
UC Berkeley
UC Berkeley Previously Published Works

Title

HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for
large-scale networks

Permalink

https://escholarship.org/uc/item/7rm2t22k

Journal

Nucleic Acids Research, 46(6)

ISSN

0305-1048

Authors

Azad, Ariful
Pavlopoulos, Georgios A
Ouzounis, Christos A
et al.

Publication Date

2018-04-06

DOI

10.1093/nar/gkx1313

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, available at https://creativecommons.org/licenses/by-nc-
sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rm2t22k
https://escholarship.org/uc/item/7rm2t22k#author
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

Nucleic Acids Research, 2018 1–11
doi: 10.1093/nar/gkx1313

HipMCL: a high-performance parallel implementation
of the Markov clustering algorithm for large-scale
networks
Ariful Azad1,*, Georgios A. Pavlopoulos2, Christos A. Ouzounis3, Nikos C. Kyrpides2 and
Aydin Buluç1,4,*

1Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA
94720-8150, USA, 2DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive,
Walnut Creek, CA 94598, USA, 3Biological Computation & Process Laboratory, Chemical Process & Energy
Resources Institute, Centre for Research & Technology Hellas, Thessalonica 57001, Greece and 4Department of
Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA

Received September 19, 2017; Revised December 18, 2017; Editorial Decision December 22, 2017; Accepted January 02, 2018

ABSTRACT

Biological networks capture structural or functional
properties of relevant entities such as molecules,
proteins or genes. Characteristic examples are gene
expression networks or protein–protein interaction
networks, which hold information about functional
affinities or structural similarities. Such networks
have been expanding in size due to increasing scale
and abundance of biological data. While various clus-
tering algorithms have been proposed to find highly
connected regions, Markov Clustering (MCL) has
been one of the most successful approaches to clus-
ter sequence similarity or expression networks. De-
spite its popularity, MCL’s scalability to cluster large
datasets still remains a bottleneck due to high run-
ning times and memory demands. Here, we present
High-performance MCL (HipMCL), a parallel imple-
mentation of the original MCL algorithm that can
run on distributed-memory computers. We show that
HipMCL can efficiently utilize 2000 compute nodes
and cluster a network of ∼70 million nodes with ∼68
billion edges in ∼2.4 h. By exploiting distributed-
memory environments, HipMCL clusters large-scale
networks several orders of magnitude faster than
MCL and enables clustering of even bigger networks.
HipMCL is based on MPI and OpenMP and is freely
available under a modified BSD license.

INTRODUCTION

Graphs and their isomorphic representations as matrices or
pairs-lists are one of the principal representations of bio-

logical information on a very large scale that has emerged
over the past decade (1). These graphs represent structural
similarities or functional affinities, e.g. sequence homology
or expression, respectively (2). Due to the rapid increase of
the available information for genome structure and func-
tion, large-scale biological network clustering and analysis
has become a major challenge (3). While for functional net-
works, where typically a whole genome is represented, scal-
ability is easier to address (4), for sequence similarity net-
works (SSNs) this is not the case as thousands of genomes
need to be covered. In the latter case, very large graphs
stored as sparse matrices can contain the relevant homology
detection across multiple genomes, which could lead to the
generation of massive networks with hundreds of millions
of nodes and tens of billions of edges (5). Protein family de-
tection was first implemented by the semi-automated COG
method (6) and later expanded by the fully-automated pro-
tocol TribeMCL (7) using the Markov Clustering (MCL)
graph clustering algorithm (8). Yet, limitations such as high
memory footprint and long running time render the cluster-
ing of large-scale networks a real challenge.

Indeed, despite the great variety of graph-based cluster-
ing algorithms available today (9,10), only a few manage to
handle networks of million nodes and edges. SPICi (11) for
example, is a fast, local network clustering algorithm that
detects densely connected communities within a network. It
is one of the fastest graph-based clustering algorithms and
runs in time O(VlogV+E) and space O(E), where V and E
are the number of vertices and edges in the network. While
SPICi is very efficient and runs in linear time, it performs
better for dense networks and not sparse ones. Louvain
(12) is an efficient and easy-to-implement greedy clustering
method for identifying communities in large scale networks.
The method can handle networks of sizes up to 100 million

*To whom correspondence should be addressed. Tel: +1 510 486 5197; Fax: +1 510-486-6900; Email: abuluc@lbl.gov
Correspondence may also be addressed to Ariful Azad. Tel: +1 510-486-6292; Fax: +1 510-486-6900; Email: azad@lbl.gov

Published by Oxford University Press on behalf of Nucleic Acids Research 2018.
This work is written by (a) US Government employee(s) and is in the public domain in the US.

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

2 Nucleic Acids Research, 2018

nodes and billions of links. Although the exact computa-
tional complexity of the method is not known, the method
seems to run in time O(VlogV). Molecular Complex Detec-
tion (MCODE) (13) detects densely connected regions in
large protein–protein interaction (PPI) networks that may
represent molecular complexes. The time complexity of the
entire algorithm is polynomial O(VEd3) where d is the ver-
tex size of the average vertex neighborhood in the input
graph. Restricted neighborhood search clustering (RNSC)
(14) uses stochastic local search. RNSC tries to achieve op-
timal cost clustering by assigning some cost functions to the
set of clusters of a graph. It requires O(V2) memory and
the complexity of a move in the naive cost function is O(V).
Affinity-propagation (15) is a clustering algorithm based on
the concept of ‘message passing’ between data points able
to cluster 25 000 data points in a few hours or 120 000 data
points in less than a day, based on all pairwise similarities
on a 16GB 2.4GHz machine. The latter achieves complexity
O(kV2), where k is the number of iterations.

Despite the continuous active research and the new meth-
ods that appear to serve the purpose of large-scale biolog-
ical cluster detection, MCL has been one of the most suc-
cessful in the field and today it comes as a core module with
many Linux distributions and many visualization tools (16–
24). MCL uses random walks to detect clustered structures
in graphs by a mathematical bootstrapping procedure and
was initially used to detect protein families in sequence sim-
ilarity information, as well as protein interaction modules
(25). An optimized implementation should have complex-
ity O(Vd2), where V is the number of nodes in the graph
and d is the average number of neighbors per node. MCL’s
popularity stems from its remarkably robustness to graph
alterations and its relatively non-parametric nature (10).

All above methods including MCL struggle to cope
with the observed––and further anticipated––exponential
increase of biological data volumes (26). MCL has been
previously parallelized on single GPU (27), but it can only
cluster relatively small networks due to memory limitations
of a single GPU. This work presents HipMCL, a scalable
distributed-memory parallel implementation of the MCL
algorithm. In contrast to previous work, HipMCL takes
advantage of the aggregate memory available in all com-
pute nodes, clustering networks that were deemed too large
to cluster using MCL. The unprecedented scalability of
HipMCL stems from its use of state-of-the-art parallel algo-
rithms for sparse matrix manipulation. HipMCL is written
using MPI and OpenMP, with the principal aim to speed
up graph clustering and efficiently detect clusters on a very
large scale. Notably, MCL’s backbone has remained intact,
thus making HipMCL a parallel implementation of the
original MCL algorithm. We demonstrate the performance
of HipMCL by using datasets from the Integrated Micro-
bial Genomes (IMG) database (28).

MATERIALS AND METHODS

The markov cluster algorithm

We first review the MCL procedure here to facilitate the pre-
sentation of HipMCL. The MCL algorithm is built upon
the following property of clusters in a graph: ‘random walks
on the graph will infrequently go from one natural cluster

to another’. The MCL algorithm does indeed simulate ran-
dom walks of higher lengths on a graph. In this process,
the algorithm computes the probability of random walks
between pairs of vertices and prunes paths with low proba-
bility to discover natural clusters in the graph.

To capture the probability of random walks, the MCL
algorithm starts with and maintains column stochastic ma-
trices (also called Markov matrices). A column stochastic
matrix is a non-negative matrix with the property that each
column sums to (probability) 1. Initially, the adjacency ma-
trix of a graph is converted into a column stochastic matrix
by dividing every non-zero entry by the sum of all entries in
the column where the entry belongs. The MCL algorithm
then iteratively performs two operations called expansion
and inflation. The expansion step performs matrix squaring,
which corresponds to computing random walks of higher
lengths. The inflation step computes the Hadamard power
of the matrix (taking power entrywise) in order to boost
the probabilities of intra-cluster walks and demote inter-
cluster walks. Expansion and inflations are performed as
long as there is ‘significant’ change between successive itera-
tions. After the MCL algorithm converges, connected com-
ponents of the final graph will form the final set of clusters.
The inflation operation combined with the normalization
for maintaining column stochasticity ensure convergence,
whose properties have been studied extensively (29). The
high-level description of the MCL algorithm is given below:

To reduce the memory requirement in the intermediate
iterations, MCL keeps the networks sparse, by pruning low
probability terms from the expanded matrices. Pruning in
MCL is performed by the sequence of the following three
steps:

(i) Prune: first, MCL removes from the expanded matrix B
entries with values smaller than a threshold. This is done
early, because it is fast and speeds up subsequent steps.

(ii) Recover: if a column of the pruned matrix becomes very
sparse, the recovery step brings back some significant
non-zero entries. The goal of this step is controlling the
effect of excessive pruning and keeps at least R entries in
each column. Here, R is a user-provided parameter, called
the recovery number. The default value of R in the cur-
rent version of MCL is 1400. To perform recovery, MCL
identifies the R-th largest entry in each column and then
keeps the top R entries. This task is therefore a special-
ization of the selection problem (30), which identifies the
kth largest number in a list or array.

(iii) Select: if a column of the pruned matrix remains too
dense, the selection step prunes it further so that at most S

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

Nucleic Acids Research, 2018 3

non-zero entries remain in each column. Here, S is a user-
provided parameter, called the selection number. The de-
fault value of S in the current version of MCL is 1100. To
perform selection, MCL identifies the S-th largest entry
in each column and then keeps the top S entries. Similar
to the recovery step, the selection step is also a specializa-
tion of the k-select problem performed on every column
of the matrix. Note that selection is only performed on
columns where recovery is not attempted.

The number of non-zero entries in a column after
pruning/recovery/select steps is at most max(R,S), where
R and S are the recovery and selection number, respectively.
Hence, the aforementioned steps ensure that the expanded
matrix remains sparse while keeping as much information
as possible.

Stijn van Dongen developed an open source implemen-
tation of the MCL algorithm available at https://micans.
org/mcl/. This implementation employs multithreading to
take advantage of the shared-memory parallelism available
in modern multicore processors. In this paper, we use ‘MCL’
to refer to both the algorithm and its associated shared-
memory parallel software.

The HipMCL algorithm

While MCL and TribeMCL have been used extensively
in clustering sequence similarity and other types of in-
formation, at a large scale, MCL becomes very demand-
ing in terms of computational and memory requirements.
Consequently, existing MCL software cannot handle large
datasets that have trillions of non-zero similarities across
billions of protein sequences. For example, MCL is ex-
pected to take 45 days to cluster a network with ∼47 million
nodes and ∼7 billion edges on a 16-core workstation with
1 terabyte of memory. The expected runtime is extrapolated
based on the iterations during the first 10 days. Due to the
memory limitations of a single computing node or worksta-
tion, clustering even bigger networks is not possible.

HipMCL is a distributed-memory algorithm implemen-
tation based on MCL which employs massive parallelism
to cluster networks of unprecedented size. Each compo-
nent of HipMCL is fully parallelized, taking advantage of
both shared- and distributed-memory parallelism available
on modern supercomputers (Table 1). We describe the par-
allelization strategies for different steps of HipMCL below.

Data distribution and storage. Similar to MCL, HipMCL
represents a network by its sparse adjacency matrix. There
are two levels of parallelism available in a distributed-
memory computer: parallelism within compute nodes is of-
ten handled using OpenMP threads and parallelism across
compute nodes is handled using MPI processes. Since the
memory of a single compute node is accessible by other
threads, the matrix is only distributed across compute nodes
(i.e. MPI processes). We logically view the set of MPI pro-
cesses as a 2D process grid that can be indexed as P(i,j). Pro-
cesses with the same row (column) index belong to the same
process row (column). In our implementation, we use a

√
p-

by-
√

p process grid, where p is the number of processes.
Submatrices are assigned to processors according to a 2D

block decomposition: processor P(i,j) stores the submatrix
Aij of dimensions (N/p) × (N/p) in its local memory, where
N is the number of rows/columns in the matrix. For an il-
lustrative example of block-distributed matrices, see section
below titled: Distributed-memory parallel SpGEMM algo-
rithm. Local submatrices are stored in a compressed format
that requires storage proportional to the number of edges in
the network.

Parallelizing the expansion step. Expansion is by far the
most compute- and memory-intensive step of MCL (Table
2) and requires efficient parallel algorithms to make good
use of hundreds of thousands of processors. To keep our dis-
cussion easy to follow, we describe parallelization of expan-
sion in two steps: (i) designing expansion in a way that of-
fers ample parallelism without increasing memory require-
ments significantly (ii) performing expansion in distributed-
memory systems given the choices made in step i.

Parallelism-memory trade-off in expansion. As described
in the high-level description, MCL expands a column-
stochastic matrix by first computing A2 and then sparsi-
fies it by pruning small entries in each column. Since the
pruned version of A2 requires significantly less storage, it is
memory efficient to fuse expansion and pruning on a sub-
set of columns. Figure 1 shows an example where we ex-
pand a block of b (= 2) columns, prune these expanded
columns and then move to next block of columns. There-
fore, we perform the expansion and pruning in h phases
where h = N/b and in each phase, we expand and prune
b columns. In Figure 1, the expansion is performed in three
phases. The choice of b (and h) is crucial for both compu-
tational and memory efficiency. Setting b to a small value
(e.g. b = 1) saves memory by not storing many unpruned
columns, but it performs a limited number of floating point
operations that cannot efficiently utilize available computa-
tional power offered by large distributed-memory systems.
By contrast, using a large value for b (e.g. b = N) can
take advantage of many processors and truly deliver high-
performance clustering for large-scale networks, but it re-
quires a large amount of memory (Figure 1).

MCL takes the memory-efficient approach by expand-
ing and pruning one column at a time (or t columns at a
time when t threads are used). Therefore, in the sequen-
tial case, MCL sets b to 1 and h to N and performs N
sparse matrix-sparse vector multiplications (SpMSpV). By
contrast, HipMCL prefers larger blocks and fewer phases.
Let Ab be a submatrix of A consisting all N rows and
b columns that are being expanded in the current phase
(Figure 1). Then, in a phase, HipMCL computes AxAb by
parallel sparse matrix–matrix multiplications (SpGEMM).
When the entire unpruned A2 can be stored in memory,
HipMCL computes the entire sparse matrix-matrix prod-
uct and stores it for subsequent pruning (in this case, h =
1, b = N and Ab= A). At the other extreme case with very
limited memory, HipMCL can expand a matrix in N phases
and imitate MCL’s column-by-column approach. However,
the latter approach offers limited parallelism and dimin-
ishes the benefit of HipMCL. Hence, HipMCL selects b and
h dynamically based on the available memory. Let mem(A),
mem(A2) and mem(C) be the required memory to store the

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

https://micans.org/mcl/

4 Nucleic Acids Research, 2018

Table 1. Computational infrastructure used for HipMCL benchmarking

Edison (Cray XC30
supercomputer)

Cori2 (Cray XC40
supercomputer) In-house system

Overall system #nodes 5586 9688 1
#cores 134 064 658 784 8
aggregate memory 357 terabyte 1 petabyte 1 terabyte
max #nodes used in
experiments

2025 2048 8

One computing node of
the system

processor Intel Ivy Bridge Intel KNL Intel Xeon

number of cores 24 68 (272 threads) 8
memory 64 gigabyte 112 gigabyte 1 terabyte

Table 2. The impact of parallelizing different steps of MCL when clustering a eukaryotic network with 3 million nodes and 359 million edges (Table 3)

File I/O (s) Expansion (s) Prune (s) Inflation (ss) Components (s)

MCL (1 node) 600.12 1052.11 9.93 199.97 608.77
HipMCL (1024
nodes)

7.23 27.20 0.92 0.19 0.19

HipMCL speedup 83× 39× 11× 1052× 3288×

The last row shows the speedups achieved by HipMCL on 1024 nodes of Edison (Table 1). While HipMCL drastically reduces the running time of all five
steps, expansion remains the most expensive step in Markov clustering. Hence, we spent the majority of our research effort to make the expansion step
scalable.

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

Figure 1. An example of expansion and pruning of b (= 2) columns of a column stochastic matrix A. Non-zero entries are shown with filled circles. Here,
Ab is a submatrix of A, consisting all N rows and b (= 2) columns that are currently being expanded. The product AxAbis computed and pruned to obtain
the final result for these b columns. Parts of matrices that are active in the current expansion are shown in darker shades. For comparison, MCL sets b
to 1. HipMCL dynamically selects a large value for b from the range [1,N] such that the expanded columns of A2 do not overflow memory. When these
columns are expanded and pruned, the computation moves to the next set of b columns.

corresponding matrices (C is the pruned version of A2).
Then, the number of phases can be estimated as follows:
h = �(mem(A2)/(TotalMem - mem(A) – mem(C))�, where
TotalMem is the aggregate memory available to HipMCL.
This dynamic and incremental SpGEMM enables HipMCL
to expand and prune matrices as quickly as possible without
overflowing the memory.

Distributed-memory parallel SpGEMM algorithm. In
HipMCL, the distributed-memory SpGEMM is performed
by a variant of Scalable Universal Matrix Multiplication
(SUMMA) algorithm (31) adapted for sparse matrices
(32). While Sparse SUMMA is prior work, we summarize
it here to make the presentation self-contained. At first, we
describe how Sparse SUMMA computes A2 in distributed
memory, assuming that the whole unpruned A2 can be

stored in the aggregated memory distributed across all
computing nodes. The special case of computing AxAb for
any submatrix Ab will be discussed later.

In order to compute A2, Sparse SUMMA distributes in-
put and output matrices on a

√
p-by-

√
p process grid, where

p is the number of processes. Figure 2 shows an example of
distributing the input and output matrices on a 3 × 3 pro-
cess grid, using the same input matrix from Figure 1. To
multiply distributed matrices, processes need to communi-
cate their local submatrices. In Sparse SUMMA, this com-
munication happens in

√
p stages (e.g. three stages in Figure

2). Since each stage performs similar communication and
computation, we only describe the first stage using Figure
2. In the first stage, members of the first process column
broadcast their local piece of A horizontally (along the pro-
cess row) and members of the first process row broadcast

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

Nucleic Acids Research, 2018 5

Figure 2. Execution of the sparse SUMMA algorithm for sparse matrix–matrix multiplication A2 = A*A on a 3-by-3 process grid. We use the same input
matrix from Figure 1 and denote submatrices local to different processes by blue squares. Here, we show the first stage of the sparse SUMMA algorithm
where members of the first process column broadcast their local pieces of A horizontally (along the process row) and members of the first process row
broadcast their local pieces of A vertically (along the process column). Broadcasting processes in the first stage are marked with blue shades and the
direction of data communication is shown with red arrowheads. The rightmost figure depicts each process that locally multiplies the received parts of A
and merges the multiplied results to its local part of the output matrix A2.

their local piece of A vertically (along the process column).
Each process then locally multiplies the received pieces of
A and merges the multiplied results to its local piece of the
output matrix A2. Figure 2 illustrates that each process re-
ceives two (different) pieces of the input matrix and updates
its local part of A2. Other stages of Sparse SUMMA fol-
low the same pattern with the exception that the ith process
row and column broadcast their local submatrices in the ith
stage. At the end of

√
p stages, each process has fully com-

puted its local part of A2, and all processes collectively store
the final A2.

The above computation of A2 interleaves communication
(broadcasting submatrices) and computation (local mul-
tiplication and merging). On a small number of nodes,
the computation of A2 dominates the communication cost.
However, when HipMCL is run on thousands of distributed
nodes, communicating data becomes expensive and may
dominate the overall runtime of the expansion step, as well
as the whole clustering algorithm.

The computation of AxAb is identical to the computa-
tion of A2, with the only exception that the second matrix
in Figure 2 is Ab instead of A. That is, each stage of Sparse
SUMMA contributes to local pieces of AxAb. Assuming
that h phases are used to compute A2 from h AxAb multipli-
cations, the total computational cost of performing h multi-
plications of the form AxAb is exactly the same as comput-
ing the whole A2. However, the former approach communi-
cates more data than the latter because over all h phases, the
first input matrix in Figure 2 is needed to be communicated
h times horizontally. The extra communication overhead
decreases with increased node counts because the value of h
decreases with the increase of total available memory. Once
a subset of columns of A2 is constructed, it can be sparsified
immediately according to the selection, recover and pruning
described below. This immediate sparsification is the crux of
our approach that allows us to keep memory consumption
low while still providing ample parallelism.

Parallelizing pruning, selection and recovery. Pruning non-
zero entries that are below a threshold can be trivially par-

allelized because these pruning decisions are independent
of each other. For the selection and recovery operations, we
need to identify the k-th largest entry in each column of a
matrix. k becomes the selection number S in the selection
logic and the recovery number R in the recovery logic. We
implemented a simple algorithm, called TournamentSelect
(T-S), following the idea of tournament pivoting and op-
timization, used in solving linear systems (33). Let P(i,j) be
the processor in the ith row and jth column of the 2D proces-
sor grid. Hence, j is the rank of P(i,j) in its processor column.
At the beginning of T-S, each processor partially sorts each
of its local columns and keeps at most k entries per column.
If a column has fewer than k non-zeros, the whole column
is kept. The algorithm then performs log(

√
p) iterations. In

the r-th iteration, if the column rank j of a processor P(i,j) is
divisible by 2r, P(i,j) receives the lists from P(i,j+2r-1) when
the sending processor exists. After receiving lists from a re-
mote partner, the receiving processor merges its current lists
with the received lists and keeps the largest k entries for the
next iteration. At the end of log(

√
p) iterations, the first pro-

cessor in every processor column stores the largest k entries
for the corresponding columns of the matrix. From these
lists, T-S returns the k-th largest entries in every column.

Parallelizing the inflation step. The inflation step can be
trivially parallelized because each non-zero entry of the ma-
trix can be squared independently. Since the matrices are
already distributed, each processor simply computes the
square of its own non-zero elements. This step scales per-
fectly because it does not require any communication.

Distributed-memory connected component algorithm. Af-
ter the MCL algorithm converges, we identify components
in the final graph. These components represent clusters
in the original network. For this purpose, we developed a
distributed-memory parallel algorithm, following the idea
of the Awerbuch-Shiloach algorithm (34). Relying on well-
known graph-matrix duality, we designed our algorithm us-
ing a handful of linear-algebraic primitives and a sparse ma-
trix vector multiplication (SpMV) is at the heart of our algo-

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

6 Nucleic Acids Research, 2018

rithm. Our parallel connected component algorithm is sig-
nificantly different from that of MCL, both in terms of algo-
rithmic and implementation techniques. This dual improve-
ment made our implementation several orders of magnitude
faster than MCL’s implementation, e.g. an improvement of
3000× on 1024 nodes (Table 2).

Input file indexing. HipMCL currently supports the input
file format of MCL where each line specifies an edge (pairs-
list), thus making it easier to efficiently read it in parallel. We
first get the input size in bytes from the operating system and
then assign to each thread a starting position. If the total file
is S bytes, the i-th process pi (out of p processes) moves its
file cursor to location S*(i/p). If this point is in the middle
of a line, it fast forward to the beginning of the next line
and lets the preceding process pi-1 read previous partial line
in full.

The key to performance is to have each process open the
file in binary format and read using MPI-IO functions with
large buffers. In particular, we use ‘MPI File read at’. The
parsing of the binary data is done in memory. At this point,
all the edges are stored in memory but they are not yet as-
signed to processes in accordance to the 2D decomposi-
tion illustrated in Figure 2. Hence, we need to repartition
the edges to their correct final destinations. The simplest
case is when the original labels are integers from 0 to N-
1 where N is the number of vertices. All edges with source
vertices in the range [i*

√
p, (i+1)

√
p) and target vertices in

the range [j*
√

p, (j+1)
√

p) are assigned to process P(i,j). The
re-partitioning is accomplished by an ‘MPI Alltoallv’ op-
eration, followed by each process building its local sparse
matrix data structure independently.

In the more general case where vertex labels can be ar-
bitrary strings, we have to first find a mapping from those
strings to integers [0,N-1]. The challenge is that the data are
already distributed to processes upon reading the file. Our
method hashes each vertex identifier to a random number.
The hashed values are partitioned to processes in a load bal-
anced way so each vertex is assigned to a unique process.
Each process sends all the vertex data it reads from the file
to the process assigned to that vertex. The receiving pro-
cessor then sorts the received data by its hash value and
eliminates duplicates. All the processors collectively per-
form a prefix-sum (‘MPI Scan’) to calculate the number of
vertices owned by all the processors preceding themselves.
The i-th processor renumbers the sorted local list with pre-
fix sum(i), 1+prefix sum(i),2+prefix sum(i). This number-
ing is precisely the mapping from labels to integers [0,N-1]
we need to compute. This approach also automatically load
balances the input matrix by implicitly applying a random
permutation.

Implementation details. Most algorithmic components of
HipMCL are based on operations from sparse linear al-
gebra, including sparse matrix-matrix and sparse matrix-
vector multiplication. To implement these operations, we
relied on basic sparse matrix operations and data struc-
tures provided by the Combinatorial BLAS (CombBLAS)
library (35). We have substantially modified and expanded
CombBLAS to implement novel parallel algorithms needed
for the expansion, pruning and connection components

steps. Both HipMCL and CombBLAS are written in C++
and use standard OpenMP and MPI libraries for par-
allelization. We used g++ 6.1.0 to compile HipMCL on
NERSC systems shown in Table 1. For experiments with
MCL, we installed mcl-14–137 version from the source.

Computational infrastructure. We ran most of our experi-
ments using two cutting-edge supercomputer systems: Edi-
son and Cori2, hosted at the National Energy Research Sci-
entific Computing Center (NERSC), at Lawrence Berkeley
National Laboratory. In addition, we ran one experiment
with MCL on a 1-terabyte-memory node using an in-house
system at NERSC. We summarize the relevant information
of these systems in Table 1. Notably, we did not use any
library or software specific to these systems. Our software
simply uses standard OpenMP and MPI libraries and can
run seamlessly on any other system, including local work-
stations and laptops.

Datasets. In order to construct several networks to test
the behaviour of HipMCL, we collected all viral, eukary-
otic and archaeal proteins from the isolate genomes hosted
by the IMG platform and created three domain-specific
non-redundant datasets at 100% sequence similarity (April
2017). For each dataset, we used the sequence aligner LAST
(36) in order to construct the all-against-all adjacency ma-
trix by keeping all similarities above 30% and at 70% length
coverage bidirectionally between the longest and shortest
aligned sequences. Each produced matrix was then used as
a three-column text input for HipMCL. Details for these
datasets are provided in Table 3.

In order to further experiment with networks of bigger
sizes and various densities, we followed the same approach
to generate networks of two categories: (i) three networks
containing all pairwise similarities above 30% and at 70%
length coverage bidirectionally for all the predicted pro-
teins of the isolate genomes stored in IMG (Isolates 1, 2
and 3) and (ii) similarities of proteins in Metaclust50 (https:
//metaclust.mmseqs.com/) dataset which contains predicted
genes from metagenomes and metatranscriptomes of as-
sembled contigs from IMG/M and NCBI. For the three
isolate datasets, we used different LAST parameters as the
more sensitive the LAST is, the bigger and denser the sim-
ilarity matrix and vice versa, the less sensitive the LAST,
the sparser the network. Isolate-1 and Isolate-2 were created
by utilizing the less sensitive LAST (parameter -m 10) and
by using different time snapshots of IMG (April 2016 and
April 2017, respectively). The dataset Isolates-3 was created
by using the more sensitive LAST (parameter -m 100). The
number of vertices and edges of these larger datasets are re-
ported in Table 4.

RESULTS

The performance and scalability of HipMCL was evalu-
ated using real large biological datasets. We directly com-
pare HipMCL with the original MCL distributed software
and show that HipMCL and MCL compute virtually iden-
tical clusters, with HipMCL being 100–1000 times faster.
The performance numbers we report include both the file
I/O operations and the actual clustering (compute) time.

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

https://metaclust.mmseqs.com/

Nucleic Acids Research, 2018 7

Table 3. Clustering quality results of HipMCL by directly comparing it to the original MCL

Dataset Inflation #clusters from MCL
#clusters from
HipMCL F-score #mismatched clusters

Eukarya |V| = 3 243
106 |E| = 359,744,161

1.4 228 965 228 965 0.99 8

2 284 026 284 026 1.00 1
4 446 216 446 216 1.00 1
6 597 014 597 014 1.00 0

Archaea |V| = 1 644
227 |E| = 204 784 551

1.4 87 559 87 559 0.99 19

2 107 207 107 207 1.00 0
4 163 840 163 840 1.00 0
6 222 937 222 937 1.00 0

Viruses |V| = 219,715
|E| = 4 583 048

1.4 34 519 34 519 1.00 0

2 37 216 37 216 1.00 0
4 41 835 41 835 1.00 0
6 45 294 45 294 1.00 0

All experiments were run on Edison (NERSC). Column 1: |V| Vertices, |E| Edges. Column 2: The inflation value used for MCL. Column 3: The clusters
produced by MCL. Column 4: The number of clusters produced by HipMCL. Column 5: The F-score comparing the results of MCL and HipMCL. As
shown, results are identical. Column 6: Very few HipMCL clusters that contain slightly different number of proteins compared to the ones produced by
MCL.

Table 4. Evaluation of HipMCL clustering for large-scale networks

Network #nodes (millions) #edges (billions) #clusters (millions) HipMCL runtime (h) Running platform

Isolate-1 47 7 1.59 1 1024 nodes on Edison
Isolate-2 69 12 3.37 1.66 1024 nodes on Edison
Isolate-3 70 68 2.88 2.41 2048 nodes on Cori2
Metaclust50 282 37 41.52 3.23 2048 nodes on Cori2

Assessment of clustering quality

HipMCL and MCL produce identical results given the
same input and parameters (e.g. inflation value). For this
benchmark, we used three medium-scale networks which
can be clustered by both HipMCL and MCL. The prop-
erties of these networks (#nodes and #edges) are shown in
Table 3.

In order to show that HipMCL is not sensitive upon pa-
rameterization compared to the original MCL distribution,
we clustered each network using four different inflation val-
ues (1.4, 2, 4 and 6 respectively). Notably, the inflation pa-
rameter can be adjusted to obtain clusterings at different
levels of granularity. Looking at the third and fourth col-
umn of Table 3, we confirmed that HipMCL and MCL al-
ways return the same number of clusters.

As the number of clusters is a poor indicator to directly
compare two different clusterings, we use the F-score (or F-
measure) to test whether the compositions of the two clus-
terings also match. The F-score is the harmonic mean of
precision (percentage of vertices in a HipMCL cluster which
are found in a MCL cluster) and recall (percentage of ver-
tices from a MCL cluster that were recovered by a HipMCL
cluster). F-score always takes values between 0 and 1, where
1 indicates a perfect match between two clusterings. The
mathematical definition of F-score is further explained in
the supplementary material.

Table 3 shows that the cluster composition coming from
MCL and HipMCL are identical, as the F-score is always
close to 1. For fine-grained clusters (obtained with higher
values of the inflation parameter), HipMCL and MCL clus-
ters match perfectly. For relatively coarse-grained clusters,

we see few, yet insignificant, differences. The number of
HipMCL clusters that do not match exactly to a MCL clus-
ter is shown in the rightmost column in Table 3. Even when
there is a mismatch, the number of misplaced nodes is in-
significant (at most one misplaced node in the mismatched
clusters in Table 3). We suspect that those minor differences,
stem from different orders of floating-point summation in
parallel runs. It is well documented that floating-point addi-
tion is not associative, which can affect reproducibility (37).

Runtime comparison to MCL

In this benchmark, we compare the runtime of HipMCL
and MCL on the Edison supercomputer at NERSC. The
most surprising result is the superior performance of
HipMCL when running on a large number of nodes, by effi-
ciently exploiting both the increased computational power
and the increased aggregate memory of multiple nodes. Fig-
ure 3 shows the runtimes of MCL and HipMCL on the
test viral, archaeal, and eukaryotic similarity networks. No-
tably, these smaller networks are selected so that MCL does
not run out of memory and is able to successfully cluster
them in a reasonable amount of time.

For small networks such as the viral network, HipMCL
can operate significantly faster than MCL even on a sin-
gle node. The faster runtime of HipMCL is partially due to
the usage of a better parallel algorithm to compute sparse
matrix–matrix products. However, for the archaea and eu-
karya networks, the memory required to store expanded
matrices (before pruning) is significantly larger than the
available memory on a single node. Therefore, on small
concurrency, HipMCL requires many phases to operate

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

8 Nucleic Acids Research, 2018

1

4

16

64

1 4 16 64

Ti
m

e
(s

ec
on

ds
)

Number of Nodes (24 cores/node)

Viruses

HipMCL MCL

36
x

13
x

0.25

1

4

16

64

256

1 8 64 512

Ti
m

e
(m

in
ut

es
)

Number of Nodes (24 cores/node)

Archaea

HipMCL MCL

72
x

67
2x

0.5

2

8

32

128

512

1 8 64 512

Ti
m

e
(m

in
ut

es
)

Number of Nodes (24 cores/node)

Eukarya

HipMCL MCL

11
1x

 97
7x

Figure 3. Comparison of runtimes of the original MCL and HipMCL using three networks. Both axes are in log scale. Both MCL and HipMCL ran on
Edison. MCL ran on a single compute node with 24 cores. HipMCL ran on increasing number of compute nodes to show how the clustering time reduces
as we add more computing resources. HipMCL uses all 24 cores available in each node via multithreading. HipMCL ran on up to 64 nodes (1536 cores)
for the smaller viruses’ network and on up to 1024 nodes (24 576 cores) for archaea and eukarya networks. The performance improvement of the highest
concurrency HipMCL execution compared to single-node MCL and HipMCL executions are shown to the right of each subfigure. See text for details.

with the given available memory, explaining the runtime of
HipMCL on a single node for the archaea and eukarya net-
works. As we add more memory and processors, HipMCL
can cluster a network very quickly as shown in the right part
of each subfigure (Figure 3). For example, HipMCL can
cluster the eukarya network in half a minute on 1024 nodes,
which is 111 times faster than MCL. Similarly, HipMCL
can cluster viruses and archaea networks 36 times and 72
times faster than MCL on 64 and 1024 nodes, respectively.
HipMCL is not limited to large supercomputers and its
single-node runtime is competitive to the runtime of the
baseline MCL implementation.

Speedups of different steps of MCL

Table 2 shows how much time MCL and HipMCL spend
for different steps of the algorithm when clustering a net-
work representing sequence similarities of eukaryotic pro-
teins (see Table 3) on 1 and 1024 nodes of Edison, respec-
tively. This shows that HipMCL drastically reduces the run-
ning time of inflation and connected components by a fac-
tor of 1052× and 3288×, respectively on on 1024 nodes.
File I/O time is reduced significantly (83×) within the limit
of the hardware. The expansion step becomes significantly
faster (39×) in HipMCL; however, it remains the most ex-
pensive step. The remarkable improvements in all five steps
of MCL are based on novel parallel algorithms and effi-
cient implementations of these algorithms on distributed-
memory supercomputers.

Scalability of HipMCL

The more computing resources (processor and memory) we
provide, the faster the HipMCL can cluster a network. Fig-
ure 3 shows that the runtime of HipMCL decreases almost
linearly as we increase the number of nodes on Edison. Us-
ing 1024 nodes, archaeal and eukaryotic networks can be
clustered 672 and 977 times faster than in a single-node.
HipMCL scales better when clustering larger networks be-
cause of the availability of more work that can keep all pro-
cessors busy. This can be realized in Figure 3 where the
eukaryotic network scales optimally. It is also possible to

achieve superlinear speedups (that is doubling the number
of nodes can decrease the runtime by more than 2×) be-
cause of the synergistic effect of increased processors and
memory. Overall, Figure 3 demonstrates that the cluster-
ing time of HipMCL on high concurrency can be predicted
from small-scale experiments. Therefore, to cluster large-
scale networks, domain scientists have the freedom to al-
locate resources depending on the computing budget and
expected runtime.

Performance of HipMCL on larger networks

The real benefit of HipMCL lies in its ability to cluster
massive networks that were impossible to cluster with the
existing MCL software. Table 4 shows four networks cre-
ated from proteins from isolate genomes hosted on IMG
and proteins coming from metagenomes and metatranscrip-
tomes. Of the constructed networks, the smallest one con-
sists of 7 billion edges whereas the largest one of 68 billion
edges. HipMCL was able to cluster these networks in a cou-
ple of hours using 1024/2048 computing nodes on the two
supercomputers at NERSC.

Notably, none of these networks can be clustered on a sin-
gle node with MCL due to memory limitations. Attempting
to cluster network Isolate1 on a system with 1TB memory
and 16 cores failed. MCL was able to finish only one iter-
ation within 5 days. Based on this single finished iteration,
we estimated that MCL would have taken 45 days to clus-
ter this smallest network from Table 4. Therefore, clustering
bigger networks with MCL can be impractical even with a
server with quite a few terabytes of RAM.

Portability of HipMCL

The HipMCL implementation is highly portable as it is
developed with C++ and standard OpenMP and MPI li-
braries. Hence, it can run seamlessly on any system includ-
ing laptops, local workstations and large supercomputers.
We have extensively tested HipMCL on Intel Haswell, Ivy
Bridge and Knights Landing (KNL) processors, using a
range of one to two thousand computing nodes, and with up
to half a million threads across all processors. HipMCL has

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

Nucleic Acids Research, 2018 9

successfully clustered networks from thousands to billions
of edges. These extensive experiments demonstrate its capa-
bility to cluster diverse classes of networks and its portabil-
ity to run on diverse computing platforms.

I/O performance

Due to its fast in-memory parsing, HipMCL can read net-
works at rates close to the peak performance of the NERSC
Lustre file systems for large inputs. In particular, HipMCL
read and parsed the 1.6 Terabytes Isolate3 network data in
∼1 min using 2025 nodes (both Edison and Cori2 exhib-
ited similar performance). HipMCL also achieves close to
linear parallel scaling in terms of I/O throughput until we
approach the limits of the hardware. On Edison, HipMCL’s
I/O time for the Eukarya network is 300 s on one node and
7 s on 64 nodes. In contrast, MCL takes 600 s to read the
same network.

DISCUSSION

HipMCL is a distributed-memory parallel implementation
of MCL algorithm which can cluster large-scale networks
efficiently and very rapidly. While we see that there is no
barrier in the number of processors it can use to run,
the memory required to store expanded matrices is signif-
icantly larger than any available memory on a single node.
Since HipMCL dynamically trades parallelism with mem-
ory consumption using its memory-efficient incremental
SpGEMM, it is not limited by the memory required to store
expanded matrices in unpruned form. However, like MCL,
HipMCL also needs to store the expanded matrix after
pruning. The density of that intermediate matrix is bounded
by the selection, recovery, and pruning parameters. Con-
sider Isolate-1 from Table 4, which has ∼150 non-zeros per
column as input. With the default selection parameter, the
pruned expanded matrix can have at most 1100 non-zeros
per column, effectively requiring seven times more interme-
diate memory than the input in the worst case. This prop-
erty is due to the MCL algorithm itself, rather than any
specific implementation. Despite this limitation, HipMCL
is able to cluster networks × 1000 faster than the original
MCL. Compared to the original MCL, HipMCL can eas-
ily cluster networks consisting of hundreds of millions of
nodes and tens of billions of edges due to its ability to uti-
lize distributed-memory clusters. The denser the network is,
the longer it takes HipMCL to perform the file I/O and the
first iteration, but density does not significantly affect the
other iterations due to selection parameters.

It should be noted that despite the increase of perfor-
mance at the clustering step, the input data in the form of
sequence similarity matrices is still a requirement, indeed a
limiting factor in most cases. Pairwise similarities are gener-
ated by sequence comparison software, such as BLAST (38)
or LAST. Apart from the compute time, large disk capacity
is also required. These issues are independent of HipMCL,
as they require other approaches for the generation of high-
quality and high-volume input datasets (39–42) for subse-
quent clustering and the detection of protein family clusters.

While MCL is a very established algorithm for data clus-
tering, it should not be applied to every network blindly,

as its performance is dependent on the nature and the
topology of a network. In this article for example, we have
demonstrated how HipMCL can efficiently cluster large
scale SSNs. Other types of networks such as gene expression
networks, hierarchical networks, PPI networks, networks
from co-occurring terms in the literature or databases and
metabolic networks must be treated accordingly. Therefore,
checking several topological characteristics of a network
prior to any clustering is highly encouraged. For a topolog-
ical network analysis, tools like NAP (43), Stanford Net-
work Analysis Project (SNAP) (44) as well as Cytoscape’s
(23) and Gephi’s (45) network profilers can be used. One
can easily calculate features such as the betweenness cen-
trality, modularity, clustering coefficient, eccentricity, aver-
age connectivity, average density and other parameters to
get a better sense of the network’s topology. For example,
most hierarchical networks have clustering coefficient equal
or close to zero and therefore MCL would not be a good
choice, as MCL/HipMCL thrives on networks with densely
connected neighborhoods. For a very dense network, other
algorithms such as SPICi might be more suitable. However,
calculating more complicated topological features is not al-
ways trivial when analyzing such large-scale networks. Fi-
nally, in order to get a more empirical feeling about which
clustering algorithm is more suitable for a certain type of
network, CLUSTEVAL (46) is a very useful evaluation plat-
form. CLUSTEVAL offers several biological networks of
various types, which were clustered by several clustering al-
gorithms.

The scope of the present work addresses the paralleliza-
tion of MCL and does not cover specific aspects of accuracy
of the algorithm itself, something that have been covered ex-
tensively elsewhere. The original MCL article (7) as well as
several other review articles or original papers provide ex-
tensive accuracy comparisons. For example, a direct com-
parison of MCL against Affinity Propagation in terms of
quality and performance has been provided previously (47).
MCL was directly compared against several other algo-
rithms using PPI networks and SSNs (7). These algorithms
include SPICi (11), MCUPGMA (48), SPC (49), MCODE
(13), DPClus (16613608), RNSC (50) and CFinder (51). A
direct, comparative assessment of four algorithms, namely
MCL, RNSC (50), Super Paramagnetic Clustering (SPC)
(49) and MCODE (13) was also reported (10). Finally,
MCL was compared against the Spectral Clustering, Affin-
ity Propagation (15) and RNSC (50) to show which algo-
rithm performs better in predicting protein complexes (52).
In summary, there is a great plethora of articles mentioned
above, reporting detailed benchmarks of several clustering
algorithms for different use cases.

To our knowledge, HipMCL is the first graph-based al-
gorithm that can cluster massive networks efficiently using
high performance computing and this indeed represents the
main novelty of our work. Overall, the HipMCL implemen-
tation presented herein is expected to enable clustering and
comparative analysis of very large biological datasets for
the foreseeable future, tasks that even recently have seemed
unattainable.

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

10 Nucleic Acids Research, 2018

DATA AND SOFTWARE AVAILABILITY

HipMCL is based on MPI and OpenMP and is freely avail-
able under a modified BSD license at: https://bitbucket.org/
azadcse/hipmcl/. Installation instructions and large datasets
can be found in the relevant Wiki tab.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We thank Anton Enright and Stijn van Dongen for their
constructive comments on this manuscript.

FUNDING

US Department of Energy (DOE) Joint Genome Institute
[DE-AC02–05CH11231, in part], a DOE Office of Science
User Facility; Applied Mathematics program of the DOE
Office of Advanced Scientific Computing Research [DE-
AC02–05CH11231, in part], Office of Science of the US
Department of Energy; Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Secu-
rity Administration. Funding for open access charge: Office
of Science of the US Department of Energy [contract DE-
AC02-05CH11231].
Conflict of interest statement. None declared.

REFERENCES
1. Barabasi,A.L. and Oltvai,Z.N. (2004) Network biology:

understanding the cell’s functional organization. Nat. Rev. Genet., 5,
101–113.

2. Pavlopoulos,G.A., Secrier,M., Moschopoulos,C.N., Soldatos,T.G.,
Kossida,S., Aerts,J., Schneider,R. and Bagos,P.G. (2011) Using graph
theory to analyze biological networks. BioData Min., 4, 10.

3. Ouzounis,C.A., Coulson,R.M., Enright,A.J., Kunin,V. and
Pereira-Leal,J.B. (2003) Classification schemes for protein structure
and function. Nat. Rev. Genet., 4, 508–519.

4. Freeman,T.C., Goldovsky,L., Brosch,M., van Dongen,S., Maziere,P.,
Grocock,R.J., Freilich,S., Thornton,J. and Enright,A.J. (2007)
Construction, visualisation, and clustering of transcription networks
from microarray expression data. PLoS Comput. Biol., 3, 2032–2042.

5. Goldovsky,L., Janssen,P., Ahren,D., Audit,B., Cases,I., Darzentas,N.,
Enright,A.J., Lopez-Bigas,N., Peregrin-Alvarez,J.M., Smith,M. et al.
(2005) CoGenT++: an extensive and extensible data environment for
computational genomics. Bioinformatics, 21, 3806–3810.

6. Tatusov,R.L., Koonin,E.V. and Lipman,D.J. (1997) A genomic
perspective on protein families. Science, 278, 631–637.

7. Enright,A.J., Van Dongen,S. and Ouzounis,C.A. (2002) An efficient
algorithm for large-scale detection of protein families. Nucleic Acids
Res., 30, 1575–1584.

8. Van Dongen,S. (2000) Graph clustering by flow simulation. Univ.
Utrecht, Doctoral Dissertation.

9. Xu,R. and Wunsch,D. 2nd (2005) Survey of clustering algorithms.
IEEE Trans. Neural Netw., 16, 645–678.

10. Brohee,S. and van Helden,J. (2006) Evaluation of clustering
algorithms for protein-protein interaction networks. BMC
Bioinformatics, 7, 488.

11. Jiang,P. and Singh,M. (2010) SPICi: a fast clustering algorithm for
large biological networks. Bioinformatics, 26, 1105–1111.

12. Blondel,V.D., Guillaume,J.-L., Lambiotte,R. and Lefebvre,E. (2008)
Fast unfolding of communities in large networks. J. Stat. Mech.
Theory Exp., 2008, 10008.

13. Bader,G.D. and Hogue,C.W. (2003) An automated method for
finding molecular complexes in large protein interaction networks.
BMC Bioinformatics, 4, 2.

14. Dhara,M. and Shukla,K. (2012), Recent Advances in Information
Technology (RAIT). IEEE, Dhanbad, India.

15. Frey,B.J. and Dueck,D. (2007) Clustering by passing messages
between data points. Science, 315, 972–976.

16. Pavlopoulos,G., Iacucci,E., Iliopoulos,I. and Bagos,P. (2013)
Interpreting the omics ‘era’ data. In: Tsihrintzis,GA and Virvou,M.
(Eds.), Multimedia Services in Intelligent Environments. Springer
International Publishing, Vol. 25, pp. 79–100.

17. Pavlopoulos,G.A., Malliarakis,D., Papanikolaou,N., Theodosiou,T.,
Enright,A.J. and Iliopoulos,I. (2015) Visualizing genome and systems
biology: technologies, tools, implementation techniques and trends,
past, present and future. Gigascience, 4, 38.

18. Pavlopoulos,G.A., Paez-Espino,D., Kyrpides,N.C. and Iliopoulos,I.
(2017) Empirical comparison of visualization tools for larger-scale
network analysis. Adv. Bioinformatics, 2017, 1278932.

19. Pavlopoulos,G.A., Wegener,A.L. and Schneider,R. (2008) A survey
of visualization tools for biological network analysis. BioData Min, 1,
12.

20. Pavlopoulos,G.A., Moschopoulos,C.N., Hooper,S.D., Schneider,R.
and Kossida,S. (2009) jClust: a clustering and visualization toolbox.
Bioinformatics, 25, 1994–1996.

21. Pavlopoulos,G.A., Hooper,S.D., Sifrim,A., Schneider,R. and Aerts,J.
(2011) Medusa: A tool for exploring and clustering biological
networks. BMC Res. Notes, 4, 384.

22. Auber,D. (2004) Tulip –– A Huge Graph Visualization Framework.
In: Jünger,M and Mutzel,P (eds). Graph Drawing Software. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 105–126.

23. Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T.,
Ramage,D., Amin,N., Schwikowski,B. and Ideker,T. (2003)
Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res., 13, 2498–2504.

24. Morris,J.H., Apeltsin,L., Newman,A.M., Baumbach,J., Wittkop,T.,
Su,G., Bader,G.D. and Ferrin,T.E. (2011) clusterMaker: a
multi-algorithm clustering plugin for Cytoscape. BMC
Bioinformatics, 12, 436.

25. Pereira-Leal,J.B., Enright,A.J. and Ouzounis,C.A. (2004) Detection
of functional modules from protein interaction networks. Proteins,
54, 49–57.

26. Kyrpides,N.C., Eloe-Fadrosh,E.A. and Ivanova,N.N. (2016)
Microbiome Data Science: understanding our microbial planet.
Trends Microbiol., 24, 425–427.

27. Bustamam,A., Burrage,K. and Hamilton,N.A. (2012) Fast parallel
Markov clustering in bioinformatics using massively parallel
computing on GPU with CUDA and ELLPACK-R sparse format.
IEEE/ACM Trans. Comput. Biol. Bioinform., 9, 679–692.

28. Chen,I.A., Markowitz,V.M., Chu,K., Palaniappan,K., Szeto,E.,
Pillay,M., Ratner,A., Huang,J., Andersen,E., Huntemann,M. et al.
(2017) IMG/M: integrated genome and metagenome comparative
data analysis system. Nucleic Acids Res., 45, D507–D516.

29. Van Dongen,S. (2008) Graph clustering via a discrete uncoupling
process. SIAM. J. Matrix Anal. Appl., 30, 121–141.

30. Blum,M., Floyd,R.W., Pratt,V., Rivest,R.L. and Tarjan,R.E. (1973)
Time bounds for selection. J. Comput. Syst. Sci., 7, 448–461.

31. Van De Geijn,R.A. and Watts,J. (1997) SUMMA: scalable universal
matrix multiplication algorithm. Concurrency Pract. Exp., 9, 255–274.

32. Buluç,A. and Gilbert,J.R. (2012) Parallel sparse matrix-matrix
multiplication and indexing: Implementation and experiments. SIAM
J. Sci. Comput., 34, C170–C191.

33. Grigori,L., Demmel,J.W. and Xiang,H. (2011) CALU: a
communication optimal LU factorization algorithm. SIAM J. Matrix
Anal. Appl., 32, 1317–1350.

34. Awerbuch and Shiloach. (1987) New connectivity and MSF
algorithms for shuffle-exchange network and PRAM. IEEE Trans.
Comput., C-36, 1258–1263.

35. Buluç,A. and Gilbert,J.R. (2011) The combinatorial BLAS: design,
implementation, and applications. Int. J. High Perform. Comput.
Appl., 25, 496–509.

36. Kielbasa,S.M., Wan,R., Sato,K., Horton,P. and Frith,M.C. (2011)
Adaptive seeds tame genomic sequence comparison. Genome Res., 21,
487–493.

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

https://bitbucket.org/azadcse/hipmcl/

Nucleic Acids Research, 2018 11

37. Demmel,J. and Nguyen,H.D. (2015) Parallel reproducible
summation. IEEE Trans. Comput., 64, 2060–2070.

38. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

39. Lam,B., Pascoe,C., Schaecher,S., Lam,H. and George,A. (2013)
BSW: FPGA-accelerated BLAST-Wrapped Smith-Waterman aligner.
In: 2013 International Conference on Reconfigurable Computing and
FPGAs.

40. Boratyn,G.M., Schaffer,A.A., Agarwala,R., Altschul,S.F.,
Lipman,D.J. and Madden,T.L. (2012) Domain enhanced lookup time
accelerated BLAST. Biol. Direct., 7, 12.

41. Ye,W., Chen,Y., Zhang,Y. and Xu,Y. (2017) H-BLAST: a fast protein
sequence alignment toolkit on heterogeneous computers with GPUs.
Bioinformatics, 33, 1130–1138.

42. Vaser,R., Pavlovic,D. and Sikic,M. (2016) SWORD––a highly
efficient protein database search. Bioinformatics, 32, i680–i684.

43. Theodosiou,T., Efstathiou,G., Papanikolaou,N., Kyrpides,N.C.,
Bagos,P.G., Iliopoulos,I. and Pavlopoulos,G.A. (2017) NAP: the
network analysis profiler, a web tool for easier topological analysis
and comparison of medium-scale biological networks. BMC Res.
Notes, 10, 278.

44. Leskovec,J. and Sosič,R. (2016) SNAP: a general-purpose network
analysis and graph-mining library. ACM Trans. Intel. Syst. Technol.,
8, 1–20.

45. Bastian,M., Heymann,S. and Jacomy,M. (2009) Gephi: an open
source software for exploring and manipulating networks. In:
International AAAI Conference on Web and Social Media.

46. Wiwie,C., Baumbach,J. and Rottger,R. (2015) Comparing the
performance of biomedical clustering methods. Nat. Methods, 12,
1033–1038.

47. Vlasblom,J. and Wodak,S.J. (2009) Markov clustering versus affinity
propagation for the partitioning of protein interaction graphs. BMC
Bioinformatics, 10, 99.

48. Loewenstein,Y., Portugaly,E., Fromer,M. and Linial,M. (2008)
Efficient algorithms for accurate hierarchical clustering of huge
datasets: tackling the entire protein space. Bioinformatics, 24, i41–i49.

49. Blatt,M., Wiseman,S. and Domany,E. (1996) Superparamagnetic
clustering of data. Phys. Rev. Lett., 76, 3251–3254.

50. King,A.D., Przulj,N. and Jurisica,I. (2004) Protein complex
prediction via cost-based clustering. Bioinformatics, 20, 3013–3020.

51. Palla,G., Derenyi,I., Farkas,I. and Vicsek,T. (2005) Uncovering the
overlapping community structure of complex networks in nature and
society. Nature, 435, 814–818.

52. Moschopoulos,C.N., Pavlopoulos,G.A., Iacucci,E., Aerts,J.,
Likothanassis,S., Schneider,R. and Kossida,S. (2011) Which
clustering algorithm is better for predicting protein complexes? BMC
Res. Notes, 4, 549.

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1313/4791133
by Georgios g.pavlopoulos@lbl.gov
on 05 January 2018

