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A B S T R A C T   

Extreme weather has a direct and significant impact on buildings and infrastructure, resulting in billions of 
dollars of damage each year. This problem continues to grow as climate patterns change and buildings are 
exposed to new and different hazards than what they were designed to withstand. In order to better plan for the 
long-range sustainment, restoration, modernization, and eventual recapitalization of these buildings, organiza
tions with large building portfolios, such as the U.S. Department of Defense (DoD), must have an awareness of the 
risks that these extreme weather events present. This research aimed to develop an approach to estimate con
dition loss and reduction in service life for the components of a building due to extreme weather hazards, to 
understand the risks that may be present in certain buildings and building systems. To achieve this objective, a 
damage association matrix was developed that categorizes climate hazards, the damage modes that they pro
duce, and the individual component types impacted. This damage matrix formally links state-of-the-art climate 
model output, which provides projections of the probability of various climate hazards with a damage effects 
model that quantifies the consequence on component-level condition and service life. This method is applied to 
an actual portfolio of buildings in a particular geographic location and with a pre-defined component inventory 
that comprises the building. This approach can be aggregated to the system-, facility-, and site-level thus helping 
support billions of dollars in recapitalization decisions related to restoration/modernization of facilities.   

1. Introduction 

The United States (U.S.) and other countries are experiencing more 
frequent and intense weather events due to climate change (e.g., Refs. 
[1–5]). Extreme weather events and climate change can cause cata
strophic damage to the facilities, impacting and potentially interrupting 
critical services (e.g., see Ref. [6]). It has been shown that extreme 
weather events and climate change affect the lifespan and performance 
of critical infrastructure, posing the risk of potentially significant addi
tional maintenance and replacement costs over the coming decades (e. 
g., Ref. [6–8]). Of equal concern is how to best manage infrastructure 
upkeep in a way that is cost-effective for routine maintenance and 
protective against infrequent, but potentially damaging, extreme 
weather events. In the context of these changing natural hazards, facility 

planners and policymakers need state-of-the-art information that (1) 
projects long-term extreme events risk, (2) informs them on how these 
events may alter the depreciation schedules and the performance profile 
of individual facilities and their constituent systems and components 
[9], and (3) does so relative to a wide range of extreme event scenarios 
and the likelihood of potential impacts. 

We begin by providing background on recent policies that are 
closely-related to this topic and describe an existing facility lifecycle 
management tool in widespread use by U.S. Department of Defense 
(DoD) planners. The outcome of this research has implications to all 
infrastructure and not just DoD facilities. Next, we introduce the 
methods we employ to assess changes in extreme weather risk and 
evaluate the resulting impact to facilities. We show how extreme 
weather risk impacts the depreciation of the components that makeup 
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facilities through case studies [10]. And we show how our model was 
validated using damage assessments in the immediate aftermath of 
Hurricane Laura. Finally, we conclude with a summary of the project 
and a discussion of the limitations. 

2. Background and regulatory context 

Facilities owned and operated by the U.S. federal government are 
exposed to the same extreme events as other facilities; their budget, 
however, is not necessarily designed to bring these facilities back to full 
mission readiness following extreme weather events [11]. Reducing the 
amount of damage caused to these facilities by extreme weather events 
would in turn reduce the cost of mitigation. On June 30, 2020, the U.S. 
House Select Committee on the Climate Crisis brought attention to the 
importance of resilient construction and stronger buildings as part of the 
“Solving the Climate Crisis: Congressional Action Plan for a Clean En
ergy Economy and a Heathy, Resilient, and Just America” report. The 
Congressional Action Plan lays the foundation for resilience to become 
an integral part of community planning [12]. 

In addition, a January 27, 2021, Presidential Executive Order (EO) 
on Tackling the Climate Crisis at Home and Abroad, states that “The 
United States will move quickly to build resilience, both home and 
abroad, against the impacts of climate change that are already manifest 
and will continue to intensify according to current trajectories.” [13]. 
This EO also calls for climate risk analysis that can be incorporated into 
modeling, simulation, war-gaming, and other analysis, as well as rele
vant strategy, planning, and programming documents and processes. 

Many federal agencies have begun to participate in the effort to 
define and reduce vulnerabilities within federal facilities. The Federal 
Emergency Management Agency (FEMA), for example, has defined high 
wind vulnerabilities to building elements due to hurricanes or tornadoes 
[14]. These common building elements included roof structure, doors, 
glazing, roof coverings, and rooftop equipment. The Insurance Institute 
for Business and Home Safety conducts full-scale demonstrations of 
building vulnerabilities due to high winds, and wind-driven rain. Indi
vidual components of construction materials are evaluated in a small 
laboratory, which replicate real-world conditions. Both of these agencies 
have a stake in reducing facility damage. Insurance companies use a risk 
assessment model, which is a combination of four elementary modules: 
(1) hazard; (2) exposure; (3) damage; and (4) vulnerability to estimate 
the potential economic loss. The hazard module physically describes the 
event and defines the intensity of the windstorms, rainfall and wind 
speed. The exposure module represents a detailed building inventory 
and geographic information of the buildings. The damage module cal
culates the financial loss, and the vulnerability module reflects the 
correlation with damage and hazard, and quantifies the amount of 
damage using vulnerability functions [15]. 

Researchers have studied damage mechanisms due to a variety of 
natural hazards to determine best design and construction practices 
[16]. Vulnerabilities can significantly increase based on the location, 
structure, age, construction quality, engineering and materials used. 
Older structures may not have been designed to follow new building 
standards that take into account the most recent best practices, instal
lation guidelines, and stronger codes for improved risk tolerance. 
Nawari uses data mining algorithms in the prediction and classification 
of damage due to hurricane and tornadic forces. By determining how 
various hazards relate to each other and what aspects of the buildings 
are affected, his research focuses in the prediction, assessment, and 
classification of building damages by severe windstorms. 

Another effect of extreme weather events can be an increased run- 
time in hours per day of mechanical-electrical-plumbing (MEP) equip
ment. The number of heating degree or cooling degree-days (HDD and 
CDD) are based on the American Society of Heating, Refrigerating and 
Air-Conditioning Engineers (ASHRAE) as the industry standard for 
weather models. Petri and Caldeira [17] predict changes to the number 
of HDD and CDD in the United States. Some of their models show large 

CDD values, which would indicate an increased demand for air condi
tioning. These demands will exceed the design for the mechanical sys
tems more often; thus reducing the life cycle of the heating, ventilation, 
and air conditioning (HVAC) units. 

A recent FEMA [14] study details the facility components most 
vulnerable to damage by hurricanes and tornadoes including pressure, 
wind-borne debris, and wind-driven rain. Their assessments of critical 
facilities older than 5 years includes performance expectations, 
reviewing as-built drawings, and conducting field investigations. In the 
FEMA study, a Level 1 assessment addresses the general condition (i.e., 
remaining service life) and the Level 2 assessment consists of destructive 
and/or non-destructive testing. 

Our research team found localized examples of approaches to model 
weather impacts to facilities, but there does not appear to be a gener
alized framework to estimate the life cycle effects on condition and 
service life to the individual components of a building across a range of 
weather hazards. As a result, a goal of this research is to develop a 
generalized and robust model to quantify the estimated condition loss as 
well as reduction of service life to the individual components of a facility 
due to extreme weather events. The model then aggregates these 
component-level risks into a facility-level to effectively communicate 
risk of damage across a site or organization. 

2.1. Relevant literature 

There are numerous methods cited in literature for estimating the 
service life of building components and building equipment. Many of 
these approaches however do not account for impacts due to a changing 
climate. This requires both a way of projecting future climate variables 
under a changing climate, as well as how those changing climate 
stressors impart a change on the service life or degradation rate of 
building components. While the science of climate change is continu
ously evolving, various climate models exist to project global variables 
like surface temperature, precipitation patterns, and other variables 
[18]. Previously these models were applied to simulations run on large 
spatial scales measured in hundreds of miles [19], but recent climate 
modeling approaches have employed the increased resolution of 
regional climate projections [20[21]]. These models rely on more than 
just the geospatial location, and can leverage machine learning algo
rithms to account for varying thermal effects from characteristics such as 
land-use types and heat island effects [22,23]. This increase resolution 
provides better projections for climate impact analysis on localized 
infrastructure assets including building and their constituent 
components. 

In addition to climate modeling, past research has focused on the 
impact of extreme weather events on critical infrastructure assets like 
power grids, railways, coastal structures, and bridges [24–28]. Effective 
climate change management however must also address the risks asso
ciated with non-extreme events [29], including impact on equipment 
subjected to operating conditions outside original design assumptions, 
escalated risk from increased environmental temperature, or increase 
exposure to corrosive environments [30]. Past research has demon
strated the risk of premature building degradation when the local 
climate undergoes increased environmental stressors that significantly 
depart from design assumptions [31[32]]. A continuing challenge with 
any of these studies is the availability of measurable damage and 
degradation data, however a common approach to this issue involves the 
simulation of damage and failure data when actual data is not available 
[33–36]. Even these simulations require historical data to feed the 
models, many of which rely on decades-old historical data that may not 
reflect future climate impacts as current and future weather variables 
deviate substantially from these historical trends [37]. 

Despite the contributions from past research, model limitations and 
gaps in understanding still exist. This research aims to address a number 
of these gaps by proposing a framework that adjusts key service life and 
degradation model parameters for building components as the climate 
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variables describing the environment they are projected to operate in 
are expected to change. Additionally, while past research has focused on 
global climate change or used older historical data, this research im
plements regional estimates based on more current data to improve 
service life forecasts. 

3. Methodology 

The U.S. Army Corps of Engineer’s BUILDER Sustainment Manage
ment System—the facility life cycle management tool used by the DoD 
and several other federal agencies— comprehensively assesses and 
forecasts facility conditions to support facility maintenance, repair, and 
recapitalization decisions [38][39]. While BUILDER has been widely 
used for managing routine infrastructure sustainment, it does not 
currently have the ability to explicitly consider infrastructure vulnera
bilities arising from extreme weather events. The key objective of this 
study is to incorporate impacts of extreme weather events into the life 
cycle forecasting used by the system to identify and plan facility sus
tainment, restoration, and modernization investment needs. 

Another objective of this project was to develop an application 
programming interface (API) plug-in for BUILDER—called the Weather 
Effects on the Lifecycle of U.S. Department of Defense Equipment 
Replacement or “WELDER”—which allows users to visualize weather 
event projections and re-prioritize building component repair and/or 
replacement schedules, and assess costs, according to the likelihood and 
severity of these events and the expected damage impact on the building 
portfolio. The WELDER technology consists of five main components: 
(1) an extreme weather database for multiple future climate scenarios/ 
time periods; (2) the BUILDER component inventory; (3) an event 
distress (damage) association matrix; (4) the application programming 
interface; and (5) a WELDER user interface for exploratory analysis. In 
addition, we partnered with several demonstration sites at the onset of 
the project to help guide the development of WELDER. 

At the onset of the project we met with key decision-makers at our 
demonstration sites: Fort Leonard Wood, Fort Cavazos (formerly Fort 
Hood), and the Florida National Guard. We followed up those initial 
conversations with a structured set of interviews with local experts. The 
purpose of the interviews was to collect information about what type of 
damage to infrastructure might occur (e.g., damage to roof) if extreme 
weather occurred, and perhaps most importantly, at what extreme 
weather threshold (e.g., greater than 110 mph wind speed) that damage 
might first be observed. We then used this information to develop a list 
of relevant extreme weather metrics and thresholds. 

3.1. Extreme weather database 

The Community Atmosphere Model version 5 (CAM5) and the 
Weather Research and Forecasting (WRF) model [40] were the main 
source of information for the extreme weather metrics. Simulations of 
CAM5, a global climate model, were selected from a suite of 25 km 
horizontal resolution integrations [41,42]. WRF, a regional climate 
model, was integrated at a 27 km horizontal resolution. The CAM and 
WRF simulations included a 5-member and 10-member ensemble, 
respectively. The CAM5 simulations include four different climate sce
narios to capture the present and future climates: the historical period 
1995–2014 (conditions as they actually were ~1 ◦C above global 
pre-industrial values), and three twenty-year periods at 1.5-, 2-, and 
3-degrees Celsius warmer than pre-industrial conditions, corresponding 
to the years 2030, 2040, and 2060, respectively, under Representative 
Concentration Pathway (RCP) 8.5, which is a high greenhouse gas 
emissions scenario [43]. The WRF simulations include two climate 
scenarios: the historical period 2001–2010 and a corresponding ten-year 
period as if it were 2090 under RCP 8.5. The CAM5 model is ideal for this 
work because of its ability to simulate extreme weather events and 
because the output data covers the entire United States [41]. The WRF 
model was chosen in addition to the CAM5 model because of the ability 

to output data at the fine time scales necessary for some weather metrics 
(e.g. hourly precipitation rate) [44]. Although the use of only two 
models is a potential limitation of the extreme weather database, the 
suite of models in the Coupled Model Intercomparison Project Phase 6 
(CMIP6) were deemed too coarse to simulate several of the extreme 
weather events of interest and statistical downscaling may not include 
all the processes of interest for the extreme weather database. 

To create a temporally continuous dataset, linear interpolation was 
used with the CAM5 and WRF data. For both models, all historical years 
and all future years were used to determine a range of percentiles for the 
extreme weather database. For the continuous time series, the historical 
time period is therefore represented by the year 2005, the midpoint of 
the CAM5 and WRF historical datasets. As discussed above, the years 
2030, 2040, and 2060 represent the CAM5 future global warming levels 
of 1.5, 2 and 3 ◦C above preindustrial temperatures and the year 2090 
represents the WRF future warming scenario based on RCP 8.5. Using 
linear interpolation between the IPCC estimated RCP 8.5 times to global 
warming levels creates a smooth, continuous dataset in time. Although 
this assumes that the future change will be approximately linear, 
interpolation provides a reasonable method to fill in temporal gaps in 
the available model data. The approach used to develop the extreme 
weather database focuses on the anthropogenic contribution to any 
change between the historical and future climates. Natural climate 
variability would be superimposed on these anthropogenic changes. 

Additional 3 km high resolution WRF simulations were performed to 
better understand the metrics related to severe storm activity [45]. Se
vere storms are small-scale, but impactful events that are not 
well-represented in the lower resolution CAM5 and 27 km WRF simu
lations. Specific severe storms were identified, most notably a tornado 
event that occurred on December 31, 2010 at the Ft. Leonard Wood 
military installation in Missouri. This event was designated an EF3 
tornado and caused an estimated $90 million in damage [46]. Fig. 1 
shows the maximum simulated reflectivity (rainbow contours) and the 
updraft helicity (grey contours) for (a) historical and (b) late 21st cen
tury realizations of a tornadic storm like the event that affected Ft. 
Leonard Wood. The maximum simulated reflectivity and updraft helicity 
are indicators of thunderstorms and rotating updrafts, respectively. 
From Fig. 1, there is a clear increase in the updraft helicity from the 
historical to the future climate, indicating the potential for stronger 
tornadoes in future realizations of the Ft. Leonard Wood tornado event. 
Results such as these highlight the importance of incorporating extreme 
weather metrics, such as wind speed, into projections of future infra
structure degradation. 

The threshold details for each extreme weather metric considered are 
presented in Table 1, below. As alluded to earlier, demonstration site 
responses to an extreme weather questionnaire were used to inform the 
threshold choices for all metrics. The questionnaire was sent to three 
different military installations: Ft. Leonard Wood, MO; Ft. Cavazos 
(formerly Ft. Hood), TX; and the Florida National Guard. The ques
tionnaire asked respondents for ranges in weather variables that lead to 
infrastructure degradation. Input from the US Army Corps of Engineers 
was also used to establish ranges of threshold values to supplement the 
information from the questionnaire. The National Oceanic and Atmo
spheric Administration (NOAA) Livneh near-surface climate dataset was 
used to bias-correct the temperature metrics [47]. 

Garfin et al. [6] and others stress the importance of communicating 
uncertainty in a way that can be readily used by DoD decision-makers. 
To communicate the likelihood of future extreme weather material
izing, a range of percentiles is calculated for each extreme weather 
metric. Percentiles were calculated for each climate scenario using all 
available years and ensemble members from CAM5 and WRF. Each 
metric from Table 1 contains information over the contiguous U.S. 
(CONUS) for a range of thresholds and for the following percentiles: 5, 
10, 15, 20, 25, 50, 75, 80, 85, 90, 95. This range of percentiles allows 
WELDER users to choose a level of risk and evaluate the corresponding 
infrastructure degradation. By choosing higher percentiles, users will be 
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evaluating infrastructure degradation using less likely, but more sig
nificant changes in extreme weather events. 

As an example, consider the CAM5 maximum surface temperature at 
one demonstration site, Ft. Cavazos. Fig. 2 shows the change over time in 
the number of days per year where the maximum surface temperature 
exceeds 80 ◦F at Ft. Cavazos. The black line is the 50th percentile and the 
blue areas correspond to the 25th and 75th percentiles. As stated above, 
percentiles were calculated for each climate scenario using all available 
years and ensemble members; the global warming levels were associated 
with specific years based on RCP 8.5 and linear interpolation was used to 
produce a continuous time series. Metric information, such as that 
contained in this figure, were then used as input to determine changes to 
the infrastructure degradation curves. 

3.2. Builder component inventory 

The BUILDER component inventory is a listing of the key compo
nents that comprise each building in the BUILDER inventory. The 
BUILDER Sustainment Management System currently includes more 

than 200,000 buildings, >1.9 billion square feet of facility floor area, 
and >$300 billion in total replacement value. The component-level in
formation within BUILDER represent the major assemblies and installed 
equipment that make up a facility and represent the management unit 
where repair and replace decisions reside. Each component is classified 
with a specific type from the BUILDER component catalog, which or
ganizes building component types by system and subsystem aligning 
with the Uniformat II standard [48]. In addition to the component 
classification, which supports associating building components by type, 
the quantity and year installed is also captured for each building 
component, in order to support sustainment management activities. By 
linking these components to the buildings in which they belong, the 
inspections that are performed against them, and other expected 

Fig. 1. WRF (a) Historical and (b) Late 21st Century Maximum Simulated Reflectivity (dBZ; rainbow contours) and Updraft Helicity (m2 s− 2; grey contours).  

Table 1 
Extreme weather metric details.  

Temperature 
(heat) 

● Annual number of days where maximum temperature is 
above 75, 80, 85, 90, 95, 100, 105, and 110 ◦F 
● Annual cooling degree days above 65 ◦F 

Temperature 
(cold) 

●Annual number of days where minimum temperature is 
below 35, 30, 25, 20, 15, 10, 5, 0 and -5 ◦F 
●Annual heating degree days below 65 ◦F 

Wind ●Annual number of days above 20, 30, 40, 50, 60, 70, 80, 90, 
100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200 mph 

Precipitation ●Annual number of days with rainfall rate exceeding 1.0, 1.5, 
2.0, 2.5, and 3.0 in/hr 
●Annual number of days with rainfall rate exceeding 2.0, 4.0, 
6.0, 8.0, 10.0, 12.0 in/day 

Snow ●Annual number of days with the snow water equivalent 
exceeding 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 
6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 in/day 

Ice/Graupel  ● Annual number of days with ice/graupel rate exceeding 
0.01, 0.05, 0.1, 0.5, 1.0 in/day  

Fig. 2. CAM5 Change in Maximum Surface Temperature (days above 80 ◦F) at 
Fort Cavazos. 50th percentile (black line), and 25th and 75th percentiles (blue 
shading) based on the ensemble spread are shown. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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lifecycle attributes, all in the BUILDER relational database, the BUILDER 
component inventory represents a very rich and complete dataset of the 
actual components that make up DoD facilities. The building compo
nents also include their age, location, existing condition, and replace
ment value–among other things. This component inventory dataset is 
already collected, stored, and managed within BUILDER, and the 
WELDER application uses this component-level information to associate 
expected extreme weather related-damage modes with the component 
types identified in the BUILDER component catalog. Infrastructure lo
cations associated with the sites where buildings are located and spe
cifically the BUILDER component inventory contained in those buildings 
are then merged with latitudes/longitudes associated with the various 
extreme weather predictions. The resulting database, along with the 
event distress (damage) association matrix (see below), is then used to 
determine the extreme weather impacts to component condition and 
lifespans. 

3.3. Event distress (damage) association matrix 

The condition degradation curves in BUILDER are based on the 
generalized Weibull cumulative probability function. The main param
eters in this model are (1) a degradation parameter, alpha, that relates to 
gradual or abrupt degradation and (2) the scale parameter, beta, that 
relates to the expected service life of the asset. The initialized parame
ters are tuned and validated based on historic data from inspections 
(observed changes in condition between inspections) for a particular 
component type. 

Currently, the BUILDER component degradation curves do not differ 
by location - the degradation profile is unique to a component type, but 
not to the climate that the component resides in. This project provides 
the framework to adjust the initial degradation profile based on spatial 
factors particularly related to extreme weather stressors. We have 
developed an approach to tune the degradation curve parameters (the 
Weibull scale and shape parameters) based on historic condition 
assessment data. We will continue to use this approach to tune and 
adjust the parameters for individual locations with unique climate var
iables. This allows us to model how the degradation parameters such as 
lifespan are impacted by the varying climate variables at different lo
cations, and incorporate the effects of changing extreme weather due to 
local climate change over time. 

For an individual component in BUILDER, the assumption is that the 
component condition index (CI) equals 100 when the component is 
newly-constructed and its age is at or near 0 years. The component’s 
condition is then expected to degrade over its age or time in service 
based on the initial model parameters. As new inspection information 
for that component is collected, the individual parameters are adjusted 
to reflect the observations for that specific component instance as it 
performs in service in its local environment and operating conditions 
(see Fig. 3). 

The result of this parameter adjustment is that each component’s 
degradation profile can take on a unique shape and response based on 
the observed condition of that component over time due to inspections 
being performed. However, while future condition projections take past 
observed inspection information into account, the BUILDER system does 
not currently adjust for condition and service life effects due to potential 
extreme weather damage. Therefore, this approach provides the base
line for which we can compare to the weather-adjusted condition 
degradation and service life estimates from the WELDER analysis dis
cussed above. 

A similar approach is taken for the modified condition degradation 
curves that the WELDER module will employ. The same generalized 
Weibull cumulative probability function is used. However, the initial 
degradation and scale parameters are adjusted to account for the im
pacts from extreme weather. 

The methodology uses the building component information from 
BUILDER along with the hazards and stressors to estimate potential 

damage modes, types, and effects via the event distress (damage) asso
ciation matrix. For each component, this gets translated into a service 
life reduction and an annual risk premium (see Fig. 4). The risk premium 
is the cost associated with a reduction in a building component’s service 
life due to extreme weather. This risk premium can be aggregated to a 
system-, building-, or overall site-level. 

To estimate these impacts, the damage association matrix is defined, 
which links characteristic damage modes for a given climate hazard to 
building component types. The resulting condition loss as measured by a 
component condition index is associated with each damage mode, along 
with the likelihood that the damage mode materializes given the hazard 
occurrence. This is applied to an actual portfolio of buildings in a 
particular geographic location and with a pre-defined component in
ventory that comprise the building. 

4. Results 

Given a weather forecasting model that determines the hazard 
occurrence likelihood based on building location, as well as the type and 
age of components in the building, an expected service life reduction is 
estimated. The approach uses findings at a component level to support 
building sustainment decisions related to individual component repair/ 
replacement, as well as identify potential mitigation activities to reduce 
damage extent or likelihood. Two case study examples are provided 
below which use the methodology presented above to estimate gradual 
damage caused by extreme weather stressors. 

4.1. Case study #1: Extreme heat impact on rooftop air conditioning unit 
in Panama city, Florida 

The first case study evaluates a single component type—a 50-ton 
rooftop air conditioning unit, exposed to different extreme weather 
stressors. The unit is currently five years old and has an estimated design 
life of 25 years, so it is expected to have 20 years of remaining service 
life. In addition, it is known that the component replacement value is 
$185,000. This air conditioning unit is installed on a building located in 
Panama City, FL, where extreme heat is a known hazard, resulting in a 
climate stressor of excess temperature. We also assume that there is a 
20% likelihood that the average number of cooling degree-days (CDD) 
for that location is expected to increase from 2400 to 3000 over the 
remaining 20-year lifespan of the component. 

The result of this increased temperature environmental stressor is a 
potential damage mode of “Accelerated HVAC Equipment Deterioration 
due to Prolonged Run-time". The damage extent associated with this 
damage mode is identified as moderate, indicating a 25% service life 
reduction due to the CDD increase resulting in longer periods of runtime 
per year. The damage likelihood is identified as certain, meaning there is 
very high likelihood that the CDD increase will result in the damage 
mode indicated. Taking this into account, the probability of damage is 
20% × 100%, or 20%. Since there is a 20% probability of a 25% service 
life reduction, this results in one year of expected service life reduction 
over the 20 years remaining service life, as shown in Fig. 5 below. The 
annualized risk premium associated with this service life reduction is 
estimated at $185,000 x (1/25)/20 or $370 (a one-year effective 
service life reduction for a 25 year design life; spread over 20 year 
remaining service life). 

4.2. Case study #2: Hurricane-force wind impact on asphalt roof surface 
in Panama city, Florida 

The second case study example uses the methodology presented 
above to estimate abrupt damage caused by extreme weather stressors. 
In this example, a 20,000 square foot low-slope asphalt roof surface is 
evaluated. The unit is currently five years old and has an estimated 
design life of 20 years, so it is expected to have 15 years of remaining 
service life. In addition, it is known that the component replacement 
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value is $144,000. This roof surface component is installed on the same 
building located in Panama City, FL, where hurricanes are a commonly- 
observed weather hazard, resulting in a climate stressor of extreme 
wind. Based on the weather information at that location, wind speed in 
excess of 150 mph, which is the threshold associated with roof surface 
loss, has an annual reoccurrence probability of 0.2%. 

This extreme weather threat results in a potential damage model of 
“Significant Loss of Roof Covering”. The damage extent associated with 

this damage mode is identified as High, with total condition loss 
resulting in complete component failure and immediate need for 
replacement. The damage likelihood is identified as Medium, associated 
with a 50% likelihood that the extreme weather stressor will result in 
that damage mode. Taking this into account, the probability of damage 
is 0.2% × 50%, or 0.1%. Since there is a 0.1% annual probability of total 
roof failure, this results in 0.11 years of expected service life reduction 
over the 15-year remaining service life, as shown in Fig. 6 below. The 

Fig. 3. Adjusting parameters and condition indices based on inspection.  

Fig. 4. Schematic of builder event distress (damage).  
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annualized risk premium associated with this service life reduction is 
estimated at $144k x (0.1%) = $144. 

4.3. Case study #3: The WELDER calculation process for multi-modal 
impacts 

This case study shows the calculations in WELDER for a Rooftop Air 
Conditioning Unit in Austin, TX undergoing simultaneous climate 
stresses. As discussed above, the BUILDER system tracks certain infor
mation about the component (see Table 2). 

From this data, a number of initial damage model inputs are 

calculated, as shown in Table 3. 
With these model inputs available, the WELDER system then re

trieves the damage modes and additional model parameters from the 
damage association matrix. Determination of model parameters were 
based on methodology proposed in Ref. [49]. In this example, there are 
multiple stressors/damage modes that the component is exposed to, as 
show in Table 4, below. 

Next, for each damage model listed in the table above, the WELDER 
model finds the closet climate model output for the given location (i.e., 
near Austin), each specific climate variable and threshold, the confi
dence level (e.g., 50%), and the year installed. The resulting value de
termines the baseline value for each damage mode, which is the climate 
variable at the beginning of the component’s service life. These char
acteristics are also used to determine the projected climate value from 
the weather dataset at the end of the component’s service life, as well as 
the change between the projected and baseline climate variable. The 
values for this specific case study are provided in Table 5, below. 

Climate impact metrics are then calculated by using the climate 
value data and the component degradation characteristics. Table 6, 
below, shows these calculations for both the gradual and abrupt failure 
modes. 

The total service life reduction is used to calculate the following 
adjusted component degradation parameters used in BUILDER to 
determine sustainment management activities and additional costs (i.e., 
annual risk premium)—see Table 7. 

The risk is considered very high in this example, because the risk 
premium is more than 2% of the component replacement value. This 
result may indicate a need for further attention to monitor or mitigate 
the risk to this particular component. 

The result of this process is similar to applying a damage curve that 
relates the climate threshold to an increased degradation rate, i.e., a 
service life reduction. The model identifies a damage mode or set of 
damage modes for a given component type and climate stressor. The 
team has developed a reference set of damage modes, but a WELDER 
power-user can also create or edit their own set. Associated to each 
damage mode is the applicable climate threshold associated low, mod
erate, high, severe damage likelihood and extent, and each of these 
combinations has an associated degradation factor. Therefore, for a 
given component and climate threshold, a discrete damage likelihood/ 
extent state is identified and along with that an adjusted degradation 
factor. 

4.4. Application programming interface 

We are developing a module that “plugs into” BUILDER via an 
Application Programming Interface (API) that integrates these two 
distinct types of technologies: (1) a system that has the capability of 
producing high-resolution, long-term projections of extreme weather 
events for any DoD facility location; and (2) a system to translate the 

Fig. 5. Life cycle impacts on condition and service life due to excessive heat 
impacts on rooftop air conditioning unit. 

Fig. 6. Life cycle impacts on condition and service life due to abrupt extreme 
weather impact on low slope asphalt roof surface. 

Table 2 
Information about air conditioning unit in Austin, Texas.  

Location Austin, Texas 

Component type D303002 Direct Expansion Systems – Rooftop Air 
Conditioning Unit – multizone, electric cool, gas 
heat, 50 ton cooling 

Year installed 2019 
Component replacement 

value (CRV) 
$686,880 

Design life 15 years 
Alpha—degradation shape 

parameter 
1.4 

Beta—degradation scale 
parameter 

0.89  

Table 3 
Initial calculated inputs to damage model.  

Initial Model Inputs Equation Calculated 
Value 

CurrentAge CurrentYear − YearInstalled 5 
CurrentCI 

100
(

100
40

)
−

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

(
CurrentAge
DesignLife

)

Beta

⎞

⎟
⎟
⎠

Alpha⎞

⎟
⎟
⎟
⎠

79.319 

EffectiveAge 
DL
((

− logCurrentCI
100

100
40

) 1
2.64
) 8.91 

RemainingDesignLife 
(RDL) 

DesignLife − CurrentAge 10 

RemainingServiceLife 
(RSL) 

DesignLife − EffectiveAge 6.09  
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uncertainty of extreme weather impacts to facility condition indices and 
lifespans, Work Action reports, and associated repair/replacement costs 
within the BUILDER Sustainment Management System. 

4.5. WELDER user interface 

We developed an online user interface1 that allows users of BUILDER 
to dive deeper into the extreme weather projections and anticipated 
response for building components. Users are able to click a link within 
BUILDER, which will automatically log them into the WELDER explor
atory analysis tool. 

Figures A1 through A7 in Appendix A are screenshots of the 
following pages from the WELDER online exploratory analysis tool.  

● Home Page  
● View Scenarios Page  
● Organization-level View  

● Site-level View  
● Facility-level View  
● Component-level View  
● Climate Reconnaissance (“Climate Recon”) View 

4.6. Model validation and calibration 

Because there is still limited data available detailing specific 
component damage following extreme events, Monte Carlo simulations 
were performed to randomly degrade a large population of components 
to mimic BUILDER’s degradation profile. Next, we introduced an addi
tional factor that models the likelihood of a component failing due to an 
extreme weather event. This factor is derived based on a machine 
learning model that characterizes the impact of various weather vari
ables on component lifespan [49]. This allowed us to simulate a large 
population of condition observations that include the effects of weather 
in order to tune and validate the modified degradation curves in 
WELDER. Fig. 7, below, details the results of some of the Monte Carlo 
simulations showing the age (x-axis) at when components fail with and 
without extreme weather impacts. 

4.7. Summary, limitations, and conclusion 

4.7.1. Summary 
The WELDER extreme event simulations and engineering relation

ships are state-of-the-art and reflect our best understanding of the effect 
of climate change on extreme weather and the resulting impact on 
infrastructure. The WELDER model is designed to take component-level 
inventory from BUILDER, apply a range of climate stressors based on 
location, and estimate the change in degradation and resulting service 
life caused by these climate stressors. This represents a capability that 
has not been fielded before, particularly for a large facility dataset like 
the BUILDER Sustainment Management System. The WELDER software 
is flexible so that users can change the uncertainty—and associated 
lifecycle impact to building components—based on their understanding 
of local conditions, the current state of the infrastructure, and the desire 
to proactively respond to the extreme event threats. WELDER is able to 
be calibrated for all regions of interest within the contiguous United 
States and is scalable to handle additional demonstration sites and 
broader deployment across the U.S. military. 

4.7.2. Limitations 
At the same time, this tool represents an initial operating capability, 

and there are limitations to this model due to the early development of 

Table 4 
Multiple stressors and damage modes impacting the rooftop air conditioning 
unit component.  

DamageMode Flooding Excess Run 
Time 

Extreme 
Operating Env 

DamageType Abrupt Gradual Abrupt 
Stressor Inches/day Heat Excess 

Temperature 
ClimateVariable Days > rainfall 

threshold 
Cooling 
degree days 

Days > Temp 
threshold 

Threshold 6 65 100 
DamageLikelihood 

(DL) 
0.25 0.25 0.75 

DamageFactor (DF) 0.8 0.5 0.05  

Table 5 
Projected climate change impacts for Austin, Texas.  

DamageMode Flooding Excess Run Time Extreme Operating Env 

Baseline climate value 0.00 923.22 12.16 
Projected climate value 0.89 1171.28 30.10 
Climate value change 0.89 248.06 17.94  

Table 6 
Calculations to adjust service life, alpha, and beta parameters.  

Failure Type Model Inputs Equation Calculated Value 

Gradual (excess run time) AnnualizedIncrease ClimateValueChange
BaselineValue

RemainingServiceLife 

0.04 

DegradationRate 1+ (AnnualizedIncrease)(DF)(RSL) 1.21 
AdjustedRSL RSL

DegradationRate 
5.01 

AdjustedBeta ⎧
⎪⎪⎨

⎪⎪⎩

CurrentAge + AdjustedRSL
DesignLife

, ifRSL > 0

Beta, if RSL ≤ 0 

0.67 

AdjustedAlpha log(
− logCurrentCI

100

100
40

) CurrentAge
DesignLife

AdjustedBeta 

1.98 

ServiceLifeReduction RSL − AdjustedRSL, ifRSL > 0
0, if RSL ≤ 0 

1.08 

Abrupt (flooding and extreme operating 
environment) 

ServiceLifeReduction 
(RSL)(DL)(DF)

(

(1− )
(365 − ClimateValueChange)

365

365
)

, ifRSL > 0

0, if RSL ≤ 0 

0.71 (flooding) 
0.23 (extreme operating 
environment 

Combined TotalServiceLifeReduction ServiceLifeReduction (Gradual) þ ServiceLifeReduction 
(Abrupt) 

2.02  

1 The WELDER exploratory analysis website is accessible at: https://welder. 
lbl.gov/login. 
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this concept. Sufficient information for projecting extreme weather into 
the future may not be present for all locations or future climate condi
tions. In these situations, we used observational and high resolution 
model data where available and coarser resolution global model data 
when necessary. Due to resource constraints, the research team was only 
able to generate extreme weather projections for one representative 
concentration pathway (RCP) scenario—the high greenhouse gas (GHG) 
emission scenario RCP8.5. To address this and other shortcomings, a 
number of enhancements to the climate modeling component of 
WELDER have been identified. These proposed improvements include, 
but are not limited to: utilizing information from an ensemble of models, 
considering multiple climate change RCP scenarios, and making bias 
corrections to the model-generated wind speeds values across the United 
States. 

Another limitation is that the climate stressors evaluated for this 
project are more often related to extreme weather events. Of course, 
there are other climate stressors, while not necessarily extreme in na
ture, that impact facility conditions. These effects may include increased 
corrosion, moisture problems in buildings, and mold growth potential. 
Another limitation is that the model considers the impact to individual 
weather events independently. Due to the less frequent occurrence of the 
most extreme events, this assumption seems reasonable, since the 

likelihood of multiple event occurrences in the same timeframe is less 
likely. However, as extreme events become more frequent, or non- 
extreme event stressors are included, additional research may be 
warranted. 

Furthermore, we may not have sufficient detail on the existing and/ 
or extreme event-degraded condition, functionality, and mission de
pendency indices of facilities. We intend to address this shortcoming by 
working with a group of trained inspectors—and staff at the demon
stration sites—to determine the condition index (CI), facility condition 
index (FCI), and mission dependency index (MDI) for a representative 
group of facilities and locations. Accordingly, we have proposed 
developing a BUILDER post-disaster damage assessment module so that 
localized information can be used to continuously calibrate and validate 
the WELDER predictive model impacts to building lifecycle. 

In addition, the WELDER modeling is performed at the individual 
component-level. While cost metrics can be aggregated to the service-, 
site-, system- or facility-level, it does not perform a holistic analysis of 
facility- or site-level adaptation alternatives. For example, DoD planners 
may be faced with a decision to (1) continue to maintain an existing 
facility that is at-risk to extreme weather or (2) relocate or rebuild the 
entire facility. In short, a key unanswered question is at what point do 
the expected, cumulative maintenance costs of multiple components 
drive a decision to replace (relocate) the entire facility? Future research 
could allow users to make more informed decisions when making these 
types of trade-offs. 

Finally, there is evidence that “tools alone do not constitute an 
approach to climate adaptation [at military facilities]” [6]. We are 
addressing this shortcoming by giving public presentations and hosting 
meetings to highlight the importance of coupling the WELDER deploy
ment with a “clear mandate to develop adaptation options and affect 
change”—as suggested by the aforementioned researchers. 

WELDER helps users make informed decisions about facility sus
tainment, restoration, and modernization activities under different 
extreme weather scenarios. The weather events under consideration 
include conditions of extreme heat and cold, high winds (e.g. hurri
canes), heavy precipitation, snow, and ice. WELDER provides policy
makers with the ability to aggregate the costs of these component repair 
and replacement activities—under different threat and response sce
narios—to the system-, facility-, site-level. The widespread adoption of 
WELDER will help decision makers achieve the goal of a more resilient, 
cost-efficient, and productive portfolio of facilities. 

Table 7 
Extreme weather-informed parameters to determine sustainment management activities and additional costs in BUILDER.  

Model Results Equation Calculated Value 

TotalAdjustedRSL RSL − TotalServiceLifeReduction 4.07 
TotalAdjustedBeta CurrentAge + TotalAdjustedRSL

DesignLife
, ifRSL > 0

Beta, if RSL ≤ 0 

0.60 

TotalAdjustedAlpha log(
− logCurrentCI

100

100
40

) CurrentAge
DesignLife

TotalAdjustedBeta 

2.31 

AnnualRiskPremium 

(CRV)

⎛

⎜
⎜
⎝

TotalServiceLifeReduction
DesignLife

RSL

⎞

⎟
⎟
⎠

$15,183 

RiskLevel 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Very Low, if
(

AnnualRiskPremium
CRV

)

[< 0.1%]

Low, if
(

AnnualRiskPremium
CRV

)

[0.1% to < 0.5%]

Medium, if
(

AnnualRiskPremium
CRV

)

[0.5% to < 1%]

High, if
(

AnnualRiskPremium
CRV

)

[1% to < 2%]

Very High, if
(

AnnualRiskPremium
CRV

)

[≥ 2%]

Very High  

Fig. 7. Builder degradation profile with extreme weather effects.  
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Fig. A2. Example List of Extreme Weather Scenarios Created for Deeper Analysis.  

Fig. A3. Individual Scenario (organization-level view) and Extreme Weather Risk Premium.   
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Fig. A4. Individual Scenario (site-level view) and Extreme Weather Risk Premium.  

Fig. A5. Individual Scenario (facility-level view) and Extreme Weather Risk Premium.   
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Fig. A6. Individual Scenario (component-level view) and Extreme Weather Risk Premium.  

Fig. A7. Climate Recon Feature within WELDER.  
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