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Abstract

Image-Based Meteorologic Visibility Estimation

Nathan Graves

Awareness and understanding of atmospheric visibility has strong implications for our

daily lives. In addition to being critical for navigation, it acts as an indicator for air qual-

ity and pollution. The devices traditionally used to measure visibility, transmissometers

and nephelometers, are expensive and often require field maintenance and calibration.

Visibility camera systems are increasingly being deployed to measure atmospheric visi-

bility; however, their use has so far been limited to qualitative analysis. The primary

focus of this study is to develop image analysis techniques to derive quantitative measure-

ments of visibility from such camera systems. We take advantage of the Beer-Lambert

law, which defines the exponential relation by which light is attenuated when traveling

through a medium. This is used to define a standard visibility model, which then allows

us to frame the problem as a simple log-linear relation. We investigate several numer-

ical models to estimate visibility, including single and multivariate linear least square

regression, Laplacian-regularized linear least squares regression, and approximation with

the M5’ linear regression tree algorithm. We demonstrate the effectiveness of these al-

gorithms on images and ground truth visibility measurements from the PhoenixVis.net

visibility camera system. The features chosen by the multivariate feature selection pro-

cess provide insight into the benefit of edge contrast and color saturation as indicators

iv



for poor visibility. In addition, we investigate Lambertian lighting and a dark channel

prior as cues for salient regions for visibility estimation.
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Chapter 1

Introduction

Quantitative measures of atmospheric visibility are increasingly being used for pur-

poses other than navigation. For example, measures of visibility are being used as indirect

estimates of air pollution especially where direct measurements are not available. They

are being used to estimate solar irradiance which is important for determining where to

situate solar energy farms and for forecasting the near term energy output of existing

farms. And, visibility measurements are central to the United States’ Environmental

Protection Agency’s (EPA) goal for improving visual air quality in the Class I Federal

areas which include 156 national parks and wilderness areas. In 1977, Congress amended

the Clean Air Act with legislation to prevent future and remedy existing impairment of

visibility in Class I areas and in 1999, the EPA issued the Regional Haze Rule which

mandates that state and federal agencies work together to actually improve the visibility.

Expanding visibility monitoring is key to the EPA’s mandates and the agencies

charged with monitoring typically use a combination of three techniques. First, they

utilize specialized equipment such as transmissometers, which measure light extinction,

and nephelometers, which measure light scattering. Second, they use Mie scattering the-

1



Chapter 1. Introduction

(a) SOMT: bext = 41 Mm-1 (b) CAME: bext = 41 Mm-1

(c) SOMT: bext = 190 Mm-1 (d) CAME: bext = 214 Mm-1

Figure 1.1: We investigate methods for estimating the coefficient of extinction bext using visibility

cameras. Shown above are images corresponding to good and poor conditions taken from

two such cameras, SOMT and CAME. Ground truth readings from a transmissometer

appear in the captions.
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Chapter 1. Introduction

ory to calculate visibility based on measurements of airborne particulates. Finally, and

relevant to this work, they deploy networks of visibility cameras. For example, the Inter-

agency Monitoring of Protected Visual Environments (IMPROVE) program has installed

and maintains cameras in over two dozen national parks. In addition, regional air quality

agencies have deployed visibility camera systems in over 30 cities.

This study focuses on image analysis techniques for deriving quantitative measure-

ments of visibility from such systems. Visibility cameras are currently used for qualitative

purposes only such as providing visual examples of good and bad days. We feel, however,

there is significant opportunity to use these images to derive quantitative measures of

visibility perhaps not as accurately as specialized equipment but at much lower cost and

possibly even by piggy-backing onto existing web-connected cameras.

We describe methods for estimating the coefficient of light extinction which is a stan-

dard measure of atmospheric visibility. We investigate several numerical models, includ-

ing single and multivariate linear fits and linear regression trees using the M5’ algorithm.

One extension of our linear model incorporates additional unlabeled data with a tempo-

ral Laplacian weighting. These models use contrast as well as a recently proposed dark

channel prior [1] as quantitative visual features from the images.

This thesis is organized as follows: Section 2 shows related work on dehazing and

visibility estimation. Section 3 provides background information on atmospheric visibility

and obtaining ground truth data. Section 4 provides justification and results with our

linear model. Section 5 expands on our linear model to include unlabeled data. Section

6 employs an M5’ regression tree framework to fit our model. Section 7 details features

3



Chapter 1. Introduction

that may be used to detect salient regions for visibility applications. Section 8 provides

implementation details and results for our image registration procedure, while we conclude

and discuss future work in Section 9.

4



Chapter 2

Related Work

2.1 Dehazing

There is a sizable body of work on the related problem of improving the fidelity of

images taken under hazy or otherwise atmospherically degraded conditions. These al-

gorithms estimate the signal loss at each pixel and then attempt to restore the original

color. This includes work by Narasimhan and Nayar on using physics-based models to

improve a single image [2, 3] and using multiple images of the same scene but under

different atmospheric conditions [4–6]; work by Schechner and colleagues on using polar-

ization to improve one or more images [7–11]; and work by He et al. on using a dark

channel prior to dehaze a single image [1]. While the primary focus of this thesis is to

derive quantitative estimates of atmospheric visibility, dehazing work can potentially be

used to inform the problem because both models are dependent on signal loss due to

haze. We later demonstrate that the dark channel prior can be used as an indicator of

visibility.

5



Chapter 2. Related Work

2.2 Atmospheric Visibility Estimation

There is a much smaller body of work on using images to measure atmospheric visi-

bility. Caimi et al. [12] review the theoretical foundations of visibility estimation using

image features such as contrast, and describe a Digital Camera Visibility Sensor system,

but they do not apply their technique to real data. Kim and Kim [13] investigate the

correlation between hue, saturation, and intensity, and visual range in traditional slide

photographs. They conclude that atmospheric haze does not significantly affect the hue

of the sky but strongly affects the saturation of the sky, but they do not use the image

features to estimate visibility. Baumer et al. [14] use an image gradient based approach to

estimate visual range using digital cameras but their technique requires the detection of a

large number of targets, some only a few pixels in size. This detection step is sensitive to

parameter settings and is not robust to camera movement. Also, for ranges over 10 km,

they only compare their estimates to human observations which have limited accuracy.

Luo et al. [15] use Fourier analysis as well as the image gradient to estimate visibility

but they also only compare their estimates to human observations. Raina et al. [16] do

compare their estimates to measurements taken using a transmissometer-like device but

their approach requires the manual extraction of visual targets. The work by Molenar et

al. [17] is closest to the proposed technique in that it is fully automated and the results

are compared to transmissometer readings. However, their technique uses a single distant

and thus small mountain peak to estimate contrast and thus is very sensitive to camera

movement.

6



Chapter 2. Related Work

In contrast to the works above, our approach is fully automated, does not rely on

the detection and segmentation of small targets, is robust to modest camera movement,

and performs favorably when compared to ground truth measurements acquired using

specialized equipment. We also perform a more thorough investigation into different

image features and learning models than any of the works above.

7



Chapter 3

Background

This section discusses why visibility is reduced by the atmosphere and describes a

standard model for the formation of a hazy image that relates atmospheric transmission

to the observed image. It then relates transmission to light extinction, the quantity being

estimated. Finally it introduces specialized instrumentation for measuring the extinction

of light through the atmosphere–transmissometers–and measuring the scattering of light

by the atmosphere–nephelometers. These instruments provide the ground truth data for

our experiments.

3.1 Atmospheric Transmission

Atmospheric light extinction is inversely related to transmission through the following

exponential equation [18]

t(x) = exp−βextr(x) (3.1)

where βext is the extinction coefficient, r(x) is the length of the visual pathway, and x is

each pixel in our image. The transmission is a scalar value that ranges from 0 to 1, and

8
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represents the fraction of a signal that is preserved as it passes through a medium. This

equation, often referred to as the Beer-Lambert law, assumes the atmosphere is homoge-

neous along the pathway. We further assume a homogeneous atmosphere throughout a

scene. Inverse megameter (Mm-1) is the typical unit of measurement for the extinction

coefficient.

3.2 Why is Visibility Reduced?

Reduced visibility by the intervening atmosphere is mainly due to three first-order

processes: 1) light radiating from the scene is absorbed before it reaches an observer;

2) light radiating from the scene is scattered out of the visual pathway of an observer;

and 3) ambient light is scattered into the visual pathway of an observer. Absorption

and scattering are due to gases and aerosols (particles) suspended in the atmosphere.

The combined effect of the absorption and scattering is referred to as the total light

extinction. Previous work suggests that most of the extinction in the atmosphere is due

to scattering alone [19] and so in this work we anticipate that the effects of absorption

will be negligible.

3.3 Atmospheric Attenuation Model

Atmospheric transmission describes the fraction of light that reaches an observer after

radiating from a scene. It is a positive scalar quantity ranging from 0 to 1 where larger

values indicate improved visibility. Transmission is commonly related to image formation

9
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through [1, 5, 20–22]

I(x) = J(x)t(x) + A(1− t(x)) (3.2)

where x is a two dimensional spatial variable, I(x) is the observed image, J(x) is the scene

radiance, A is the ambient (atmospheric) light, and t(x) is the atmospheric transmission.

The first term on the right side of eq. (3.2) is inversely related to the amount of light

radiating from the scene that is scattered out of the visual pathway and thus increases

with improved transmission. The second term is the amount of ambient light typically

from the sun that is scattered into the visual pathway and thus decreases with improved

transmission. As t(x) → 0, we expect that the perceived image will be equivalent to the

scattered ambient light A. Alternatively, we expect to see the original scene radiance

J(x) as t(x) → 1.

3.4 Obtaining Ground Truth Data

Many devices are available that can provide valuable ground truth data for this prob-

lem. The most important devices, transmissometers and nephelometers, have a direct

correlation with visibility as defined in eq. (3.2). Luminance meters can be used to

obtain additional information about the illumination of the scene, allowing for the nor-

malization of images with varying lighting conditions.

10



Chapter 3. Background

3.4.1 Transmissometer

A transmissometer [23–25] measures light extinction. It consists of a light source

(transmitter) and light detector (receiver), generally separated by a distance of several

kilometers, and assesses visibility impairment by measuring the amount of light lost over

this known distance. The transmitter emits a uniform light beam of known constant

intensity. The receiver separates this light from ambient light, computes the amount of

light lost, and reports the extinction coefficient βext.

3.4.2 Nephelometer

A nephelometer [23, 26] measures light scattering. It is a compact instrument which

measures the amount of light scattered by gases and aerosols in a sampled air volume.

It also consists of a transmitter and receiver but configured at an angle so the receiver

only receives scattered light. A nephelometer calculates the scattering coefficient βsp

which when added to the absorption coefficient βabs gives the total extinction coefficient

βext = βsp + βabs. However, as mentioned above, extinction in the Earth’s atmosphere is

mostly due to scattering and so we consider βext and βsp as equivalent.

3.4.3 Luminance Meter

A luminance meter measures the amount of illumination received by the sensor. This

is necessary for some techniques that rely heavily on the amount of ambient lighting, such

as the detection of Lambertian surfaces [27]. This data could also be used to normalize

11
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images from cameras that rely on automatic exposure settings. While a luminance meter

was not available for our ground truth data, an alternative method proposed for use with

the dark channel prior [1] was used to estimate the atmospheric light.

12



Chapter 4

Estimating Atmospheric Visibility

The goal of this work is to estimate light extinction βext given an image I(x). We do

this by first estimating transmission t(x) from I(x) using eq. (3.2) and then using eq.

(3.1) to compute βext. We investigate two methods for estimating transmission: 1) based

on local image contrast as computed in either the spatial or frequency domain; and 2)

using a dark channel prior. These are then separated into single variable and multivariate

linear models for evaluation.

4.1 Local Image Contrast

Intuitively, reduced visibility results in an image with less detail especially in the

distance. This reduced acuity results from two sources: the objects and their backgrounds

become more similar due to increased attenuation and scattering; and the atmosphere acts

as a low-pass filter [28], suppressing the higher-frequency image components or details.

We use the term local contrast to refer to image acuity and define it as the magnitude of

difference in image intensity over a short spatial distance: Cl(x) = |∇xI(x)|. The same

13



Chapter 4. Estimating Atmospheric Visibility

spatial difference can be computed on the right side of eq. (3.2) to get

|∇xI(x)| = |∇x (J(x)t(x) + A(1− t(x))) | (4.1)

= |∇xJ(x)t(x)| (4.2)

= t(x)|∇xJ(x)| . (4.3)

Eq. (4.2) results from the assumption that the ambient light A is locally constant and

eq. (4.3) results from the positivity of transmission t(x) and the assumption that it

too is locally constant. The quantity |∇xJ(x)| is the “true” contrast of the scene when

imaged under perfect transmission. This equation shows transmission has the intuitive

interpretation as the ratio of the observed contrast to the true contrast.

4.1.1 Contrast in the spatial domain

It is natural to consider |∇xI(x)| as the magnitude of the image gradient as computed

in the spatial domain. This is calculated using Sobel filters. Each image is convolved

with a set of 3× 3 kernels that emphasize horizontal and vertical edges. These can then

be combined to estimate the gradient magnitude at each pixel. To compensate for slight

camera movement and other sources of image noise, we compute local contrast in the

spatial domain Clsd as the average of the gradient magnitude over an image region Ω:

Clsd =
1

|Ω|
∑
x∈Ω

|∇xI(x)| . (4.4)

Transmission t(x) is assumed constant over this region.
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4.1.2 Energy in the frequency domain

A standard way to measure visual acuity is through frequency analysis in the Fourier

domain. To understand how this is interpreted in images, it is important to understand

the output of the Fourier transform. The one-dimensional Fourier transform (1D-DFT)

takes a discretely indexed 1D time signal and outputs a discretely indexed signal which

gives information on the frequency content of the time signal, including the magnitude

and phase information. In the two-dimensional case, the input is a discretely indexed 2D

signal, such as a digital image, and the output is a 2D discretely indexed signal known

as the 2D-DFT which gives information on the frequency content of the input. The

distance and angle of each value from the center in the 2D-DFT provide information on

the frequency and the direction respectively on the content of the image.

For our experiments, we detect the strength or amount of energy in the higher-

frequency regions of the Fourier space by summing the Fourier energy spectral density.

This sum provides a single numerical value for the strength of edges in a specified fre-

quency range. Given lower and upper frequencies wl and wu, we compute the local

contrast in the frequency domain for an image region Clfd as the sum of the square of

the magnitude of the two-dimensional discrete Fourier transform (2D-DFT) F (u, v) in

band-pass regions defined by concentric circles centered at the zero-zero or DC frequency:

Clfd =
∑

wl<
√
u2+v2≤wu

|F (u, v)|2. (4.5)

The cutoff frequencies wl and wu can range between 0 and the Nyquist frequency wNy

and determine whether the energy is computed in a low-pass, band-pass, or high-pass
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region. The DC frequency is never included since it is the average value of an image

region and thus not indicative of acuity. Example outputs for the 2D-DFT are shown in

Figure 4.1.

4.1.3 Dark Channel Prior

We also estimate transmission using a dark channel prior based on the work by He

et al. [1] on single image dehazing. The intuition is that one can reasonably expect

any natural image to have a dark region which has very low intensity values in at least

one of the color channels when imaged under perfect transmission. This can result from

bright colors, shadows, or dark objects in the image. According to our image model, all

pixels are incremented by A(1 − t(x)). As t(x) decreases, the minimum pixel value is

increased in relation to the ambient light. Therefore, the difference between the observed

intensity and the expected low intensity for these image regions–the prior–is indicative

of the loss of transmission in relation to atmospheric scattering. He et al. use estimated

transmission based on a dark channel prior to perform image correction (dehazing). We

use it here to estimate light extinction.

The derivation is as follows [1]. Starting with the haze image formation model, we

determine the minimum intensity value in color channel c for an image region Ω:

min
x∈Ω

(Ic(x)) = min
x∈Ω

(Jc(x)t(x) + Ac(1− t(x))) . (4.6)
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(a) (b)

(c) (d)

Figure 4.1: Images (a) and (b) show the same scene at different levels of visibility, where images (c) and

(d) are their respective Fourier transforms. While the same shape is maintained, the two

Fourier transforms have notably different magnitudes at most frequencies. In particular,

the spectrum in (c) has larger values further from the center indicating that image (a) has

more high-frequency content or edge components.
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Assuming that the transmission and ambient light are constant in the region, this is

equivalent to

min
x∈Ω

(
Ic(x)

Ac

)
= t(x)min

x∈Ω

(
J c(x)

Ac

)
+ (1− t(x)) . (4.7)

Now the minimum is computed with respect to each color channel

min
c

(
min
x∈Ω

(
Ic(x)

Ac

))
= t(x)min

c

(
min
x∈Ω

(
J c(x)

Ac

))
+(1− t(x)) .

Looking more closely at the right hand side of this equation, we realize that based on

the dark channel prior, which again assumes there is some region with zero or near-zero

haze-free intensity in one of the color channels, that

min
c

(
min
x∈Ω

(
J c(x)

Ac

))
= 0 . (4.8)

since Ac is positive. We thus get

t(x) = 1−min
c

(
min
x∈Ω

(
Ic(x)

Ac

))
. (4.9)

With a naive approach, ambient lighting could be calculated as the brightest pixel in the

image. However, this estimate could then change drastically based on a single pixel. In

order to be robust to any outlier pixels, we estimate the ambient light Ac as the maximum

first percentile of pixel intensities in a region just above the horizon. Likewise, we compute

the minimum ambient-light normalized image intensity for a region minx∈Ω

(
Ic(x)
Ac

)
as the

minimum first percentile rather than finding the absolute minimum. These values are

more representative of how we perceive the image and provide reliable results.
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4.2 Linear Least Squares Regression

Again, the primary objective is to estimate light extinction βext given an image I(x).

Taking the log of both sides of eq. (3.1) gives a linear relationship between extinction

and transmission

ln t(x) = βextr(x) . (4.10)

In this case of transmission based on local contrast computed in either the spatial domain

Clsd or frequency domain Clfd this becomes

lnCl = ln |∇xJ(x)|+ βextr(x) (4.11)

where |∇xJ(x)| is the true contrast of the scene. Rearranging we get

βext =
lnCl

r(x)
− ln |∇xJ(x)|

r(x)
(4.12)

and use linear least squares regression (LLSR) to learn the scaling 1
r(x)

and offset− ln |∇xJ(x)|
r(x)

parameters from a labelled training set.

In the case of transmission based on the dark channel prior, eq. (4.10) becomes

βext =
ln t(x)

r(x)
. (4.13)

However, we found that pure scaling results in poor performance so we include an offset to

accommodate for errors in the model–perhaps there is no dark pixel in the image region–

and/or errors in the observations such as unreliable estimates of the ambient light. We

again use LLSR to learn the scaling parameter and the offset.
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4.3 Data Access and Dataset Generation

We evaluate our method using an extensive set of images and ground truth extinction

readings from the the Arizona Department of Environmental Quality which manages

the PhoenixVis.net visibility web cameras website [23]. This website contains live images

from six visibility cameras of scenic urban and rural vistas in the Phoenix, Arizona region.

Our dataset consists of the following acquired over 2006:

• Digital images of South Mountain (SOMT) captured every 15 minutes.

• Digital images of Camelback Mountain (CAME) captured every 15 minutes.

• The extinction coefficient βext measured every hour using a transmissometer.

• The scattering coefficient βsp measured every hour using a nephelometer.

The SOMT camera is located on a mountain north of Phoenix and faces south. Figures

1.1(a) and 1.1(c) contain examples of good and bad visibility for the SOMT camera. The

CAME camera is located on a tall structure in downtown Phoenix and faces north east.

Figures 1.1(b) and 1.1(d) contain examples of good and bad visibility for the CAME

camera. The transmissometer and nephelometer are located in downtown Phoenix and

are approximately within the field of view of both cameras.

All images are in the RGB colorspace and have been JPEG compressed at an unknown

quality level. The SOMT images measure 1536 × 1024 pixels. The CAME images are a

mix of 1536×1024 and 1230×820 pixels so we transform all CAME images to a common

size of 1230 × 820 using bilinear interpolation. Each image is partitioned using a 6 × 4
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grid and a prediction model is trained and evaluated for each block separately. Figure

1.1 shows the grid layout for the two scenes.

We only consider images taken at the top of each hour, since this is when the transmis-

someter and nephelometer readings are made, and during daylight hours, approximately

10 am to 4 pm. The ground truth data include a warning flag for any visibility readings

that are unreliable due to mechanical or environmental conditions. These images are not

included in our training or test sets. This results in a labeled dataset of 8,598 images

from the SOMT camera and 7,676 images from the CAME camera.

4.4 Experiments

We evaluate our method based on how well the learned model is able to predict

the (known) extinction coefficient βext corresponding to an image I(x) using only the

image features. We perform five-fold cross-validation to observe how well our method

generalizes. The labeled images are randomly partitioned into five equal-sized sets. The

model is learned using four of the sets and used to predict the extinction coefficient for

the images in the fifth held-out set. We evaluate the accuracy of our model using the

coefficient of determination R2 between the predicted and ground truth values. Let βi
ext

′

and βi
ext be the predicted and true extinction coefficients for image i respectively, then

R2 = 1−
∑n

i=1(β
i
ext

′ − βi
ext)

2∑n
i=1(β

i
ext − βext)2

(4.14)
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where n is the number of images in the evaluation set and βext is the mean of the true

values. R2 has a maximum value of 1 with higher values indicating a more accurate

model.

In order to provide an intuitive feel for the predictions, we also selectively report the

mean absolute error (MAE) between the predicted and true values:

MAE =
1

n

n∑
i=1

|βi
ext

′ − βi
ext| (4.15)

The values of R2 and MAE reported below are averages over the five training/test splits.

4.4.1 Single Variable Analysis

The evaluation is performed on each of the 24 image blocks separately. The visual

distance r(x) and transmission t(x) in eqs. (4.12) and (4.13) are assumed to be constant

over a block. The image region Ω used to compute local contrast in the spatial domain

in eq. (6.1) and the transmission based on the dark channel prior in eq. (4.9) is taken as

an image block. Contrast in the frequency domain is computed by applying the 2D-DFT

to an image block.

We perform a series of experiments to: determine which image feature is most effective

for predicting the coefficient of extinction; whether the predictions are more correlated

with the transmissometer or nephelometer readings; the effect of scene geometry; and the

optimal lower and upper cutoff frequencies for the Fourier analysis.

The results are summarized in Table 4.1. For each combination of image feature–local

contrast in the spatial (Clsd) or frequency (Clfd) domain, or dark channel prior; ground
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Table 4.1: Summary of results for each combination of image feature–local contrast in the spatial (Clsd)

or frequency (Clfd) domain, or dark channel prior; ground truth reading–transmissometer or

nephelometer; and scene–SOMT or CAME. R2 and MAE (Mm-1) values are given for the

image block that results in the best model as ranked by R2 for the training set (higher is

better.)

SOMT CAME
Transmissometer Nephelometer Transmissometer Nephelometer
R2 MAE R2 MAE R2 MAE R2 MAE

Clsd 0.646 12.5 0.407 10.4 0.103 21.6 0.199 12.0
Clfd 0.549 14.8 0.372 10.2 0.103 21.5 0.169 12.3
Dark Channel 0.237 20.3 0.309 10.8 0.081 21.3 0.061 13.0

truth readings–transmissometer or nephelometer; and scene–SOMT or CAME–it lists the

R2 and MAE values for the image block that results in the best model as ranked by R2.

The 6× 4 image blocks are numbered 1 through 24 in raster-scan order (see Figure 1.1).

The values reported for Clfd are the best over a range of lower and upper frequency

bounds. We now discuss these results.

Image Features Local contrast consistently outperforms the dark channel prior

across scenes and ground truth labeling. Further, contrast computed in the spatial do-

main using the image gradient generally outperforms contrast computed in the frequency

domain using the Fourier energy spectral density. These two contrast features are of

course related and will be discussed further below.

Ground Truth Readings For the SOMT scene, local contrast is a better predictor

of the transmissometer than the nephelometer readings while the reverse is true for the

dark channel prior. While our model assumes that the effect of absorption is negligible,
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as is commonly done in atmospheric modelling, the ground truth transmissometer and

nephelometer values in our dataset are different indicating there is a non-zero absorption

component βabs; i.e., βext ̸= βsp + βabs. Table 4.2 gives the statistics of the ground truth

readings. Performing a linear least squares fit between the 8,598 transmissometer and

nephelometer readings associated with scene SOMT gives βext = 1.18βsp+24.6 with an R2

value of 0.571 and an MAE of 15.1 Mm-1. This indicates that there is a nonlinear relation

between these two measurements which cannot be accounted for in the scaling and offset

parameters of our linear model of βext and lnCl (eq. 4.12) or ln t(x) (eq. 4.13). It also

shows interestingly that once calibrated, the image features can provide a better estimate

of light extinction (as measured using the transmissometer) than the nephelometer. This

shows that absorption plays a large role in light extinction for the observed image and

may also have implications for detecting pollution.

Returning to Table 4.1, we see that things are reversed for the the CAME scene: local

contrast is a better predictor of the nephelometer than the transmissometer readings while

the dark channel prior is a better predictor of the transmissometer than the nephelometer

readings.

Scene Comparison

The image based approach to estimating light extinction is significantly more effective

for SOMT than the CAME. This is true for all feature and ground truth combinations.

This might be due in part to the different image resolutions, particularly for the local
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Table 4.2: The statistics for the ground truth transmissometer and nephelometer readings. All values

are in Mm-1 except for R2.

SOMT (8,598 pts) CAME (7,676 pts)
Trans. Neph. Trans. Neph.

min 9 0 9 0
max 218 153 218 155
mean 57.8 28.2 57.7 28.1
median 50 24 50 24
std dev 31.2 20.1 31.0 19.8
R2 0.571 0.567
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Figure 4.2: R2 for different image blocks for SOMT and transmissometer readings.

contrast approaches, but is more likely due to different scene geometry as discussed in

the next section.

Image Regions

Figures 4.2-4.5 plot the R2 values for each of the three image features over all 24 image

blocks. Figure 4.2 contains the results for scene SOMT and the transmissometer readings;

Figure 4.3 for scene SOMT and the nephelometer readings; Figure 4.4 for scene CAME

and the transmissometer readings; and Figure 4.5 for scene CAME and the nephelometer

readings.
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Figure 4.3: R2 for different image blocks for SOMT and nephelometer readings.
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Figure 4.4: R2 for different image blocks for CAME and transmissometer readings.
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Figure 4.5: R2 for different image blocks for CAME and nephelometer readings.
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These region level results provide insight into why SOMT is the more effective scene.

The R2 values for all features and ground truth readings are relatively large for all the

blocks below or containing the horizon in SOMT. However, the bottom row of blocks

(19-24) in CAME, which represent the closest parts of the foreground, all perform poorly.

This foreground region is much closer than any of the SOMT regions and thus is too

close to the camera to estimate light extinction. There is simply not enough atmosphere

to cause sufficient variation in the image features. This is evident in figures 1.1(c) and

1.1(d) in which the foreground regions of the two scenes are affected very differently by

a similar increase in light extinction. Further, the lower vantage point of the CAME

camera results in a perspective with very little distant scenery in terms of image area.

The image features are now extracted from blocks containing sky regions which results

in worse performance than SOMT.

The effect of different scene geometry is visually depicted in in figures 4.6(a) and 4.6(b)

using smoothed colormaps of R2 overlaid on SOMT and CAME images. These results

correspond to predicting the transmissometer readings using local contrast in the spatial

domain. The distant regions are the most effective in both scenes; the ideal regions for

CAME, however, are much smaller. Due to the poor performance of the CAME dataset,

all remaining sections will be completed using the SOMT camera exclusively.

Frequency Bands

The LLSR fit of local contrast in the frequency domain Clfd is performed for lower

wl and upper wu cutoff frequencies ranging from 0 to 1 in increments of 0.05 where 1
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(a) SOMT (b) CAME

Figure 4.6: Smoothed colormaps of R2 overlaid on scene images indicating the effect of scene geometry.

The distant regions are the most effective in both scenes; the ideal regions for CAME,

however, are much smaller.

corresponds to the Nyquist frequency. The R2 values reported in table 4.1 and figures

4.2-4.5 represent the optimal cutoffs. Figure 4.7 shows how the optimal frequencies vary

by image block for SOMT using the transmissometer readings. In particular, the values

for non-sky blocks (7-9 and 13-24) decrease as the scene distance increases. This is

expected because even in relatively good conditions, the atmosphere still acts as a low-

pass filter whose attenuation increases with distance and so the higher frequency image

signal components for distant scenes do not vary enough to be informative. We also see

that wu never equals the maximum frequency in non-sky regions even when they are

close-by. This may be in part due to the low-pass filtering of the atmosphere but is more

likely due to JPEG compression which discards the higher frequency signal components.

The two measures of local contrast are of course related since convolution with the

Sobel kernels in the spatial domain corresponds to applying a related filter in frequency

domain. The fact that contrast in the spatial domain provides the best result overall
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Figure 4.7: Per block values of the optimal lower wl and upper wu frequencies for local contrast in the

frequency frequency domain. This is for the SOMT scene and transmissometer readings.

A value of 1 corresponds to the Nyquist frequency.

indicates that the optimal filter for estimating atmospheric light extinction does not have

a band-pass frequency response but is more complex. The frequency response of the Sobel

kernels might provide a good initial estimate of this filter. This filter would of course

need to be tuned to scene distance just like our simple band-pass filters.

Visibility Index Based on Deciview Analysis

In 2003, the Arizona Department of Environmental Quality defined a five valued

visibility index [29] to track regional visibility conditions over a multi-year period. This

index is based on deciviews which are linear with respect to perceived visual changes

analogous to how decibels are for sound [26]. Deciview readings DV are derived from

transmissometer estimates of light extinction:

DV = 10 ln(βext/10 Mm−1) . (4.16)
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The visibility index is then determined by binning DV into five ranges corresponding to

“excellent”, “good”, “fair”, “poor”, and “very poor”.

We applied the same deciview conversion and binning to the predictions of our best

model, local contrast features in the spatial domain for block 14 of SOMT. Figure 4.9

compares the predicted index values with those computed using the ground truth trans-

missometer readings. Note the similarity in the distributions. This fit corresponds to an

R2 value of 0.980 if the values are mapped to 1,. . . ,5. Figure 4.8 shows a scatter plot for

the results of deciview prediction with a linear regression model.

4.4.2 Multivariate Analysis and Feature Selection

Due to the success of the linear model for a single block, the same concept was then

expanded to a multidimensional feature vector that combined various blocks. In addition

to the local spatial contrast, the mean and standard deviation were calculated for each

channel in the HSV color model. Because haze causes an overall decrease in saturation, we

expect additional information about the hue and saturation to be useful. Due to the high

number of blocks and features, feature selection must be performed in order to create a

functional feature vector. Based on our knowledge of transmission, we would expect that

contrast and saturation would be the strongest indicators of visibility. We instead found

that local variation in saturation provided more information than saturation alone. An

overview of the selected features is provided in table 4.3. The local contrast Cl includes

both |∆I| and Vstd, the standard deviation of the value layer of the HSV image.
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Figure 4.8: Predicted deciview values are plotted against the ground truth data with the five subcat-

egories separated by vertical lines. Note that all misclassifications (red dots) occur very

close to the boundary lines. The displayed results correspond with a 89.2% accuracy rate.
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Figure 4.9: Comparison of visibility index measured using a transmissometer and a visibility camera.

Block and feature selection was performed with a greedy search algorithm. While

we could reuse the top blocks from Section 4.4.1, many of these blocks can be highly

correlated with one another. In this case, improvements are minimal because the two

blocks are often modeling the same general feature from the image. Instead, we iteratively

expand our feature vector by searching through our feature space. At each iteration, we

add an additional feature that provides the lowest error on our training set when combined

with our previous feature vector. This results in a complementary set that provides the

best model for our images across all combinations of blocks and features. Graphs are

shown in Figures 4.10 and 4.11. Table 4.4 is of particular interest because it shows which

features are chosen at every iteration. While the local contrast is most important, we can

see that the saturation and hue are used immediately afterwards to achieve the largest

increase in the R2 value.

These results demonstrate that our linear model is expandable to a high-dimensional

feature search that is able to generalize to our test sets. This provided some insight onto
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Table 4.3: Summary of features selected over a 100-iteration feature search.

Feature Iter. Chosen
Local Contrast 32

Hue 14
Hue Contrast 10
Saturation 6

Saturation Contrast 36
Pixel Intensity 2
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Figure 4.10: Results showing the decrease in the mean absolute error (MAE) over 100 iterations of the

multiblock search.
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Figure 4.11: Results showing the increase in the R2 value over 100 iterations of the multiblock search.
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Table 4.4: Details of features selected over a 25-iteration feature search. Blocks 1-672 correspond to the

sky region. Blocks 673-1728 correspond to the regions from the horizon to the foreground

in raster scan order.

Iteration Block # Feature R2 MAE
1 920 Clsd 0.7395 10.9002
2 817 Smean 0.8120 9.2539
3 1035 Sstd 0.8287 8.7681
4 789 Vstd 0.8417 8.4624
5 853 Hmean 0.8565 8.1198
6 1352 Hmean 0.8621 7.8284
7 893 Sstd 0.8666 7.7596
8 855 Clsd 0.8713 7.6737
9 1082 Vstd 0.8763 7.5188
10 384 Vmean 0.8832 7.3667
11 804 Hmean 0.8803 7.3492
12 1111 Hmean 0.8864 7.1334
13 1686 Sstd 0.8895 6.9641
14 1393 Sstd 0.8937 6.8544
15 1006 Sstd 0.8959 6.8226
16 115 Smean 0.8980 6.8141
17 910 Clsd 0.9001 6.7783
18 239 Hmean 0.9017 6.7544
19 1179 Vstd 0.9031 6.711
20 959 Sstd 0.9048 6.6413
21 1119 Sstd 0.9061 6.6011
20 1299 Clsd 0.9072 6.5776
21 1557 Sstd 0.9084 6.4873
22 1208 Hstd 0.9097 6.3923
23 767 Hstd 0.9108 6.3421
24 1386 Sstd 0.9117 6.3057
25 906 Smean 0.9128 6.2862
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the types of features selected by our algorithm, most notably the usage of contrast within

the saturation layer.
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Chapter 5

Incorporating Unlabeled Training
Data

A common problem with training data is that the observations and ground truth mea-

surements are not captured at the same frequency. This is the case with the Phoenxvis.net

dataset where the images are acquired every 15 minutes but the transmissometer and

nephelometer ground truth measurements are acquired only every hour. This will result

in 3
4
of our images being unlabeled and thus unused when training standard regression

models.

This section provides details for incorporating these unlabeled images into our linear

framework described in Chapter 4. By constraining the structure of the affinity matrix

over a set of sequential data, we can solve for temporal weights that minimize the error of

the system. We compare different connectivity schemes for the graph Laplacian in order

to incorporate unlabeled data and exceed the performance of a standard linear fit which

was only on labeled data.
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5.1 Introduction

The intuition behind this section is that images taken within a short span of time

will have similar image features and βext values. Even if some of these images do not

have ground truth data, weighting can be established between neighboring images that

allows them to be considered when the linear fit is being modeled. We take advantage of

temporally adjacent images using a Laplacian regularized linear least squares (LRLLS)

approach. The primary goal is to minimize the prediction error by constraining the

structure of the affinity matrix and optimizing its components. This will leverage the

features of temporally adjacent images to improve the model, and is expected to increase

the accuracy of our visibility estimation system due to the relative similarity of images

taken within a small timeframe.

By incorporating the graph Laplacian, we can leverage these unlabeled images when

we develop our regression model. The affinity matrix determines the strength of the

connection between various images, and can be used as a temporal prior by adding bias

to images in close temporal proximity with a sequential dataset. By constraining the

structure and parameterizing these relationships, we can optimize the use of unlabeled

data for our system. Using this approach, the unlabeled images can still be analyzed

and influence the usage of nearby labeled data. Two schemes, adjacency and Gaussian

weighting, are assessed for their ability to incorporate unlabeled data into an accurate

model. Furthermore, the sensitivity of the Gaussian model with respect to the width
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parameter σ will be analyzed. Unlike our previous work, an intermediate validation stage

is now being used to assign model parameters.

5.2 Incorporating Unlabeled Observations

This work is inspired and based on the paper by Xie et al. [30]. Given that we have u

unlabeled observations xi with temporal index i, we want to minimize (f(xi) − f(xj))
2,

the difference in our predictions for these observations, for i and j values that are close.

This is in addition to the prediction error on the labeled training data (yi − f(xi))
2. In

the general case, we use wij to weight (f(xi) − f(xj))
2. This results in the following

optimization problem:

f ′ = arg min
α

1

l

l∑
i=1

(yi − f(xi))
2 + γ

l+u∑
i,j

wij(f(xi)− f(xj))
2 (5.1)

where

f(x) = α0 + α1x1 + ...+ αnxn (5.2)

Note how the objective function simultaneously minimizes the prediction error on the

labeled training set and the prediction between closeby points whether they are labeled

or not. If we construct the graph matrix W, the solution to this optimization problem

can be solved using the graph Laplacian.

Let Dii =
∑l+u

j=1 wij. The graph Laplacian can then represented as L = D −W . Our

optimization problem can now be rewritten as
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f ′ = arg min
α

1

l
J(Ȳ −Xα)2 + γ(Xα)TLXα (5.3)

where α are our regression coefficients and the J matrix below is used to separate labeled

and unlabeled observations. It is an (u+ l)× (u+ l) matrix with form

Jii =


1 if xi is labeled

0 if xi is unlabeled

The optimization problem now becomes

f ′ = arg min
α

1

l
J(Ȳ −Xα)2 + γ(Xα)TLXα (5.4)

The optimum α for a fixed γ is again found by taking the partial derivative and solving

with respect to α.

∂
∂α

1
l
J(Ȳ −Xα)T (Ȳ −Xα) + γ(Xα)TLXα = 0

J
l
(−XT )(Ȳ −Xα) + γXTLXα = 0

−JXT Ȳ + JXTXα + γXTLXα = 0

(JXTX + αXTLX)α = JXT Ȳ

α = (JXTX + γXTLX)−1JXT Ȳ (5.5)

Eq. (5.5) is the used to compute the coefficients α for the linear model. With an

appropriate validation set and γ value, we expect that this will result in an improved

visibility estimation.
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We consider two cases for the temporal connections between nearby observations:

adjacent and Gaussian weights. For adjacent weights, wij = 1 if i connected to j as

shown in Wa. Alternatively, these weights can be determined using a Gaussian scaling.

Examples of both Wa and WG are shown below, where the Gaussian connectivity matrix

uses σ = 20 minutes.

Wa =



0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0



WG =



0 0.47 0.22 0.11 0.05

0.47 0 0.47 0.22 0.11

0.22 0.47 0 0.47 0.22

0.11 0.22 0.47 0 0.47

0.05 0.11 0.22 0.47 0



5.2.1 Connectivity Metrics

The use of unlabeled images relies on the weightings that relates temporally nearby

data. Different schemes are available to weight these values, and results will vary de-

pending on the nature of the environment being observed. The two approaches being

tested for this project are adjacency weighting and Gaussian weighting. The adjacency
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weighting only considers observations that are adjacent. The Gaussian weighting will

provide an exponentially decreasing weight dependent on the σ-value used.

5.3 Dataset

We evaluate our method using an extensive set of images and ground truth extinction

readings from the the Arizona Department of Environmental Quality which manages the

PhoenixVis.net visibility web cameras website [23]. Our dataset consists of the following

acquired over 2006:

• Digital images of South Mountain (SOMT) captured every 15 minutes.

• The extinction coefficient βext measured every hour using a transmissometer. This

serves as our ground truth data for training, validation, and testing.

All images are in the RGB colorspace and have been JPEG compressed at an unknown

quality level. The SOMT images measure 1536× 1024 pixels. Each image is partitioned

into 128× 128 pixel blocks and a prediction model is trained for a given combination of

blocks.

These images were subdivided into a training set, a validation set, and two test sets

as shown in table 5.1. Training set values were chosen across the span of three randomly

chosen days. The validation and test sets were randomly selected from remaining labeled

data.
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Table 5.1: Summary of dataset composition used in experiments. Mean and standard deviation values

refer to the βext values from the transmissometer and do not include any unlabeled images.

Labeled Images Unlabeled Images Mean StdDev
Training (TR) 21 63 42.0476 17.2496
Validation (V) 30 0 36.5 10.7599
Test Set 1 (T1) 119 0 51.0336 26.2507
Test Set 2 (T2) 119 0 56.9916 31.1711

Figure 5.1: Two blocks in an SOMT image that were manually chosen for the feature extraction process.

5.4 Experiments

If we assume that r(x) is a constant over a chosen image block, visibility estimation

with our Laplacian regularized linear least squares approach uses the same theoretical

foundation as Section 4. Two blocks, shown in Figure 5.1, were chosen to derive features

from the images.

We evaluate our method based on how well the learned model is able to predict

the (known) extinction coefficient βext corresponding to an image I(x) using only the
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image features. Two different types of tests are used to monitor the effectiveness of this

algorithm.

The first test learns a linear model using standard least squares regression using only

the labeled images in TR+V as the training data. The model is then evaluated using a

held-out test set.

The second test uses the proposed LRLLS to learn a model. Now, both the labeled

and unlabeled images in TR are used to learn the model and the values of σ and γ are

optimized using a validation set (V). The model is evaluated again on a test set.

We evaluate the accuracy of the models using the coefficient of determination R2

between the predicted and ground truth values in the test set. Let biext
′
and biext be the

predicted and true extinction coefficients for image i then

R2 = 1−
∑n

i=1(b
i
ext

′ − biext)
2∑n

i=1(b
i
ext − βext)2

(5.6)

where n is the number of images in the evaluation set and βext is the mean of the true

values. R2 has a maximum value of 1 with higher values indicating a more accurate

model.

In order to provide an intuitive feel for the predictions, we also report the mean

absolute error (MAE) between the predicted and true values:

MAE =
1

n

n∑
i=1

|biext
′ − biext|. (5.7)
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Table 5.2: Summary of results for each combination of validation and test sets. R2 and MAE (Mm-1)

values are reported from the trained model.

Training Set Validation Set Model Connectivity σ Test Set R2 MAE
TR+V - LLS - - T1 0.6803 9.7042
TR V LRLLS Gaussian 20 T1 0.6978 9.5680
TR V LRLLS Adjacency - T1 0.6981 9.4886

TR+V - LLS - - T2 0.7144 11.3082
TR V LRLLS Gaussian 20 T2 0.7368 10.6980
TR V LRLLS Adjacency - T2 0.7346 10.7410

5.5 Results

The results are summarized in table 5.2. The R2 and MAE values are given for

each combination of the validation sets, test sets, and connectivity schemes, as well as

the simple linear models described above. These results reflect the best model after

performing a linear fit and adapting with the validation set as needed. Values for γ were

most effective in the range from -0.2 to -0.4.

Training Set The training set is based on both labeled and unlabeled data. The

size and temporal relevance of the unlabeled data will determine how effective this im-

provement is for the linear fit. In addition, a very large training set may overshadow any

beneficial effects of the validation set. This may suggest that this algorithm will offer the

most improvement when dealing with a limited amount of data.

Validation Set The validation set can have a strong effect on the success of the

model. In the standard linear model, adding the validation data to the training set will

have a limited effect on the outcome. However, the validation approach assumes that this

45



Chapter 5. Incorporating Unlabeled Training Data

set has a similar distribution and feature set to the test images. A non-representative

validation set will significantly reduce the quality of the fit. Likewise, we would expect

to see better results if the statistics for our validation set were more closely aligned with

the test sets.

Test Set Both test sets have an increased R2 and reduced MAE when incorporating

the unlabeled data. This is an encouraging confirmation that our method is able to

provide a better fit than the standard linear approach.

Gaussian vs. Adjacency Connectivity The σ value chosen determines how tem-

porally relevant the unlabeled images are in relation to labeled images from the training

data. This is specific to each problem type because it is based on the variation in ground

truth data for our particular data set. If we are viewing a region that is prone to sudden

drastic changes in visibility, it may be more important to constrain the usage of unlabeled

data. The fact that σ = 20 minutes for our training data, where images are typically

15 minutes apart, shows that an emphasis is being put on temporally close images. An

example Gaussian weighting matrix with this σ value is shown in Section 5.2.

As shown above, the adjacency connectivity provides similar performance to the

Gaussian distribution. The low σ decreases the width of the Gaussian and nearly mirrors

the effects of a strictly adjacent connectivity scheme. An alternative approach could be to

use linear weighting for some scenes, as it may be the case that exponentially decreasing

weights do not accurately represent our data when extrapolated. Ultimately, the best

weighting method is dependent on the temporal properties of the dataset.
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5.6 Discussion

This section introduced a method for incorporating unlabeled data when estimating

the coefficient of light extinction using visibility cameras. This method appears to result

in a reasonable improvement in prediction models over a standard linear model. Com-

paring Gaussian and adjacency connectivity metrics provided informative insight into the

temporal relation of images for our particular dataset. Alternative connectivity matrices

can be used to better represent the temporal relationship between images for a given

scene.

While this work should generalize to higher dimensionality features, it becomes in-

creasingly important to have a relevant γ and validation set to produce accurate results.

Furthermore, room for improvement is dependent on the ratio of labeled:unlabeled images

in the dataset.
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M5’ Regression Trees

Transmission is an inverse exponential function of both the depth and the extinction

coefficient. For areas with a low transmission value, there will be a minimal change

in contrast for small shifts in the extinction coefficient. However, these same area can

become very informative as the visibility improves. Regression trees generate a decision-

making process by which multiple linear fits can be considered within the same model.

As the conditions of the image change, different features and image regions may be used

to generate the output. By using a regression tree, the system can be trained to observe

closer landmarks if distant points become overly attenuated.

This chapter seeks to expand on previous work by allowing for the use of all regions

in the image and optimizing their contributions to the overall estimation. This problem

is handled by segmenting the image into block regions and using an M5’ regression tree

to estimate visibility. Unlike the linear multiblock model from Chapter 4, this models a

discontinuous piece-wise linear function based on our features. We expect that this will

have an advantage over a linear fit by allowing for non-linear changes in the environment,

such as the effects that a cloudy day might have on visibility.
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Figure 6.1: A mock-up example of a regression tree for a 2-feature visibility problem.

6.1 Regression Trees

Regression trees are a type of decision tree learning method. They are very similar

to classification trees, but the primary goal is to output a real number instead of a class.

The performance at each iteration of tree growth is measured by the information gain.

This provides a quantitative value for the quality of each data split, and is calculated with

the entropy of the resulting leaf nodes. Intuitively, this means that we try to select splits

that group similar objects together. Regression trees select inequalities that split data

in a way that maximizes this information gain. Each leaf node is then represented by a

numerical value or a simple linear model to produce the output. An example tree using

two features is shown in figure 6.1. When working with a large number of blocks and

features, the decision-making tree becomes very complex and can be difficult to interpret

by hand.
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6.2 Methods

The following sections detail the use of image features, linear regression, and incorpo-

rating M5’ regression trees. Based on the functionality and methodology of the M5’ tree,

I then tested the use of multiple scales in an attempt to improve the resulting models.

6.2.1 M5’ Regression

To implement M5’ regression trees I used a Matlab toolbox called M5PrimeLab [31].

M5’ regression generates a decision tree similar to ID3. ID3 involves using a measure of

entropy in order to calculate the information gain. The feature with the largest informa-

tion gain represents the best way to split the current examples into two distinct groups.

Rather than entropy, M5’ looks at the standard deviation of each set. This is important

because we are evaluating the system over continuous values rather than trying to solve

a classification problem. Standard deviation reduction (SDR) is calculated as:

SDR = sd(T )−
∑
i

|Ti|
|T |

× sd(Ti) (6.1)

where sd(T ) is the standard deviation of our parent node, sd(Ti) is the standard deviation

of each leaf node, |T | is the number of data points in the parent node, and |Ti| the

number of data points in the child nodes. This splits the training data up in a way that

minimizes the standard deviation of each subset proportional to the size of those sets.

Because variables contain continuous values, we perform the fit based on inequalities

(e.g. X2 > 4.5). The function stops splitting when SDR becomes sufficiently low or the
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number of examples in the set becomes too small to continue splitting. The algorithm

then begins pruning the tree for reduced error. This is necessary because the building

process relies solely on SDR and does not test fits as it progresses. If the summed error

of child nodes is greater than a parent node, the parent node will become a leaf node

instead. Each leaf node consists of a small set of data points which can be characterized

by a single value or linear model. Because it is still performing linear regression over

localized regions, we use the same theoretical foundation provided in Section 4.

6.2.2 Multi-scale Features

Multi-scale features were incorporated to leverage the method used by the M5’ re-

gression trees. Although we use equal-size regions for our image segmentation, this does

not mean that all regions are equally informative. The other option is to consider that

a combination of regions as a whole may be more informative than any individual block.

However, this information may never be utilized because the separate blocks will not

create a suitably large standard deviation reduction. To counter this, I experimented

with combining multiple blocks in an effort to improve fit results over the data. The

first method of scaling was performed over larger block sizes. Rather than use the 24x18

segmentation grid, this was exchanged for a combination of larger blocks (e.g. 12x9 or

8x6 grids). Next, I experimented with summing entire rows into a single feature. The

primary motivation here was that a row would represent a large image region with an

approximately constant distance. Furthermore, this may take advantage of the sky as a

whole by detecting clouds. I expanded on this by also summing multiple rows into the
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ID Dim Description
B64 432 Blocks 64x64 px
B128 108 Blocks 128x128 px
B192 48 Blocks 192 x 192 px
B256 24 Blocks 256x256 px
R64 24 Rows 64 px tall
R128 12 Rows 128 px tall
R192 8 Rows 192 px tall
All 224 All of the above, excluding B64

Table 6.1: Overview of the various features used for the fitting the linear and M5’ models.

same feature. For example, the 24x18 grid would be condensed into a 24x1, 12x1, or 8x1

feature. Example figures displaying the segmented features are shown in the Appendix.

6.3 Dataset

The images being used for this paper come from the Arizona Department of Environ-

mental Quality [23]. Images are 1536x1152 pixels. This is then broken up into a 24x18

grid of 64x64 pixel blocks, where a feature is calculated for each block, resulting in a

432-dimensional feature vector. There are 6,897 images total, split into sets for 5-fold

cross-validation. Sample images demonstrating various segmentation sizes can be found

in the results and Appendix A.

6.4 Results

The results are categorized by both the fitting model and the type of features used.
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Below is a compilation of results for both M5’ and linear models across all feature

types. A baseline mean fit is also included for comparison, where the output was simply

the mean of the training set.

Fit Feature MAE RMSE R2

Lin All 7.945 11.7625 0.8449
Lin B64 8.2146 12.2607 0.8295
Lin B192 8.2146 12.2607 0.8295
M5’ B64 8.8751 14.207 0.776
M5’ All 8.9019 14.0892 0.7797
Lin B128 8.9411 12.9739 0.8128
M5’ B128 9.2221 14.6384 0.762
M5’ R64 9.7219 15.525 0.7331
M5’ B192 9.8174 15.4396 0.7354
M5’ R128 10.3104 15.8499 0.7218
Lin R64 10.4627 15.0675 0.7482
M5’ R192 10.4962 16.5134 0.6979
Lin R128 11.0587 15.6555 0.7285
Lin R192 11.0871 15.9387 0.7187
Mean n/a 22.029 30.1035 0

Table 6.2: Compilation of results from M5’ and Linear fits. The feature column corresponds to the

features listed in Table 6.1.

Figure 6.2 shows that for the linear model, as expected, the error increases significantly

for samples with a very poor visibility. While figure 6.3 shows very similar trends for the

M5’ model, it should be noted that the errors are much larger as indicated by the y-axis

scale.
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Figure 6.2: Results for the MAE in the Linear “All” Model.

Figure 6.3: Results for the MAE in the M5’ “B64” Model.
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6.5 Discussion

Results show that the M5’ is unable to outperform the linear system due to constraints

in the tree growth process and issues with overfitting at leaf nodes. At some point during

the algorithm, this creates undesirable splits that results in a larger error for the overall

system. However, the use of multiscaled image features is shown to improve the ability

of linear models to approximate the coefficient of extinction.

The linear models have an expected increase in error as the βext increases. While this

is due in part to the lower number of samples in this range, it is also an expected com-

plication from the exponential relationship that the transmission has with the extinction

coefficient. This makes it inherently difficult to approximate large βext values due to small

variations and noise in the dataset.

The leaf nodes of the M5’ tree interpolate over a small subset of clustered values and

may not provide accurate estimations, particularly in cases with poor visibility. This tells

us that while the visibility can be modeled in a general linear system, there is significant

variation in the manifestation of visibility in the dataset images. Because each leaf node

may have as few as four examples, this also very heavily constrains the number of features

that a piece-wise linear fit can use to model the data. The linear system, on the other

hand, has the option to interpolate across all dimensions of the feature space and over a

wider range of training points.
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The addition of new features types may allow for a more stable model and provide

for better generalization in the decision tree. This approach could benefit from salient

region detection.
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Finding Salient Regions

This section is aimed towards detecting salient regions for visibility estimation within

an image. This would allow us to eliminate pixels that add noise to our image with

the goal of improving our model’s fit. In addition, it could provide guidance for relative

visibility estimation when ground truth training data is not available. This could ideally

result in a mapping similar to Figure 7.1 without the need for ground truth data. An

image registration pre-processing step was implemented, detailed in Chapter 8, because

the following models rely on correlations being calculated at the pixel level.

7.1 Lambertian Surfaces

Lambertian surfaces can act as powerful indicators of salient regions for visibility

applications. These surfaces reflect light in all directions such that the angle of the light

source and the observer do not affect the observed luminance of the object. This approach

could be particularly useful for the Phoenix dataset because it would allow us to select

pixels that are robust to changes in the time of day. Previous work by Hautire et al.[27]
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Figure 7.1: A sample weighting map generated by finding the correlation between the dark channel

and the βext ground truth data.
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shows that this was effective in a more controlled dataset where ground truth illumination

was being measured with a luminance meter.

Hautire et al. used an identical image model to our approach, but scaled the contrast

at each pixel by the probability p(x) that a surface was Lambertian as shown in eq. (7.1)

below. This probability was calculated by finding the correlation between pixel brightness

and the scene luminance. A high correlation implies that the lighting at that point of

the scene was invariant to changes in the sun’s position, and is therefore likely to have

Lambertian properties.

Cl(x) = |∆I(x)| × p(x) (7.1)

Because illumination was not being measured for the Phoenix ground truth data, the

luminance needed to be estimated from the image. The dark channel prior method used

in Chapter 4 was used to estimate atmospheric lighting from the image. The probability

that a surface was Lambertian was then used as a weight on the Sobel gradient magnitude

at each pixel in the image.

7.2 Dark Channel

The dark channel prior, proposed by He et al.[1], produces superb results for dehazing

applications. It is clearly an effective tool for detecting transmission in hazy images. This

section demonstrates how this feature correlates with the ground truth readings from a

transmissometer.
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The dark channel detects the minimum value in a specified region around each pixel.

This value is an approximation of the atmospheric scattering interference outlined in eq.

(3.2). By utilizing ground truth, we seek to find regions of the image that may be useful

for estimating the coefficient of extinction. To do this, we find the correlation between

each pixel in the dark channel and the ground truth βext data. This indicates which areas

of the dark channel feature have the strongest correlation with changes in visibility.

Due to the nature of the dark channel, the foreground should be very dark. Other

areas will be brighter at increasing distances due to airlight scattering. We expect these

brighter areas to have a correlation with the atmospheric lighting, which should cause

our algorithm to focus on hazy regions to obtain more useful features.

7.3 Dataset

We evaluate our method using a small set of images and ground truth extinction

readings from the the Arizona Department of Environmental Quality which manages the

PhoenixVis.net visibility web cameras website [23].

All images are in the RGB colorspace and have been JPEG compressed at an unknown

quality level. The SOMT images are cropped to 1500×1161 pixels through a registration

process outlined in Chapter 8. Each image is partitioned into 128×128 pixel overlapping

blocks and a prediction model is trained for each block.

These images were subdivided into a training set, a validation set, and two test sets

as shown in Table 5.1. Training set values were chosen across the span of three randomly
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Table 7.1: Summary of results for each feature type. MAE (Mm-1) values are reported from the trained

model.

Feature MAE
Gradient 11.2647

DC-weighted Gradient 10.0913
Lambertian-weighted Gradient 12.8777

chosen days. The validation and test sets were randomly selected from remaining labeled

data.

7.4 Experimental Results

7.4.1 Lambertian Results

The results for the Lambertian weighting, listed in Table 7.1, showed reduced accuracy

for the linear model. This was most likely due to the automated exposure settings for

the camera. As the sky increases in brightness, the foreground automatically becomes

darker. This results in a negative correlation for pixels below the horizon and renders

our linear model ineffective. It would be very difficult to normalize the image without

ground truth data regarding the illumination.

One potential benefit of this approach is that it provides a way to detect where the

sky is for segmentation purposes. Because the luminance is being estimated from a region

in the sky, the regions above the horizon will always have a strong correlation. This effect

can be seen in Figure 7.2. This could be used to isolate the foreground in some scenes

and focus on more relevant regions.
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Figure 7.2: A weighting map generated by finding the correlation between the grayscale intensity and

the estimated luminance.
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Figure 7.3: A weighting map generated by finding the negative correlation between the dark channel

and the estimated luminance.

7.4.2 Dark Channel Results

The results for the dark channel weighting showed a slight improvement in the MAE

over the standard gradient. The positive correlation of the dark channel yields a very

similar result to the Lambertian probability, in that it emphasizes regions that are very

hazy and close to the sky brightness. Instead we focused on the negative correlation

between the dark channel and the estimated scene luminance. This puts a stronger

weighting on the foreground and a small region along the horizon as shown in Figure 7.3.
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7.4.3 Discussion

The theory behind both of our saliency models relies on a correlation between the

atmospheric lighting and pixels within the image. However, that was clearly not the case

from our results. We believe this was due to autoexposure settings on the Phoenixvis.net

camera systems. Because they are configured to operate 24/7, they are required to

automatically adjust to the brightness of the scene. While this is beneficial for qualitative

analysis of images, it hampers our ability to estimate the atmospheric lighting. As the

sky gets brighter, the foreground will automatically be darkened due to the decreased

exposure time.

While our results were not successful for this dataset, both of these approaches are

worth investigation in a more controlled system with additional ground truth readings.

Detecting Lambertian pixels has been successful in related work with the addition of

luminancemeters for ground truth atmospheric lighting. If this provides reliable results,

it may lead to more reliable ways of tracking long-term trends in visibility for unlabeled

scene images.
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Image Registration

The linear fits proposed in sections 4, 5, and 6 are robust to small camera movements

due to the block-based approach. However, the saliency models proprosed in section 7

are calculated at each pixel value and are heavily impacted by any offsets. There is a

sizeable amount of movement in the Phoenix dataset caused by wind moving the cameras.

To counter this, an image registration algorithm was implemented to align images of the

same scene.

Federov et al.’s automatic registration work [32] provides the basis for our imple-

mentation. After a root image has been chosen, the algorithm is applied to a batch of

images in a 3-step process. First, tie points are generated automatically for each image

to perform matching. Next, these points are used to solve for an affine or RST (rotation,

scaling, and translation) transformation to align them with the root image. Lastly, all

images are cropped to a common region so that no borders are present after the corrective

transformations are applied. An example of this is shown in figure 8.1.

This method ended up requiring a lot of user intervention in order to make it feasible

for our work. Due to the way that the cropping process was implemented, a single image
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Figure 8.1: A mock-up example of a good registration batch. The final cropped (red) version will be

representative of both pictures despite being offset.

could lead the algorithm to “overcrop” an entire batch if the wrong transformation was

chosen. Furthermore, large amounts of haze can make it very difficult for the images to

be accurately registered. This could be resolved by adding additional constraints on the

rotation, scaling, and translation for individual images. Based on the assumption that

our images should have similar transformations, we can disregard images that are outside

of a specified threshold.

There are two additional complications with directly applying this algorithm. By

default, the root image is a user-specified parameter. An algorithm that detected the

image that best fit the rest of the images in the batch would produce the most reliable

transformations and the largest common region. This ties in with the next problem,

which is that our application would run the registration algorithm in multiple sessions.

As new data is added to the training or test set, the common region of the algorithm will

change. This could result in a different set of features being selected, and would then
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Figure 8.2: A mock-up example of a bad registration batch. The final cropped (red) version will be

very small due to the offset on the outlier image.

require that the linear fit be recomputed over the new regions. While image registration

is an appealing preprocessing step, it was very difficult to produce a desirable output

for the Phoenixvis cameras. Consequently, this work had limited contributions to our

analysis framework.
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Conclusion

9.1 Visibility Estimation

As demonstrated in this paper, there are many approaches to image-based visibility

estimation. While the multivariate fit worked best for the SOMT camera, our results

could be highly dependent on the scene chosen. A more detailed analysis of different

scenes could lead to very different results. An approach with regression trees could

be expected to work well in a problem with more depth discontinuities, whereas the

temporally regularized model is more suited towards datasets with large amounts of

unlabeled data.

The proposed methods all rely on a very simple block-based segmentation for each

region. This is based on the necessary assumption that all pixels within a block have the

same depth. While the salient regions were not very effective with our dataset, continued

research could make a large improvement in our visibility estimation algorithms. Addi-

tional work on properties such as Lambertian surfaces could help to find high-contrast

objects at a constant depth for more accurate visibility estimation.
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9.2 Future Work

The main focus for future work is on visibility detection in scenes for which there is

no ground truth data for learning the model. While we would not expect to output βext

values, a relative comparison of images could provide valuable information about long-

term visibility and pollution trends in a given area. In Section 4.4.1 we experimented with

binning visibility on a 1-5 deciview scale with good results. If we can obtain similarly

accurate results for uncalibrated scenes, this system could be used to “piggyback” on top

of existing webcam data and provide a detailed analysis of locations across the globe.

Where ground truth data is available, our system could complement existing systems

for measuring visibility. Given the accuracy of our linear model, our vision-based model

could act as a backup system in the case that the visibility measurement equipment is

moved to another location or is temporarily unavailable.

The features used in these experiments were fairly simple and easy to compute. Ad-

ditional work could be done to investigate the effects of haze on color within the image.

Likewise, our ability to test frequency analysis was hindered by JPEG compression in

the images. Experimenting with high-frequency details could provide better results for

other datasets. Furthermore, no knowledge of the scene geometry was considered in any

of our algorithms. Additional information about the scene could be derived from satellite

imagery and used to further constrain our model fitting process.
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Figure 10.1: Example SOMT image with 64-pixel blocks.
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Figure 10.2: Example SOMT image with 64-pixel rows.

77



Chapter 10. Appendix

Figure 10.3: Example SOMT image with 128-pixel blocks.
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Figure 10.4: Example SOMT image with 128-pixel rows.
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Figure 10.5: Example SOMT image with 196-pixel blocks.
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Figure 10.6: Example SOMT image with 196-pixel blocks.
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Figure 10.7: Example SOMT image with 256-pixel blocks.
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