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ABSTRACT

Wé'diséuss the possibility of using synchrotron radiation to form

electron rings having a very high electric field to hold the ions in-

side the ring. The formulas describing how the energy and the dlmen-

sion of the ring change under the effect of synchrotron radlatlon are

derived, and a numerical example is given.
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I. Introducﬁion

In electron ring accelerators (ERA) it is required to have a high elec-
tric field,-éﬁ, holding the ions inside the ring,‘and_a large rate of ac- -
_ . , . . o .
2t
dz

of radius "a", and a uniform electron distribution inside this cylinder, the

celeration of ions, .  For a ring having a cylindrical cross section

holding field can be written as

Neremc
el = m———— (1-1)

H xaR
where Ne'fis the number of eleétrdns, e, T, and:mc? are the charge, clas-
sical radius and-rest energy of the electron and R: is the rihg major
radius. The ‘rate of energy gain can be written as - o

T - ¢ % f+Ee/Ei!" (1-2)

where é;x_'is the.external field accelerating the‘ring, eZ and M are
the charge and rest mass of the ion, - Ei' and Eé are the ion and electron
energies and f 1is the ratio of ion number to electron number.  In order
not to_loéé'the ions from the ring during the acceleration process one must
also satisfy the condition - |
s dEi ,
- Leg > ! (1-3)

In‘drdgrvtb increase the holding field for a given number of electrons
one can reduce the ring major and minor radius. If thé ring is formed by
magnetic compression of a circular electron beam, as has been done in all
the work on ERAS carried on up to now, the quantities R and a are re-

lated approximately to their initial values at injection byl

N -

R

vRi/B s
(I-%)

Q
I
(S

a;/B? ,

where the subscript "i" indicates the initial value and B is the ratio
of the final Lo the initial value of the magnetic Tield. In the same

. 1
process the electron energy transforms as

r
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E = E.B . ‘, | ‘ (1-5)

so that when reducing R, and increasing £H, one increases Ee and reduces

dEi/dz. it is possible to inject an electron beam of low energy in order

- to have a low final ‘energy and hence & high dEi/dz, but because space-~

charge effects and beam instabilities are strong functions of beam energy,
the reSultlng limit on the elecfron number makes satisfying (I-3) difficult.
It is 1nterest1ng to consider the pOSSlblllty of using other processes

to form electron rings in order that the transformation laws (I-4), (I-5)
might be broken and, hopefully, ERA performance improved. One such possibil-
ity is to compress the‘ring in a magnetic field such that the field value at
the electron orbit and the nagnetic flux enclosedbby the ring can be changed
independenfly2. An example of this class of compressors 1is the static com-
pressor3in which the electron energy remains constanf while ring radius de-
creases, ln this paper we want to call attention to another possibility,
which employs the process of syanchrotron radiation.

Electrons moving in a magnetic field emit syachrotron radiation; and
as a consequence both the energy and the radius of the electron ring de-
creases and £ﬁ and dEi/dz increases. The rate of change of energy and
major and minor radius is evaluated in sections II and IIT. A numerical
example is given in section IV. It is interesting to note that the energy
spread in the ring can either decrease or increase because of synchrotron
radiation, depending on the choice of the‘magnetic field gradient in the
region wherevthe'radiation occurs. On the contrary, the betatron ampli-
tudes are almost unaffected by the radiation process in the case when the
energy spread decreases. Hence, in order to have a small ring minor radius,
ring compression by synchrotron radiation alone probably does not suffice.
We suggest that a combination of different compression techniques, for in-
stance the use of a static compressor plus an additional compression by
synchrotron radiation, could well lead to the formation of rings with very
high holding fields. Holding fields in the range of 1 GeV/m appear, in
this way, to be attainable.

One should also notice that the time necessary to achieve a significant
reduction in ring radius, by using synchrotron radiation, can in some cases
be very long, of the order of tenvmilllseconds or more. This introduces

an additional problem in connection with the process of ion loading of the
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ring, 81nce, in order to keep the contamlnatlon of- the ring by unwanted

ions w1th1n tolerable llmlts, one requlres a vacuum better than 10 ll torr.
Let us assume, for 1nstance, that one wants to charge the ring w1th

one per cent of protons in ten mllllseconds The pressure requlred, in torr,

is given by

p o L4l x 1000 ¢ = ' (1-6)
T o ct o -
where 0 is the ionization cross sectlon (0 :‘lQ_ 9cm for HZ)’ c the
ve1001ty of llght and t is the tlme, From (I-6) one obtains ~5 x 10 -9
torr. Iffwe want to keephthe nﬁmber of unwantedficns'-- including H20+ or
co” ——rat“ajleVel‘ten times smaller than that“of érotons we need a vacuum

: -11 ‘ , : . ' .
of the order 5 x 10 torr, since the ionization cross section for HZO or
CO is about ten times as large as that for hydrogen.

II. Equations of Motion

The»equation of motion of a particle in a magnetic field H, can be

written ae

%(Ei?) =ecy X H+ cz_R + czg, L : (11-1)
where r(t) describes the position of the particle,: E is the energy; R
is the average value of the reaction force due to photon emission, and G

is the fluctuatlon in this force. If g is the change in the electron

momentum due to the emission of a photon and P(g,t) the rate of photon

[+]

fﬂ P(g:t)dg.’ V | ‘ : ‘ (II'Z)

emission, one has

R(t)

it

and

G(t)

§ g, 8(t- t )- R(t), | (11-3)

where gﬁ is the electron momentum change upon emittiﬁg a photon at time
t.. ' '
J
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The force R can be written as

- - 7 - i
R=-1rP. I (TI-4)

Using (II 4) and multiplying equatlon (II-1) by - £ , one obtalns an equa-

tion for the energy variation of the particle

E= - fzpy + PG (11-5)

Substituting in (IT-1), the equation of motion becomes

E¥=eck X H-i-—l+clq- (i Q) - (11-6)

where 7y is the ratio of E  to the rest mass ehergy. It is interesting

to note that.the radiation reaction terms are multiplied by a factor of
Q% in equation (II-6), and canAbe neglected -- to a good approximation --
for relativistic pérticles; _

Since the rate of change of energy, described by (II-5), is very slow
compared to the cyclotron period, we can solve equations (II-5), (II-6)
assuming in first approximation E = constant. As a second step we will
consider_the:effect'of the change in E. “For E = constaﬁt we can intro-
duce a réference trajectory (RT) defined by

ES e [_f‘s' E(zs)} . (II-7)

s
We can now study small displacements around the RT, by assuming

r=r+0%r, E=EJ(L+p),  (11-8)

and linearizing equation (II-6) with respect to.:az_ and p. Following
the usual procedure we introduce the derivative ﬁithjrespect to the arc
length, s, on the RT and consider a reference fféme defined on the RT
by the orthonormal tangent, normal and binormal vectors ,Q(S)? Q(s), Z(é),
such that ’ |
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R O O €
/= -T(s) By

where- K( ) and T(s) are the curvature and tor51on of the RT,. and a
prime denotes a derlvatlve w1th respect to s, Any vector u can be

written as:‘;
| vu = ulg + uzg + g3zv.
In particular, we. chose ' '

dr

x(s)B +,z(sxz; A | (11-10)

Tn the foilowing we will only consider a‘planar‘eRT S0 that T(s)
From the definition of the RT, Eqn. (II 7) we “have

l(r ) _ O HZ(ES) = 0,

S (T1-11)
e c H3(£S) = - VSEéK(s) .
We assume:that Hy is everywhere zero and that sz and .H3 .can be written,'
near the RT, as C '
e c H2-= —:Kzﬁ stsz, "_V : ' - (II—lE)
e e.Hs = - vAE K(l+—nKx).:ﬂ;  , _ ".‘. | ‘(II—13)

We can now. wrlte equation (II 6) in the famlllar form for betatron osci-

llations:
X+ K(1-n)x=-Kp, :
s : (IT-14)
z + K nz = 0O,
We .can now consider equation (II-5). Writing
P. =P + 8P
| y T Tys T %y
we obtain from (II-5)
Bo- - Zp (11-15)
s s “7s ' '

~e

<

. J
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and, to first order

ED = fz P p-2r 8r P - #%5p 4+ 0 G (11-16)
s ] s -s = oS 4 -8 —=S

7 78

The last tefmvis assumed to be very small so that it.is evaluated directly
on the RT. -

Using the conditions Bs=-constant and assumiﬁgialso B .= 1, whenever

L

possible, Oné,has

2 7 2. :.
2 e .2 7. .2
P‘=———7{z‘+—(£-£> } -
7y 35 | & v -
_z_e 1 E|-K2 {#-+2p-+2nK%}. (11-17)
3(mc2)3c S .
o N o
Defining
) re 2 :
C‘='§""E“ET§ ~ 4.5 x 1072 —E (11-18)
(mc™)” (M) sec ’
g=r - G/E, o (1I-19)
equations (II-15), (II-16) become
< l;‘z :
E,=-CE K , _ (11-20)
. 3.2 3n-1 | 1
p=+C Es K'§—gp+te. (rz-21)

ITI. Solution of the Equations

We assume, for the remainder of this paper, that the particles are

‘moving in a constant gradient magnetic field so that

Hy(py 2=0) = 3‘0(5) . | | (Irr-1)

From (III-1) and (II-11) we obtain (writing K as 1/p)

Rn." 1
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or
R n-1 - E . .
E.=E_ (=) S (I1I-2)
3 : ) .
where Eso' and R are respectively the injection‘enérgy and radius.

From (III-2), (II-20) we obtain

2/(l-n)

E
i ol (2 un)/(l n)
s R
or .
. . l-n
B . Eo3 3n-1 , e
<-E-'—>-={1-c -l o t} ;o o (1I1-3)
and ' L |
’ 1
_ E3 3n-1
L = {1- ¢3n-l 7oy } . (ITI-4)
R l'n R2
In the special case n = % one has
3
E
PR = - | |
E=E_ e R : o - , (11I-5)
E
£ 3/2 32t
p._ ] 2 RB
£ <-E—— = e (1I1-6)
o
The soltttion of (II-21) is given by
: - / . :
: f a(t’)at’ t oAt7)at” oo
o(t) = e {po+f e(s')e £ «dt’} | (TI-7)

where, for n # 1/3,
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: 3
3n-~1 Eg
a(t>~: *C 1l-n 2
0.
b - 3n-1 E3 R3(l’l—l)pl.—31’l. . ‘(III--B)

Using (III-8) one has

- (111-9)

t Nt ' , -1
£‘a(t )dt = {l - C 3n-l, EO3 } e

e -

so that the solution of the homogenous part of equation (II-21) is'

3 1-3n S .
- E )
3o-1Zo =p, () (II1-10)

— t}
1l-n RZ

p=p (1-¢C

To find the complete solntion of (II-Zl)»we.assume that the emission

of a photon is a random process and that'conSideringvthe averagés over the

distribution of the random variable appearing in g(t) one has

<g(t)>= 0,

< g(t) g(t’) > = €(t) 8(t-t") . ' (III-11)
The quaﬁtity € can be obtained from the definition of g and is given

= by

_ 95 _x | 5.3 o 11-12)
€ 24\/—3 7\(: rec 7 . : (I / ’

where %c is the electron Compton wavelength.
From (ITI-7), (III-11) we now obtain

—

~0
Tn R2

=

. ., . E 5 _2. .
< p?(t) > = [1 - ¢ 38l Cof t} .
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~ 92 D 1-n Eo2 3n-1 "o t)3n-l
REEES S es i S I C I ey
.' 2 L a
2(1-3n) I n-1 !
- (© <332 + g H%f% 2 [1 - & ]} (I11-13) ,
Where
22_ 7\°.rec‘ ~ 1.3 x 107 ————ci;—-— (TTI-14)
_ 23 (mpe®)? (Mev)
The condition
2
E . - |
D o 2 e _ _
¢ X <p,l 0 (111-15)

is usually satlefled, and in thls case 1t is pos gible to. neglect the

contrlbutlon to < p > from quantum fluctuatlons When this is the

case 1t followc from (III 13) that < p2 > decreaqeQ or increases

=
=

T
with tlme accordlng to whether n <= 'or n>

3

EQuatiQns (IIi-B), (III-4), and (III-13) describe how the encrgy,
major radius and energy spread of the ring.change in time under the
effect of synchrotron radiation. 1et ué consider the betatron oscille—
'tions,Wevalready noticed that it was possiblevto neglect the.terms &
proportional to P7 and G in equation (II-6), since they.are smallexr
by a factor 7_2 than the corresponding terms in equation (11-5).

However, we must consider the effect.of the change in the ring energy

and major radius on the betatron oscillation amplitude, a, and this can
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easily be done by introducing the adiabatic invariant ..
% v % = constant : - (1IT-16)
. 1

where v is the betatron wave number, v = (1-n)? or v = n°. Using

(1T1-3), (III L) and assuming that n. . is constant, (ITI-16) can also be

U~

written as’ - -

a=as(®) . (ITI-17)
where a  is the 1n1t1al betatron amplltude. The relatlonshlps (rrr-13),
(I11-17) determlne the behavior of the ‘ring minor: radius durlng radiation
compre831on It is clear that if we requlre that the synchrotron ampli-
tude be damped we require n < %; and . 1n thls case the betafron amplltude

‘changes only slightly with time.

IV. Numerical Examplés

An example of how the energy, major radius and the quantity R(a+b)

change with time under the effect of synchrotron radiation, is given, for

'_ differenf n values, in Fig. 1. The quantity b is defined as the ring

radial dimension and is assumed to be related to the betatron amplitude,

a, and to the synchrotron amplitude i¥ﬁ-p’ by

b=<aé}( p) f

This quantity is of interest since, for a ring with elliptical cross
section and semi-axis a,b, the holding power is inversely proportional

to a + b.
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Figure Caption

Figure 1. Energy, radius and R(a+b) (dashed lines) versus time
for different n yalués and for‘iﬁitial‘values

EO = 30 MeV, R =5 om, pd = lO’?) and a = 0.1 cm.
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