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ABSTRACT : o

©

Measurements that are of limited accuracy, are ingompleté,vor'a75'

. -require a finite time to make do not generally permit one to comstruct f'ﬂfﬂff-f

a wavefunction for describing a physical system. The use of such

- partial information to predict the results of subsequent measgrementslifld.; "
. i - . . . " e

is studied here. There are several practical applications of this o

problem, including the use of .the autocorrelation functfon for a '~ . ' RO

3

particle counter in a écatteringfexperimeny;f” § . ;
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I. INTRODUCTION
It is customary in the pedagoglcal deve]opment of quantum mechanics
and fleld theory to mention the limitations on correlated measurements
of observables at different space~time poxn&s. Little attention has
been given, however, to actual experiments for making such observations,'
or their usefulness. In this paper and in a subsequent. one, we shall
discuss both of these subjects from a general point of view and with

particular applications to scattering processes. _—

\

This work is en outgrowth from a recent paper on the correlated

counting rate of two detectors recording particles scattered from & K

o target.l There it was shown that by such an observation both the

magnitude and phase of a scattering'amplitude cah‘be determined. Sﬁch
‘an observation of spatial correlations is oﬁly one of a much broader |
class of‘experiments tp measure time and space-time correlations in a
particleibeam. For example, as we shall show in a subsequent paper, the "
';time-dependent.auﬁ»ccrreiation functioﬁ for a single counter can provide
information on the coherence of, say, & laser beam.2 If a beam has~been
_scattered, the auto-correlation function yields a measure of relaxation |
processes in the target.

In this paper we make some general comments on the theory of
‘measurement for quantum~-mechanical systems and illustrate the theory
with some conceptually simple examples: (a) measurement of the spin of |
either one of two interacting particleé at é tiﬁe, t

2
measurement of the spin of one of them at an earlier time ,, and (v)

following the

the theory_of intensity correlations Qf;the HanburYWB?OWn=TW198 variety.

p e

T
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II. MEASUREMENT OF TIME CORRELATIONS
We consider now some gen;ral questions pertaining to the theory
of measurement'when several observations are made in sequence on a given
system. We imagine thatithe system being studied is described by a
Hamiltonian; H, and that a time t = 0 1t has been prepared in a state
v(0) = V¥, + At any time t >0, the undisturbed system will develop in
time according to the Schrodinger equation and be described by the state
¥(t), where | | '

w(t) = e i Yy - ' "(2:.!1)

Suppose now thaf at a particular time tl > 0 an observation is madewa
. the state of the system. As is well known, we must interpret the resdits_.
of this observation in a statisticai sense.3 We imagine that an ensemble‘
of such systems has been prepared at @he refgrénce time t = 0, each in
state WO.’E and consider a set of measurements on the members of the'
ensemble at a later time tl .

1 “in
rather loose terms which will be made more precise as we proceed. The

We begin to describe the results of the observation at ¢

measurement of some set of observables for a given system will yield the |
regult that the system at time tl is in a state X corresponding'to

an ejgenvector wk (the particular states A . are characteristic of the
observapion of interest). If the meaaurgmént is repeéted many times on |
different systems of the ensemble, we find the state A occurring with

probability P(A\, tl) given by

~

pvy) = (e g ), 0 (ea)

where 'ek‘ is the projection operator onto the state A o_:ﬁ B

. . .
<3 Y




L,

‘5 where 'CA is a normalizstion constant. .Following each subsequent

w%fvconatructed in a similar manner.

7. UCRLelllkk
3. : .
Since the Schrodinger equation 1s of éirst order in time -

derivativea, for times % > t,, the wave. function of- those ayatems in ,5

i

(LI,

v,_(t') 6, expl-1(t = t))ley ¥(t,)

i

exp["’m(t - tl)]‘»}& ’

[}

h.

This idealized description of a sequence of operations seems tOO_;.,f-

l variety of reasons, observations on any but the,éimplest systems will”ﬂgﬁ'fA

" quantity that has a continuous spectrum, no precise determination is

cne has some linear combination of the degenerate eigenvectors (we - =i

:-'1[ return to this point below). This is related to the case where the

observation is incompléte in the sense that only s fraction of all

‘dynamical variables characterizing the system are ordinarily observed.

Thus the fact that d'particle in a counter is within a certain macro-

scopic volume at at certain time may be determinedé—its momentum and

- spin orientation often not being observed. There is no difficulty in

,the prodection operators for the given observation‘end leta these act on :

""" restrictive to be of interest for most practical applications. For é;ii"v ‘

' . not determine a specific eigenstate. If the measurement involves a

describing auch partial observations on - w(t ), One again merely constructs L

. the ensemble which were found to be in the state k is . fjifxfié5 l* L j'-;;

. observation which mey be made on the system, new wave functions cam be | . i

11 possibleq Similarly if there is a degeneracy, one can say only thgt'fi SO
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W(tl) to predict the results of the measurements over the ensemble.
It is only when one wishes to use the results of an incomplete measure-
ment at time %, to predict the outcome of subsequent observations at .

time ¢

o tﬁat the theory becomes somewhat subtle.

It is conventional to say that a measurement takes place at a
particuiar_time, tl-. In practice, any mechanical oxr electrical |
equipment has a finite response time; a signal recorded at time tl- is
‘a filtered résponsé of impulses received at times earlier than tl .

It may not be possible to define precisely séqpential observations on{g -
system or even the intervals between such measurements. This difficu}?y 
is particularly acute when there is an inherent reason for reqpiring :
- prolonged observation. For example, suppose we wish(to first measure
the energy and then the spin orientation with respect to an arbitrary
axls of a éarticle with a magnetic moment,plaéed in a magnetic field.
If the t}me_interval between the measurements were quite long, therg
would be no problem and the simple theory reviewed above would apply.
The principle ;f complementarity, however, would preclude the éimultaneous
determination of both qﬁ;ntities. In the intermediate (and often more
practical) case in which the second observation follows the first by ;n

(effectively) finite time, the simple theory does not seem to apply.

'Let us suppose that an instantaneous observation is made on a

given system in the ensemble at a time tl . The observation is that
of the physical characteristic associated with the (Hermitian)operator

Jl + Since in general Jl does not represent_a‘complete set of

emtam e g e - - I T P




." - operators that must be added to J

. will be called § .

L cowrite B

| UCGRL-111k4
asﬂ_ :

fcommuting operators for the system, obaervation of J does not

. yield a precise specification of the state of the system. The set of ‘

, ‘o make the customary complete set“

We assume that the operators_i(Ji,.¢) bave a complete set of <.

. l .

"’3.eigenwectozs,.é . 'The eigenvalues of “J, will be called B) and we

+

T %u T PO ' | (2:4) ;v

. ', where the w ., are the eigenvectors corresponding to the eigenvalue!| '
; , . ; i

"f;? Bh ; the index u may run over a fixed set of values characterizing

Klﬁf*fthe physical property and the operator associated with it simply as J

L

"'is one for which Jl has the eigenvalue BA .] Because the observation ”:iiji'f

?fi:the degeneracy of the eigenvalue By - It is & postulate of the theory
", of measurement that the observation made on the system will yleld one
?5f?pof the eigenvalues B, as the numericel value of the physical property--”

: associatﬁd with Jl .. [For ease of writing we frequently refer to both :;}:1:

1 °

We also épeak of that physical property and the operator as "having the,yf?a: 

value 5 " when we mean in a more strict sense thét the observed state

is incomplete, as a result of the observation we can only say that at

»

time tl » the system 11ea in the subspace of the projection operator -

EA given by K

.;(2;5).;1. j,f}



;“'-;'that the wave function wzﬂt ) 15 given by

. *”,y Measurements that have such a drastic effect on a system seem to be

“...: o . ’ - .
. rather poorly suited for meaningful sequential observations. To

‘ 3ﬂ1fenerget1c particles scattered by a small target. Ahead of the target‘:f"ff

% “1s placed a counter to monitor the incident beam and to determine the . -

© . ‘are detected by a counter telescope, 80 designed that each scattered -

o oM yeRzelnamh T
-6- © " . k

We now come to the fundamental question: To what extent do those -
portions of the wave function that are "not observed" remember their |

‘ heritage? There are certainly circumstances in which all memory'of the*f i?

' state prior to the measurement are erased, in which case we would say

W - } B LI

nt) = Z.au.wh’u';'" T e
e : e

: ' , - ...
where the au are arbitrary, except for the normalization condition.%?i
B illustrate this, let us imagine that the wave function V¢ describes -

‘precise time at which each‘particle is.acattered.' The scattered parfiéleéz
! . : . T

B

o particle entefihg the telescope is counted by each of a seqpence-bé
single counters in the;telescope. Now, the observation of a count at;?{,

‘time t, d4n the first detector of the telescope provides information - .

l .
concerning the magnitude and direction of the counted particle (since fif_;-Af'z

1t traveled in a known time from the target to the telescope). :This

knowledge 1s incomplete, however, since the spin orientation 18 mot L0

observed. In apite of this, it 13 obvioua that the available information‘ﬂi s

-i permita one to prediet the time of passage of the particle through the ::gi'




'i"cannot be a generally correct conclusion. Consider the measurement of.

;51mmed1ate1y'afterward must give zero probability for elgenvalues of

}o_obe the case. Thus, éven though J

"by the ¢ may be influenced by & measurement of J

- after a new obaervation 19 made? We shall tentatively adopt here an

'“?Q ansvwer to this qpestion, vhich we state 1n a physicalxy appealing form

UCRL~111k4
e

- -remaining counters of the telescope. Equation (2.6) would not permit us

- to make this prediction, however., By erasing the information that the

A}

K

_"?,vwith arbitrary a, s Eq. (2.6) cannot take account of information that

’t'f;.may be available from previous observations on the system.

Another possible way of specifying what one means by a partial

"7 3;xumeaaurement of a system might be to require that, since one is measuring

1 which commutes with the other operators ¢ the expectation value

*?of the @'s should be the same before and after the measurement. This

»f +

2

“"the square of the total angular-momentunm operator, J° . Tt is clear

ﬁliJz > §J, |vhere J(j+l) 4s the eigenvalue of 72 given by the first ‘

. measurement, whereas before the measurement this would not generally

1

’ le'particle had traveled to the telescope from the'target, it 18 not possiblevjf.fj
“ .- even to predict that the direction of its velocity is such that it will . . '/ .

" pass through the remaining counters. We must conclude, therefore, that . . .

" that a measurement of the z-component of the angular momentum, Jz , }fm;ﬁ7§,'“

. Y L
ey e .,
L PR

and’ ¢ commute, the values takenfmﬁif' .

R

It is not clear that there is a universal answer to the’ qpestion iﬁfﬁi'

'whatever conetreints are imposed by the observation ofiiJla'at tinm

- posed above-~that is, to what extent does previous information persist:;l}?V'”“g

‘ ‘?suggested to us by'W1gner.$» This 15 an assertion that, subJect to ,: §ffj




¢

where

N Trooow S a0t
, { 3 - ’ %
. .
N a . . . [N . . : [
- * P [ L S
c v L bt - - . * N
Y PR - . N .
‘. K . Ny v - ] .V .
- . - g ..
: I VRS SR A UCRL-11144
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. . 3 . Lot .
. LYo . .
e, .
1 ’ - »
-
4o
.
o
Lo ; e
.t . -

.
LOu

& - 1w, v,(tl))la'-, I _——

with the prior wave function w(tl). That is, we consider the stajbement“

, the wave function ¥ (t;) is that which provides maximum overlap, ’

that (9/ be maximized with respect to varit‘a.tiona of WA. » subject to

those constraints imposed by thé observation at tl » 88 & variational ,_: O

principle to determine ¥,(t,) . This principle is interpreted as -
Al

applying also to the case that J , Trepresents a set of observables and . g
10 the case that the observation is of limited accuracy, from vhich can - _’ '
be determined only that the system is in some domain of states._6 '1|1 '

LN St o

We shall call this the principle of least interference. To see

observed eigenvalue B}‘ ’ we obtain from Eq. (2 7) Ta - Y

ﬁ Z (“a v *‘*') ("“‘1"‘”“) SRR
SIS e AT

I

A M

VR XEECRN .
AR

how it is to be applied in a given situation, we return to the precise' L g X ?_. .
observation of a single observable J’l , as described by Eq. (2.1+). :
'Uaing thé most general form (2.6) for wk(t ). compatible with the ‘
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where R is a Lagrange multiplier ini'roduced to satisfy Eq. (2 9) and

:Nv' = (v(t ), mh v) :- : (a'fll}_

From Eq. (2. 10) we obtain

L .- .. .«‘_ -v' K ) . . u ) “, _“v. .':_;‘ « . - ‘- v .' .'.A B ‘A. z‘ .
. and from E,q. (2.9) we obtain T
. N . N 42' ? M

=

o _:' . ‘g0 that . A T \ L

- . Lo : (2.12)’.
,_', o Cx Ek w(tl)“l‘ '. " \‘ . .

Here E, is defined by Eq. (2 5) , and c}. iws ‘_aﬁv'ﬁoxfmalization constant * - -

: defined by the equation

.

-2

lel = (v(t )y E)‘ﬂf(t)>

= _P(x_, 'tl) ,

where P(A, 1) is Just the probability that a system in the enaemble




i that Vv describes two completely independent systems, each in separated

‘ ' ':','-'.".."as the identity operator on the variables of the second ayatem.'_

" Eq. (2.1L4) for subsequent measurements at times t > t, , ve imagine

S0 ; L L

For times t > t

L s the wave function ¥ (t) for the system .

© has jbhe form7‘ Coe B Co TR

(8 = G et - )Ig We) L s (2L

As an extreme illustration of the uge of wk(t) defined by

. laboratories ;5 isolated from each other. An observation made on one of
. " " these, call it our J 12 ,evident'hr does not influence the second aystem.- N ‘

7 This is precisely what our prescription, Eq. (2.14), says since E, acts. ° ;

lh

In Section III we 'give some less extreme examples to ahow the

¢

o plausibility of the prescription, Eq. (2. ll&) ’" at least for an important

¢lass of measurements. _ : . _ o
- Iwitow at & later time t,>t, we observe & quantity J, on those
members of the original ‘enaemble oi' systems for which Jl was found toi :
have the value By, at time t, . Since J2. does not necessarily .-

1

g " commute with J., we must expect in general to supplement J 2 with a . °

. new aet of commting observables ’ _@' » in order to have a complete

. specification of states. The eigenvalues of J‘2 “will be.called b, ,
and the eigenvectors wi.m » 80 that " ot '
: ) o :
Jp Wy =0l W, o, T et (2.15)

.2 4,m i b,m

and the index m hs the range of values characteristic of the degeneracy

of b L .‘ The proJection Operator onto the subapace ot the complete Hilbert
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space that corresponds to the eigenvalue b ¢ is -
& = Z V&'m V&'m ) . ‘. (2.16). T
. m . . : . ) . ¢ .-

with the sum extending over all states for which the eigenvalue of J 2
. is ‘b L . ’ ' '
The probability that on \“c.h'el_aecond observation at time t, the

valﬁe of J

2 will be b&' is

’ |
Evidently, the joint probability over the ensemble that J 1 has the ‘

value ﬁ)\ at time t, and that J

1 has the value b, &t time t. is

2 2

(4t Mty) = B4ty | Me) BOLE) , - (2a8)

where P(k,tl)_ is given by the expectation value of E}; in the state

v(tl) , Eq. (2.13). It 1s clear that‘aimilar co'nsideratio.ns could be

made for thelobaervat.ion of a third obaervable,. J 3 "at a time t3 > t2 '. ’
To write Eq. ('2.18) out in detail, it is convenient to introduce

Heisenberg operators, i 7

Tp(%) = emr‘rae."’ o
ete. Then, using Egs. (2.14) and (2.17),.we obtain
Rty | =gl (W), B Gty - R wey)

R
4 .,

LI



._ ‘This and Eq. (2.13) permit us to write Eq. (2.18) as

‘::of J

.

.x‘

’.:-.’ '-"' . P(L’tal X,

-

tl) = (V(tl)l EK a(ta

08, Ws,))

- (W), B £,

s

8B (8) W)

The complete distribution'function, Eq. (2.18), describing the

;" values of Iy
to measure.

given that the firbt measurement of -J 1 yielded the elgenvalue BA. for

2

Skt

" at time ¢,

at time tl

A simpler measurement 15 that of the average value of J

_the first observable, Jl .

-]

L

and Ja

This implies that we calculate the mean value .

at time t

-

S EACNIN =—..: (w«,\({é), Iy Vh(t;))

’

2

for those membera of the original ensemble whichn;

'v'were found to have i;he value B?s- for Jl at time t

.is generally difficult

2)

’
1

b

1

*
]

S '(a.ao')'"‘.

where ‘we have used the definltion of Wh( t.) given by Eq. (2 12) The,, .

correlation function for the two observations 13 then defined as the

(2-19):

Thus we compute -

M AN



R ;‘j"."a;"‘;f,- Z Q(t ) 5 E (t t,) B, B,‘-v(tl)> RN

SN R " Z i @*‘1)’ E) Ja(t, = *’1> 9 E V“’,‘ﬁ) e
, '.,.,‘ , ¢ . ”..‘:-; . N K ' ) . . . T ‘

) _2f53.We have here used the fact that 'Jl commutes vith E, and have

. may not extend over all values depending on the details of the observation;'\.:“

<
!

- N ' .
H R T P ‘1 . : i

'fq‘:;,jéw_a;li. E: ‘Ja<“a)) 3 x0, t) Lo e

. noted that J (tl) may be placed on either side of the square bracket 'f..:t

the sum on ¢ extends over all possible values. The sum on A may or’ f} | v

, 3 o . "o «
CUEL T aame s T ot
. . i j.‘ . S T S ST
( Ja( ) J'l(tl) ) | Z: b8, P(¢,t,; x,tl) : -' '

‘,..".:._ KRR '.',lv,h . R "',‘.~ o I',"

L . (Y : . . . Lt . :
,.\ ; ., . . et o, _ .
. -

o o . '
Dol | B e
P Q’(.tl)' z Ex ‘Ta(té Y *("1» : -

v'\ 5’ GO.O Z Eh(tl)‘r ( ) E)‘(.t ) J (tl) ‘Vo> : 'ri'-"

(2. 21) i

introduced the Heisenberg operators Ex(t-) and Jl(t ). Tt should be - ﬂ:;'

in the last two expressions of Eq. (2.21) as mist be the case if

e

(Ja(ta) Ja(tl)) is to be real.

In deriving the final form of Eq. (2«21) we have supposed that “;‘;uﬁ

The.caée~1n’vh1ch _Jl(tl) and Ja(ta)_-commute is evidently of ?,f,':
special interest.. We may then think of ﬁaking a single observation of | ;

both 7, ( tl) and J (te) The correlation function (2 21) B:melifies o .

considerably 1n thia caae, particularly if‘ue sum over all states X ) ;f .




’

o v K
- 1, Y
R 0 v; .
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: ‘ ' UCRLe111hk -
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-11‘- . . . PR o 13 . . ‘
? ~ - P N i
v . B «

" Bince 'J'2( t,) and E,( 1—.1), commite, we obtain just

b

'

, ‘”_ of such observables as J, and F;

- where the sum on A extends over the set s(A). We again make the

_which is consistent with thinking of J (t ) 3 1(t;) as being a single AT

.-
observable. )

We meptioned earlier that under many conditions the observations
ﬁade on a system may be too inaccurate to determine specific eigenvaiues' '
o+ In this case Eq. (2.21) must be .
modified. For example, if the only information obtained from the figét

measurement is that the value of. J, is one of avset s(A\) of eigenyalues <L
CeOL R EeR BN O -

! o . .
3 PR '

Bh , we introduce the projection operator ’

Es(n) = E: Ex ’

t

' fundamental assumption of least interference and obtain (on following .

precisely the argument leading to Eq. (2.14)]

*s(x)(t)' = c' exp[-iH(t -'tl)] Es(h) W) . (2e23) 0

. The arguments leading from Eq. (2 1&) 10 the final form of the correlated

measurement ( J (t ) J (tl) ) , Eq. (2.21), are now modified by replacing

E, . by Es(,‘) We find in place of Eq. (a 21) the result .

I ‘

B s(A BT e DU ;.

where the sum runs over non0ver1app1ng sets s(k) s g .;,-
. -\'.'_L:»: . " . .. '.' . (3”‘: ' 94 o ";-'_‘E N ’ R . e "
: : e ....'ﬁ . - .
4 BV :'}T.:: ‘ » y
(: ‘: ; "r : L3 o .

i N
+ 1 Lre

Cayey) a8e) ) = G(o» Ja(i'a)'ﬁ(tl) v(O>,  (2e2)

e —l-~--..-..4-.....".._,‘.4_._.. LSRR LU,
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When the ensemble of systems is not in a pure state at ¢ = O,” f“?;;jii

" but distributed over a set of states, ve mst perform a further ensemble

", average over.the' Vo in Eq. (2,.21) or _(2,21&)._- For exa.mple, Eq. (2.24)

isl then
A (39 ) Yo om po Z () Taty) Egay(t) [a(e)b,

"o where Po 18 the density matrix for the ensemble at t = 0. It is ,tlhis et
P S . . l .. o : P
7., “-latter form which we shall require in a subsequent paper for the description. : *

. of scattering experiments. ‘ _ o : lh

i Returning now to Eq.. ( 2.21), let us imagine that Ja'

' measured at a time t2 prior to ¢, , the time at vhich J, was ST

el measured. In this case the appmpriate correlation function would .

S | , ;.}~.7 evidenﬁ# be

i Jl‘?l) >t’a(ta)m) = vt Z 5@ ‘71(1’ -t )& T3 W) - 9
e T A 1 (2 )

: = “’9". Zcﬁ("a) Jl("l) 5£(té) 1_32“"2) Yo

When ve wish to, conaider both kinds of observations ’ it ia convenient to .

introduce the timemordered correlation function defined by

S - : Co ,

( T3, ( )J (tl)l ) _=- <. T[Jl(tl)-r (ta)] )




‘“gn,

‘ in which‘these are made is irrelevant.

UCRL-111Lk
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We note that when Jl(tl) and Ja(ta) commute, and the sum on

" In this case neither observation interferes with the other, 80 the order

We have mentioned that because of the delayed transient response
s

.Our expreesiohe for the correlated meesuremenis must be corrected for -
this before they will correspond to the recorded observations. To del e."‘
'J;fa' this, let us suppose that the basic observation of J, is relayed g0
the recording device via a linear transducer having the reeponse function L

v Ll(r) . By this we mean that an input signal f(t') ‘be registered as

r \

t N .
Output = f at' Ll('t; -.%') £(t') .

{ N Yo o) ) ) . ! . . :.

_ The corresponding response function for J 15 written as L (r)

'L in Eq. (2.26) runs over all states, Egs. (2.19) and (2.26) are identical.

" of all electrical and mechanical apparatus, the recorded observation will o

" " not correspond to an instant of time, but will be simeared over an interval. -

We may therefore represent the two meesurements by the "filtered operators" Lv_i

‘k.'_ T

é} (t ) dr L (t - 11) J (r ) j.:e:‘ ';' ".'.: ' ”1:2‘

1'{;2

92("2) ' ”.I f 'd‘a Ly(ty = ) Ja("a? .

-0 o - K

where the Heisenberg operatprs” Ji and ‘Ja icontinuelto eorrespond_to »

"instantaneous observables." . . - fﬁlL?l,ﬂ"'“}iL
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Application of the principle of least interference to'the '

ij,observqtion of these quantities msy be less than straightforward. -

£ First, the technical problem of formulating the correct constraint B ;;7nuﬁ

;9yff#¥:ﬁ\associated with the observation of, say, may be formidable.

l)

*‘.SV'ff ijF :Second, when’ [ta - tll 1s less than the transient response time At

extend over overlapping

Y

s L ‘of the measuring apparatus, so that Toend T

g "”*f'intervala in Eq. (2.28)," the mutual interference of the two observations'fi”}ff_ﬁ
;g .can be difficult to describe. |

et
'
R

There are several special cases, however, for wvhich observation

}3iof the two quantities (2. 28) nay be easily discussed. The simplest 1ﬁ

y!that for which the response time Atr. of the detector, or measuring

d
'f apparatus, is much less than the relaxation time of the system being

. 4-‘,.' ot

?)f'studied. .As long as |t2 - tll is significéntly larger than And.,
' this is in effect an instantaneous observation to which we can apply ”EZTjg?Eiﬁf
‘' the theory developed above. In particular, ve may use Egs. (2.14),

5 (2418), and (2 21) with the understanding that in these eqpations the

" operators Iy ‘and.- Je -are to be replaced by , end }2 . Because fl.'
‘,Hg;iL?”:;f_,_” we have assumed that Awd is smaller than the relaxation time of the ﬁ;- 9
Lo .:-‘.' _system, we may take the projection 0perators Ex and 5;' to be

". unmodified by the transient response.. Then the coxrrelation funcfion¢

g j:;: 'F:~;_correapond1ng to Eq. (2 21) or (2 27) may be written in the concise form '
L m-@4>%m»
L "'”3?:; :;'J[

Sy o

T[J (12) Jl(rl)] ) , .t'i_1"ﬁf3

(2 29)




.. lta -t
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f: where the time-ordered correlation function was defined by Eq. (2.27).1‘If'h

A second special cage to which the principle of least inter-
ference may be easily applied is the following. The fundamental
observations on the systems are made by probes, as in Fig. 1, vhich ,"'.

E “have response times very fast compared with’relaxation times in S

This information is degraded, however, by narrow-bandwidth transducergf.;3

[

“:‘recorders; 80 the detector response time: Aﬂd may be larger than

al

"this we can agein represent the measured correlation of the two = i
" observations by Eq. (2.29). _ ﬂ.‘ e
The reason for this is that we might have used fast recorders ..

in parallel with the narrow-band devices and have recorded (say on a ' Q;f-ibf?f

. pilece of paper) the quantity ( T[Ja(ra) Jl(rl)] ). The integrations

implied in Eq. (2.29) could then be done numerically. The final result ...

" must agree with that recorded by the narrow-band device.

1

As a third and somewhat more complicated exémple, let us suppose

that we are observing particles-scattered by a specifiec targét and that -

we are interested in observing relaxation processes in this target.
The relaxation times.in the target will be characterized by the interval

A“t , While fluctuations in the particle beam itself will have a

characteristic time Anb

. We shall suppose-that the experiment has-
been 80 designed'thati‘ et '

'z'Afb usijead?;ﬁg Aft“{_f SR

.

i

v Cs

A
LW

PR

and system relaxation times. We assert that in spite of - .. °

5
N .

e ——— . a4 = mm—t—n i n

R e

.
— tr——————— v

S,




- complexity. We suppose that we are specifically studying fluctuations}zf,Aj
. in a beam of scattered particles, but that we'are unable to build a |

' -'f: detector ithat can meet the condition Ar, << A&r, , where At

"{"“,f'we construct a composite detector, as illustrated in Fig. 2. At the
‘center of the detector is placed a small scatterer s , having known -
" scattering properties. Particle counters are mounted on. the walls of o

" the detector, which are a large distance from s . This "large distance“:*"

UCRL-111L4
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f

a where Awd "again represents the response time of the detector. It is
‘ ‘d'ﬂ';fevident from the double 1neqpality (2.30) that we can filter out the =" '
zjf high-frequency beam fluctuations and observe only those of the target.;

"’ The response functions L. and 1L, in Eq. (2.28) -are assumed to

e W

- describe the effect of these filters. - p

Equation (2.29) may be used to describe the correlation functionffi" '

"bfor this experiment. To see this, we note from the first inequality
if (2.%0) that during a single response time Aﬂd many scattered particles '
,7'ftwill be detected. Thus, random fluctuations in the particle fluxes will

.., .be small and for an ensemble average the 's and J's will be eqpivalent. o

The fourth example that we consider is of ‘'some inherent ' l'”ﬂ-'{

a < A R S T

characteristic period of the‘fluctuations being studied. In this case’ d7f“ '

18 defined by the condition that the particle-flux Operators J (T ) o u;}f} s

~and J (Tl) at any. pair of counters commute.

The beam of particles is first scattered at the target T ,-‘ i' ifﬁf.,xf

which s the systen betng studied.s Some of these will enter the 'E; \,;153«5‘-ﬂf

. detector and be rescattered at s ,into counters on the walls Tb
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analyze this experiment, we treat the bean, farget, and scatterer s

as a dynamical system described by the Schf3ainger equation. The
counters on the walls are considered to be the "classical" portion of

- the measurihg apparatuﬁ, since their ﬁarticle-current operators commuté.
With this arrangement we‘can study space-time correlations on a scale
determined by the smali scatterer s , but use only “classical" detectors.
| To see this, 1e§ us first replace the instantaneous particle-flux

" operators Jy and J, by the filtered operators ,1(tl) and 2(t

2 2)

in Egs. (2.%), (2.5), (2.15), and (2.16). The filtered flux operators:

are supposed to represent the actual characteristics of the counters h

used in the detector. Because of the explicit time dgpendence,-we spail

now write the projection operators (2.5) and (2.15) as Ex(tl) and d;&(ta)’

respectively.. Since (t,) and- Q. (t.) commyte, we have
1Yl 22 '

[91& ) E,‘(t )] = [91(*5), }:.(‘“a”' |
[?(t),E(tl)l S S ZCRRINCRS
= [ Elty), B()) = 0.
| (2.31)°

The wave function in the Heisenberg representation, following a
specific observation of the two commuting quantities 9 (tl) and }2( ta)

is [according %0 Eq, (2.12)]

WO = Gy BB L ()



Ce o UCRLe1AMME.
-l » ' e
since.the two obsérvations commute. Here
—i . P(c 2 M) = ¥ (6) £l vo - (2.33) o o
7] B35 Ny or B\t Git) Yo - o
|C l "
PN . .
is the Joint probability over the_ ensemble gf systems of finding that
(t ) - have the re’spective eigenvalues B)‘ and b K ;' : ""

9/1(1: ) a.nd.
The correlation function for this observation 18 [compare Eqs. (2 21)

\ .
. { l
. .

..‘::'and(222)] - -

<9((t)9,1(t)) baP(z,t,x,t)
z,x o | - | S
- : Z é(o), E)\(tl) 5“2) }(t )}’L(tl) w(oD

T -t;_”f! <(°)’2’2“ ) %(t ) E,(t,) w(0)>
S L | | | . (2. 3&) o

Now if we either :

" .where in the 'last'étep we have summed over all N
sum also over all A or if the operator J. - satisfiea the condition

(which in fact 18 ordinarily satisfied for particle detectors )
DR TR

)E).( .;—-jﬂ:[;rlul)",'

ve obtain s

1)...,6'(0)’ 2(1:2) Jl("' )w(O> ,"'

f (t-‘r)fd'r ‘l<t;’?
:_,°° TR (256)

B
.. ” 4
. v e
oo =
A . 1.
.-;_ -
L
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vhich is equivalent to Eg. (2.29) for this case. In a subsequent .'pa.pexj . l',
we shall show how Eq. (2.36) may be used to study the target. T of _

. Fig. a. ) ‘ . . . v M | "’\ '(
We now describe some simple illustrations of the general theory o
developed in this section. ~ . - 4 R |

Y } . .

. i
'
. '
: : ]
. lt‘
. t\
. L
P oo
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3 . .
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‘ t
i
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1 ‘.‘ s
¢
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' e
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'.;- 1nteracting through a8 spin-spin force described by the Hamiltonian

. h25- ‘ ‘

III. EXAMPLE OF TWO COUPLED SPINS

We consider a system of two nonidentical spin-% perticles

toos

"' The parameter: a may depend. on the distance between the particlés, but - .

" UCRLeLLI4d e

,.‘a~we'shall not be concerned with this bere. Thg eigenstates of E will'Jﬁgiﬁﬁ‘

' ::Jflbe calied.,xo and XY (v = 1;‘0, -1) where !
L ; . . i
4'., . - . ) Lo . ‘,‘
L BXg = (-3a)X, = E; % » T DA
coemd . T . L e (3.2) U
mx . ax = B Y. S L '
" At any time t the state of the system is described by
. - ‘ : : L |
B R ~iE. %t S
W(t)  = e O 8y Xo + e * 4av xY . ‘ ' "(353)
l . ) . ~ N .

'-‘7, Projection operators for particle 1 to have its spin parallel or . ,Tv;fff

i

' antiparallel to the z-axis are

(1) - . “z(l)

E

(1)

where o is:phe usual Paull spin operator for particle 1. Suppose -

o (l .. -
- NOW wWe measure'at a time t the operator E ) and then at a later :

L
Q )

the Operator E 0 In the notation of the previous section;a"

(l)= and J ( ) We have then for (J (t )J (t ))

time ta

we have Jl,= E

“the’ reault

£ 7 et R - , .(3.1#)'-"\""
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P

- L ~1H(t5-t,) ~iR(t,-t, ) - 5
('72("'2)‘71(*'1)?_, = <e z (1) Wt l), _Fl) ‘ t *(1) (t@ ol

(3.5) .
» . ‘ - A .‘ ‘ | .{. .

It is obvious by inspection that in the limit t2~* tl we have o L~
(Ja(ta)Jl(tl))'* 0 , which is physically réésonable, since the first ~
measurement forced the spin of particle 1 to be up, and surely we'must",; i,{ ‘L

. require this to be true just after the measurement. The complete - ' CL o

- expression for <Ja(t2)31(t1)>. 1s easily evaluated and we find - ... . O o

: ‘%“2”1“1” = [a exp[~ iEotl] + a° expl=- iE, ¢ ]]

' (E, - E)(t, - t,) o
X sim® —2— 21, (3.6) - -

Considerations based on this same physical system of two coupled -

l . ‘..' ~;.\'

'spins serve to clarify further some of the remarks made in connection _V'I e

~ with ouribasic prescription for the wave function following a partial

. g . o et e e e v e are e

measurement, Eq. (2.12). In particular, the effect on operators not - _:lh.,
.- measured in the first instance (called g in Section II) may be studied

by imagining first forecing the spin of particle 1 into a definite state,

(1)

say spin-up, so we take for Jl’ as- before E , and then ask for the .

expectation value over the ensemble of the z~component of particle 2

at a later time. In such a case we have J2 (2) , and invite

ourselves to consider . X .. ‘
. [ -1H(t,-t ) : -i.H(t -t.) L
(Ja(ta)sl(tl-)) _,'-=_ (9*; S 2 VM), 6 (2_), 2 (l)w(t )) .

R T L. T . . . - ’

.
.
e - e
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" We find, after an elementary calculation,

2 1
'. different from the expectation value -of ‘az(g)i in the state v(t

: ¢ 2
. x 1
'.f(Ja(ta) I (%)) = |a l -3 [a exp[ Bt ] + a° ‘exp[ ~1E, t ]I |
. ’ ' . X COS(EJ“- EQ)(tQ bl tl)' - (307) : ., '_".:
. 'In the limit as’ t, = t, this quantity ia in general dranmicany."'

l)

31‘ before the'meﬁsuremeﬁﬁ,'namely, . ' ; 
<"z(.2))' "--6’(-"1)? "z(:e) “’("J» o o ii'," e
: , - ST
12'- _,12_'.' * o : o "‘i )
= |la*] -« [a"7] ‘= 2Reda; a exp[i(Eo - El)t 1. :
A G 8) .

" Thus, there is no qpestion that (¢) before the measurement of Jl isjff- 

equal to () afterward, even in situstions that are not slightly
‘- pathological, as was our example in Section II of measurements of J2
and Jz'. .

In spite of this example we maintain that our description of
‘consecutive measurements is the reasonable one, To see this we consider

. now a situation where we start off our system of two spins in the triplet

state for which -JZ = +1, i.e. both spins up. We take for the operator : fﬁ

(1)

1 the projection operator E . ,:where~f‘

J




’ i- o
. H
» - (1’
. . - : e Y . : ¢ - e . A Lt
. I . * < ‘o . - . 3 . .
.y . . s, te . : R R A
SR AR VR o , UCRL-111k . o i g
LT A0 B SN < . coe : . N . . IR
. PR 4 ' . R e e
a & o B 1
-26- ¢ . ot P A
. - o 1
, . c. + i :«.i(‘. I
et
{
.
f
.

EL 1s'a unit vector, Lﬁ,n (sin 6 cos ¢, sin 6 sin ¢, cos 6)] fand";;
(2) ' 2 . ;

J2 the projection operator E+ = (1 + v, )/2 N ‘ AEE N B
First, we find the probability P(27T| 1 £) that particle 2 has ‘¥ [

and

. 1ts spin.up at time t, when it was found that at time t, particle:l -1 .

A e

** " had its spin parallel to B, . According to’Eq. (2 17) this is VfJ.ﬂ_>;,

p(2 T‘Illﬁ).'e xt, Eﬁ() ()(t (l) ’)( )-Z

R
— . -

" which is easily evaluated to give - -- o <t }l'be;ﬁ{f‘_;

. LT . . A - E | " . .::." ‘” : g
P(2T| lg} ‘= COsag + sinag_cbsa (El . O> (te - tl) . {l.,‘ *g)

. - o
L T A
(3.20).% =~ %
[ .t oy AT
. '. . A I_!_ oot
P R Nl
i, A7)
P

;~ﬁ'In:this cagse the orientetion of spin 2 is not immediately affecte& by Lo

’l!the meas&rement of the orientation of épin 1. That is, the probability ‘:1[! %Qi
" of finding the second spin up Just after the measurement is unity, as nf*rli' E

'ilwe would expect intuitively.

The correlation function (2.21) is found in this case to be

B i | E - E - .
(J2(t2)Ji(t1)> = °°B? Z [cos2 % + sin2 5 ¢ 2 ( 1' ;(t t ) } .

(3.11)

" As %

s . R RN -
- ST e e e e S o e — —

o approaches tl , we find 'cosa 8/2 as the value of the correlation'u'

‘functions This is simply the probability tbat the initial spin of

particle 1 ie to be. found along the direction ﬁ o 5 - ..;}: R - <
I . ]

: e LR

-.'t"‘ l

Tl |




- m

. " For the general state,

T ) = e el -Bgt W + exp.f-m t) (al"l R l)

,_ o (32
S | T2 (1) | |
"+ the correlation function (E (t ) E (tl)) is given by

gDl - e entng < 8 e

e
Ve 2\/3

2 {a® +cos0a exp(1(E, - E )t.] + sin. ® EL—-el+ sin 0 £ -1
21 . (o} 1 0’71 i > P

b =

i

expli(E, = EDt,] | - o R
0 1771 o... ,
- — cos 8 a” +a, exp[i(El - Eo)tl]- .

.

|

o ig | ' -i¢' .
- 8in 6 2= at 4 sine & -1

- and the special case. qpoted above, Eq. (5 11), corresponds to the

- vanishing of all a's except al, which i unity. In general, therefofe;#Vfﬁ.if

3 the observation ‘of the orientation of spin 1 with respect to the axis
n has an instaneous effect-on the state of the ‘second spin. With the
interpretation of an observation as making a. selection among members of

._: . »~-;>A '»-v- ‘.[4_.'-’ '-.‘) -
an ensemble, thia 15 in no sense surprising, .Qf{:" ‘ vt

. ‘ P
5“ :
BE

8 exp[i(E E)tl] S

()



to a problem described by Fan09 as an illustration of the Haﬁbury-Brown AT
R and Twiss intensity correlation. Fano considers a physical system
" composed of our atoms-~ &, b, ¢, and d. At the beginning of the experi;”'if
. are each in an excited state. During the course of the experiment, a -};‘“'l
.-~ Fano calculates the probability that the radiation from a and b will

'photo»ionize both atoms ¢ and d . Even in the 1imit of a small

" of jonizing the atoms individually.

UCRL-11144

¢ ° . IV. CORRELATED INTENSITY MEASUREMENTS o e g

In this section we apply the principles introduced in Section IIL'

10

.ment, corresponding to time t = O , the two. identical atoms a and b";}ﬂ S

and b undergo radiative transitions to their respective ground states. %;;Ef;,

n -

H
+
1

{
. . ) i
probability that either atom is ionized, the probability that both are

- ionized does not reduce to the "clagsical® product of the probabilitieéw%:.;gizxuf

'The experiment is illustrated in Fig. 3. Atom a 1s located Aiu72§x?5,

. . : : " ¥ o

| ,'at postion 2y b is at Zp etc. The distances R ab’ . R ac f etc. Yﬂ-’?{ﬁ“

Y ~". between atoms are assumed to be very large compared with the wavelength {f}«;ﬂf
. of the.emitted'radiation. In the interest of later geometrical . ';‘gf.}§
‘ ' R
simplifications we assume that Rob and Rcd are much less than Rac PP

etc. Also, to avold irrelevant .complication we ignore all details of
the atomic processes of radiation and absorption, lumping phese effects
in unevaluated constants. (The reader who desires a detailed account
should refer to Fano's ﬁeper.) Finally, we shall suppose the "radiation"
emitted by either.atom a or bv to be a particle satisfying Bose-Einstein,f'
or Fermi-Dirac statistics. _The energy.of" auch a particle will be called

\

e(k) “y corresponding«to a momentum k k. If the particle is a photon the.

¢ e e
anauu . R e )
, o [ o
, LR .
. L YU e

-

BN
- e —————— -t -

b e r—

v



L kinetic energy of the emitted particle is written as ¢

‘Eq.(h iy .

) " where e(p) =€

o ~descrives the radiation emitted by the atom - b at 'z,

- | ' UCRL~1114k.
=29= " '

) énergy is e(k)A ke; for a particle of rest mass m we take e(k) e k /2m. ::ﬂ;{

‘5 The energy liberated by the radiative transitlon and converted into .

(VIR : .
The ﬁave function for the particle radiated by atom a  13;9f f;"'
o ,':«the fomll; : o o ’
ﬁ@”(x 1") = ”‘7 o : .
(2«) k) » g +iz

T . .
X {expl-1e(k)t] - expl-i(ey - 1 5 )t]) . D

) j%i;?_Here X is the coordinate of the radiated particle, 1/T is the 11fetimel'i_;-;‘
. ffv,of the atomic transition, aﬁd 7 is a constant that is proportional to yﬂiis"
. .. the proﬁability amplitude for the transition. We have ignored the sPin, ;;;ié:iaw
o g any, of the radiasted particle in Eq. (L. 1), which for our present d

- argument is an inconseqnential idealization.

In the Lmit that h&’ 3al 18 large, we readily obtain- from

ga(,ng,t),;_ o o - for ‘ I'g‘c;.- ;z%_l. > v _1-,"_,
y}'(gs,t) T—LB--]- exp i[la-‘;gal -e(p)t}}'eip [gf:‘-%lgf;gal)] :‘;;-'e'i:f-v}
Legglv. SR

"(ue)..

04 and v = de(p)/dp . An expression similar to Eq. (h 2)

b
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. To describe the radiation emitted by both a and b, we_introduce~’5

the wave function12

¥(t) = \/—% [ia(esl,t) Folxot) & F (%) Q’b(ggl,t)} , (#.3)

where Xy and.1§2 are the coordinates of the two emitted partiéles,'and'..
the + or « sign is to be‘used if the radia@ed particles satisfy
Bose-Einstein .or Fermi-Dirac statistics, respectively.

Following Fano's analysis; we might now calcuiate from Eq. (hjﬁ)
the probability that atom c¢ absorbs a radiated particle at time 'tl,

{y
and atom 4 absorbs the other particle at time t, . To do this in a

detail, we shoﬁld have to evaluate the transition amplitudes for absorption.

We shall avoid this complication by doing a slightly different calculation{'.i

To describe this,ileﬁ us first imagine enclosing the atomg c
and d in the respective very small volumes & Vc and & Va . We shall
then fin& the probability P(4, ta; c, tl) that ‘one of the radiated
particles is ih 5 Vc. at time t, and that the other particle is in
5 Vy o *
actually absorbed may be obtained from P(d, t,; ¢, t,) on miltiplication

at a later time 1t The probability that these particles are
by the.respective probabilities of absorppion, given that the paf%icles
are in b Vc‘ and 5V . ‘

To evaluate P(4, toi ¢, tl) from Eq. (2.19) we must first
| construct the projéctibn'qperators Ec and é%_: g which vanish
unless a part;cle is?inj b_Vc vor ‘s.va, respectively; Then from

Eq. (2.19) we obtain
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P(‘;" to c, ’“1)~. = <‘¥(0},"Ec(tl) E,(t,) E(t) W(OD | (h) L

T L

"~ The projection operators. Ec end Ed may be'constructed‘in terﬁs],o’ﬁ

" " of the projection operators s

]

e (x)

;‘v

- etc., where the integrals extend over the volumes 5 V and .8 Va

- respectively. Then, e have BT o : ' ~'j,]_"”

R el vl

: i . . . 1,_‘_“(“'6)._ s

E=e()+e(><)

To see that these are projection operators, we note that ,

ESS = e (xl) + e (xa) + 2e (gi) e (x )

". Because we have assumed that.the v°lumes (3] V and 5 Vd are very . small, o

:\; the term 2 e (x ) e (x ) here is negligible when 1t appears in ‘the
‘integrand ‘of Bq. (L.b). ’ _ ‘ |
» In the Heisenberg representation, the operators (h 5) are of the ':f

w ‘e s - ,A N
e '_- . ot g wlo . ‘ PR O
. oS oont L W e e

form




' =52
ez ¥) = emlint] e () expleint] o
ec(ac.e, t)‘E e>cp[iH2t] ec(a‘ce) exp[-iﬂet] ,

etc., whexe Hl and H2 &are the respectives Hamiltonians for the

- radiated particles 1 and 2 . Since 'lj,hese_.'. particles do not interact,

"-we have for any times ty and ty s

[ec(as,l, t) 5 el t2>] R R RS A

i . “ etc.

" Using the commutation relations (4.8) , we obtain -

i)

The "small terms", which we shall neglect, afLre',o‘f the form .

eolXy) %) eg(xy, ta) e (Xp ) , e"‘c';"r_
and ‘ ' :

ec(agl, '81) ‘.ed(\’fa.’ te) ec(v’ﬁl’ tl) , efc.'
Such terms all correspond to passage of é given‘pa:tic;e'through both
volumes & V. and &V, . In the limit of small &V, and B Vg,
and assmning that"__tt.xese} are not precisely in‘,‘L‘ix.xe with g‘ither‘radiating

atom, "f.heée te_rms‘:arev neglig'ible..lﬁ,‘ SRt

| '(M.'(i -

+ small tems .

)

T,
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Neglecting the "svall terms", then, and using Eqs. (l+ 9) end .-' R

(k. 3) in Eq. (l& h), we immediately obtain

P(d "2' ® 1) \/“1 f Y2 9’:(2.’1{"1), UACACY jbf(ﬁ'effaz_gb(_la_"f’é).,.ff""l4
R L ' - S

4

NEN

'j':..'."‘.,gbf(h:tli Filgyrty) FNorte) Fulyort)
) Bl Bt Aty

.“

e

‘:t 271, (,,,,.1:12 )f(mq,:tl) Y,T (_Q,t ) @;(ye,t ) SRS
o ' (4.19)' L

| '.?f_Since we have assumed that d V and ) V are very small, we may

. evaluate |thia as |

v

. . . I . - . . 2 - i . -
. o _. ’ .2.2 ! - - -R- - - B
P(d,te,. q,tl) = 8V, &V 2<R2 exp[ I‘('t'.2 v)] exp[ I"('t;:L v)
XArig °°§~[P<Raa'*'%a * Rye *'Rae)] o (an) S

Here we have set R =~ Rad s Rbd ~ Rbc}? Rac | ip a}}. but the oscillatin'g.} '

- temn.

Equation (h.li) corresponds to Fano's result. It illustrates
the mutual interference of the two absorption processes , even in the _
. limit of a vanishing probability (1. e, 8V, & V., - 0] for absorption. IS )

d .
This is closely related to the Hanbury-Brown and Twiss experimentlo
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‘o the scattering experiment proposed in Ref. 1. We note that

expression (4.11) is symmetric in t, and ti and so is valid for all - .:‘1??1

- values of t, and tl - This is a consequence of our use of very:smgli;jf"'; Bl

volumes 5V ' and & V. . o o N
c 4 o - .

'In the second paper of this work we ghall be concerned with ‘::;Aifrf

_ practical applications of the phenomena studied here to scattering. . - _;i”;';;ff

" experiments. We shall, for example, describe corrections to Eq. (h.ll)_“:‘ 3
o B . . i A SN .E‘
for finite sized volumes BV, and © Vd , corresponding to counters .. T,
'~ﬁ¢used in a particle beam. We shall also discuss fluctuations and the ' 3L S :

: autocorrelation function for a single-particle counter. o ‘ ,.;1 :

We should like to express our thanks to Professor E. P. Wigner

for several conversations in which he suggested that the overlap function

:.(2 7) might be a maximnm for "morally best" observations.
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The information obtained from a count. is that a particle is in the‘ﬁ

counter. . If this ia the case, E (tl) is unity. If no particle

" 1s in the counterf 3Ek(t ) and J (t ) ‘both vanish. ‘Thus, we

o

Obtain.Eq4'(2;35)}“y?;"::'j o
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Strictly speaking, the wave function (4.3) should also be symmetrized

in the atomic coordinates and wave packets constructed to describe

i

the localization of the atoms near z_  and 2, + As long as oo ';:: .

wg .

thesé wave packets do not overlap this symmetrization is of course

‘irrelevant, since it has no effect on our calculations.

Such terms would not appear in Fano's calculation, since his particleslfihfl

are absorbed and cannot subsequently.reach the second term., -
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) Figo 20.‘

Fig. 3.
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FIGURE LEGENDS

Illustration of s;multaneous ﬁse of narrow- and broad~band
recording devices.
Analysis of a scattering experiﬁent&

Illustration of Fano's problem.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. '

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
~of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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