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Abstract

Accurate and reliable data are crucial to research investigators and clinicians who

evaluate growth and plan treatment on the basis of measurements from x-ray films.

Current methods of data collection involve locating anatomical or reference features

(landmarks) by hand on analog x-ray cephalograms. These operations are labor intensive,

time-consuming, dependent on the characteristics of operator training, and prone to error.

These deficiencies are the impetus for developing an automated system. One concern with

most automated programs is that they rely on a written definition and a precise algorithm

for landmark location. For this reason, they are confounded by the fact that landmarks

vary in shape, structure and gray scale characteristics from patient to patient and at different

stages of growth or treatment in the same patient.

Neural networks are a method for solving this problem. By using a set of training

images, the network is trained to locate landmarks using the characteristics of the landmark

and the surrounding image without an explicit definition or locating algorithm. Once

trained, the network is able to process data outside of the training set with a high level of

performance, particularly on images of later growth or treatment of other patients. The

network in this thesis is distinguished by two dimensional layers, selective connectivity,

supervised training and a standard backpropagation algorithm.

Two sets of experiments examined the network's ability to locate reference and

anatomic landmarks. The first set of experiments with reference landmarks also

investigated two different types of network connections and a study of the number of



hidden layers necessary for optimal performance. The best results were achieved when the

network used a 5x5 connection scheme and one hidden layer. The network trained to the

characteristic distribution of the training judge. In fact the network picked the same pixel as

the training judge in twenty seven of the thirty six images. This demonstrates that the

network can be trained to the particular biases of an individual and it seems highly likely

that a network trained to a better standard would have better results.

The second set of experiments explored the network's ability to locate a specific

anatomic landmark: "upper incisor edge". The network located twenty nine of thirty six

incisors despite variations in anatomy and patient age. The network was able to locate the

incisor successfully on some but not all types of images not represented in the training set.

This demonstrates that the training set need not be all inclusive in order to perform well.

The network was able to train to locate both the reference marker and the incisor

despite differences in anatomy and patient age. While there is a significant difference in

shape between anatomic landmarks, the quality of the network results is largely dependent

on the design of the training set. Given a properly designed training set the network will

perform well with other anatomic landmarks.

Chairman: Dr. Sheldon Baumrind
University of California, San Francisco

iv



Acknowledgments

I would like to thank my mentor Dr. Sheldon Baumrind who whole heartily

supported and encouraged my graduate research. His enthusiasm and energy were

invaluable in creating an environment in which I could freely explore my ideas. He not

only provided the opportunity to complete my research (enjoyably!) but also encouraged

me to pursue other academic interests and to look beyond the immediate future to long

range goals. I will always value our discussions on a variety of topics including research,

history, politics, and human behavior. I am very grateful to my two other readers, Dr.

Larry Stark and Dr. Jitendra Malik, who have been very helpful. My discussions with

them always brought up new questions and ideas. I particularly appreciate my committee's

help in making this thesis more coherent and unambiguous.

I would like to acknowledge the stimulating discussions and support of Dr. Robert

Gould, Dr. Harry Genant, and Dr. Vojtech Licko. Randy Berndt has been an enormous

help with so many details during my graduate studies; always coming up with a solution to

every problem.

Finally I would like to thank my parents Juanita and Richard Baker, my husband

Andy Liu, my friends Romella Husain and Kerstin Pfann, and my sister Desha Baker for

their constant support and love. They have always encouraged me through the tough spots

and celebrated with me over the triumphs!



Table of Contents

Abstract............................................................................................. 3

Acknowledgments................................................................................. 5

List of Tables...................................................................................... 9

List of Figures..................................................................................... 10

1 Introduction..................................................................................... 1

Landmark Location....................................................................... 2

Reliability Studies........................................................................ 3

Automated Landmark Location......................................................... 4

Neural Networks......................................................................... 5

Research Objectives...................................................................... 7

2 Neural Network Design....................................................................... 9

General Neural Network Description.................................................. 10

Network Layers................................................................. 10

Activation level of nodes....................................................... 11

Network connections........................................................... 12

Learning Procedure............................................................. 13

Network Model........................................................................... 14

Network Layers................................................................. 14



Inter-layer connectivity......................................................... 17

The generalized delta rule....................................................... 20

Application of the network.............................................................. 22

3 Implementation ................................................................................. 25

Materials................................................................................... 25

Images............................................................................ 25

Hardware......................................................................... 28

Software.......................................................................... 28

Method..................................................................................... 30

Preprocessing and Enhancing Digital Images................................ 30

Single-Pixel Processing............................................... 31

Neighborhood processing............................................. 31

Optimal Enhancements for Craniofacial X-ray Imaging........... 36

Calculations of Standard Deviations.......................................... 37

Landmark Definitions........................................................... 38

Training sets..................................................................... 40

4 Criteria for Evaluating the Success of the Network........................................ 43

Determination of the Best Estimate..................................................... 44

Assessment of test images by the Training Judge........................... 44

Assessment of test images by Three Judges................................. 49

Determination of the Confidence Interval.............................................. 53

1971 Baumrind and Frantz Reliability Study................................ 53

1991 Baumrind and Baker Reliability Study................................. 56

Summary.................................................................................. 58

5 Network Experiments -- Results and Discussion........................................... 61

Location of the Test Cross.............................................................. 61



Location of Reference Markers (Fiducials)............................................ 62

Results of Experiments with Fiducial......................................... 63

Examination of Connection Schemes and Hidden Layers......... 63

3x3 Connection Scheme...................................... 64

5 x 5 Connection Scheme .................................... 70

Binary Threshold....................................................... 71

Discussion of Experiments with Fiducial..................................... 84

Location of an Anatomic Landmark -- UIEdge....................................... 88

Results for Experiments with the UIEdge.................................... 89

11 x 11 pixel training images......................................... 90

Normalized Images..................................................... 91

Sobel Images............................................................ 91

21 x 21 pixel training images......................................... 92

13 x 13 pixel training images with averaged borders.............. 92

Discussion of Experiments with the UIEdge................................. 108

6 General Discussion and Recommendations................................................. 110

General Discussion....................................................................... 110

Summary.................................................................................. 113

Recommendations for Future Work.................................................... 113

Bibliography....................................................................................... 116

Appendix A. Software User's Guide........................................................... 122

BIBASE................................................................................... 122

Listing Files............................................................................... 124

Network................................................................................... 125



List of Tables

Table 1. Training judge's standard deviations for replicate estimates of fiducial and

UIEdge on thirty six test images................................................................. 46

Table 2. Three Judges' standard deviations of estimates for fiducial and UIEdge on

thirty six test images. ............................................................................. 50

Table 3. Estimation of human errors for UIEdge on original x-ray films from the

1971 Baumrind and Frantz Reliability Study.................................................. 55

Table 4. Estimation of human errors for fiducial and UIEdge on (a) digital images

and (b) zoomed x 2 digital images from the 1991 Baumrind and Baker Reliability

Table 5. Summary of standard deviations reported in terms of pixels..................... 60



List of Figures

Figure 1. Diagram of a generic neural network with one hidden layer...................... 11

Figure 2. Diagram of the layers of the network model....................................... 16

Figure 3. The two connection schemes used in this thesis. (a) The 3x3 connection

scheme. Pixel xij and its eight nearest neighbors are connected to pixel yijin the

next layer. (b) The 5x5 connection scheme. Pixel xij and its 24 nearest neighbors

are connected to pixel yijin the next layer...................................................... 19

Figure 4. Diagram of the input into a single node. The node yj could be either an

output node, or a hidden node................................................................... 20

Figure 5. Application of the network to an Mix M image. Every pixel p in the final

output image is the result of the summation of results of pixel p's output in nine

subimages that had been forward propagated through the network......................... 24

Figure 6. A digital x-ray cephalogram ......................................................... 27

Figure 7. The convolution of a filter with an image......................................... 33

Figure 8. A border averaging scheme. The inner 9 x 9 pixels are maintained at full

resolution (in dark gray) while the pixels in the border of the 13 x 13 image are the

average of a 3 x 3 pixel region in the original image (in light gray)......................... 35

Figure 9. Examples of three training input images (a) fiducial, (b) 11 x 11 UIEdge,

(c) 21 x 2.1 UIEdge................................................................................ 42

Figure 10. Training Judge's replicated estimates of fiducial on 36 test images........... 47

Figure 11. Training Judge's replicated estimates of UIEdge on 36 test images........... 48

X



Figure 12. Three Judges' estimates of Fiducial on 36 test images.......................... 51

Figure 13. Three Judges' estimates of UIEdge on 36 test images.......................... 52

Figure 14. Distribution of estimating errors of the dental landmark UIEdge from

the 1971 Baumrind and Frantz Reliability Study.............................................. 54

Figure 15. Criteria for evaluating network's estimates of fiducial.......................... 63

Figure 16. Network location of fiducial plotted with respect to three judges' mean

for 36 test images. Network used 3x3 connection and zero hidden layers. ............... 66

Figure 17. Network location of fiducial plotted with respect to training judge's

mean for 36 test images. Network used 3x3 connection and zero hidden layers......... 67

Figure 18. Network location of fiducial plotted with respect to three judges' mean

for 36 test images. Network used 3x3 connection and one hidden layer.................. 68

Figure 19. Network location of fiducial plotted with respect to training judge's

mean for 36 test images. Network used 3x3 connection and one hidden layer........... 69

Figure 20. Network location of fiducial plotted with respect to three judges' mean

for 36 test images. Network used 5x5 connection and zero hidden layers................ 73

Figure 21. Network location of fiducial plotted with respect to training judge's

mean for 36 test images. Network used 5x5 connection and zero hidden layers......... 74

Figure 22. Network location of fiducial plotted with respect to training judge's

mean for 36 test images. Network used 5x5 connection and one hidden layers.......... 75

Figure 23. Network location of fiducial plotted with respect to training judge's

mean for 36 test images. Network used 5x5 connection and one hidden layer........... 76

Figure 24. Network location of fiducial plotted with respect to three judges' mean

for 36 test images. Network used 5x5 connection and two hidden layers................. 77

Figure 25. Network location of fiducial plotted with respect to training judge's

mean for 36 test images. Network used 5x5 connection and one hidden layer........... 78

Figure 26. Test image and network output for 5x5 connections and zero hidden



Figure 27. Test image and network output for 5x5 connections and one hidden

Figure 29. Network location of fiducial plotted with respect to training judge's

mean for 36 test images. Binary thresholding was applied to both training and test

images. Network used 5x5 connection and one hidden layers............................

Figure 30. Criteria for evaluating network's estimates of UIEdge.......................

Figure 31. Network location of the UIEdge plotted with respect to three judges'

mean for 36 test images. Network used 11 x 11 pixel training images..................

Figure 32. Network location of the UIEdge plotted with respect to training judge's

mean for 36 test images. Network used 11 x 11 pixel training images..................

Figure 33. Network output when trained with 11 x 11 pixel images. Successful

locations of the UIEdge.........................................................................

Figure 34. Network output when trained with 11 x 11 pixel images. Network

located the edge of the upper lateral incisor..................................................

Figure 35. Network output when trained with 11 x 11 pixel images. Patient's

orthodontic fitting was selected................................................................

Figure 36. Network location of the UIEdge plotted with respect to three judges'

mean for 36 test images. Training and test images were normalized to full gray

Scale capabilities. Network used 11 x 11 pixel training images...........................

Figure 37. Network location of the UIEdge plotted with respect to training judge's

mean for 36 test images. Training and test images were normalized to full gray

Scale capabilities. Network used 11 x 11 pixel training images...........................

Figure 38. Network location of the UIEdge plotted with respect to three judges'

mean for 36 test images. Training and test images were convolved with a Sobel

filter. Network used 11 x 11 pixel training images.........................................

...94

..95

..98

xii



Figure 39. Network location of the UIEdge plotted with respect to three judges'

mean for 36 test images. Network used 21 x 21 pixel training images. ................... 104

Figure 40. Network location of the UIEdge plotted with respect to training judge's

mean for 36 test images. Network used 21 x 21 pixel training images.................... 105

Figure 41. Network location of the UIEdge plotted with respect to three judges'

mean for 36 test images. Network used 13 x 13 pixel averaged border training

images. ............................................................................................. 106

Figure 42. Network location of the UIEdge plotted with respect to training judge's

mean for 36 test images. Network used 13 x 13 pixel averaged border training

images. ............................................................................................. 107

xiii



Chapter 1

Introduction

The treatment of craniofacial anomalies and dentofacial malformations relies heavily

upon the interpretation of information from x-ray images of the skull. Measurements made

from these images are used to evaluate and assess both normal and abnormal growth of

bone and teeth structures. These measurements are dependent on the accurate and reliable

location of anatomic landmarks. When examining x-ray cephalograms (images of the head)

for diagnosis or research, anatomical features and reference markers (landmarks) need to be

located on successive images. The current method of data collection involves locating

landmarks, by hand, from analog x-ray cephalograms. Relevant distances and angles can

then be measured for analysis purposes. These operations are labor intensive, time

consuming, dependent on the characteristics of operator training, and prone to error. These

deficiencies are the impetus for an automated computerized system of landmark location.

In addition, storage space for the large amount of medical data and an efficient means of

retrieving images are leading investigators and clinicians towards the use of digital images.

Another benefit of using digital images is the ability to enhance and process images to

emphasize or clarify a particular aspect of the image. Digital image processing can then
1



make diagnosis, treatment planning, and research, more efficient and more reliable for

craniofacial clinicians and researchers.

Landmark Location

The work for this thesis was done in the Craniofacial Research Instrumentation

Laboratory of University of California, San Francisco headed by Dr. Sheldon Baumrind.

The standard method of landmark location in our laboratory involves making "acetate

overlays" or tracings of the original x-rays upon which the location of landmarks is

indicated (including reference markers). A Sumagraphics ID series digitizer is used to store

the information in a data file. All acts of landmark location involve replicate independent

assessments by different judges. Baumrind and Baker [1, 2] have explored a variety of

forms of digital image formats and the reliability of human judges locating landmarks on a

PC based system.

Often a successful way to teach a task that is difficult to put into words is through

trial and error. Judges who locate landmarks are trained through a process of iteration.

The definition of a landmark is discussed and the method for locating a landmark is

learned. The judge then attempts to locate the landmark on a series of images. The

locations selected by the judge are reviewed and discussed. If there are discrepancies the

judge is retrained by discussing the definitions of landmarks as well as possible

confounding issues of particular anatomy. Ambiguity in the definitions of landmarks can

cause major problems with a judge's ability to reliably locate landmarks [1] One concern

with automated algorithms is that since they rely on written and precise algorithms for

location they will not perform well in cases when the landmark is difficult to define.

When human operators locate landmarks on x-ray images, systematic errors are

associated with each landmark and each judge. These errors are the result of the specific
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features of the individual landmarks as well as the individual judges' conceptual and

perceptual definition of the landmark. The systematic errors are characterized by envelopes

of error for each landmark which differ both in size and in shape [3].

Furthermore, when several expert judges assess the same landmark on a series of

images, the assessments of different judges typically show systematic differences with

respect to the group mean. In point of fact, even the written definitions for conventional

craniofacial radiographic landmarks can differ among different expert judges. Further,

complications are introduced by the fact that landmarks vary in shape, structure and gray

scale characteristics from patient to patient and at different stages of growth or treatment in

the same patient.

Reliability Studies

Before adopting any new image medium, its ability to reliably replace the old

medium must be examined. Baumrind and Baker [1] (1991 Reliability Study) compared

the reliability of landmark location by five judges as a function of image type. Judges

located twenty-seven landmarks on forty-four analog x-ray films and on corresponding

(512 x 480 pixel) digital images. For many of the landmarks, the standard deviations of

landmark location on the digital image approximated those on the x-ray films. However,

digital images proved to be a poor approximation of the original x-ray films in regions

where the gray scale values saturated, particularly in the interior regions of the skull. Thus

an important finding from this study is that the digital medium was differentially acceptable

for different landmarks.

Another conclusion of this reliability study was that regardless of image type,

distributions of landmark locations vary from individual to individual. This variability can

be attributed to the ambiguity and discrepancies in conventional verbal definitions of
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landmarks as well as the vagueness of the operational recipes for locating them. In fact,

this result was also documented in a 1971 Reliability Study of landmark location [3].

Automated Landmark Location

The traditional approach to automated landmark location involves some form of

template matching or feature based correspondence [4–7]. Template matching involves

designing a filter or template which is passed over the image searching for a best match.

This procedure is highly landmark dependent and sensitive to rotation or distortions in the

image. For this reason, the variability of landmarks from patient to patient and the fact that

landmarks change within patients through time confound the filtering problem.

In an attempt to avoid this problem, several systems using different degrees of rule

based or algorithmic definitions, have been proposed to automate landmark location. Levy

Mandel et al. [8] proposed a knowledge-based expert system for automatically locating

landmarks. First, a global line-following or line-extracting technique is used to locate all

the existing lines and edges of the image. Then, a knowledge base is used to select the

relevant landmark location. Parthasarathy et al. [9] proposed an algorithm that used edge

enhancement to locate lines but then used feature recognition techniques, in addition to a

knowledge base, to locate landmarks. Both of these methods rely heavily on algorithmic

definitions (the knowledge base). The process of converting a written or verbal definition

into an algorithmic form invariably involves loss of information and may introduce errors.

The algorithmic definition involves relating every landmark to an edge or contour

occasionally losing the anatomic meaning in the process. In addition, such algorithms do

not take age or patient variability into consideration.

Parthasarathy and Tong et al. [9, 10] have developed an algorithm for landmark

detection based on feature recognition techniques. The essential aspect of their algorithm
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traces bony and soft tissue outlines. The program then defines and locates twenty seven

landmarks with respect to these outlines. They tested their algorithms by comparing their

results to those of an orthodontist on five images. Their expert determined that seventy five

percent of the automatically located landmarks were acceptable. Criteria for acceptability

were not given. In addition, the points located by the program were the closest

approximation of a landmark on an edge, not necessarily carrying any meaning of the

original landmark.

Neural Networks

The definitions of landmarks and the methods used to find them are frequently very

difficult to put in algorithmic format. To avoid a dependency on the algorithmic definition

of a landmark, I propose an alternative solution using neural networks to locate landmarks

[11-13]. This method is based entirely upon the information contained in the images. The

system I have designed identifies and locates anatomical or reference landmarks in a digital

image without an explicit definition or locating algorithm. Instead the system uses the

characteristics of the landmark and the surrounding image. Three properties of neural

networks make them viable solutions to the problem of landmark location on

cephalograms. First, by using a training set of images, the network can compute the

weighting coefficients which allow identification and location of landmarks. This feature

eliminates the need for the user to determine the necessary characteristics of a pattern or to

describe it in an algorithmic format. Second, once trained, these algorithms are able to

process data outside of the knowledge base or training set with a relatively high level of

performance. This is important because once trained on one set of patients the network

performs on either successive unseen time points or on other patient sets. Third, once the
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network has been trained, it is possible to disconnect or change many of the connections in

a network with little affect on the accuracy of the system. This is important for images with

noisy or variant data.

Neural networks have been widely applied to pattern recognition and classification

problems. Investigators have described the use of neural networks in a variety of vision

and image processing applications [14-19]. Applications include the XOR problem, speech

synthesis and recognition, and visual pattern recognition [20-21]. In the field of medical

imaging, neural networks have been used to either automate or aid in diagnosis. It has

been demonstrated that neural networks perform pattern detection of simple test objects

with better accuracy than human judges on radiological images [22]. Early work with

multiple adaptive matched filters included automatic interpretation of electrocardiograms

with the use of a self-organizing system. Okajima et al. [23] and Yasui et al. [24]

designed a system to classify the QRS complex of the EKG curve. Neural networks have

been used recently by Wang and Li [25] for edge detection on ophthalmoscopic images in a

decision support system, by Silverman [26) to segment Ultrasonic images, and by Chen et.

al. [27] to outline segmented areas on Magnetic Resonance images (MRI).

Only recently have neural networks been used to locate large structures on images.

Hutchinson has used Multi Layer Perceptron (MLP) systems to locate eyes on facial images

[28]. He was interested in transmitting only parts of images (eyes and mouth) in order to

transmit video information in real time through low-bandwidth channels. The criterion for

this system was to locate the center of the eye within a 4 x 4 pixel area around the true

value. This large criterion was acceptable in this case because the task was to transmit a

Section of the image containing the eye not actually locate the center of the eye.

Craniofacial research based on the location of landmarks requires a more specific criterion

and a smaller error tolerance. Hutchinson also tried preprocessing images with Sobel edge

detection, binary and median thresholds, and inverting the gray scale images to improve the

network performance. The technique of inverting the gray scale worked best (fifty seven
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of sixty images) since the pixel values of the eye on the original images were low, and

bright regions (such as glare from eye glasses) dominated eye information. The most

interesting aspect was that averaging the output of networks independently trained on

different preprocessing techniques improved results. Because there were no images on

which all networks failed, averaging the results of the two most successful individual

systems produced the best results: correctly locating the central region of the eye on fifty

nine of sixty images.

Because there is considerable inter-individual variability in landmark characteristics,

Curry [29] proposed a combined man-machine strategy for automating landmark location.

Landmarks were located manually on the first film of a series. Boundary detection and

transformation algorithms were then used to locate landmarks on succeeding images.

Curry showed that incorporating information from an individual patient and not just a

universal definition can improve results. This information might be data from a previous or

a stereo image. For example, manually locating landmarks on one film of a patient set

could be used to aid a trained network to incorporate the unique features of each patient.

Research Objectives

This thesis describes the considerations and development of a specific system

designed to identify and locate landmarks of interest using neural networks. The

automation of landmark identification would substantially reduce the total amount of time

required to acquire data. This work was tailored to a specific problem of craniofacial

analysis: the location of reference and anatomic landmarks on cephalograms. An

additional requirement was that the system be able to track landmarks over a longitudinal

series of images. Each series consists of cephalograms taken over a time period in which

significant anatomical growth and treatment associated change may be occurring.
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The research objectives were to:

(1) Develop a two dimensional neural network for landmark location;

(2) Identify the empirical problems of locating landmarks; and

(3) Develop and test methods for fiducial location; and

(4) Develop and test methods for locating an anatomic landmark.

The first phase of the project was the development of a two dimensional neural

network for landmark location. The network used two dimensional spatial information as

both input, hidden and output layers. Network design utilized backpropagation, selective

connectivity, and gradient descent training. The network was tested with a test cross

pattern on a sample image background.

The second step was the development of training sets for fiducial landmarks. I tried

several different training sets and investigated different aspects of the network connections.

This included a study of the number of hidden layers necessary for optimal performance

and the differences between two inter-layer connection schemes. I also evaluated the

effects of some preprocessing techniques.

The third step was the development of training sets for a specific anatomic

landmark. The landmark "upper incisor edge" was used as a first test of the performance

of the network on anatomical landmarks. I report how the application of thresholds,

normalization, and edge detection filters used to enhance images prior to training affected

neural network performance. A series of experiments evaluated the network's ability to

locate upper incisor edge when trained with different size training images.



Chapter 2

Neural Network Design

Neural networks were first mentioned in the mathematical models of McCulloch

and Pitts more than 40 years ago [30]. In the last decade, interest in neural networks has

arisen from the advancement of computer technology which makes implementation of

neural networks computationally feasible. Neural networks receive input data and produce

an output, but are inherently different from rule-based approaches. A priori rules or

descriptions of how an output is produced from a particular input are not required. Rather,

neural networks are characterized by a training algorithm which through a series of

iterations determines the appropriate correlation between a set of inputs and a set of

outputs. One of the most commonly used training algorithms is the backpropagation

algorithm developed by Rumelhart and McClellend [21]..

I will start this chapter by introducing some general concepts about neural networks

relevant to this thesis. These include: network layers, nodes, connections, and the training

algorithm. Following that, I will discuss the specific features of my network and the

reasons behind my choices.



General Neural Network Description

Network Layers

Generally, neural networks contain layers of three types (input, hidden, and output)

with a feed forward connectivity. The first layer is the input layer, followed by a series of

hidden layers, and finally an output layer (Figure 1). Each layer contains a number of

nodes which are the processing units of the network. In my model each pixel value in the

image is represented by an individual node in the input layer, and by corresponding nodes

in the hidden and the output layers. Thus each layer contains the same number of nodes as

pixels in the image. The network analyzes the combined interaction of these nodes. Each

node receives an input, processes it, and passes an output through a link to one or more

nodes in the next layer of the network. Each link or connection in the network has

associated with it a unique weighting coefficient which represents the amount of influence

one node has on another. The input layer receives values from an input vector or image

outside of the network, and passes these values on to the next layer in the network. The

hidden layers receive and send outputs within the system. Each output node sends a single

output value out of the system. In addition to incoming nodes, each hidden and output

node is also connected to a bias node. The bias node provides the learnable bias for each

hidden and output node. The bias node is always turned on (set equal to 1.0).
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—- |->

— `- —-

—- —-

Input Hidden Output

Network Layers
Figure 1. Diagram of a generic neural network with one hidden layer.

Activation level of nodes

The activation level of a node in the network can be calculated as a function of its

initial state and the states of the external inputs. In my model activation values are

continuous values in the interval [0,1]. The activity of any node in the hidden and output

layers is usually a result of applying a squashing function to the weighted sum of the inputs

into that node. Typically, the squashing function is a non-linear threshold, and in my

model, a sigmoid response with an offset b:

1

■ º-Lº-fi,€
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Conceptually, processing in the network occurs in parallel which means that for each pass

through the network the activation level of all nodes in a given layer is computed

simultaneously. In reality, this is only possible on parallel machines and not on typical

minicomputers or workstations.

The input stimulus is propagated through each successive layer of the network,

resulting in a value at each node in the output layer which represents the likelihood value of

the network. Eventually, the output layer produces the network's estimate of an output

vector or image. This process is called forward propagation.

Network connections

The manner in which a node of one layer is connected to nodes in the adjacent

layers has a strong effect on the responses of that node to an input. The two main

parameters characterizing the connections are the weights of the links between nodes and

the number of connections entering a node. The input to a given node is weighted by the

coefficients of the links between that node and the nodes from the previous layer. Weight

coefficients of the links in the network can be either positive or negative, corresponding to

excitatory and inhibitory connections, or zero which indicates no connection between the

two nodes. The absolute value of the weighting coefficient describes the strength of the

link between the two nodes.

The number of links into any given node is an important consideration. A trade off

exists between increased computation time due to an increased number of connections and

the additional information available to the algorithm as a result of the increased number of

connections. As the number of parameters, the nodes and connections in the network,

increases the number of possible solutions also increases. It is therefore essential to
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attempt to keep the number of parameters as small as possible while still maintaining

enough parameters to characterize the problem.

Learning Procedure

In order for the network to be useful, the appropriate weighting coefficients must be

determined. The advantage of neural networks is that the initial weighting coefficients do

not have to be predetermined. The process of changing these weights to the appropriate

values is known as learning. The learning procedure of the network is a two step process

using a series of training input/output pairs and both forward propagation and backward

propagation. During the forward propagation step, the input stimulus (training input

image) is propagated forward through the network, producing an output at each node in the

network and finally resulting in the likelihood values of the location at the output layer.

The backward propagation algorithm is an iterative algorithm designed to minimize

the mean square error between the actual output and the desired output. This involves the

adjustment of weighting coefficients according to some training rule. The backpropagation

algorithm used in this thesis is called the generalized delta rule [21]. First the residual

absolute error between the desired output of the network (training output image) and the

actual output of the network is calculated for each output node. Then this error value is

passed to each unit in the network and the changes in the weighting coefficient for each

connection into the output node are computed. The error in the next to last layer is then

computed and propagated back to the preceding layer. This process is repeated for every

layer in the network. At each pass through the training set (an epoch), the order of

training pairs is randomized so that no one pair has any more significance than any other.

Through successive iterations the network learns to associate an output with a particular

input configuration. This is similar to the way in which orthodontic students learn to locate
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a landmark on conventional analog films. The teacher shows the student a training set

consisting of the images (training input image) and then points out the locations of the

landmarks (training output image). In time, the student learns to associate a particular

location in the image with a particular landmark. The ability to adapt or learn provides

robustness to the network algorithm by compensating for minor variations in the

characteristics of processing elements.

Network Model

Network Layers

In my model, the input layer consists of an n x n array of nodes that correspond to

an n x n array of pixels in the image. The inputs to the system are the eight bit gray scale

values of each pixel in the image. Each hidden layer is also represented by an n x n array

of nodes. The output layer consists of a corresponding n x n image where the each value

represents the likelihood that it is the location of the landmark (see Figure 2).

Alternatively, I could have designed the output layer to consist of a single node

which indicated whether or not the landmark existed at the center of the input array. The

value of the output node would decrease uniformly as the center of the input window

moves away from the landmark position. This would have required much more care in

designing training pairs -- one would not only need to locate the landmark but also calculate

the distance from the center of the input window and an appropriately scaled output value.

This is reasonable for locating a general area in an image or if any pixel at a given distance

from the desired location is equally likely to be the correct location. However, the results

from reliability studies [1-3] show that errors in human location of landmarks are not
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radially symmetrical around their centers but rather have unique distributions for different

landmarks. Therefore, I chose an n x n output array which would designate the location of

the landmark anywhere within the training input [12].

An advantage of using an n x n output array is that the incorrect responses the

network might make may provide insight into which surrounding features contribute to the

error. This information was in fact used to help design the training sets. I also thought the

constraint of a single output node would be too limiting in a man-machine interface where

the different likelihood values of a number of pixel locations would be valuable

information. Using the network output as a weighted guide the human operator could be

aided in his or her determination of the landmark.
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Ouput

Network Layers

Figure 2. Diagram of the layers of the network model.
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Inter-layer connectivity

The model was restricted to bottom-up processing. This means that only nodes in

level n send input to nodes in level n+1. Nodes were not allowed to feedback into previous

layers. This made it easier to keep track of which inputs were affecting a particular output.

Most neural networks are fully connected; meaning every node in layer n is

connected to every node in layer n+1. However, this requires large training sets on the

order of one or two hundred images [22]. Our image database contained 180 images that

were used to train and test the network. Because I was concerned with limiting the number

of nodes in the network, two connection schemes were examined. These were loosely

based on the idea that the field of vision should be kept as small as possible in the interests

of minimizing parameters. However the number of connections will have to be increased if

the object of interest increases in size [31]. In both schemes, each node xij in layer n was

connected to its corresponding node yij in layer n+1. In the first scheme, a 3x3
connection, the eight nearest neighbors of node xij

*i-1j-1 *ij-, *i-1}-1

*i-1; **1j

*i-1}+1 *#41 *i-1}+1

were also connected to node yij.
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In the second scheme, a 5x5 connection, the twenty four nearest neighbors of node xij

*i-2.j-2 *i-1j–2 *■ -2 **1j–2 *i;23–2

*i-2.j-1 *-ij-, *y-, *i-1j-1 *i-2}-1

*i-2; X■ -1; **1; *i;2;

*i-2}+1 *i-1}+1 *i;+1 *i-1}+1 *i-2.j+1

*i-2.j+2 *i-1}+2 *#42 *i-1}+2 **2]+2

were also connected to node yij. These connection schemes are graphically depicted in
Figure 3. While these connection schemes limit the amount of information each node can

receive, they reduce the amount of time spent processing and the amount of memory

necessary to encode the network.
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Layer n Layer n+1
3x3 Connection Scheme

(a)

ij

Layer Il Layer n+1

5x5 Connection Scheme

(b)

Figure 3. The two connection schemes used in this thesis. (a) The 3x3 connection

scheme. Pixel xij and its eight nearest neighbors are connected to pixel yij in the next layer.

(b) The 5x5 connection scheme. Pixel xij and its 24 nearest neighbors are connected to

pixel yij in the next layer.
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The generalized delta rule

The generalized delta rule changes weighting coefficients in proportion to the

difference between the desired output and the actual output. Assume that the actual output

of the system is a vectory0, y1,...yn and the desired output vector of our system is do, d1,

...dn. Initially by forward propagation, one output node (see Figure 4), yj (j=0,...n) sums

N weighted inputs xj (j=0,...n), and passes the value on through a sigmoid non-linearity
function

1

y;= f(x) = 1+ exp(-(b+X. "#"; )) (EQ1)

where wii is the weight from node i to node j, and the node is characterized by an internal

bias node b. Initially the weighting coefficients are set at random between +1.0 and -1.0.

Input

Output

Figure 4. Diagram of the input into a single node. The node yj could be either an output
node, or a hidden node.
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Learning occurs by adjusting the values of the weighting coefficients to minimize

the error [32] :

E=}X(d.-y.)
m=0

This equation represents the error for one input/output training pair. The network is

designed to minimize the sum of all such errors over all n input/output training pairs. The

(dm−ym) term is dependent on withus:

2E - OE 2,
own dy, own’
* –-a – 2),

0E . = -(d, -y,)f'(x)y.
own J J J

Where xi is the output from the preceding layer and f(x) was the exponential function given

in EQ 1, and its derivative is

f'(x) = f(x)[1 - f(x)].

Therefore the error derivative becomes

OE
Ow. = -(d, -y,)y,(1-y;)x.

Ji

The delta rule then becomes

6, =(d. –y,)y,(1-y;).
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Learning occurs by starting at the output layer and working backward to the first hidden

layer adjusting the weights by

wn (t+1) = wh(t)+ n■ ,3,4 oawn

Where wi(t) is the weight from node j to node i at time t, xi is either the output of node i
(and therefore the input to node j) or is an external input, m is the learning rate, 6 is the

error term for node j, and o. is a weighting factor (set at 0.5) of the momentum term oAwij.

Application of the network

After training on n x n pixel images, the network can be applied to a larger Mx M

pixel image and producing an output M x M pixel image, where M > n. In addition, a

priori knowledge of anatomic relationships can be used to limit the scope of the M x M

pixel image, reducing the amount of time spent segmenting an image. Before applying the

neural network, the Mix M pixel image is segmented into sub-images of size n x n, the size

of the training images. For every pixel p in the interior (M - n) x (M-n) of the image, an n

x n sub-image surrounding that pixel is fed into the network. The pixel values from the

Sub-image are forward propagated through the network producing an output sub-image of

size n x n. Each output sub-image is centered on and added to pixel pij and the

surrounding n x n pixels of the output image. This way the value of each pixel in the final

Mix M pixel output image is the summation of its value from n2 sub-images. For example,

if M equals six and n equals three then sixteen subimages will be forward propagated

through the network. The final output image is a summation of the values of all sixteen

subimages. For a given pixel p (Figure 5) nine subimages contribute to the final output
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value. This method of adding the output from multiple subimages adds robustness to the

network and makes the network somewhat shift invariant. For the large part though, this

shift invariance was accounted for by the careful selection of training images.

i
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Nine n x n (n=3)
pixel network
outputs.

The shaded pixel
represents pixel p
which is included in
all nine subimages.

Final Mix M (M=6) pixel Output Image
where each pixel p (shown in black) is the
sum of its corresponding pixels in nine
network output subimages.

Figure 5. Application of the network to an Mix M image. Every pixel p in the final output

image is the result of the summation of results of pixel p's output in nine subimages that

had been forward propagated through the network.
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Chapter 3

Implementation

Materials

Images

An analog x-ray film is a thin transparent plastic sheet coated with silver salts

embedded in a gelatin emulsion. Images are produced by a chemical transformation of the

silver salts by the x-rays. The number of chemical transformations is related to the

absorption characteristics of the body tissues. X-rays are emitted from a source, pass

through the body, and strike the film producing a projection image. Since bone absorbs

more x-rays than fat, fewer x-rays penetrate through the bone to the film. Fewer x-rays

mean fewer chemical transformations and results in a lighter shade of gray on the bone

region of the image compared to the region depicting fat or tissue. In other words, lighter

areas of the film represent high-density body tissues, and darker areas represent low

density body tissues (Figure 6). Analog x-ray film can display in excess of 103 shades of

gray. These shades -- which range from pure black to white -- are blended together

continuously.

i
:
=
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A digital image is a mathematical matrix containing both spatial and intensity

information which can be displayed on a computer monitor. Acquiring a digital image is

analogous to placing an invisible grid over a photograph or analog film, reading the

information about the brightness of the image at each square of the grid, and assigning each

corresponding matrix location (pixel) in the digital image with a single numerical value:

real, non-negative, and limited in magnitude. Since computers can display only a discrete

number of gray levels (in this study: 256), the brightness value stored in each pixel is

scaled to one of these values. Each digital image is stored as a file in computer memory

and can be displayed on a computer monitor. Duplicate images can be made at will by a

simple computer command to copy a file.

The images used in this dissertation were lateral skull head films taken with the

right side of the patient's head oriented toward the x-ray tube and the left side toward the

film. The patient's head was placed in a head holder which oriented the patient in a fixed

position relative to both x-ray tube and film. The central ray of the x-ray source passed

through the central axis of the rod in the head holder and the porion-porion anatomic axis.

Our image database contains digitized x-ray images for thirty patients. For each

patient, films were taken at different ages. There are approximately 180 images in the

database spanning the growth period from eight to sixteen years at approximately annual

intervals. Each image contains four optically placed reference markers in a specifically

defined configuration. These images were used to train and test the neural network

algorithm.
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Hardware

The four major components of our system necessary for acquiring, manipulating,

and displaying digital images from analog film are: (1) a personal computer (PC), (2) an

image acquisition system, (3) a frame grabber, and (4) a display monitor. Our initial

hardware system used a 386 Dell PC with an 80386 processor. The original x-ray

cephalograms were photographed with a high resolution 70mm camera. The 70mm

negative was then captured in an analog signal by a Pulnix TM-840 array camera. The

output of the Pulnix camera was transformed to 512 x 480 pixel digital format with an eight

bit PCplus Vision frame grabber. The digital images have a pixel size of .28mm in the

vertical direction and .33mm in the horizontal direction. The frame grabber has two main

components: hardware for digitizing the analog signal and frame memory for temporary

image storage. The digitizing hardware samples the analog signal and converts each

sample to an eight bit integer value which represents the brightness or intensity level for

one pixel in the image. The digital data is then temporarily stored in memory on the frame

grabber board. This memory is accessible by software and can be copied to a file on the

computer hard disk. The images are stored as binary random access files, with a header

that identifies the patient, time point (which image in the age series) and the locations of

four reference markers in the image. I developed a software package (BIBASE) on the PC

to display the image via the PCplus Vision frame grabber on an RGB SONY Trinitron

monitor.

Software

The primary task of the BIBASE software is to acquire and display digital images.

In addition to displaying images, the BIBASE software can also display other information

:
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from the database, including landmark location data and the associated angular and distance

measurements [33]. The software also provides the ability to design the network training

sets. Portions of the digital images can be easily selected and stored in files for later use as

training or test images. Preprocessing of the images can be performed by BIBASE or by

the neural network software.

The neural network software was developed in C on a Sun SPARCII which was

networked to the PC. The software allows the user to vary the size of the training images,

the size of the test images, the connection scheme, the number of hidden layers, and what

kind of preprocessing (if any) should be done. Weighting coefficients can be stored in a

file to be used again on successive runs of the network. The network segments the test

images and produces network output images. The network output for each pixel in the

image is the likelihood that it is the landmark location.
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Method

This section describes the preprocessing techniques, calculation of standard

deviations, definitions of the landmarks, and selection of training sets used in this thesis. I

examined the following preprocessing techniques: Laplacian convolution, binary

thresholding, normalization, and Sobel filtering. Standard deviation equations are used to

assess multiple judges' estimating error in landmark location. The reference and anatomic

landmarks used in this thesis are described and defined. The method of designing training

sets and determining their size is described for each landmark.

Preprocessing and Enhancing Digital Images

In addition to providing clinical research investigators with the ability to duplicate

and share records, an important advantage of using digital images is that they can be

enhanced with a number of mathematical manipulations at no risk to the original. Images

can be modified to improve their overall contrast or appearance or they can be filtered to

bring out hidden or blurred features. The distribution of gray levels or pixel intensities in

an image affects its appearance; therefore, any processing that changes this distribution will

change its appearance. I will classify enhancing techniques into two categories: single

pixel processing which alters the intensity values of individual pixels and neighborhood

processing which can sharpen certain features of the image, such as the edges of objects.

30



Single-Pixel Processing

Single-pixel processing techniques perform mathematical operations on each pixel

in the image independent of other pixels in the image. I used two single-pixel processing

techniques in this thesis: (1) binary thresholding and (2) normalization. If the landmark

has intensities distinct from those of the background, binary thresholding can be used to

create a binary image. Two threshold values are selected: a high and a low cut-off value.

The pixel values above the high cut-off and below the low cut-off are set to 0, and the pixel

values between the two values are set to 255. I used binary thresholding in an attempt to

isolate the fiducials from the surrounding image.

The normalization of image intensities is used to expand the intensity range of an

image to the full gray scale capabilities of the display. In this case, if the intensity range of

an image is (min, max) a subset of (0,255) for an eight bit display, new pixel values

(newvalue) can be calculated from old pixel values (oldvalue) with the following equation:

(max-oldvalue)*255
newvalue = 255–

-(max– min)

The normalized image has an intensity range of (0,255), and an increased contrast between

two pixels that vary in intensity.

Neighborhood processing

While single-pixel processing can be used to alter the intensity values of individual

pixels, neighborhood processing techniques are most often used to change the overall

sharpness of an image. Neighborhood processing differs from single-pixel processing
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because it calculates new values based on a group of pixels in the matrix. If a 3 x 3 filter is

centered on pixel x(i,j) of the input image, the value of pixel y(i,j) in the new image is

calculated as a function of x(i,j) and its eight nearest neighbors. Each of these nine pixels

is multiplied by a corresponding coefficient in the filter, the values are summed, and the

result placed in pixel y(i,j) of the output image (Figure 7). In effect, a weighted sum of the

neighborhood is calculated for each pixel in the image. If the filter is moved over each

pixel (i,j) of the image and applied in the manner described this process is called a

convolution. By changing the weights of the filter coefficients, neighboring pixels will

have a greater or lesser effect on the overall value.
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a b C 3
4

d e f 5
6
7 Xh 1

g 8
9

Filter A
1Iter 10

11

Image X

Convolution of position x(5,7) of Image X with Filter A:

y(5,7) = a + x(4,6)+b * x(5,6)+c * x(6,6)+
d” x(4,7)+e * x(5,7)+ f * x(6,7)+

g * x(4,8)+h * x(5,8)+i * x(6,8)

Figure 7. The convolution of a filter with an image.
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Two common neighborhood processing techniques are high-pass and low-pass

filtering. A high-pass filter emphasizes the edges or transitions in an image. In other

words, it sharpens an image but also increases the amount of high-pass noise. If a high

pass filter is applied to areas with uniform intensity, it will have no effect on the image; on

the other hand, in areas of the image where there is an intensity gradient, the filter will

increase this gradient. A low-pass filter smoothes or blurs the sharp white to black (or

black to white) transitions resulting in a blurred edge.

Averaging can be used to reduce the size of the network while still providing some

useful information to the network. A border averaging scheme was used to reduce the

number of nodes in the input images while still encoding the information from a larger

section of the image. A 21 x 21 pixel region was reduced to a 13 x 13 pixel area by

averaging the six outer layers while maintaining the inner 9 x 9 pixels at full resolution.

This is depicted in Figure 8 where the two outer layers of the 13 x 13 pixel image are the

result of averaging 3 x 3 pixel regions surrounding the full resolution center of the original

image. Only the corner regions are shown but each pixel in the border of the 13 x 13 image

is the average of a 3 x 3 pixel region in the original image.

This provides the network some of the border information while reducing the

number of nodes by 272. Depending on the connection scheme of the network this can

have a significant effect on the number of parameters in the system.
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Original Averaged border
21 x 21 Pixel Image 13 x 13 Pixel Image

Figure 8. A border averaging scheme. The inner 9 x 9 pixels are maintained at full

resolution (in dark gray) while the pixels in the border of the 13 x 13 image are the average

of a 3 x 3 pixel region in the original image (in light gray). Only two pixels are shown here

but all of the pixels in the 2 outer layers of the 13 x 13 image are the result of averaging a

3 x 3 pixel region in the original image.
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Optimal Enhancements for Craniofacial X-ray Imaging

Noise

Noise is a serious problem which can make landmark location difficult and increase

estimating errors. Some noise is present in the film itself due to the discontinuities in silver

crystals of the x-ray film, x-ray scatter, and other artifacts and limitations when the x-ray

was taken. The process of converting the analog x-ray films to digital images used in this

study introduced additional error -- the digital images were not as sharp as the original x

ray films. The most effective enhancement for the digital x-ray images is to add a constant

to a high-pass filter. This procedure enhances the high frequency components while

preserving the low-frequency components of the image [34].

This technique was applied to images prior to training or testing by the network. At

the very least, every image was convolved with the following filter:

-1 -1 -1

-1 12 -1

-1 -1 -1

Thus the filter sharpened the edges in the image by convolving the original image with a

Laplacian and a constant. By selectively amplifying the image's high spatial frequency

components, the image contrast at the edges is enhanced in all directions. This convolution

also tends to add some graininess to the image.

|

º

:

(
º

º

;

36



Edge detection

Edge detection routines were examined as a possible enhancement for the anatomic

landmarks. The simplest edge detector uses gradient operators which compute the

difference of intensity values along a line in the X or Y direction. In the X direction the

simplest function would be

A, f(x,y)= f(x,y)-f(x-1,y).

The Sobel operator, a 3x3 edge detector, which was used to preprocess the anatomic

images in one experiment can be described as a convolution with the following arrays:

-1 0 1 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 -1

Calculations of Standard Deviations

Standard deviations and standard errors used in this thesis were calculated

separately in their X and Y components. Standard deviations (SD) were calculated using

2p-ºr
N(K–1)
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where N is the number of test images, K is the number of judges, and d is the deviation of

an individual judge's estimate from the mean value for that particular image. The standard

error of the mean (SE) is computed by

SD
WWSE

The standard deviation of network results for N test images was calculated as

-
2

SD = | X(x - best estimate)
N – 1

where x is the location found by the network and best estimate is the location accepted as

the "true" value of the landmark for a particular image. The determination of the best

estimate of a landmark will be discussed in Chapter 4.

Landmark Definitions

Two categories of input were examined: reference landmarks such as the test cross

and the fiducials, and anatomic landmarks which can be more conceptual in nature. Each

of these classes of input has unique properties and problems associated with its location.

The test cross was designed to be a simple test of the network connectivity. This

was not a landmark found on any of the images, but rather a pattern that was superimposed

on a set of test images. The plus sign was not of uniform intensity, rather the values were

random intensities between 150 and 255.

|
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The shape was a simple five pixel form:

The network was trained to locate the single pixel at the center of the test cross.

Fiducials are also well defined landmarks which usually, though not always, exist

overlaid upon a uniform background. Each fiducial consists of a cross within a circle. The

task is to locate the position which corresponds to the center of the circle where the

crosshairs intersect. The diameter of the fiducial is approximately eleven pixels wide.

Since the edges of the crosshairs are wider than a single pixel, often the optimal location

lies somewhere between pixels as seen in Figure 9(a).

Anatomic landmarks are more difficult to locate that reference markers because of

the natural variability in the form and shape of the landmarks within and between patients.

The majority of craniofacial landmarks are located on bony or soft tissue surfaces which

appear in the image as an edge. The detectability of a given landmark to the human eye is

highly dependent on image quality and the training of the judge.

The anatomic landmark studied in this thesis, Upper Incisor Edge (UIEdge), is

defined as the tip of the incisal edge of the more anteriorly placed upper central incisor [3].

The human estimates for this landmark are good compared to other anatomic landmarks

because there is generally a sharp contrast between the edge and the surrounding

background. The edge also has a high degree of curvature. The standard deviation for

UIEdge is smaller than for most other anatomic landmarks [3]. For this reason, UIEdge

was chosen as a landmark for the network to locate.
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Training sets

The training sets consist of input/output image pairs. The input training image is an

n x n pixel section of the original image, where n was either 11 or 21. The output training

image is an n x n array of nodes one of which specifies the location of the landmark in the

input image (i.e. the node representing the landmark location is set to 1, all others are set to

0). Separate training sets were developed for each landmark. The training sets contained

both positive and negative matches. Positive matches contain the landmark and negative

matches are areas of the surrounding image that do not contain the landmark. The output

training image for the negative matches contained nodes which were all set to zero.

The process of building a training set was iterative. An initial training set was

designed. Positive and negative training pairs were selected from images of three patients.

The training pairs were initially constructed under the assumption that definitive features

used by a human to locate a landmark might also aid the algorithm. I attempted to

incorporate the variability of image contrast as well as landmark form in the training pairs.

In most cases, a positive match occurred within the center 3 x 3 region of the n x n matrix.

Negative matches were selected from possibly confounding anatomy near the landmark.

Some of the negative matches contained areas that might be considered part of the

landmark, but the actual location of the landmark was not within the boundaries of these

images. The network was then tested on four new images from the same three patients. If

non-landmark sites were selected, these areas were added to the training set as negative

matches and the network was retrained. This process was repeated until the network was

able to locate the landmark on the training set of images. The size of the training sets varied

but in general they contained approximately forty training pairs. The network was then

tested on thirty six images from four entirely new patients. Throughout this study, the

training and test images came from different patients.
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When judges locate landmarks, systematic errors are introduced into their results

[1-3]. These errors are dependent on landmark definition and judge training and

experience. If a network is trained with a training set that has systematic errors these errors

would be expected to affect network performance on data outside of the training set.

Ideally, the training set should be a "standard" which could be achieved by averaging five

expert judges' location of the landmark on the training set. I originally intended to train the

network with the averaged results of two judges who had located the landmarks repeatedly

on photographic enlargements of 70mm negatives of the original x-ray films. These were

the same negatives which were used by our visual acquisition system to produce digital

images. However scaling factors and human error locating the fiducials on the digital

images made the transformation and fit of the data to the digital images less than optimal.

Therefore in this thesis, the network was trained to the results of one judge's replicate

locations of the landmark.

The more parameters (nodes and connections), there are in a network, the more

solutions there are to which the network can converge unsuccessfully. With more

parameters, larger and larger training sets are required to characterize the variability of the

data set. In general it is important to keep the number of nodes as small as possible. 11 x

11 pixel images were used as the training pairs for the fiducial and UIEdge images. In the

case of the fiducials, this was sufficient to contain the entire landmark. However in the

case of UIEdge, only the lower portion of the tooth was included. For this reason, the

network was also trained with 21 x 21 pixel training images, and 13 x 13 pixel training

images that contained some discrete and some averaged information from 21 x 21 pixel

images for the UIEdge landmark. Samples of these three types of training input images are

shown in Figure 9.
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Figure 9. Examples of three training input images (a) fiducial, (b) 11 x 11 UIEdge, (c) 21

x 21 UIEdge.
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Chapter 4

Criteria for Evaluating the Success
of the Network

When the network was tested initially, an unambiguously defined test pattern was

used. Unfortunately, real landmarks do not have an unambiguous location that all human

judges can agree on. There are two reasons for this: (1) the desired value may lie

somewhere between two pixels making it difficult to decide which pixel to select, or (2)

judges may differ in their opinions of the location of the landmark in question. If judges

disagree on a landmark's location then how does one determine whether the network has

located the landmark? As a result of this uncertainty, there are two issues that need to be

considered in order to evaluate network performance: (1) what is the best estimate of a

landmark on any image, and (2) what is the acceptable error interval surrounding the best

estimate.
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Determination of the Best Estimate of Landmark Location

on the Test Images

Since there is no completely unambiguous location for any landmark, it was

necessary to define a best estimate of the landmarks location on each of the test images. In

order to understand performance of the network, network results were compared to (1) the

average of two independent estimates by the judge whose results were used to train the net

(training judge mean) and (2) the averaged independent estimates of the training judge and

two other judges (three judges mean). For the network to be a useful tool, the results must

approximate the error distribution of human judges.

A note on the scale used in this thesis (e.g. Figure 10). The network treated each

pixel in the image as a node and was designed to determine which node or pixel was the

most likely location of the landmark. Since the performance of the network, and not the

particular images used in this study, was being evaluated all results are reported with

respect to a scale of the pixel size. This was done under the assumption that for higher

resolution images, a higher degree of accuracy could be achieved. Later, if further

accuracy or precision is desired, sub-pixel analysis techniques could be used [29, 35-37].

Assessment of test images by the Training Judge

The training judge repeated each landmark location procedure for all thirty six

images and the mean value of the two estimates was considered the training judge's best

estimate of the landmark for that image. In Figures 10 and 11 the mean value for each of

the thirty six images has been translated to the origin of the scatter plot and each of the

44

:
; r

sº

'(
-

.

:
}.

[.º



judge's two estimates has been plotted. The results for the fiducials are plotted in Figure

10; the estimations of UIEdge in Figure 11 (The graphs are plotted in units of pixels where

one pixel corresponds to 0.33mm in X and 0.28mm in Y).

The standard deviations and standard errors of the training judge for fiducials and

UIEdge are presented in Table 1. The 95 percent confidence intervals for fiducials are 0.92

pixels in X and 0.74 pixels in Y. The 95 percent confidence intervals for UIEdge are 1.40

pixels in X and 1.34 pixels in Y.

:
;
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Standard Deviations (OT) for Training Judge's replicate

estimates of

Fiducial and UIEdge

on 36 test images used in network experiments.

Landmark SD SDX SDy SE

Fiducial 0.58 0.46 0.37 0.17 ± 0.19

(0.15mm) | (0.10mm)

UIEdge 0.56 0.70 0.67 0.40 + 0.30

(0.23mm) | (0.19mm)

Table 1. Training judge's standard deviations for replicate estimates of fiducial and

UIEdge on thirty six test images. Results are reported in pixels with mm conversions in

parentheses.
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Distribution of Training Judge's Replicated Estimates of Fiducial
on 36 test images
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Figure 10. Training Judge's replicated estimates of fiducial on 36 test images. For each
image, a mean of the two estimates was calculated and translated to the origin and the two
estimates are plotted.
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Distribution of Training Judge's Replicated Estimates of UIEdge
on 36 test images
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Figure 11. Training Judge's replicated estimates of UIEdge on 36 test images. For each
image, a mean of the two estimates was calculated and translated to the origin and the two
estimates are plotted.
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Assessment of test images by Three Judges

For each of the thirty six test images used to test the network, three judges

independently located the landmark of interest. For each image, the mean value of the three

judges' estimates was considered the best estimate of the landmark. This mean, along

with the means from the other test images, was then translated to the origin of the scatter

plots shown in Figures 12 and 13. Judge number one was the training judge. It is evident

in Figure 13 that each judge had a unique distribution of estimating errors, probably

reflecting differences in the conceptual definition of UIEdge. These systematic biases and

error distributions can also be partially explained by the unfamiliarity of the judges with the

cursor; which was an arrow rather that the usual cross hair cursor. However, judges were

required to digitize a control point in an attempt to minimize the possible cursor bias. Some

of the error can also be attributed to the resolution of the images, as was also evident in the

1991 Reliability Study. Yet despite all of these factors, there remains the systematic bias of

each judge.

The statistics of standard deviation and standard error for location of fiducials and

UIEdge are presented in Table 2. The 95 percent confidence intervals (twice the standard

deviation) are 1.18 pixels in X and 1.12 pixels in Y for fiducials. The 95 percent

confidence intervals for UIEdge are 2.02 pixels in X and 1.62 pixels in Y. This provides a

perspective within which the systematic bias of the estimating error of the training judge

can be compared to the two other judges.
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Standard Deviations for Three Judges' estimates of

Fiducial and UIEdge

on 36 test images used in network experiments.

Landmark SD SDx SDy SE

Fiducial 0.75 0.59 0.56 0.37 ■ 0.25

(0.19mm) | (.16mm)

UIEdge 1.22 1.01 0.81 0.98 + 0.41

(0.33mm) | (0.23mm)

Table 2. Three Judges' standard deviations of estimates for fiducial and UIEdge on thirty

six test images. Results are reported in pixels with mm conversions in parentheses.
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Distribution of Three Judges' Estimates of Fiducial
on 36 test images
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Figure 12. Three Judges' estimates of Fiducial on 36 test images. For each image, a mean
of the three judges' results was calculated and translated to the origin and all three estimates

are plotted. This average was then used as the best estimate for that image.
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Distribution of Three Judges' Estimates of UIEdge.
on 36 test images

D Judge 1
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Scale: 4 Pixels

Figure 13. Three Judges' estimates of UIEdge on 36 test images. For each image, a mean
of the three judges' estimates was calculated and translated to the origin and all three
estimates are plotted. This average was then used as the best estimate for that image.
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Determination of the Confidence Interval

Estimates of human error for each landmark were used to set confidence intervals

for the network. If the network's result for a landmark falls within the confidence interval

around the best estimate, the network is considered successful for that image. In addition

to the standard deviation of the training judge, two other estimates of human errors from

different reliability studies were used to evaluate results. The results from the 1971

Baumrind and Frantz Reliability study and the 1991 Baumrind and Baker Reliability study

are reviewed in this section. Only the results pertaining to fiducials and UIEdge are

presented.

1971 Baumrind and Frantz Reliability Study

The results from the 1971 Baumrind and Frantz Reliability Study for UIEdge are

shown in Figure 14 [3]. The study did not report findings for fiducials. Separate X and Y

components (SDx and SDy) of the total standard deviation (SD) were isolated and are

presented along with the standard error (SE) in Table 3. One conclusion was that at

approximately the 95 percent level of confidence the best estimate of the landmark will be

within twice the standard error of the mean. In other words, the probability that a given

estimate will differ from the true value by more than two times the standard deviations for

that landmark is approximately 0.05. The study also indicated that given a task of locating

sixteen landmarks, there is a fifty six percent probability that at least one value deviates by

more than two standard deviations from the true value. However, by repeating the task of
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landmark location the task can, on average, be completed without detectable errors with 98

percent confidence.

Thus, one way to determine the success of the network is whether values fall within

the 95 percent level of confidence range as determined by this study.

UPPER NCISOR SCALE
EDGE

Figure 14. Distribution of estimating errors of the dental landmark UIEdge from the 1971

Baumrind and Frantz Reliability Study. (Source:[3]).
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Standard Deviations (O71) for estimates of UIEdge as reported

by the 1971 Baumrind and Frantz Reliability Study
(reported in estimated pixels)

Landmark SD SDx SDy SE

UIEdge 1.16 1.03 1.29 .86 + .26

(0.50 mm) | (0.34 mm) | (0.36 mm) (0.37 E 0.11 mm)

Table 3. Estimation of human errors for UIEdge on original x-ray films from the 1971

Baumrind and Frantz Reliability Study. (Source:[3]). Results were reported in millimeters

(shown above in parentheses) and have been converted to estimated pixels. The study did

not report results for fiducials. :
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1991 Baumrind and Baker Reliability Study

The 1991 Baumrind and Baker Reliability Study examined human performance on a

number of different media including the digital images that were used in this dissertation [1,

2]. Some confounding factors in this study partially explain the increased estimations of

human error compared to the 1971 study. However some of the error can be attributed to

the fact that (1) the digital images used in the study had a lower resolution than the original

x-ray films, and (2) judges were forced to pick the best pixel not as precise a position as

they could have made with the digitizer on the original x-ray films.

Judges located twenty-seven landmarks on forty-four digital images and a

magnified version (zoomed by a factor of two). Results for both versions are reported in

Table 4, I will concentrate the discussion on the standard deviations of estimates for

fiducials and UIEdge on the zoomed images because their values were smaller.

The study reported standard deviations of 0.1mm in X and Y for fiducials, 0.39mm

in X and 0.44mm in Y for UIEdge. Converting these values to pixels, the 95 percent

confidence intervals for fiducials are 0.60 pixels in X and 0.72 pixels in Y. The 95 percent

confidence intervals for UIEdge are 2.36 pixels in X and 3.14 pixels in Y. This provides

another criterion by which to judge the network results. The results from this study are

useful because the images used were the same format of those used in this thesis.
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Standard Deviations (O 91) for estimates of Fiducial and UIEdge

as reported by the 1991 Baumrind and Baker Reliability Study

on Digital Computer Images

(reported in pixels)

Landmark SD SDx SDy

Fiducial .70 0.39 0.46

(0.30 mm) | (0.13 mm) | (0.13 mm)

UIEdge 1.33 1.30 2.71

(0.57 mm) | (0.43 mm) | (0.76 mm)

(a)

Standard Deviations (O 91) for estimates of Fiducial and UIEdge

as reported by the 1991 Baumrind and Baker Reliability Study

on Zoomed Digital Computer Images

(reported in pixels)

Landmark SD SDx SDy

Fiducial .74 0.30 0.36

(0.32 mm) | (0.10 mm) | (0.10 mm)

UIEdge .72 1.18 1.57

(0.31 mm) | (0.39 mm) | (0.44 mm)

(b)

Table 4. Estimation of human errors for fiducial and UIEdge on (a) digital images and (b)

zoomed x 2 digital images from the 1991 Baumrind and Baker Reliability Study. Results

were reported in pixels and millimeters (shown above in parentheses). (Source: [2]).
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Summary

In order to evaluate the performance of the network it was necessary to determine

the best estimate of each landmark for each image in the study. The network was ultimately

compared to two different estimates. The first estimate was the mean of two independent

estimations of the landmark by the training judge (training judge mean). The second

estimate was the mean of three estimates: an additional estimation by the training judge and

two other judges' estimation of the landmark (three judges mean). This mean provided a

framework with which to evaluate both the training judge and the network's results. The

results of the training judge and the three judges' estimations of the landmark on 36 test

images are give in Figures 10 through 13.

In order to compare the network reliability with that of human judges I considered

the data shown in Figures 10 through 13 along with the analogous findings from two

earlier studies of the reliability of performance of human judges. The 1971 Reliability

Study, performed on the original analog x-ray films was considered to be the most rigorous

criterion because the judges used were well trained and experienced and the landmark

location was performed on the original images. When network results were plotted against

the three judges' mean, the standard deviation from the 1971 study was used to calculate

confidence intervals for UIEdge. However, data from fiducials was not reported in the

1971 study. In this case, standard deviations from the zoomed images of the 1991

Reliability Study were used.

When network results were plotted with respect to the mean of the training judge,

the training judge's standard deviations were used to set a confidence interval. A summary

of these standard deviations is presented in Table 5. At approximately the 95 percent

confidence level, values were accepted if they fell within two standard deviations of the
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best estimate. The standard deviations used to evaluate landmark results will be referred to

as: on 1 = SD from the 1971 Reliability Study, ool = SD from the 1991 Reliability Study

on zoomed images, and OT = SD from the training judge.
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Summary of Estimations of Human Errors

Fiducial SDx SDy

1971 Reliability Study (x-rays) not reported not reported

1991 Reliability Study (digital) 0.39 0.46

1991 Reliability Study (zoom) (og1) 0.30 0.36

Training Judge (OT) 0.46 0.37

Three Judges 0.59 0.56

UIEdge SDx SDy

1971 Reliability Study (x-rays) (o'71) 1.21 1.29

1991 Reliability Study (digital) 1.30 2.71

1991 Reliability Study (zoom) 1.18 1.57

Training Judge (OT) 0.70 0.67

Three Judges 1.01 0.81

Table 5. Summary of standard deviations reported in terms of pixels. Results in bold were

used to set confidence intervals to evaluate network performance.
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Chapter 5

Network Experiments -- Results and
Discussion

This chapter is divided into three sections covering the experiments performed with

respect to three landmarks: the test cross, the fiducial, and the UIEdge. Each section

includes a description of the experiments, the results, and a discussion. A general

discussion of all results follows in Chapter 6.

Location of the Test Cross

In order to test whether the network was set up and working properly, a test case

was designed. The task was to locate multiple test patterns that had been added to an

image. The test patterns, a 3 x 3 pixel plus sign, were superimposed on top of random

sections of several images. A 3x3 connection scheme was used.

The network was trained on fourteen 3 x 3 pixel images. The training set consisted

of seven positive training pairs each of which contained a plus sign, and seven negative

pairs that were randomly selected from different sections of a training image. The network
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trained until the sum of differences in weighting coefficient values between successive

iterations (stop error) was less than .0001. This value, chosen after a series of trials in

which results did not improve with further training, meant that the network trained for

approximately 1,000 epochs. After training, the network was tested on both the training

set and a test set of four images, each of which contained four test patterns. Initially, the

network successfully located all four of the patterns on the training images, but only ten of

the sixteen patterns that were located on the test images. In addition there were three false

positives. The false positives occurred on edges, and the algorithm failed to detect the test

patterns in regions of intensity similar to that of the test pattern itself.

The training set was then expanded to twenty images by placing three additional test

patterns in regions of high intensity, and selecting four additional regions containing edges

as negative training patterns. The network was retrained and tested again on the four test

images. The result was a positive location of all test patterns on all four images with no

false positives. This iterative nature of developing the training set was used for both

fiducials and reference markers as well.

The performance of the network was obviously dependent on the make up of the

training set. This demonstrated the necessity of including as much variety in the training

set as one might expect to see in the test data. Since the test pattern was used to test the

functionality of the network and has no relevance to landmarks in actual images, no further

testing was conducted.

Location of Reference Markers (Fiducials)

The first landmarks examined were the reference markers (fiducials) located on

every image in the database. The network was trained on images from three patients until

the stop error was less than 0.0001, generally 10,000 to 20,000 epochs. Forty 11 x 11
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pixel training input/output pairs were generated. Twenty five were positive pairs and

fifteen were negative training pairs. The test set of images consisted of 36 images from

three different patients. The network was evaluated according to the criteria in Figure 15.

Fiducials

W] he
- WaS. T

- - - -
lin pixel

-

(1) Mean of Three Judges 2091 = (.6 in X, .72 in Y)

(2) Mean of Training Judge 20T = (.92 in X, .74 in Y)

Figure 15. Criteria for evaluating network's estimates of fiducial: o31 = standard

deviations from 1991 Reliability Study and ot = Standard deviations of the Training

Judge.

Results of Experiments with Fiducial

Examination of Connection Schemes and Hidden Layers

Two features of the network were examined: (1) how layers were connected and (2)

the effect of varying the number of hidden layers. The connection schemes and the hidden

layers were described in Chapter 2. The network was trained and tested for all

combinations of connection scheme and number of hidden layers (zero, one, or two).

Network results were plotted with respect to the best estimates of fiducial location by both

the training judge and the three judges on the set of 36 test images. On each plot, the origin
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represents the best estimate for each image and the axes represent the distance in pixels in

the horizontal (X-axis) and vertical (Y-axis) directions.

3x3 Connection Scheme

The results of the network with 3x3 connections and Zero hidden layers are plotted

in Figure 16. Seven of the thirty six values were within 2091 of the best estimate of the

three judges. In addition, fifteen values were greater than 2091 from the best estimate but

were located on some portion of the fiducial. The mean in X was -1.20 pixels and the

mean in Y was 0.97 pixels. The standard deviation in X of network results was 3.64

pixels and the standard deviation in Y was 8.23 pixels.

When the same results are plotted with respect to the best estimate of the training

judge, eight of the thirty six values were within 20t of the best estimate (Figure 17). The

mean in X was -0.97 pixels and the mean in Y was 0.61 pixels. The standard deviation in

X of network results was 3.68 pixels and the standard deviation in Y was 8.24 pixels.

The results of the network with 3x3 connections and one hidden layer are plotted

with respect to the three judges in Figure 18. Nine of the thirty six values were within

2091 of the best estimate. Thirty five of the thirty six values were positioned on the

fiducial. The mean in X was -1.23 pixels and the mean in Y was 0.61 pixels. The

standard deviation in X of network results was 4.00 pixels and the standard deviation in Y

was 3.74 pixels.

When the results of the network are plotted with respect to the best estimate of the

training judge (Figure 19), six of the thirty six values were within 20'■ of the best estimate.

The mean in X was -1.00 pixels and the mean in Y was 0.25 pixels. The standard

deviation in X was 4.01 pixels and the standard deviation in Y was 3.74 pixels.
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Network estimates of fiducial location plotted with respect to three judges'
mean using 3x3 connection and zero hidden layers

O -15 +

-18 ––

H

Scale: 4 pixels

Figure 16. Network location of fiducial plotted with respect to three judges' mean for 36
test images. Network used 3x3 connection and zero hidden layers. Bold data points
indicate the presence of two or more data points obscured by overlay. Axes are pixels in X
and Y with the best estimate at the origin.
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Network estimates of fiducial location plotted with respect to training
judge's mean using 3x3 connection and zero hidden layers

20 —H

OCC 12 —H

Scale = 4 pixels

Figure 17. Network location of fiducial plotted with respect to training judge's mean for
36 test images. Network used 3x3 connection and zero hidden layers. Bold data points
indicate the presence of two or more data points obscured by overlay. Axes are pixels in X
and Y with the best estimate at the origin.
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Network estimates of fiducial location plotted with respect to three judges'
mean using 3x3 connection and one hidden layer
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10 —H

Scale = 4 pixels

Figure 18. Network location of fiducial plotted with respect to three judges' mean for 36
test images. Network used 3x3 connection and one hidden layer. Bold data points indicate
the presence of two or more data points obscured by overlay. Axes are pixels in X and Y
with the best estimate at the origin.
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Network estimates of fiducial location plotted with respect to training
judge's mean using 3x3 connection and one hidden layer
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Figure 19. Network location of fiducial plotted with respect to training judge's mean for
36 test images. Network used 3x3 connection and one hidden layer. Numbers inside data
points indicate the number of overlaid data points at that position. Axes are pixels in X and
Y with the best estimate at the origin.
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5 x 5 Connection Scheme

The results of the network with 5x5 connections with zero hidden layers have been

plotted with respect to the best estimate of three judges in Figure 20. Twenty four of the

thirty six values were within 2091 of the best estimate. The mean in X was -0.23 pixels

and the mean in Y was 0.63 pixels. The standard deviation in X was 2.56 pixels and the

standard deviation in Y was 3.20 pixels. When the results of the network were plotted

with respect to the best estimate of the training judge (Figure 21), twenty six of the thirty

six values were within 20t of the best estimate. The mean in X was 0.00 pixels and the

mean in Y was -1.00 pixels. The standard deviation in X was 2.60 pixels and the standard

deviation in Y was 3.15 pixels.

The results of the network with 5x5 connections with one hidden layer have been

plotted with respect to the best estimate of three judges in Figure 22. Twenty four of the

thirty six values were within 2091 of the best estimate. Six additional values were within

one pixel of the best estimate. The mean in X was -0.20 pixels and the mean in Y was

0.56 pixels. The standard deviation in X was 0.74 pixels and the standard deviation in Y

was 1.10 pixels. When the results of the network were plotted with respect to the best

estimate of the training judge (Figure 23) twenty seven of the values were within 20 t of the

best estimate. Seven additional values were within one pixel of the mean. The mean in X

was 0.03 pixels and the mean in Y was 0.19 pixels. The standard deviation in X was 0.60

pixels and the standard deviation in Y was 1.12 pixels.

Disregarding from both data sets the two values clearly in error, the mean values for

results plotted with respect to the three judges were -0.35 in X and 0.31 in Y, the standard

deviations were 0.40 pixels in X and 0.43 pixels in Y. The mean values when plotted with

respect to the training judge were -0.08 in X and -0.06 in Y and the standard deviations

were 0.29 pixels in X and 0.34 pixels in Y.
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The results of the network with 5x5 connections with two hidden layers have been

plotted with respect to the best estimate of three judges in Figure 24. Sixteen of the thirty

six values were within 2091 of the best estimate. The mean in X was -2.65 pixels and the

mean in Y was 0.44 pixels. The standard deviation in X was 3.36 pixels and the standard

deviation in Y was 5.17 pixels. When the results of the network were plotted with respect

to the best estimate of the training judge (Figure 25), eight of the thirty six values were

within 20t of the best estimate. Nine additional values were within one pixel of the mean.

The mean in X was -2.42 pixels and the mean in Y was 0.08 pixels. The standard

deviation in X was 3.46 pixels and the standard deviation in Y was 5.13 pixels.

Network results for 5x5 connections and zero, one, and two hidden layers have

different characteristic network outputs. With zero hidden layers, the higher network

output values were concentrated around the fiducial (Figure 26). Yet there were high

values at what appeared to be random locations in the image as well. With one hidden

layer, the two highest network output values were often adjacent pixels (Figure 27). The

rest of the pixels in the output had values midway between the range of the maximum

likelihood value and zero. When the network was trained with two hidden layers the

output values tended to be concentrated in areas of high intensity either on the fiducial or on

edges (Figure 28).

Binary Threshold

Binary thresholding by definition involves a loss of information. The network was

trained and tested using images that had been filtered with a binary threshold filter with

upper and lower threshold limits of 170 and 90. Under these conditions gray scale data

was lost but the shape of the fiducial was maintained. Thresholding was done to assess the

performance of the network when presented with only structural information. The network

71



results have been plotted with respect to the three judges' mean in Figure 29. Twenty one

of the thirty six values were within 2091 of the best estimate. The mean in X was -0.40

pixels and the mean in Y was 0.19 pixels. The standard deviation in X was 2.57 pixels

and the standard deviation in Y was 2.57 pixels. Loss of gray scale information severely

effected results.
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Network estimates of fiducial location plotted with respect to three judges'
mean using 5x5 connection and zero hidden layers
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Figure 20. Network location of fiducial plotted with respect to three judges' mean for 36
test images. Network used 5x5 connection and zero hidden layers. Bold data points
indicate the presence of two or more overlaid data points. Axes are pixels in X and Y with
the best estimate at the origin.
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Network estimates of fiducial location plotted with respect to training
judge's mean using 5x5 connection and zero hidden layers
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Figure 21. Network location of fiducial plotted with respect to training judge's mean for
36 test images. Network used 5x5 connection and zero hidden layers. Bold data points
indicate the presence of two or more overlaid data points. Numbers next to data points
indicate the number of data points overlaid at that location. Axes are pixels in X and Y with
the best estimate at the origin.
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Network estimates of fiducial location plotted with respect to three judges'
mean using 5x5 connection and one hidden layer

Scale: 4 pixels

Figure 22. Network location of fiducial plotted with respect to training judge's mean for
36 test images. Network used 5x5 connection and one hidden layers. Bold data points
indicate the presence of two or more overlaid data points. Axes are pixels in X and Y with
the best estimate at the origin.
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Network estimates of fiducial location plotted with respect to training
judge's mean using 5x5 connection and one hidden layer
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Figure 23. Network location of fiducial plotted with respect to training judge's mean for
36 test images. Network used 5x5 connection and one hidden layer. Numbers in data
points indicate the number of data points overlaid at that location. Axes are pixels in X and
Y with the best estimate at the origin.
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Network estimates of fiducial location plotted with respect to three judges'
mean using 5x5 connection and two hidden layers
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Figure 24. Network location of fiducial plotted with respect to three judges' mean for 36
test images. Network used 5x5 connection and two hidden layers. Bold data points
indicate the presence of two or more overlaid data points. Axes are pixels in X and Y with
the best estimate at the origin.
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Network estimates of fiducial location plotted with respect to training
judge's mean using 5x5 connection and two hidden layers
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Figure 25. Network location of fiducial plotted with respect to training judge's mean for
36 test images. Network used 5x5 connection and one hidden layer. Bold data points
indicate the presence of two or more overlaid data points. Numbers next to data points
indicate the number of data points overlaid at that location. Axes are pixels in X and Y with
the best estimate at the origin.
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(a)(b)

Figure26.Resultsofnetworktrainedwith5x5connectionsandnohiddenlayers. (a)TestImage00601a.Networklocation
offiducial
isshownbytheblackdot.(b)Networkoutput.



(a)(b)

Figure27.Resultsofnetworktrainedwith5x5connectionsandonehiddenlayers. (a)Testimage00803b.Thenetworkmaximumlikelihood
offiducial
is
shownbytheblackdot.(b)Outputofthenetwork.
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(a)(b)

Figure28.Resultsofnetworktrainedwith5x5connectionsandtwohiddenlayers. (a)TestImage00501b.Networklocationoffiducial
isshownbytheblackdot.(b)Outputofthenetwork.
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Network estimates of fiducial location plotted with respect to three judges'
mean using 5x5 connection, one hidden layer,

and binary threshold images
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Figure 29. Network location of fiducial plotted with respect to training judge's mean for
36 test images. Binary thresholding was applied to both training and test images. Network
used 5x5 connection and one hidden layers. Bold data points indicate the presence of two
or more overlaid data points. Axes are pixels in X and Y with the best estimate at the
Origin.
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Discussion of Experiments with Fiducial

The primary goal of the experiments on fiducial was to determine if a neural

network could be trained to successfully locate reference markers on digital images. In the

process of achieving this goal the effect of two different connection schemes and three

conditions of hidden layers were examined. The best results were achieved when the

network used a 5x5 connection scheme and one hidden layer; however there were several

other interesting findings as well.

3x3 Connection Scheme

The 3x3 connection scheme with one hidden layer contains a total of 2420

connections (10 connections/node x 121 nodes x 2 layers) between nodes while the 5x5

connection scheme with one hidden layer has a total of 6292 connections (26

connections/node x 121 nodes x 2 layers). When training forty images for thousands of

epochs this difference can lead to a consequential difference in training and segmentation

time. The 3x3 connection scheme took fewer epochs both to train and to segment images.

While the 3x3 and the 5x5 connection schemes evaluated the same size image, the

3x3 connection did not provide enough information from the input image to each individual

pixel in the network. Unlike the test cross, the fiducial spans a larger area which could not

be fully characterized given the number of parameters and training data available in the 3x3

connection scheme.

The network results with zero hidden layers located many points positioned both

above and below the fiducial. The standard deviations in Y were approximately twice those

in X. The failures were always pixels along an edge, and the most distinct edges tended to
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be vertical (Figures 27-28). This may have been one of the local minima which with

further training could be eliminated.

With a 3x3 connection scheme and one hidden layer, the network's location of the

landmark was evenly spread around but usually physically on some part of the fiducial.

The network was able to locate the general area of the fiducial in all but one case.

However, only nine of thirty six values met the criterion 2091. These results suggest that

the 3x3 connection scheme might be useful in segmenting larger images to locate the

general area of the fiducial. Then a smaller image could be used as input to the 5x5

connection network. This would reduce the search area and the time required to segment

images with the 5x5 connection network.

With two hidden layers and a 3x3 connection, the network was not able to

converge. This is explained by examining the information that the network "sees" and how

it is processed. With one hidden layer, each pixel in the output image is connected to nine

pixels in the hidden layer and indirectly connected to twenty five pixels in the input image.

With two hidden layers, each pixel in the output image is indirectly connected to forty nine

pixels in the input image. The number of weighting coefficients increases from 2,420 to

3,630 (10 connections/node x 121 nodes x 3 layers). In addition, in the forward

propagation phase with two hidden layers, a given node's value is modified through two

squashing functions and three weighting coefficients before effecting an output node.

Given the nature of the training set in the 3x3 connection scheme with two hidden layers,

there are simply too many parameters for the network to converge to any solution.

The facts that the network was not able to converge with two hidden layers in the

3x3 connection scheme and that results worsened in the 5x5 connection scheme indicate

that the number of parameters available to a system is not as important as the nature of the

parameters. By adding an additional hidden layer, the chances of converging to a local

minimum are also increased. The number of parameters must be large enough to
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characterize a problem, but not so large that the weighting coefficients can not be estimated

from the training data.

When the network failed to locate the fiducial, it generally failed catastrophically.

In such cases, the network tended to locate a point on another structure, i.e. on an adjacent

name plate or the step wedge. When human judges fail catastrophically, they generally fail

because they too have located an erroneous structure. This usually happens when judges

are inexperienced or are locating landmarks on unfamiliar or unusual anatomy. Thus

catastrophic failure by the network can be seen as inexperience and requiring further

training. Catastrophic failure partially explains the large standard deviations we see for the

3x3 connection scheme.

5x5 Connection Scheme

The results of the network with 5x5 connections and zero hidden layers were better

than any of the 3x3 connection trials. In fact, twenty six of thirty six values were located

within the accuracy of the training judge. Increasing the number of nodes is similar to

widening the field of view as opposed to increasing the depth by adding more layers. The

fiducial is considerably larger than the test cross and requires more connections in order for

the network to determine the location.

The best results were achieved when the network used a 5x5 connection scheme

and one hidden layer. Under these conditions the network located twenty seven of the

fiducials within two standard deviations of the training judge, and thirty four of the

fiducials within one pixel of the best estimate. The second and occasionally the third

highest network output was frequently an adjacent pixel. From this I can infer that sub

pixel processing techniques could be used to further improve results.
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Results for 5x5 connection scheme with two hidden layers were similar to those

with the 3x3 connection scheme. The network located erroneous structures requiring

further training.

The Three Judges vs. the Training Judge

One of the more interesting results of this study emerged when comparing the

results of the network (with 5x5 connections and one hidden layer) plotted with respect to

the three judges' mean vs. the training judge's mean. Comparing the network's means and

the distribution of points in Figures 22 and 23, I conclude that the network trained to the

characteristic distribution of the training judge. In fact the network picked the same pixel as

the training judge in 27 of the 36 images. This demonstrates that the network can be

trained to the particular biases of an individual. From this I infer that a network trained to a

better standard would have better results. In particular, training the network to the mean

values of several experts might reduce the variability of the networks results due to

variability found in the training judge's data. .
.
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Location of an Anatomic Landmark -- UIEdge

The UIEdge is one of the easier anatomic landmarks for humans to locate on lateral

cephalometric X-ray images. This is evident in small standard deviations for the landmark

(Chapter 3) and stems at least in part from the fact that this anatomical structure is more

precisely defined than many others. Since 11 x 11 pixel images were used with good

results to train the network to locate fiducials, I initially used this size image to train the

network to locate the UIEdge as well.

Two preprocessing techniques were examined. First, the network was trained and

tested on normalized images to compensate for the varying intensities on the incisor tip.

Second, a Sobel filter was convolved with images to enhance the UIEdge's contours to

assess the contribution of landmark shape.

One of the problems with the 11 x 11 pixel size training image was that the network

occasionally located an unerupted upper lateral incisor rather than the UIEdge. By

increasing the size of the training image, and thereby increasing the size of the subimage

used during segmentation, larger areas of the image can be encoded into the networks

knowledge. In an attempt to resolve this problem, the network was trained with 21 x 21

pixel images. Given a 5x5 connection scheme and one hidden layer, there are 22,932

weighting coefficients (26 connections/nodes x (21 x 21) nodes x 2 layers) when training

on 21 x 21 pixel images compared to 6,292 weighting coefficients (26 connections/nodes x

(11 x 11) nodes x 2 layers) with an 11 x 11 pixel image. I was skeptical about the

performance of the network with this many parameters, but this size was necessary in order

to incorporate the background information necessary to differentiate between different

incisors.

Another way to provide the network with more information without quadrupling the

number of parameters is to average the values of groups of pixels around the perimeter of
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the training image. This procedure is described in detail in Chapter 3. This way

information from a 21 x 21 pixel image can be incorporated into a 13 x 13 training image

with information loss only at the perimeter of the image. With a 5x5 connection scheme

and one hidden layer this method reduces the number of weighting coefficients to 8,788

(26 connections/nodes x (13 x 13) nodes x 2 layers).

The test set of images consisted of thirty six images from seven patients. Recall

that the training images and the test images came from different patients. The network

results were evaluated according to the criteria in Figure 30.

UIEdge

When the l
- -

T
- - - -

l in pixel
-

(1) Mean of Three Judges 2071 = (2.42 in X, 2.58 in Y)

(2) Mean of Training Judge 2OT = (1.4 in X, 1.34 in Y)

Figure 30. Criteria for evaluating network's estimates of UIEdge: O'71 = standard

deviations from 1971 Reliability Study and ot = Standard deviations of the Training

Judge.

Results for Experiments with th IEdge

The network was trained until the stop error was less than 0.0001 or the network

had trained for 10,000 epochs. Early trials showed that training to 20,000 or even 30,000
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epochs did not improve results. Network results were compared to the results of the

training judge's mean and the three judges' mean for the landmark on set of thirty six test

images. A mean difference and standard deviation in X and Y was calculated. The results

for the 11 x 11 pixel images are described first, including those trained on images

preprocessed with normalization and a Sobel filter. Next, the results from the 21 x 21 pixel

training images and the 13 x 13 pixel training images are presented. In all cases, a 5x5

connection scheme with one hidden layer was used.

11 x 11 pixel training images

In the first set of experiments with The UIEdge, the network was trained on images

from three patients. Forty one 11 x 11 pixel training input pairs were generated. Twenty

two were positive pairs and nineteen were negative training pairs. The results of the

network were plotted with respect to the three judges' mean in Figure 31. Twenty nine of

the thirty six values were within 2071 of the best estimate. The mean in X was -0.77 pixels

and the mean in Y was 1.25 pixels. The standard deviation in X was 3.14 pixels and the

standard deviation in Y was 2.83 pixels. The results of the network were plotted with

respect to the training judge's mean in Figure 32. Twenty seven of the thirty six values

were within 20'■ of the best estimate. The mean in X was -1.28 pixels and the mean in Y

was 1.28 pixels. The standard deviation in X was 3.33 pixels and the standard deviation in

Y was 2.87 pixels. Examples of some test images and corresponding network output are

presented in Figures 33, 34, 35.

-
* 1

:

º
90



Normalized Images

The results of the network with normalized training and test images, were plotted

with respect to the three judges' mean in Figure 36. Twenty four of the thirty six values

were within 2071 of the best estimate. The mean in X was -1.60 pixels and the mean in Y

was 1.86 pixels. The standard deviation in X was 4.39 pixels and the standard deviation in

Y was 3.55 pixels. When the results of the network were plotted with respect to the

training judge's mean (Figure 37), twenty of the thirty six values were within 20t of the

best estimate. The mean in X was -2.11 pixels and the mean in Y was 1.58 pixels. The

standard deviation in X was 4.19 pixels and the standard deviation in Y was 3.70 pixels.

Network results greater than five pixels from the best estimate were the result of the

network locating an alternative structure (as described in the 11 x 11 pixel section above).

The mean estimating error of all values within five pixels of the best estimate was 0.68 in X

and 0.87 in Y with respect to the three judges' mean, and 0.04 in X and 0.56 in Y with

respect to the training judge's mean.

Sobel Images

The network was tested with test images that had been preprocessed with a Sobel

filter. Though the 3 x 3 pixel Sobel filter has a limited applicable range, it did enhance the

UIEdge contours. I expected to see results similar to those achieved with the fiducial

images that had been convolved with a binary threshold. However, results were

disappointing. The results are plotted with respect to the three judges' mean in Figure 38.

Only one of the thirty six values was within 2071 of the best estimate. The mean in X was

-3.27 pixels and the mean in Y was 1.86 pixels. The standard deviation in X was 7.86

pixels and the standard deviation in Y was 6.59 pixels.
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21 x 21 pixel training images

Next, the network was trained on images from the same three patients as used in the

experiment with the 11 x 11 pixel training images except that forty seven 21 x 21 pixel

training input pairs were generated. Of these thirty were positive training pairs and

seventeen were negative training pairs. This experiment with 21 x 21 pixel images was

done in response to the results from the network trained with 11 x 11 pixel images. I

wanted to determine if training on larger images would reduce the network's tendency to

occasionally locate an unerupted upper lateral incisor rather than the UIEdge. The test set

of images consisted of the same set as those tested with the network trained with the 11 x

11 pixel images.

The results of the network were plotted with respect to the three judges' mean in

Figure 39. Eleven of the thirty six values were within 2071 of the best estimate. The mean

in X was -0.94 pixels and the mean in Y was 3.19 pixels. The standard deviation in X was

3.54 pixels and the standard deviation in Y was 4.83 pixels. When the results of the

network were plotted with respect to the training judge's mean (Figure 40), ten of the thirty

six values were within 20t of the best estimate. The mean in X was -1.44 pixels and the

mean in Y was 3.22 pixels. The standard deviation in X was 3.41 pixels and the standard

deviation in Y was 4.92 pixels.

13 x 13 pixel training images with averaged borders

Finally, the network was again trained on images from the same three patients

except that forty eight 13 x 13 pixel training input pairs were generated. Of these twenty

seven were positive pairs and nineteen were negative training pairs. The training image

contained a 9 x 9 central image at full resolution and a two pixel border where each pixel
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was the average of a 3 x 3 pixel region of the original images (this procedure is detailed in

Chapter 3). This was done in response to the results from the network trained with 21 x 21

pixel images. Data from a 21 x 21 pixel region were encoded into a 13 x 13 pixel training

image reducing the number of parameters in the network. The test set of images consisted

of the same set as tested with the network trained with 21 x 21 pixel images, except that the

borders of the test images were averaged in the same way as the training images.

The network was trained for 10,000 epochs. While the network did not locate any

upper lateral incisors, it was never able to perform consistently within criteria levels on the

training data. The network often picked points on the lower incisor and points above the

tip of the UIEdge.

The results of the network have been plotted with respect to the three judges' mean

in Figure 41. Twelve of the thirty six values were within 2071 of the best estimate. The

mean in X was -1.05 pixels and the mean in Y was 2.69 pixels. The standard deviation in

X was 3.32 pixels and the standard deviation in Y was 3.05 pixels. When the results of

the network were plotted with respect to the training judge's mean (Figure 42), seven of the

thirty six values were within 20t of the best estimate. The mean in X was -1.56 pixels and

the mean in Y was 2.72 pixels. The standard deviation in X was 3.12 pixels and the

standard deviation in Y was 3.07 pixels.
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Network estimates of the UIEdge plotted with respect to three judges' mean
using 11 x 11 pixel training images
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Figure 31. Network location of the UIEdge plotted with respect to three judges' mean for
36 test images. Network used 11 x 11 pixel training images. Bold data points indicate the
presence of two or more overlaid data points. Axes are pixels in X and Y with the best
estimate at the origin.
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Network estimates of the UIEdge plotted with respect to training judge's
mean using 11 x 11 pixel training images
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Figure 32. Network location of the UIEdge plotted with respect to training judge's mean
for 36 test images. Network used 11 x 11 pixel training images. Bold data points indicate
the presence of two or more overlaid data points. Axes are pixels in X and Y with the best
estimate at the origin.
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(d)

(c)Testimage01405awithnetworksmaximumliklihoodoutputofUIEdgeindicated
bytheblackdot.(d)Network likelihoodoutput.
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(d)

(c)Testimage01503awithnetworksmaximumliklihoodoutputofUIEdgeindicated
bytheblackdot.(d)Network likelihoodoutput.



(a)(b)

Figure35-Resultsofnetworkwithonehiddenlayerand5x5connection.Thispatienthasbraces.(a)Testimage 0.1702awithnetworksmaximumliklihoodoutputofUIEdgeindicatedbytheblackdot.(b)Networklikelihood Output.



Network estimates of the UIEdge plotted with respect to three judges' mean
using normalized 11 x 11 pixel training images
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Figure 36. Network location of the UIEdge plotted with respect to three judges' mean for
36 test images. Training and test images were normalized to full gray scale capabilities.
Network used 11 x 11 pixel training images. Bold data points indicate the presence of two
or more overlaid data points. Axes are pixels in X and Y with the best estimate at the
Origin.
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Network estimates of the UIEdge plotted with respect to training judge's
mean using normalized 11 x 11 pixel training images
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Figure 37. Network location of the UIEdge plotted with respect to training judge's mean
for 36 test images. Training and test images were normalized to full gray scale capabilities.
Network used 11 x 11 pixel training images. Bold data points indicate the presence of two
or more overlaid data points. Axes are pixels in X and Y with the best estimate at the
origin.
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Network estimates of the UIEdge plotted with respect to three judges' mean
using Sobel filtered 11 x 11 pixel training images
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Figure 38. Network location of the UIEdge plotted with respect to three judges' mean for
36 test images. Training and test images were convolved with a Sobel filter. Network
used 11 x 11 pixel training images. Axes are pixels in X and Y with the best estimate at the
Origin.
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Network estimates of the UIEdge plotted with respect to three judges' mean
using 21 x 21 pixel training images

- -

Scale: 4 pixels

Figure 39. Network location of the UIEdge plotted with respect to three judges' mean for
36 test images. Network used 21 x 21 pixel training images. Axes are pixels in X and Y
with the best estimate at the origin.
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Network estimates of the UIEdge plotted with respect to training judge's
mean using 21 x 21 pixel training images
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Figure 40. Network location of the UIEdge plotted with respect to training judge's mean
for 36 test images. Network used 21 x 21 pixel training images. Bold data points indicate
the presence of two or more overlaid data points. Axes are pixels in X and Y with the best
estimate at the origin.
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Network estimates of the UIEdge plotted with respect to three judges' mean
using 13 x 13 pixel averaged border training images

Scale: 4 pixels

Figure 41. Network location of the UIEdge plotted with respect to three judges' mean for
36 test images. Network used 13 x 13 pixel averaged border training images. Axes are
pixels in X and Y with the best estimate at the origin.
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Network estimates of the UIEdge plotted with respect to training judges'
mean using 13 x 13 pixel averaged border training images
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Figure 42. Network location of the UIEdge plotted with respect to training judge's mean
for 36 test images. Network used 13 x 13 pixel averaged border training images. Bold
data points indicate the presence of two or more overlaid data points. Axes are pixels in X
and Y with the best estimate at the origin.

107



Discussion of Experiments with the UIEdge

The test set of the UIEdge images was specifically chosen to represent the

variability in the image database. It contained a number of types of images which were not

represented in the training set. Specifically, two of the images were of patients with

orthodontic fittings (Figure 35(a)) and two of the images were of poor quality (Figure

34(a)). In twelve of the test images the unerupted upper lateral incisor edge was

discernible (Figure 34(c)).

The network trained on 11 x 11 pixel images located twenty nine of the incisors

within two standard deviations of the three training judges' mean. But looking at the

negative results more carefully, the networks responses are consistent with the

characteristics of the training set. Of the seven images in which the network was unable to

locate the landmark successfully, two were the images of poor quality, three were images

in which the network located the lateral incisor edge, and one was an image in which the

network located the bottom edge of the orthodontic fitting on the upper incisor.

Interestingly enough, the network's second likelihood value on these six images was the

UIEdge. Clearly the network had problems with some of the images outside of its

knowledge base. On the other hand, the network did locate the UIEdge on one image of a

patient with orthodontic fittings and on nine images with discernible lateral incisors.

Expanding the training set to include a greater representation of both positive and negative

training pairs should improve results. Considering that the network segmented the test

image into 11 x 11 images, it is not surprising that a lateral incisor was occasionally picked

over the UIEdge. There were no negative training pairs of a lateral incisor and at the level

of 11 x 11 pixel images I suspect that even a human judge would be hard pressed to

determine whether an edge was the lateral incisor or the UIEdge.
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Normalizing the UIEdge images actually reduced network performance to twenty

four values within 2071 of the best estimate. This can be explained because the training set

was designed for the original gray scale images and preprocessing of the images may

require a different training set in order to optimize performance. It is interesting to note that

the network's results conform more closely to the training judge's mean compared to the

three judges' mean. As in the case of the fiducial, the network was trained to the

systematic biases of the training judge. I expected the network to only be able to perform

within the limitations of its training set and that a training set with more variability would

yield better results.

Convolving the images with a Sobel filter to enhance the differential pixel intensities

of the UIEdge did not improve results but in fact worsened them. Only one of the thirty six

values was within 2071 of the best estimate. Apparently, the Sobel convolved training set

did not include enough information in order for the network to characterize the UIEdge's

location.

The network was trained with 21 x 21 pixel images to determine if capturing a

larger section of the image could reduce the problems of erroneous selection of a lateral

incisor's edge. However, increasing the size of the images increased the number of

parameters (nodes and weight coefficients) dramatically and results did not improve.

Clearly the training set did not contain enough variability for the network to be able to

characterize the problem.

When the network was trained with 13 x 13 pixel averaged border images,

performance was better than with the 21 x 21 pixel images. However, the network located

only twelve of the UIEdges within 2071. When the network had been trained under other

conditions, if the correct structure was located the accuracy was fairly good. Given that the

network could not perform within the criteria on the training set it is not surprising that it

did not perform within the criteria on the test images. Presumably, expanding the training

set should give the network a better fix on the UIEdge.
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Chapter 6

General Discussion and
Recommendations

General Discussion

In order for neural networks to be used as landmark locators with sufficient

accuracy, results must be within criteria set for human judges. Using the criterion of the

1971 Reliability Study, the network was able to locate twenty six of thirty six (74 percent)

of fiducials and twenty nine of thirty six (81 percent) of the UIEdge landmarks. This

compares favorably with the results achieved by Parthasarathy and Tong et al.[9, 10]. I

believe these results could be further improved by expanding the training sets, by adding

sub-pixel processing, and by the use of higher resolution images.

The network clearly trained to the characteristic distribution of the training judge for

both the reference and anatomic landmarks. This is very encouraging because it suggests

that the network can be trained to locate any landmark given both variety and consistency in

the training set.

The network tended to fail on anatomy outside of its training set. By increasing the

comprehensiveness of the training set, the network can learn to locate these landmarks.
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This does point out the benefit of a learning algorithm as opposed to the fixed definition

algorithms. Though the training set is ideally designed to be as comprehensive as possible,

there may always be unusual cases that are not included in the training set. With a neural

network algorithm, these cases can be incorporated into the training set, at any time,

followed by retraining, thus expanding the knowledge of the network.

The results of this study imply that the optimal number of connections is determined

by the size and shape of the landmark. Larger landmarks require that more information be

available to each node. The 3x3 connection scheme was sufficient to characterize and

locate the test pattern but a 5x5 connection scheme was required to locate the fiducial with

any consistency. While different connection schemes were not examined for the UIEdge, it

seems likely that a larger connection scheme might improve results.

One hidden layer was found to be the optimal number of layers for the 3x3 and 5x5

connection schemes. Another way to vary the connection scheme and the number of

parameters in the network is to vary the number of hidden nodes in a layer. One alternative

is to have fewer hidden nodes but a fully connected network. This is the approach most

often used by networks designed for pattern recognition. However, if the number of

hidden nodes in a layer does not match the number in the input image, a more complex

connection scheme would have to be designed. This makes understanding what is

happening in the network much more difficult and reduces our ability to reverse engineer

the solution to the problem. I chose to approach the problem of hidden layers by hidden

nodes corresponding to pixels in the input image because this mimicked the parallel nature

of the input and output layers, and allowed a connection scheme similar to fields of vision.

In addition, three-layer perceptron models have been shown to be able to form arbitrarily

complex decision regions [38]. This evidence suggests that networks with two hidden

layers and larger and more comprehensive training sets would give better results.

Using an output layer with nodes that corresponded to nodes in the input layer did

provide the ability to evaluate which anatomic features were conflicting with the "correct"
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location of the landmark. This was helpful in designing the training sets, as well as

evaluating network results. It also provides a means for further processing -- namely sub

pixel localization to give a closer approximation to the best estimate of the landmark.

The network was able to train to locate both the fiducial and the UIEdge despite

differences in shape and size. While there is a significant difference in shape between

anatomic landmarks, the quality of the network results is largely dependent on the design of

the training set. Thus, I believe that from the results from the UIEdge studies I infer that

the network will apply well to other anatomic landmarks.

The networks were robust enough to generalize across patients and across age

differences. This variability was incorporated into the training set and thus was evident in

the results. However, the training set did not include the full range of anatomic variability.

For example, there were no patients with severe overbite or Class III over jet. I suspect

that the network would be able to locate the landmark on some images of unusual anatomy

but not others, just as it located the UIEdge correctly on one image with orthodontic fittings

but not on another. Alternatively, with severe differences in anatomy, it may be necessary

to train the network selectively. For example, more than one training set would be

developed to account for severe cases of anatomy.

In the cases of both the fiducial and UIEdge, the actual location of the landmark

was a point on some edge of a structure. A Sobel filter was used in this study but

different gradient operators such as the Kirsch or Presitt operators could be used in

different orientations to enhance edges [34, 39, 40]. There are a few landmarks however,

such as sella, the midpoint of the pituitary fossa, which though defined by edges are not

physically on an edge. These landmarks will require some careful consideration of the

connection scheme of the network. If the pituitary fossa is fifteen pixels across, a 5x5

connection scheme will not provide each node in the network with enough information.

Instead, I would either try a larger connection scheme, or in the interests of minimizing

parameters, pick a semicircular region of connection that corresponds to the pituitary fossa.
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Summary

Though this study was limited to the evaluation of network results for two

landmarks, there are two conclusions from which we can reasonably infer that the network

can be applied successfully to other landmarks as well. First, despite variations in anatomy

and patient age, the network was successfully able to locate the UIEdge on patients not in

the training set. In particular, the network was able to locate the UIEdge with accuracy on

some but not all of the types of images not represented in the training set. This implies that

the training set need not be completely comprehensive in order to perform well. Second,

the network trained to the systematic bias of the training judge. It appears intuitively

reasonable that if the network can be trained to a single judge it certainly can be trained to a

"gold standard".

Recommendations for Future Work

For the immediate future, one research direction should be an investigation of the

extent to which one can increase the connection scheme while still characterizing the

landmark location. I have preliminary results which indicate that, given the training data

available, fully connected networks contain too many parameters to converge to unique

solutions. I recommend that further studies be done to investigate the results of 7x7 and

9x9 connection schemes. For landmarks such as sella, where key features appear to be on

the periphery of the connection scheme, altering the shape of the connection scheme to

match the landmark configuration may tailor the network more appropriately to the

landmark.

Expanding the available training data could provide more conclusive evidence of the

usefulness of a second hidden layer. Expanding the training set would also improve the

…
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º
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network's ability to segment images currently outside of the training set. The training set

used in this study generally consisted of "normal" patients. It would be worthwhile to

examine the degree of "abnormality" that can be incorporated into the training set while still

maintaining the accuracy desired. I also recommend that further processing techniques,

such as sub-pixel localization, be explored as a means of improving network results.

While it is important to design the training set to incorporate the variety of anatomy,

it is equally important that the training set have a consistency and accuracy that the locating

task demands. The network should be trained with a "gold standard" for other landmarks.

This "gold standard" would consist of the mean of three to five experienced judges'

estimates of the landmark on the training images. This would reduce individual judge bias

in the training set.

Finally, the network should be tested with a wide variety of landmarks in order to

assess the generality of my results. This would also include landmarks from photographic

images of patients, study casts of patient teeth, and stereo images.

In the next five years with advancements in research and development, including

computer image technology, network design considerations, and the development of fully

comprehensive training sets, neural networks can replace many of the labor intensive

landmark locating tasks. In the short term, I propose a combined man-machine strategy for

automating landmark location. The network would segment the image, then display its first

choice for each landmark. A human judge would then determine whether a given

landmark's location is acceptable. If not, there are several alternatives, the network's

second choice can be presented, the judge can redirect the network to segment a particular

section of the image, or the judge could select the landmark location. If the network is

consistently missing the landmark, the training set should be modified to reflect the

discrepant locations. As in the case of human judges, replicated assessments are necessary

to provide an acceptable confidence level. This can be achieved by independently training

two or more networks and comparing results. This may alleviate the need for human judge
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Appendix A. Software User's Guide

There are two key pieces of software necessary to implement the neural

network: BIBASE and Network. Currently, BIBASE is used to develop the training sets

and the test images for the neural network. Once training sets are developed, two files are

required: a file specifying the names of the training images and a file specifying the names

of the test images. The network is then set up and trained and images are tested using

software called Network.

BIBASE

was developed on an 80386 PC to display images via the PCplus Wision frame

grabber on an RGB SONY Trinitron monitor. The software is written in C and makes use

of library functions that accompany the frame grabber.

The primary task of the software is to acquire and display digital images. In

addition to displaying images, the software can also display other information from the

database, including landmark location data and the associated angular and distance

measurements. The software also provides the ability to design the network training sets.

Portions of the digital images can be easily selected and stored in files for later use as

training and test images. Preprocessing of the images can be performed by or by the neural

network software.
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The size of the training and test images, the starting search position, and landmark

name is hard coded in variables in the file nn.c. Changing the name of the landmark

allows access to database values of its position.

The procedure for designing a training pair within is as follows:

(1) Retrieve the desired image

(2) Select training set option from the neural nets menu (under the annotate menu)

(3) Move box around screen until desired location of input image has been selected

then hit return to save image.

(4) Select appropriate time point and output image will be saved.

The procedure for designing a test image within is as follows:

(1) Retrieve the desired image

(2) Select save image option from the neural nets menu (under the annotate menu)

(3) Move box around screen until desired location of test image has been selected

then hit return to save image.
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Listing Files

Once the training set and the test images have been formed, two listing files must be

generated. The format of the listing files is the following:

Training I Li

# of training images

<input training image-> <output training image->

For example the file might look like this:

3

train.1.in train1.out

train?..in train?..out

train3.in train3.out

Test Images List

# of test images

<test image->

For example the file might look like this:

4

test1

test2

test3

test4
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Network

The neural network software was developed in C on a Sun SPARCII which was

networked to the PC. Modifications can be made to the network through a global variable

file (externs.h), or by compiling different versions of the network code. The software

gives the user the ability to vary the size of the training images, the size of the test images,

the connection scheme, the number of hidden layers, and what kind of preprocessing if any

should be done. Weighting coefficients can be stored in a file to be used again on

successive runs of the network. The network segments the test images and produces

network output images. The network output for each pixel in the image is the likelihood

that it is the landmark location.

Network prompts for the following information:

(1) Random number seed

(2) Number of hidden layers

(3) Name of the training file list

(4) Want to retrieve old weights? If yes then weight file name.

(5) Number of epochs and the stop error

Network now proceeds to train... When network has finished training:

(6) Name of the test images file list

Network proceeds to segment images....

(7) Do you want to save weights? If yes then weight file name.

Network places the output of each image in a file. If the test image is called test1 then the

output is placed in a file called test.out. Input and output files can be viewed with a

program called display. Once results are evaluated, the training set may need to be

redesigned. This can be done by repeating the steps outlined above.
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