred to A. The evaluation of alternative A is immediate:

V A(X1; X2) =
x
2
+ ¯ x

2
= x(1 + ¯)=2:

For the evaluation of B, note that the strict concavity of u given by A1 implies

Eu(X1) = 1
2u(x) +

1
2u(x=2) < u(

1
2x +

1
2x=2) = u(3x=4); and

Eu(X2) = 1
2
u(0) + 1

2
u(x=2) < u( 1

2
0 + 1

2
x=2) = u(x=4);

and because e(x) is an increasing function we conclude that e(X1) = u¡1[Eu(X1)] <

3x=4 and e(X2) = u¡1[Eu(X2)] < x=4 (see Figure 1).

0 x/4 x/2 x3x/4

Eu(X1)

e(X2)

Eu(X2)

e(X1)

Figure 1: Certainty equivalents.

Thus, for some ± > 0,1 V B(X1; X2) = e(X1)+¯e(X2) = (3+¯)x=4¡±. As ¯ ! 1,

V A(X1; X2) ! x and V B(X1; X2)! x¡±. Because ± > 0, V A(X1; X2) > V B(X1; X2)

for ¯ close to 1 (small t), a contradiction.

1± is the discounted risk premium: if RP (Xi) = E(Xi) ¡ e(Xi) is the per-period risk premium,
then ± = RP (X1) + ®RP (X2).
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4 Utility of Discounted Payo¤s

We now propose a modi…cation of equation (1)

V (x1; x2) = u(x1 + ¯x2), 0 < ¯ � 1: (3)

In model (3) above, …rst payo¤s are discounted and then the single period utility

function is applied. The expectation of V is used to evaluate lotteries over payo¤

streams. Such an approach is used by Smith (1998).

Proposition 3 Model (3), A1, and A2 are compatible.

Proof. Consider two streams:

(x1 + ¢; x2 ¡¢) and (x1;x2), where ¢ > 0:

Since u is monotonically increasing, by model (3) we obtain

u(x1 + ¯x2 +¢(1 ¡ ¯)) > u(x1 + ¯x2):

Thus, (x1 + ¢; x2 ¡ ¢) is always preferred to (x1; x2) for any x1; x2, and ¢ > 0:

assumption A2 is satis…ed.

The intertemporal marginal rate of substitution in Model (3) is given by

ITMRS =
@V=@x2
@V=@x1

= ¯;

which is clearly less than 1 by assumption, i.e., the decision maker always prefers the

reception of an incremental income in period 1 than in period 2.

5 Evaluation of Consumption Streams

In Sections 2¡ 4, we assumed that the consequence are income streams. For income

streams, the assumption A2 is desirable because money today can be used to make

money tomorrow and therefore an earlier receipt of money is always preferred. Now

we consider the case when the consequences are consumption bundles.

For consumption, the assumption A2 loses its normative appeal. An additional

consumption ¢ is not necessarily sweeter today than it would be tomorrow; for

example, if one already has high consumption today an faces a low consumption
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tomorrow. Most people prefer one pizza in each period to two pizzas in period 1 and

none in period 2.

Discounted utility model (1) is appropriate for consumption streams provided that

the time intervals between periods are large. Koopmans (1960) and Koopmans et al.

(1964) have axiomatized the discounted utility model for countable in…nite streams.

The discounted utility model rests on the assumption of separability over time.

We note, however, that the assumption of separability over time is suspect when

time intervals are small.2 To illustrate the di¢culty, consider the example below. We

assume that the utility function is concave representing diminishing marginal utility

of additional consumption.

Example 4 Consumption stream A is given by (2c; 0), which rewards the decision-

maker with a utility of u(2c) + ¯u(0). The decision-maker is allowed to postpone his

consumption plan and receive consumption stream B given by (c; c), which results in

a utility evaluation of u(c) + ¯u(c).

If the time interval between now and later is short, then ¯ is e¤ectively 1 so

that stream A produces u(2c) + u(0), whereas stream B produces 2u(c). The strict

concavity of u implies that 2u(c) > u(2c) + u(0), and the consumer experiences a

positive jump in the utility evaluation by instantly delaying the reception of a part of

2c, regardless of how short is the time separation between now and later. Exploiting

this opportunity, the decision maker could consume c=n over n consecutive instants

and obtain nu(c=n). In the limit, his utility approaches u0(0).3

The previous example indicates that a desirable property for a multiperiod utility

function V (x1; x2) is that as t ! 0, V (x1; x2) ! u(x1 + x2). By continuity at t = 0,

this implies u(x1) + u(x2) = u(x1 + x2). It is well known (see Aczél 1966) that such

a functional equation is satis…ed only if u(x) = �x, for some positive �. Thus, the

paradox in the example arises because the additive separability in (1) and the strict

concavity of u are incompatible with a linear behavior of V near t = 0.

A simple example makes our argument vivid. Suppose you consume a pizza now

and another pizza a month later. Then it seems appropriate to compute total utility

by adding the utilities derived from consuming one pizza now and one pizza a month

2For example, the preference for a menu for dinner may depend on what one had for lunch, but
may be largely independent of the consumption a month ago. For a model that relaxes separability
see Gilboa (1989).

3For some functional forms accepted in the literartue, such as u(x) = x�, u0(0) = 1.
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from now with some suitable discounting. If, however, you consume one pizza now

and another soon after consuming the …rst one, then you do not receive a total

utility that is twice the utility of one pizza as the model (1) will imply. Instead,

you get the utility of consuming two pizzas, which is likely to be less than twice

the utility derived from consuming one pizza because of diminishing marginal utility.

The additive model (1) assumes that the utility in each period is computed afresh.

This is reasonable if there are no lingering e¤ects of past consumption. The time

interval within which the satiation due to past consumption disappears completely

would vary a great deal based on the nature of consumption. For the pizza example,

it may be a week or less but for a vacation the e¤ects of past vacations may last a

long time. In general, the separability assumption is a good approximation if time

intervals between consumptions are large, but some accounting of satiation due to

past consumption is needed if the time intervals between consumptions are small.

We now propose a realistic model that accommodates such short time intervals.

The model introduces an element of intertemporal satiation so that previous con-

sumption levels a¤ect the utility evaluation derived from the current consumption.

An example of such a model would be (see Figure 2)

V 0(x1; x2) = u(x1) + ¯[u(x2 + y2)¡ u(y2)]; (4)

where y2 is some satiation level produced by previous consumption. To permit a

decay in satiation over time, one may use y2 = x1e¡¾t, where ¾ is a parameter that

captures the decay in satiation due to the passage of time.4 Thus, to evaluate the

consumption stream B in Example 4 given by (x1; x2) = (c; c), we have

V 0(c; c) = u(c) + ¯[u(c + ce¡¾t)¡ u(ce¡¾t)]:

Clearly, as t ! 0, V 0(c; c) ! u(2c), producing the desired property that an instant

delay in consumption should not create a discontinuity in the utility evaluation.

The above example illustrates that the discounted utility model (1) assumes a

restrictive behavioral assumption: in each period, the consumer evaluates the utility

of the current consumption afresh. This may be reasonable when time intervals

between periods are large and therefore satiation from the previous consumption can

4Thus, if ¾ = 0, then the satiation level is equal to the cumulative consumption; and if ¾
is large, then there is virtually no satiation. For a more general case with n periods, we have
V 0(x1; :::xn) =

PN
n=1[un(xn + yn ) ¡ u(yn)]e¡rn¢t , yn =

Ps=n¡1
s=1 xse

¡¾¢t(n¡s), and y1 = 0. For a
…xed ¾, if ¢t is large, then the model particularizes to the usual discounted utility model without
satiation.
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0

u(x2+y2)-u(y2)

x2

y2 x2+y2

u(x)

Figure 2: The evaluation of period 2 utility when satiation level due to period 1
consumption is y2.

be ignored. Indeed, for large t, e¡¾t ¼ 0 and V 0(x1; x2) ¼ V (x1; x2). In the continuous

time model,5 the di¢culty is more serious because one does not have the freedom

to choose time intervals. The continuous time model assumes that the consumer

evaluates the utility of x(t) afresh at each instant of time t, without experiencing

satiation due to past consumption.

6 Conclusions

In this paper we consider the problem where the consequences of a decision accrue

over time and are uncertain. We examine two cases: …rst, where the consequences

are income streams, and second, where the consequences are consumption streams.

5 In the continuous time case, we have

V (x) =

Z T

0

u(x(t))e¡rtdt:

Satiation is easily introduced by considering

V 0(x) =

Z 1

0

[u(x(t) + y(t)) ¡ u(y(t))]e¡rtdt;

where y(t) =
R t

0
x(s)e¡¾(t¡s)ds. Alternatively, y0(t) = x(t) ¡ ¾y(t) and y(0) = 0: y(t) accumulates

current consumption but depreciates at rate ¾. Becker (1996) used a similar model to explain habit
formation and addiction. See also Chakravarty and Manne (1968) for a model where instant utility
depends on the rate of change of consumption.
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The …rst case arises in decision analysis or multiattribute utility analysis problems

such as job selection where immediate and future compensation serve as a proxy

attributes for economic well-being. The second case is common in economics where

maximization of the utility of consumption subject to a budget constraint is assumed

both in modeling and theoretical analysis.

Our main result is that risk aversion and discounting of utilities of income can-

not coexist without violating the principle that money now is preferable to money

later. Speci…cally, we show that the discounted utility model when applied to income

steams or cash ‡ows leads to an undesirable result: for an individual with concave

utility, postponing income increases utility. The paradox remains if, instead of using

discounted utility, one discounts the certainty equivalents in each period. We show

that discounting cash ‡ows …rst and then applying utility to net present values leads

to desirable results.

In dealing with consumption streams, it is appropriate to use discounted utility

model, provided that the time periods are separated enough. For short time periods,

the model loses realism in that an arbitrarily short delay of part of a unit consumption

leads to a jump in the utility evaluation. This is because utility is evaluated afresh

in each period. Thus, (c; c) gives a utility of approximately equal to 2u(c) if the time

interval between two periods is very small (discount factor ¼ 1), whereas (2c; 0) gives

a lower utility of u(2c) + u(0). The continuous time model, in particular, hides the

restrictive behavioral assumption that utility of consumption is evaluated afresh at

each instant in time. Exploring the e¤ect of satiation in a time preference model is

an agenda for future research.
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