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 Abstract  

The Law of Corresponding States has been demonstrated for a number of pure substances and 

binary mixtures, and provides evidence that the transport properties viscosity and diffusion can be 

determined from a molecular shape function, often taken to be a Lennard-Jones 12-6 potential, 

that requires two scaling parameters: a well depth εij and a collision diameter σij, both of which 

depend on the interacting species i and j. We obtain estimates for εij and σij of interacting species 

by finding the values that provide the best fit to viscosity data for binary mixtures, and compare 

these to calculated parameters using several “combining rules” that have been suggested for 

determining parameter values for binary collisions from parameter values that describe collisions 

of like molecules. Different combining rules give different values for σij and εij and for some 

mixtures the differences between these values and the best-fit parameter values are rather large. 

There is a curve in (εij, σij) space such that parameter values on the curve generate a calculated 

viscosity in good agreement with measurements for a pure gas or a binary mixture. The various 

combining rules produce couples of parameters εij, σij that lie close to the curve and therefore 

generate predicted mixture viscosities in satisfactory agreement with experiment. Although the 

combining rules were found to underpredict the viscosity in most of the cases, Kong’s rule was 

found to work better than the others, but none of the combining rules consistently yields 

parameter values near the best-fit values, suggesting that improved rules could be developed.  

Keywords: viscosity, transport properties, combining rules, intermolecular potential parameters 
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I - Introduction 

Many important phenomena that occur in gas mixtures depend on molecular transport 

processes including viscosity, diffusion, and thermal conductivity.  Transport properties are often 

critically important in engineering applications and for understanding phenomena like 

combustion processes, hypersonic flows, and chemical vapor deposition.  A recent trend in 

engineering design is to use modeling to reduce design times, and combustion is an area 

benefitting from this approach.  Modeling combustion processes requires accurate values of 

transport properties over a wide range of temperatures and pressures. It is not possible to measure 

all the requisite transport properties, so we must have models to calculate them. This requires 

adequate information about the intermolecular potential and the underlying dynamics.  

Kinetic theory allows the prediction of transport properties of a mixture, if the potential energy 

of molecular interactions in the mixture is known as a function of intermolecular separation and 

orientation.  A description of the potential as a function of intermolecular separation r, averaged 

over molecular orientations, suffices to calculate viscosity and diffusion coefficients.  

Potentials of the form ( ) ( )
ijij rrV σϕε=

 
were proposed by Brown and Munn [1] to compute 

transport properties, where i and j indicate the chemical species of the two interacting molecules. 

The shape function, φ, is frequently taken to be a Lennard-Jones 12-6 potential, where the energy 

scaling parameter εij is the well depth, and σij is the length scaling parameter that defines the 

intermolecular separation at which the potential is zero. Frequently the parameters are obtained 

by finding the values such that predictions of bulk properties (second virial coefficient and 

transport properties) provide the best possible fit to experiment. We focus on viscosity data 

because, according to the excellent review by Wakeham et al. (2007) [2], the errors associated 
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with viscosity measurements post 1972 are less than 0.5%, and Kestin et al. (1977) [3], measured 

the viscosity of eighteen binary mixtures with a claimed uncertainty of only 0.2%.  

Mourits and Rummens [4] review intermolecular potentials based upon viscosity 

measurements, discuss the problem of indeterminacy inherent to the calculations, but do not 

characterize the nature of the indeterminacy. Indeterminacy in this context implies that many 

combinations of the potential parameters, εi and σi, can be used to calculate viscosities of 

acceptable precision (2% or less) for species i.   

The non-uniqueness or indeterminacy of the potential parameters has not been recognized in 

many disciplines like the combustion [5-8]  and chemical physics [9] communities that use 

transport properties in various applications. Kim and Ross [10] and Barker and Pompe [11] found 

that diffusion coefficients are remarkably insensitive to the intermolecular potential.   

Mourtis and Rumens further indicate the greater difficulty in finding suitable potential 

parameters for mixtures.  Combination rules are often used to infer potential parameters for 

unlike molecules from those associated with like molecules, and there has long been debate about 

the suitability of different combination rules [6,12,13]. 

Viscosity measurements of a single chemical species allow direct estimation of the parameters 

that describe the interaction between two molecules of the same species, εii and σii. The situation 

is more complicated for even the simplest mixture: since every type of molecule interacts with 

every other type (and with its own type), a mixture of N species requires N(N+1)/2 εij and σij 

values. We first fit ε and σ to viscosity data for both pure species followed by fitting εij and σij  to 

viscosities for binary mixtures, and use the results to investigate the accuracy of “combining 
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rules” that determine εij and σij for collisions between unlike molecules from values for like 

molecules: given (εii, σii) and (εjj, σjj), what is the best estimate of (εij, σij)? 

Seven non-polar species for which highly accurate viscosity data are available are considered: 

Ar, N2, O2, CO2, CH4, CF4, and SF6 and 12 of their binary mixtures: Ar-CF4, Ar-SF6, CF4-SF6, 

CH4-CF4, CH4-SF6, CO2-CF4, CO2-SF6, N2-CF4, N2-SF6, O2-CF4, O2-CO2, and O2-SF6. Data 

sources are listed in Table I. The viscosities are measured at atmospheric pressure, and the 

temperature range of interest is 101 * << T   where *T , the reduced temperature, is defined as 

εTkT B=* . We obtain estimates for εij and σij for each pair of interacting species by finding the 

values that provide the best fit to the viscosity data.  Our estimates are compared to results given 

in the literature and to the values calculated using the two widely-used computational approaches 

for the prediction of transport properties: the TRANLIB package of  Kee et al. [14], which is 

oriented toward combustion modeling; and the semi-empirical approach developed by Najafi et 

al. [15], Boushehri et al. [16], Bzowski et al. [17], and  Mason and Uribe [18], which we refer to 

as MKC (Mason, Kestin, and Colleagues).  

Our contributions include the development of inverse methods for determining εij and σij; a 

physical explanation of the non-uniqueness of (ε, σ) for predicting viscosity at a given 

temperature; and comparison of empirically determined values of (εij ,σij) to the values predicted 

by commonly used combining rules. We demonstrate even though different combination rules 

produce different potential parameters for binary systems, many of these result in acceptable 

values of the binary transport coefficients.      
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II - Theory 

1) Transport properties equations 

The formulae given in this section are appropriate under the assumption that the properties of a 

mixture can be determined from two-body collisions, a condition that holds for most mixtures 

except at high pressure, where three-body collisions can be important.  For pure species, all 

collisions are between like molecules so we drop the indices on εii and σii .The viscosity η of a 

pure gas at temperature T, is given by the kinetic theory of gases as the second order Kihara 

solution as:  

 ( )
( )

( ) ( )**2.22

*

16
5

T

TfTmk
T B

Ω
=

σπ
η

η  (1) 

where εTT =*  when T and ε are both expressed in K and ηf  is a correction factor associated 

with the second order solution of the kinetic theory of gases and is calculated as follows: 

 ( ) ( )( )2*** 78
196

3
1 −+= TETfη  (2) 

 ( )
( ) ( )
( ) ( )**2.2

**3.2
**

T

T
TE

Ω

Ω
=  (3) 

where m is the mass of the gas molecule; and ( )*2,2Ω  and ( )*3,2Ω  are reduced collision integrals 

[19] that contain all the information of the binary collision dynamics. They are normalized by the 

cross sections for rigid spheres of diameter σ.  The different collision integrals correspond to 

variously weighted, energy-averaged cross-sections [20], and they depend on the temperature and 

the intermolecular potential φ().   

For low density gases, viscosity and diffusion only depend on elastic collisions [18].  In 

contrast, thermal conductivity of molecular gases depends on inelastic collisions, and this 

dependence is approximated using a number of approaches, often involving a Eucken correction 

[21].   
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The collision diameter σ and the well depth ε can be evaluated using different approaches, 

including ab initio calculations of potential energy surfaces, scattering measurements, 

spectroscopic measurements, or determining values that provide the best fit to experiments that 

measure bulk properties, including transport properties.  The latter approach is used here. 

Mason and Uribe (1996) [18] give a series expansion to compute collision integrals that they 

determined empirically by fitting to viscosity measurements for argon. They obtained for ( )*2,2Ω : 

 ( ) ( ) ( ) 







=Ω ∑

=

4

0

***2.2 lnexp
i

i

i TaT  (4) 

The collision integral ( )*3,2Ω  is computed using the following recursion formula:  

 ( ) ( ) ( ) ( )
( )

( )*
*

*.
**.**1.

2
T

dT

d

s

T
TT

sl
slsl Ω

+
+Ω=Ω +  (5) 

yielding : 

 ( ) ( ) ( ) ( ) ( ) 















+⋅Ω=Ω ∑

=

−
4

1

1***2.2**3.2 lnexp
4
1

1
i

i

i TiaTT  (6) 

The ai’s are given in Table II.  The expressions given here for the collision integrals are valid 

only for 101 * << T , for temperatures outside this range refer to Mason et al. [18].  These 

collision integrals are very similar to those tabulated in Hirschfelder et al. [19], and those given in 

TRANLIB for non-polar species, for which tabulated results are from Monchick and Mason [22].  

Another common approach to calculating collision integrals is to assume a given functional 

form of the intermolecular potential, and numerically evaluate the integrals. Many different 

models have been proposed for the intermolecular potential. The Lennard-Jones 12-6 potential φ 

is used throughout the present study, and is: 

 ( )



















−








=

612

4
rr

r
σσ

εϕ  (7) 

Calculation of the collision integrals with this potential yields a curve quite close to the 

empirically determined curve of Mason and Uribe, as shown in Figure 1; they agree within 1% 
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for almost the entire range of T* shown. We approximate ( )*2.2Ω  for the Lennard-Jones potential 

using the same four-term series expansion as Equation (4); results are shown in Table II. 

 

III - Non uniqueness of the potential parameters 

Mourits and Rummens [4] review intermolecular potentials based upon viscosity 

measurements, and point out that many combinations of the potential parameters, εi and σi, can be 

used to calculate viscosities of acceptable precision (2% or less) for species i.   The non-

uniqueness or indeterminacy of the potential parameters has not been recognized in many 

disciplines like the combustion and chemical physics communities that use transport properties in 

various applications.  

When the temperature is fixed, there is a curve in (ε, σ) along which the viscosity is constant. 

From equation (1), if the parameter pair (ε0, σ0) generates a viscosity prediction that matches 

experiment, then another (ε, σ) will predict the same viscosity if  

 
( ) ( ) ( ) ( )0

*2,22
0

*2,22 εσεσ TT Ω=Ω
 

(8) 

 

where the correction factor fη is ignored since it is close to unity.  

Kim and Ross determined the shape of the curve for some special cases of reduced temperature 

for which analytical approximations for the collision integral are available; for instance, for low 

temperature (0.4 <  T* < 1), the curve is defined by  

 σ ∝
c

ε4  
(9) 

where c is a constant; with this expression, any (ε, σ) that provides a good fit to data can be 

used to determine the curve, within the range of T and ε for which T* is in the designated range. 

Kim and Ross suggest an approximation to the collision integral for 1 < T* < 5, from which we 

derive the relationship  
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 σ = σ 0

kT +1.09ε0

kT +1.09ε  
(10) 

Outside the range of T* encompassed by the above equations, Equation (8) can be solved 

numerically for σ as a function of ε to generate a curve in (ε, σ) space such that the calculated 

viscosity at a given temperature is the same everywhere along the curve.  For instance, Figure 2 

shows ( )*2.2Ω  versus T*, with two arbitrary points identified. By choosing appropriate σ values, 

either point shown generates the same value of viscosity.  The resulting curve is shown in Figure 

3 for T=200, 400, and 600 K, for two (ε0, σ0) pairs, corresponding to Ar and CH4.  

Higher T curves have smaller slopes as shown in Figure 3; and this is indicative of declining 

sensitivity of the collision integrals with respect to the well depth with temperature.  In high-

energy (> TkB
 ) collisions the contribution to the collision integrals is dominated by collisions 

with impact parameters comparable to or less than σ, which have a distance of closest approach 

in the repulsive region of the potential. The potential well has relatively little influence on these 

collisions.  In low-energy collisions, the potential well affects the trajectories (and therefore the 

collision integrals), and the contribution to the collision integrals is dominated by collisions with 

impact parameters greater than σ, most of which do not sample the repulsive region of the 

potential.  At high T, most collisions are of high energy, so a change in the depth of the potential 

well has little influence on the collision integrals; hence even a large increase in the depth of the 

well can be offset by a small decrease in the size of the repulsive region.  Thus the high-

temperature curves in Figure 3 have a shallow slope. At low T, on the other hand, most collisions 

are of low energy and are sensitive to the well depth.  Compared to the high-T case, an increase in 

the depth of the potential well requires a larger change in the size of the repulsive region to 

generate the same collision integrals.   
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The existence of a curve in (ε, σ) along which the viscosity is constant at a given T has 

important practical implications in determining parameter values from viscosity data by 

comparing viscosity calculated from Equation (1) to a set of Nexp experimental values. Since each 

temperature has a different curve, no single curve will predict viscosity perfectly over a wide 

range of temperatures. Curves for different temperatures lie very close to one another; hence, a 

single curve can work well enough to match data within experimental error over   a range of 

temperatures as we show below. 

The absolute mean relative error, ∆, is defined as follows:  

 ∑
=

−
=∆

exp

1
exp

exp

exp

1 N

k k

k

calc

k

N η

ηη

 
(11) 

We use the absolute mean relative error, rather than (for instance) the root-mean-squared error, 

to decrease the influence of outliers. Fitting consists of finding values of σ and ε such that ∆ is 

minimized. Since there are only two parameters, minimizing ∆ can be done quickly by 

calculating ∆ on a grid of σ and ε and refining the grid near the minima.  The Powell downhill 

method and simulated annealing have also been used but they are more complicated and time-

consuming to implement, and produced results identical to the grid approach.   

The fitting of pure species parameters is considered first. The function ∆ versus σ and ε is 

shown in Figure 4, and has the same shape for all the systems that have been investigated.  As 

indicated in Figure 3, there is a single (σ, ε) pair at which ∆ is minimized. A nearly linear curve 

in the σ, ε plane, which we refer to as a “trough,” defines σ, ε pairs that predict the mixture 

viscosity within 1% or less. This is comparable in magnitude to the experimental uncertainty in 

many cases.  Moving along the trough toward lower ε, away from the point of best fit, will lead to 

good estimates of viscosity at an intermediate temperature, but will overestimate the viscosity at 
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low T, and underestimate it at high T. The situation is reversed when moving along the trough 

towards higher ε.  Parameters that characterize the trough for various chemical species are given 

in Table III, along with the optimal values of the potential parameters obtained through fitting, 

and values for the parameters tabulated in TRANLIB and MKC. 

Figure 5 represents some of the troughs associated with pure species systems listed in Table III, 

as well as the optimum fitted parameters and those from TRANLIB and MKC. The “fitted 

parameter” point shows where ∆ is minimized. Values of ε and σ from both the TRANLIB and 

MKC databases agree well with the values that best fit the experimental data.  The parameters 

tabulated in TRANLIB are slightly off the troughs, while the MKC parameter pairs fall almost 

perfectly on the troughs. The existence of the trough helps to explain why researchers can use 

different choices of (ε, σ) for the same species, and still obtain good fits to data.  

The optimal (ε, σ) couple was determined by finding the values that minimize the absolute 

mean relative error over data from several sources. Viscosity measurements by some researchers 

differ systematically from others; for instance, some researchers report slightly higher viscosity at 

a given temperature than do others.  Thus the optimal parameters are not necessarily those that 

produce the best fit to the actual viscosities: since different experiments produce different 

measurements, the actual viscosities are not known.  To gauge both the uncertainty in (ε, σ) that is 

attributable to systematic errors in the viscosity measurements, and the extent to which the details 

of the trough depend on these errors, the following procedure was followed. Optimal values of (ε, 

σ) and a description of the trough were determined for several different datasets, for Ar, CH4 and 

N2.  For each species, data from a single source were excluded and the optimal values and the 
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equation for the trough were determined for the remaining data; then data from a different single 

source were excluded; and so on.   

In the case of N2, excluding data from any single source made little difference to the best-fit ε 

or σ, or the trough: the largest ε differed from the smallest by only 3%, and the largest σ differed 

from the smallest by less than 0.3%. CH4 generated more variability, with a 4% difference 

between the highest and the lowest ε and a 0.5 % variation in σ. Ar had a 6% variation in ε and a 

0.6% variation in σ.  For the three species, when viscosity data from a single source are excluded, 

the resulting (ε, σ) couple falls very close to the trough generated from the full dataset. In 

summary, although there is some uncertainty in ε and σ there is little uncertainty in the location 

and shape of the trough in (ε, σ) space.  

It is also of interest to consider how the error in the viscosity calculations varies with 

temperature, and this is shown for N2 in Figure 6. The different sets of potential parameters used 

are presented in Table IV. The parameters we call Set A and Set B are chosen to be on the trough, 

but with well depths that differ by ± 15 % from the best-fit values. The corresponding collision 

diameters are computed using the slope of the line representing the trough.   

With a difference in the well depths of 30 % compensated by a roughly 3 % difference in the 

collision diameters, we obtain predictions that agree with experiment to within the experimental 

uncertainty of less than 1 % for a large range of temperatures (300 to 1000 K).  In contrast, using 

TRANLIB parameters that are individually closer to the fitted parameters – but that, considered 

as an (ε, σ) pair, are slightly off the trough – results in deviations between 1 and 2%, outside the 

experimental uncertainty range. 
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Figure 6 shows deviations of estimated viscosity from experimental measurements for N2 for 

several sets of measurements. Each experimental measurement generates five points on Figure 

6b, since each measurement is compared to the viscosity calculated using five different parameter 

pairs.   

IV - Combining rules 

The viscosity of a mixture of υ components ηmix is given by the kinetic theory of gases in first 

order as [12]: 
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where:  
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 Aij

*
T

*( )=
Ωij

2,2( )* T*( )
Ωij

1,1( )* T*( )  (15) 

where ( ) ( ) ( ) ( )ij

slsl

ij TT ε*,**, Ω=Ω .  

ηij is the viscosity of a hypothetical gas whose interactions are described by the parameters σij 

and εij, and whose mass is twice the reduced mass of the two interacting species. xi is the mole 

fraction of species i. 
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( )*1,1Ω  is computed using the expression given by Mason and Uribe (1996) [18]:  

 
( ) ( ) ( ) 








=Ω ∑

=

4

0

***1.1 lnexp
i

i

i TbT
 

(16) 

The coefficients bi’s are given in Table II. 

The potential parameters σij and εij can be determined with several approaches, including 

finding the values that provide the best fit to experimental data, or using “combining rules” to 

predict them from σ and ε for the individual species as described below.  Determining potential 

parameters by fitting requires a rich and accurate experimental data set. Combining rules are 

essential to predicting scaling parameters for interactions for which there is inadequate 

experimental data.  

Combining rules predict the potential parameters characterizing the interactions of two unlike 

molecules from parameters characterizing each of the individual molecules. The most commonly 

used combining rule for the collision diameter is the arithmetic mean (AM):  

 
2

jjii

ij

σσ
σ

+
=

 
(17) 

This rule is exact if the interacting molecules are hard spheres.  The most commonly used 

combining rule for the well depth is the geometric mean (GM), also called the Berthelot rule:  

 jjiiij εεε =
 (18) 

Other rules have been proposed which give more weight to the component with the weaker 

intermolecular forces [12]. One of these is the harmonic mean (HM), originally advocated by 

Fender and Halsey (1962) [23]: 

 
jjii

jjii

ij
εε

εε
ε

+
=

2
 (19) 

More sophisticated combining rules like that of Kong (1973) [24] have been proposed for σij 

and εij: 
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σσεε
ε

+⋅

=
 (21) 

Equations (20) and (21) are specifically for a Lennard-Jones 12-6 potential as specified in 

reference [12]. 

V- Combined parameters obtained from fitting to viscosity data. 

The same basic approach that was used for pure species is used to fit σij and εij using 

experimental data reported in Kestin et al. [3]   The parameters (εii, σii) and (εjj, σjj) were 

determined from the best fit to pure species viscosities, and the combined parameters σij and εij 

are obtained by finding the values that, when used in Equation (12), yield the best fit to 

experimental data associated with the binary mixture. As with the pure species, a trough, 

approximated by a straight line determined by linear regression, was found for each mixture. 

Table V contains the fitted values, the parameter values obtained from different combining rules, 

and the slope of the line representing the trough. 

Different combining rules give different values for σij and εij, and for some mixtures the 

differences are rather large, as illustrated in Figure 7,  which shows σO2-X  (where X= CF4, SF6, 

and CO2) versus σX-X as well as  εO2-X versus εX-X. Figure 8 shows how the results of the 

combining rules relate to the trough for some mixtures. Although yielding very different values, 

the various combining rules produce couples of parameters εij, σij that lie close to the trough line 

and therefore generate predicted mixture viscosities in reasonable agreement with experiment. 

Viscosities calculated using parameters obtained with standard combining rules tend to under-

predict the viscosity, often by about 1% to 3%, as shown in Figure 9.  Kong’s rule generates 
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viscosities that are closer to experimental values than do the other rules in 10 out of the 12 

mixtures for which we have data. The agreement between calculated and experimentally 

determined viscosity is frequently less satisfactory for mixtures than for pure species. The 

accuracy of the calculations also depends on the composition of the binary mixture as shown in 

Figure 9 since the concentration of a species acts as a weighting factor for the pure species 

parameters. 

Compared to the fitted values, the arithmetic mean overpredicts the collision diameter. Kong’s 

rule overestimates it even more. Kong’s rule, however, underestimates the combined εij, thus 

yielding (ε, σ) a pair on or near the trough. No consistent over- or under-prediction is observed 

for the geometric mean or the harmonic mean. 

In many applications, the geometric mean and harmonic mean rules for the well depth are used 

with the arithmetic mean for collision diameter.  TRANLIB and MKC use the arithmetic mean 

for collision diameters for non-polar species; TRANLIB uses the geometric mean for the well 

depth and MKC adds a correction factor to it, following the recommendations of Bzowski et al. 

[13,17] and Tang and Toennies [25]. 

1) Combined collision diameters 

Plotting the σij’s versus the pure species collision diameters σii’s and σjj’s results in a nearly 

planar surface as shown in Figure 10.  The equation of the plane yielding the best fit in terms of 

absolute mean relative error is: 

 ( ) 49.043.0 ++⋅= jjiiij σσσ
  (22) 

Results are presented in Table VI and Figure 10.  Equation (22) yields good results with the 

small dataset that has been investigated, with all deviations less than 2.5 % from the best-fit 

values, frequently less than 2%, except for one outlier (SF6-SF6), for which the deviation is 4%.  
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Equation (22) is empirical, but is similar to the arithmetic mean rule that would apply if 

molecules were hard spheres.  In the case σ ii = σ jj , one might expectσ ij = σ ii = σ jj , which is not 

the case for Equation (22). But in fact, if we imagine a case in which two different species have 

the same collision diameters, there is no physical requirement that the effective collision diameter 

for the interaction between them must be the same as when each interacts with a molecule of its 

own type.  Notably, Kong’s Rule (Equation (21)) recognizes this fact.  

No simple function of εii and εjj alone provides a good fit to the data in Table V.  

V - Conclusions 

The Law of Corresponding States has been demonstrated for a number of pure substances and 

binary mixtures, and provides evidence that the transport properties viscosity and diffusion can be 

determined from a molecular shape function, often taken to be a Lennard-Jones 12-6 potential 

that requires two scaling parameters: a well depth εij and a collision diameter σij, both of which 

depend on the interacting species i and j. We show that there is a curve in (εii, σii) space such that 

parameter values on the curve generate a calculated viscosity in good agreement with 

measurements for a pure gas. These results help to explain why different researchers sometimes 

disagree on the values of the parameters, for a given species.  We obtain estimates for εij and σij 

of interacting species by finding the values that provide the best fit to viscosity data for binary 

mixtures. As with the pure species, we found that there is a curve in (εij, σij) space such that 

parameter values on the curve generate a calculated viscosity in good agreement with 

measurements. The curves in both cases are approximated well with a straight line.  We 

calculated parameters for many binary pairs using four combining rules. Different combining 

rules give different values for σij and εij and for some mixtures the differences are rather large.  
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However, the various combining rules produce couples of parameters εij, σij that lie close to the 

curve (line) in ( εij, σij) space and therefore generate predicted mixture viscosities in satisfactory 

agreement with experiment. Kong’s rule was found to work better than other combining rules for 

predicting viscosity, but none of the combining rules consistently yields parameter values near 

the best-fit values, suggesting that improved rules could be developed. We presented empirical 

rules that work well for a small dataset.  
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Tables 

Table I: Experimental data used for the fitting of the potential parameters 

Table II. Numerical coefficients for the calculation of the reduced collision integrals 
( )*1,1Ω , 

( )*2,2Ω , and 
( )*3,2Ω . 

Table III. Fitted potential parameters, potential parameters given in TRANLIB and MKC, and numerical 

characterization of the trough for different pure species systems. 
Table IV. Potential parameters for N2 obtained different ways and used in the computations presented in Figure 6. 
Table V. Fitted potential parameters, potential parameters obtained from different combining rules, and the slope 

of the line representing the trough for twelve different binary mixture systems. 
Table VI. Collision diameters fit by a plane. 
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Table I: Experimental data used for the fitting of the potential parameters 

System References 
Ar [3,26-29] 

CH4 [3,29-32] 
CO2 [3,33] 
N2 [3,34-38] 
O2 [37] 

CF4 [3] 
SF6 [3] 

Binary Mixtures [3] 
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Table II. Numerical coefficients for the calculation of the reduced collision integrals ( )*1,1Ω , 

( )*2,2Ω , and ( )*3,2Ω . 

 ai

Lennard −Jones

 ia  ib  (Rare gases) ib  (Polyatomic gases) 

0 0.4729 0.46641 0.357588 0.295402 
1 -0.5693 -0.56991 -0.472513 -0.510069 
2 0.1995 0.19591 0.0700902 0.189395 
3 -0.0407 -0.03879 0.016574 -0.045427 
4 0.0030 0.00259 -0.00592022 0.0037928 
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Table III. Fitted potential parameters, potential parameters given in TRANLIB and MKC, and 

numerical characterization of the trough for different pure species systems. 

 Well depth ε (K) Collision Diameter σ (Å)  

Species 
This 
work 

TRANLIB MKC 
This 
work 

TRANLIB MKC 
Slope 

(mÅ.K-1) 
Ar 143.0 136.500 141.5 3.35 3.330 3.350 -3.45 

CH4 165.3 141.400 161.4 3.71 3.746 3.721 -4.20 
CO2 249.8 244.000 245.3 3.76 3.763 3.769 -2.78 
N2 102.4 97.530 98.4 3.64 3.621 3.652 -3.83 
O2 127.9 107.400 121.1 3.38 3.458 3.407 -3.75 

CF4 160.0 x 156.5 4.56 x 4.579 -3.98 
SF6 197.8 x 207.7 5.30 x 5.252 -4.92 
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Table IV. Potential parameters for N2 obtained different ways and used in the computations 
presented in Figure 6. 

Source ε (K) σ (Å) 
Fit 102.4 3.64 

TRANLIB 97.530 3.621 
MKC 98.40 3.652 

On trough at A 87.0 3.70 
On trough at B 117.8 3.58 
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Table V. Fitted potential parameters, potential parameters obtained from different combining 
rules, and the slope of the line representing the trough for twelve different binary mixture 
systems. 

GM: Geometric Mean. HM: Harmonic Mean. AM: Arithmetic Mean. Kong: Kong’s rule. 

 Well depth ε (K) Collision Diameter σ (Å)  
Binary 

Mixture 
This 
work GM HM Kong 

This 
work AM Kong 

Slope 
(mÅ.K-1) 

Ar – CF4 142.7 151.3 151.1 131.6 3.96 3.96 4.00 -3.28 

Ar – SF6 183.6 168.2 166.0 121.6 4.20 4.33 4.45 -3.68 

CF4 - SF6 209.1 178.1 177.1 171.2 4.77 4.93 4.95 -4.32 

CH4 - CF4 160.3 162.8 162.7 153.7 4.14 4.14 4.15 -3.82 

CH4 – SF6 175.9 180.8 180.1 149.5 4.51 4.51 4.58 -4.08 

CO2 – CF4 188.1 200.1 195.3 193.5 4.15 4.16 4.16 -3.58 

CO2 – SF6 235.3 222.3 220.8 192.3 4.37 4.53 4.57 -3.86 

N2 – CF4 133.2 128.0 124.9 116.4 4.08 4.10 4.14 -3.94 

N2 – SF6 172.1 142.3 134.9 110.3 4.30 4.47 4.58 -3.69 

O2 – CF4 152.9 143.1 142.2 124.4 3.93 3.97 4.02 -3.43 

O2 – CO2 150.6 178.8 169.2 172.4 3.60 3.57 3.59 -3.07 

O2 – SF6 173.0 159.1 155.4 115.0 4.24 4.34 4.47 -3.79 
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Table VI. Collision diameters fit by a plane. 

Species 1 Species 2 σ11 (Å) σ22 (Å) σ12 Best fit (Å) σ12 Plane (Å) Deviation σ12 
Fit-Plane (%) 

Ar CF4 3.35 4.56 3.96 3.92 -1.0 

Ar SF6 3.35 5.30 4.20 4.24 1.0 

CF4 SF6 4.56 5.30 4.77 4.77 0.0 

CH4 CF4 3.71 4.56 4.14 4.08 -1.4 

CH4 SF6 3.71 5.30 4.51 4.40 -2.4 

CO2 CF4 3.76 4.56 4.15 4.10 -1.2 

CO2 SF6 3.76 5.30 4.37 4.42 1.1 

N2 CF4 3.64 4.56 4.08 4.05 -0.7 

N2 SF6 3.64 5.30 4.30 4.37 1.6 

O2 CF4 3.38 4.56 3.93 3.94 0.3 

O2 CO2 3.38 3.76 3.60 3.59 -0.3 

O2 SF6 3.38 5.30 4.24 4.26 0.5 

Ar Ar 3.35 3.35 3.35 3.40 1.5 

CF4 CF4 4.56 4.56 4.56 4.45 -2.4 

CH4 CH4 3.71 3.71 3.71 3.71 0.0 

CO2 CO2 3.76 3.76 3.76 3.75 -0.3 

N2 N2 3.64 3.64 3.64 3.65 0.3 

O2 O2 3.38 3.38 3.38 3.42 1.2 

SF6 SF6 5.30 5.30 5.30 5.09 -4.0 
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Figures 

Figure 1. 
( )*2.2Ω  versus ε  for T=200, 400, and 600 K. 

Figure 2. 
( )*2,2Ω  versus εTT =*

 computed with the 12-6 Lennard-Jones potential. 

Figure 3. Curves of (ε, σ) that generate the same predicted viscosity at a given temperature as the pair (ε0, σ0), 

shown for two sets of (ε0, σ0), corresponding to argon and methane for three temperatures: T=200, 400 (not 

labeled), and 600K. 
Figure 4. Absolute average mean error Δ between prediction and experiment versus the couple of potential 

parameter σ, ε for the interaction of CH4 with CH4. 
Figure 5. Lines representing the trough for different pure species systems and different sets of potential parameters. 
Figure 6. (a): Viscosity of N2 versus the temperature T computed with the different couples of potential parameters 

presented in Table IV and experimental values. 
Figure 7. Combined parameters predicted with different combining rules for the interaction of O2 and three other 

species. 
Figure 8. Lines representing the trough for binary mixtures and combined parameters obtained by different 

methods. 
Figure 9. Deviation of the predicted viscosity relative to experimental values versus the temperature, using 

parameters obtained using different combining rules. 
Figure 10. Collision diameters fitted by a plane. 
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Figure 1. 
( )*2.2Ω  versus ε  for T=200, 400, and 600 K. 

Values resulting from the empirical fit of Mason and Uribe are very close to those resulting from 

a Lennard-Jones potential.  The curves are nearly linear over a wide range of ε . 
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Figure 2. ( )*2,2Ω  versus εTT =*  computed with the 12-6 Lennard-Jones potential. 

The points 1 and 2 constitute an arbitrary example for which ( ) ( ) ( ) ( )*
2

*2,22
2

*
1

*2,22
1 TT Ω=Ω σσ . The 

corresponding values of the parameters for a temperature of 300 K are σ1 = 3.00 Å, ε1 = 150.0 K, 

σ2 = 3.44 Å, ε2 = 50.0 K, and ( ) ( ) ( ) ( ) 58.10*
2

*2,22
2

*
1

*2,22
1 =Ω=Ω TT σσ  
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Figure 3. Curves of (ε, σ) that generate the same predicted viscosity at a given temperature as the 

pair (ε0, σ0), shown for two sets of (ε0, σ0), corresponding to argon and methane for three 

temperatures: T=200, 400 (not labeled), and 600K.   
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Figure 4. Absolute average mean error ∆ between prediction and experiment versus the couple of 

potential parameter σ, ε for the interaction of CH4 with CH4. 
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Figure 5. Lines representing the trough for different pure species systems and different sets of 

potential parameters. 

�: fitted parameters. �: parameters from TRANLIB. �: parameters from MKC. The symbols 

go with the line they are the closest to. 
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Figure 6. (a): Viscosity of N2 versus the temperature T computed with the different couples of 

potential parameters presented in Table IV and experimental values. 

�: Seibt et al.(2006), [34] �: Kestin et al (1972),[35] �: Kestin et al. (1977),[3] �: 1Helleman 

et al. (1972),[36] �: Helleman et al. (1973),[37] and �: Kestin et al. (1972).[38] (b): Deviation 

from experiment of predicted viscosity of N2 with the different couples of potential parameters 

presented in Table IV. The experimental values in (b) are the same as in (a) but the symbols do 

not identify the experiment, they correspond to the different potential parameters couples used: 

�: fitted parameters, �: TRANLIB, �: MKC, �: Set A, �: Set B. 
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Figure 7. Combined parameters predicted with different combining rules for the interaction of O2 

and three other species. 

(a): collision diameters. �: fitted to experiment, �: Arithmetic mean, and �:Kong’s rule. 

(b): well depths. �: fitted to experiment �: Geometric mean, �: Harmonic mean, and �: 

Kong’s rule.  
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Figure 8. Lines representing the trough for binary mixtures and combined parameters obtained by 

different methods. 

�: fitted to experiment, �: Geometric mean for εij and arithmetic for σij, �: Harmonic mean for 

εij and arithmetic for σij, and �: Kong’s rule.  Symbols are associated with the line they are 

closest to.  
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Figure 9. Deviation of the predicted viscosity relative to experimental values versus the 

temperature, using parameters obtained using different combining rules. 

 �: fitted to experiment. �: Geometric mean for εij and arithmetic for σij, �: Harmonic mean for 

εij and arithmetic for σij, and �: Kong’s rule. At each temperature, viscosity is measured for 

different ratios of the two species; hence the multiple points at each temperature. Measurements 

are from Kestin et al. (1997).[3] 
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Figure 10. Collision diameters fitted by a plane.  

Values are in Å. The dashed lines represent the plane; The ends of the vertical lines represent the 

fitted collision diameters; �: Intersection with the plane. 

 

  

 




