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A NEW DENSITY OF STATES FORMULATION 

by 

John Shively 

Inorganic Materials Research Division 
Lawrence Berkeley Laboratory 

University of California, Berkeley, California 94720 

April 1975 

A new formulation establishes a fundamental relationship between 

the spectral resolution of a Hamiltonian and the polar decomposition of 

its propagator which yields several expressions for the integrated density 

of states. 
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INTRODUCTION 

The purpose of this paper is to establish a fundamental relationship 

between the spectral resolution of a Hamiltonian H and the polar decomposi

tion of its propagator G+. This relationship provides a new formulation 

for the number N(E) of eigenstates with energies less than E. As a check 

its derivative yields the familiar equation for the density of states 

+ n(E) in terms of the trace of the propagator G • The final result is 

similar to Lloyd's (1967) form for his integrated density of states, 

but the derivation here is -completely different and uses exclusively 

the techniques of the algebra of linear operators instead of the-

traditional integral calculus. Specifically we ·use the spectral resolu-

tion theorem ~ato,l966) and the polar decomposition theorem (Dunford 

and Schwartz, 1967). We begin with the former, being the more familiar 

of the two. 

The Spectral Resolution Theorem states that any linear operator L 

t 
which commutes with its conjugate L can be expresssed in the form 

(1) 

where the £ are the eigenvalues of L and the P are its orthogonal 
n n 

eigenprojections 

p p = 0 p ' n m mn n 
p t = p 

n n 
and 1: P = I (2) 

n n 

The form (i) is called the spectral resolution-of the linear operator L. 

t · n We note that if L is hermitean, L = L , then the eigenvalues N are 
n 

real. 

The Polar Decomposition Theorem is the linear operator analogue 

of the polar representation for complex numbers. This theorem states 
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that any invertible operator L can be written in the form 

L = ReiF 

where R is the unique positive_ operator defined by 

R = (LLt)l/2 

and U iF = e is the unique unitary operator defined by 

U = R-lL 

(3) 

(4) 

(5) 

t t t 1 
It is straightforward algebra to verify that U U = UU = I so U = U-

as required. Since U is unitary the phase operator F is hermitean. F 

can be made unique by adding or subtracting multiples of 2TI from each 

of its eigenvalues f until they each lie within a prescribed interval of 
n 

length 2n. By analogy with the function Arg z for the phase rp of a complex 

number z = rei~ we denote the phase operator· F by 

F = Arg L (6) 

If L is normal., LLt = LtL, then L,R,U and F all couunute. If L is not 

invertible then the polar decomposition still exists but U is not unique. 
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THE FUNDAMENTAL RELATIONSHIP 

The spectral resolution of the Hamiltonian H is 

H =EE p 
n n n 

(7) 

+ Its propagator G (E) is defined as usual by 

G+(E) = lim (E+i£-H)-l 
' 

(8) 
£-++0 

The polar decomposition for this propagator is 

G+(E) = R(E)eiF(E) (9) 

where 

and F(E) = Arg G+(E) (10) 

We obtain an expression for the number N(E) of eigenstates of the 

Hamiltonian H with energy less than E simply by counting them. The 

number N(E) of eigenstates with energy less than E is the trace of the 

sum of the eigenprojections on these states. 

where 

N(E) = Tr P(E) 

P(E) = E~P 
n 

n 
E <E 

n 

(11) 

(12) 

The fundamental relationship between the projection P(E), arising in 

Eq. (12) from the spectral resolution. of the Hamiltonian, and the phase 

operator F(E), arising in Eq. (9) from the polar decomposition of the 

propagator, is 

I P(E) = I + l F(E) 
. 'IT 

(13) 

This may be proven by observing from Eqs. (7), (8) and (9) that the 

spectral resolution of F(E) must be 

F(E) =E f p 
n n·n (14) 
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where (a) f = 0 if E < E because (E+is-E }-l is in the fourth quadrant n n n · 

for € -:r 0 (b) f = -TI if E > E because (E+is-E )-l is in the third 
n n n 

quadrant for € > 0. It may be a surprise that f = ~TI in case (b_).but that 
n 

is the limit as E: + + 0 • [We would have gotten fn = + TI here for the 

phase of G-(E).] Thus Eq. (14) with (a) and (b) imply Eq. (13). Q.E.D. 

The expression for N(E) follows eventually from Eqs. (10), (11) and 

(13) as 

1 + N(E) = ~ Tr Arg{-G (E)} (15) 

The appearance here of the negative sign suggests that we should have used 

~he resolvent of H instead of its propagator. Using G-(E) would change 

the sign, not of the propagator inside the braces, but of the whole 

equation. 

The usual form of the density of states_n(E) may be obtained by 

differentiating Eq. (15) with respect to E. Using the formula for the 

derivative of the Arg function 

d 
dz Arg f(z) = - Imf(z) df(z) 

f*(z)f(z) dz 

we obtain the familiar result 

n(E) = d~ N(E) = - ; Im Tr G+ (E) 

We note a useful property of the function Arg 

Tr Arg AB = Tr Arg A + Tr Arg B 

even when AB * BA and consequently when 

Arg AB :t Arg A + Arg B 
I 

By factoring G+(E) in the form 

G+ (E) = [1-G+ (E)V]-lG+ (E) 
0 0 

and using Eq. (18) we obtain 

(16) 

(17) 

(18) 

(19) 
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N(E) = N (E) - l Tr Arg [1-G+ (E)V] (20) 
0 ~ 0 

where N (E) is the unperturbed integrated density .of states. Here H = 
0 

H + V and G+ is the propagator for H • By using the definition of the 
0 0 0 

transition operator T 

we obtain the equation 

and hence 

T = V + VG+ T 
0 

N(E) • N (E) +! Tr Arg (1 + G+ T) 
0 ~ 0 

(21) 

(22) 

(23) 

This is similar to Lloyd's (1967) result except he uses the reaction 

operator K instead of the transition operator T as in Ziman (1965). 

The K matrix approach has been related by the author (Shively, 1974) to 

Brillouin-Wigner perturbation theory using thes~ techniques of the algebra 

of linear operators and will be the subject of a forthcoming paper. 
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CONCLUSION 

We have obtained several expressions for the number of states N(E) 

by using the fundamental relationship between the spectral resolution of 

the Hamiltonian and the polar decomposition of its propagator. The usual 

form for the density of states followed simply by differentiation. 
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